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Abstract: 

Successful social interactions rely upon the abilities of two or more people to mutually 

exchange information in real-time, while simultaneously adapting to one another. The 

neural basis of social cognition has mostly been investigated in isolated individuals, and 

more recently using two-person paradigms to quantify the neuronal dynamics underlying 

social interaction. While several studies have shown the relevance of understanding 

complementary and mutually adaptive processes, the neural mechanisms underlying such 

coordinative behavioural patterns during joint action remain largely unknown. Here, we 

employed a synchronized finger-tapping task while measuring dual-EEG from pairs of 

human participants who either mutually adjusted to each other in an interactive task or 

followed a computer metronome. Neurophysiologically, the interactive condition was 

characterized by a stronger suppression of alpha and low-beta oscillations over motor and 

frontal areas in contrast to the non-interactive computer condition. A multivariate 

analysis of two-brain activity to classify interactive versus non-interactive trials revealed 

asymmetric patterns of the frontal alpha-suppression in each pair, during both task 

anticipation and execution, such that only one member showed the frontal component. 

Analysis of the behavioural data showed that this distinction coincided with the leader-

follower relationship in 8/9 pairs, with the leaders characterized by the stronger frontal 

alpha-suppression. This suggests that leaders invest more resources in prospective 

planning and control. Hence our results show that the spontaneous emergence of leader-

follower relationships in dyadic interactions can be predicted from EEG recordings of 

brain activity prior to and during interaction. Furthermore, this emphasizes the 

importance of investigating complementarity in joint action.  
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Highlights: 

 

- Sensorimotor and frontal alpha oscillations suppress during dyadic interaction 

- Spontaneous emergence of leader-follower relations during an interactive task 

- Multivariate decoding of two brains reveals complementary neural mechanisms 

- Leaders and followers can be distinguished based on frontal alpha activity 
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1 Introduction: 

When two people engage in social interaction, they exchange information with one 

another by producing actions and simultaneously adapting to the other person’s actions 

via a tightly coupled alignment of perception and action within- and between-individuals 

(Hari and Kujala, 2009). It has been shown that both symmetrical and complementary 

motor adaptation of interacting partners is used when working toward a common goal 

(Kokal et al., 2009, Masumoto and Inui, 2013, Sacheli et al., 2013). However, the neural 

mechanisms underlying interpersonal real-time coordination remain largely unknown, as 

the methodological frameworks to study them have been underdeveloped (Konvalinka 

and Roepstorff, 2012, Hari et al., 2013). 

Research in social cognition has only recently started to depart from studying 

individual minds in isolation responding to “social” stimuli, toward studies of interacting 

minds and brains (Sebanz et al., 2006). This movement was precipitated by the criticism 

that social cognition is fundamentally different when people engage in interaction, rather 

than remain mere observers (De Jaegher, 2009, Schilbach et al., 2013). 

 In particular, a number of recent studies have begun to investigate the 

interdependencies of neural processes in the brains of two people simultaneously as they 

interact (see Dumas et al., 2011, Babiloni and Astolfi, 2012, Konvalinka and Roepstorff, 

2012 for reviews). These studies have provided insight into both individual neural 

processes during ongoing interaction, as well as interpersonal processes of two 

interacting brains, using hyperscanning techniques. One group of such studies has 

employed pseudo-interactive scenarios, scanning one person at a time in unidirectional 

interactions (Schippers et al., 2010, Stephens et al., 2010, Anders et al., 2011, Kuhlen et 
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al., 2012), while others have measured two-brain processes during either turn-based or 

continuous, mutual interactions, employing fMRI (e.g. Montague et al., 2002, King-

Casas et al., 2005, Saito et al., 2010), EEG (e.g. Lindenberger et al., 2009, Astolfi et al., 

2010, De Vico Fallani et al., 2010, Dumas et al., 2010, Dodel et al., 2011, Yun et al., 

2012), or fNIRS (e.g. Cui et al., 2012, Holper et al., 2012, Jiang et al., 2012) recordings.  

 More specifically, previous dual-EEG studies have consistently identified 

amplitude-modulation of oscillations around 10 Hz (alpha-band) over centro-parietal 

electrodes during joint attention and social coordination (Tognoli et al., 2007, Dumas et 

al., 2012, Lachat et al., 2012), which has also been reported in non-interactive 

experiments, during execution and observation of motor tasks (Cochin et al., 1999, 

Caetano et al., 2007) – corresponding to modulation in the rolandic mu rhythm (Gastaut, 

1952). Interpersonally, two-brain studies have primarily focused on quantifying 

functional similarities or temporal synchronization between brains (Hasson et al., 2012) 

during interaction, showing evidence of inter-brain coupling when people engage in 

behaviourally coupled interactions (Dumas et al., 2010).  

 In addition to quantifying synchronized and symmetric brain-networks between 

brains, some dual-EEG studies have also shown asymmetric brain-coupling patterns 

between leader-follower participants of a dyad (Babiloni et al., 2007, Astolfi et al., 2010, 

Dumas et al., 2012, Sanger et al., 2012, 2013). This asymmetry has been reported either 

as functional connectivity (i.e. partial directed coherence) between different brain areas: 

prefrontal areas of a leader and ACC/parietal areas of the leader’s partner in a card game 

(Astolfi et al., 2010); or as directed phase coupling in the alpha frequency band from 

frontal electrodes of leaders’ brains to those of the followers’ (Sanger et al., 2013). 
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However, to what extent these phase-connectivity patterns might constitute a brain 

mechanism of social interaction (and in particular the establishment of leader and 

follower roles), and to what extent they may be linked to the difference in movement 

initiation times, remains unresolved. In contrast, we were interested whether two-brain 

analyses on oscillatory power – reflecting neuronal activation states – could reveal 

complementary patterns of individual, rather than coupled, brain mechanisms in a dyad, 

where the participants may take on symmetric or complementary roles.  

 We thus set out to investigate both the brain processes underlying mutual 

adaptation, and the potential inter-individual differences of interacting members within 

each pair. We employed a minimal interaction paradigm in order to investigate a simple 

interpersonal action-perception loop, whereby one person’s action output became 

another’s perceptual input, and vice-versa. This was done by asking pairs of participants 

to engage in a mutually interactive finger-tapping task with each other, or non-

interactively with a computer metronome, whilst dual-EEG was recorded. While this 

synchronization paradigm typically engages symmetrical mechanisms between people 

when mutually adapting to each other during extended tapping (Konvalinka et al., 2009, 

2010), it also allows the two members to spontaneously take on leader or follower roles, 

thereby potentially engaging complementary leader/follower behavioural and neural 

mechanisms.  

 A recent fMRI study investigated neural mechanisms underlying leadership, as 

participants engaged in a tapping paradigm with an adaptive stimulus (Fairhurst et al., 

2013). The study revealed that leading and perceiving leadership correlated with right-

frontal brain activity, areas engaged in self-initiated action. Here, we wanted to develop a 
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two-brain analysis, which could pick out features that could be specific to leading or 

following behaviour in an interactive dyad. To investigate within-pair inter-individual 

differences, we used a novel multivariate decoding approach, which allowed the classifier 

to pick up differences in brain activity during interactive versus non-interactive 

behaviours in either member of each pair.  

 The goal of our study was two-fold: to explore how ongoing brain-activity is 

modulated within-participants, when the task is done interactively with another person 

versus non-interactively with a computer; and second, to investigate how complementary 

forms of interactive behaviours are reflected in the brain activity of each member of a 

pair.  
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2 Materials and Methods:  

 

2.1 Participants: 

Eighteen right-handed participants (15 male; 3 female), comprising nine pairs, 

volunteered for the study, recruited from Aarhus University, Denmark. They all gave 

written, informed consent. Ethics approval was obtained from the Science Ethics 

Committee for Aarhus County (Videnskabsetisk Komite for Aarhus Amt).  

 

2.2 Task and procedure: 

The participants were seated with their backs to one another, and received no visual 

feedback from each other. The experiment explored 2 conditions, 1) an interactive and 2) 

a computer control condition. In the interactive condition, each participant received 

auditory feedback only of the beats generated by the other member of the pair. In the 

computer condition, both participants received auditory feedback of steady, computer-

generated beats. The participants never received auditory feedback of self-generated taps. 

The computer control was chosen because the participants received the same auditory 

stimulation and performed the same motor task, hence controlling for these factors. Each 

condition was repeated 60 times, with the order randomized. Participants were informed 

of their auditory feedback prior to each trial. The experimental design is shown in Figure 

1 (a). 

The trial was initiated by 5 steady beats from the computer, at a tempo of 120 

beats per minute (bpm). The stimulus then ceased in the interactive condition, and the 

members only heard each other. In the computer condition, the stimulus continued at the 
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steady tempo. The participants were given two instructions: to keep the given beat as 

precisely as possible, while at the same time synchronizing with their auditory feedback, 

by tapping with their right index finger for 10 beats following the 5 beat stimulus.  

All participants tapped on response keys of Lumina response pads, connected to 

the computer via a serial port. The stimuli were sent using the Presentation software 

(Neurobehavioral Systems, Albany, NY, USA). One member of the pair was given two 

“right” earphones, and the other member was given two “left” earphones, which were 

connected to an earphone splitter. Therefore, tapping feedback of member one was sent 

to the left earphones, and feedback of member two to the right earphones, enabling the 

bidirectional interaction. The participants were asked to sit still, and avoid blinks and 

exploratory eye movements during tapping as much as possible.  

 

2.3 EEG recordings: 

Simultaneous EEG was recorded from both members of each pair, using two 32-channel 

caps with Ag/AgCl impedance-optimized active electrodes (ActiCap, Brain Products, 

Gilching, Germany). The electrodes were placed at the positions of the international 10-

20 system, with a nasal reference. Two identical Brainamp MR amplifiers with separate 

grounds were used, which were optically coupled to the computer and recorded through 

the same software interface, ensuring synchronization between the two sets of electrodes. 

The recording bandwidth was set at 0.16-250 Hz and the data were sampled at 1000 Hz.  

 

2.3.1 EEG data preprocessing: 

The data were processed and analyzed using Fieldtrip (Oostenveld et al., 2011), a 
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MATLAB software toolbox for MEG/EEG analyses, developed at the Centre for 

Cognitive Neuroimaging of the Donders Institute for Brain, Cognition and Behaviour. All 

the trials were epoched from -1 to 7.5 seconds. The trials were baseline corrected in the 

time domain, subtracting the mean of each entire epoch, in order to remove arbitrary DC 

offsets.  

 

2.3.2 Artefact removal:  

We used Principal Component Analysis (PCA) to extract major sources of artefacts. 

Since in PCA the components successively extract maximal variance, this method is 

particularly well suited to identify sources that cause massive distortions to the recorded 

brain activity (Jung et al., 2000, Wallstrom et al., 2004). Moreover, PCA has been shown 

to effectively reduce artefacts with minimal spectral distortion (Wallstrom et al., 2004). 

PCA was thus computed on the data, and the topographies of the leading 8 components 

were visualized. One or two leading components that showed a clearly non-cortical origin 

(usually eye-blinks or movement artefacts in temporal electrodes) were removed.  

 

2.3.3 Spectral analysis: 

To quantify ongoing brain activity within participants during coordination with another 

person versus a non-responsive computer, a time-frequency analysis was performed on 

the waveforms before and during task execution (from 1 second before task onset to 7.5 

seconds after). To this end, complex exponentials of frequencies from 0.5 to 30 Hz, in 

steps of 0.5 Hz, were multiplied with a Hanning taper with a fixed window length of 2 

seconds. The power spectra were thus computed for each trial, and the trials were then 
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averaged for each participant for the two conditions. The time range was considered up to 

6 seconds, because participants tapped a shorter length on some of the trials. The power 

spectra of the two conditions were compared across two frequency ranges of interest: 

alpha (8-12) and beta (13-30 Hz) using the cluster permutation test. These frequency 

bands were selected based on previous research showing modulation of sensorimotor 

rhythms during social interaction or observation of motor actions (Caetano et al., 2007, 

Tognoli et al., 2007, Kilner et al., 2009, Dumas et al., 2012, Lachat et al., 2012). 

Purely for visualization purposes (Figure 2 (a), (b)), the relative differences in 

power between the two conditions were calculated using the normalization index, 

calculated as (interactive – computer) / (interactive + computer).    

 

2.3.4 Statistical analysis – cluster permutation test: 

To test for significant differences between conditions that were corrected for multiple 

comparisons in space, time, and frequency, we performed a Monte Carlo cluster-based 

permutation test. This method is a widely used technique to address the multiple 

comparisons problem for electrophysiological data (Maris and Oostenveld, 2007). This 

algorithm essentially performs a mass-univariate statistical test (here, paired t-test) for all 

observations (in the time, frequency, and channel domain). The algorithm then forms 

clusters from those data-points that exceed the significance criterion (here, p < 0.05) and 

have a neighbour in the time, frequency, and channel domain. Neighbours in the time and 

frequency domain are defined as adjacent points, and electrodes separated by less than 4 

cm were defined as neighbours in the spatial domain. For each permutation, the summed 

statistic of all data points in a cluster is calculated and those clusters for which this 



	   12	  

empirically observed value (summed statistic between real conditions) exceeds the 

significance criterion (cluster-level alpha, here p < 0.05) are considered significant. The 

cluster-based permutation test was performed on all the 30 scalp channels (2 EOG 

electrodes were not included), 18 participants, and all the time points from -1 to 6 

seconds with 1000 random permutations. Besides the whole-brain corrected statistical 

inference for the task period, we also performed a post-hoc t-test to assess whether there 

was also an anticipatory task-effect in the period before task execution.  

 

2.4 Behavioural analysis: 

The timing data of each participant’s taps were used to compute the behavioural 

measures, for subsequent correlation with neural measures. Three sets of measures were 

computed, which addressed the degree of tapping coordination among participants: cross-

correlation coefficients, synchronization indices, and prediction errors. The inter-tap 

intervals (ITIs) were first extracted for each trial and participant. In order to quantify 

adaptation behaviour of each member, lag -1 and +1 correlation coefficients were 

computed from a cross-correlation between the inter-tap intervals of the two members in 

each pair. These measures are indicative of how much each participant adapts to their 

partner based on their partner’s previous ITI, as specified in our behavioural study 

(Konvalinka et al., 2010). For example, lag +1 corresponds to the adaptability of member 

one in relation to member two (i.e. shifting the ITI time-series of member one back by 1 

interval correlates to the ITI time-series of member two); and similarly, lag -1 

corresponds to the adaptability of member two. In other words, if member two were to 

lead over member one, member one would anticipate member two’s next ITI based on 
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his/her previous ITI – if member two went faster on the last tap, member one would 

speed up on the next one. These measures were thus used to assess leader-follower 

behaviour in each pair, by computing one-sample t-tests on the difference between lag -1 

and lag +1 coefficients for each pair.  

Synchronization indices were computed statistically using the distribution of 

phase difference between two signals (Mardia and Jupp, 2000), corresponding to the taps 

of the two members in the interactive condition, and the taps of each member relative to 

the computer metronome in the computer condition. The index (SI) was calculated for 

each trial using the following formula (Tognoli et al., 2007):  

 

� 

SI =
1
N

e( i(θ1 ( tn )−θ 2 ( tn ))
n=1

N

∑  

 

where N is the number of taps in each trial, and θ1 and θ2 are the respective phases of 

each member in the pair (or the participant and the computer in the computer condition). 

The index is a unitless number from 0 to 1, representing the absence of and perfect 

synchronization, respectively.  

The prediction errors were calculated as the average difference between the 

timing of the produced tap and the auditory tap. Correlations were computed between the 

behavioural measures and the 10 Hz and 13-15 Hz effects, in the electrodes where the 

effects were significant.  

 

2.5 Multivariate classification analysis: 

One of the aims of this study was to investigate whether we could learn more about the 
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complementary mechanisms of the two interacting partners within each pair, using 

simultaneous two-brain EEG recordings. We therefore explored whether analysis of data 

from pairs of brains treated as a single system would reveal additional differences 

between conditions. We pooled the data from both participants in each pair into one data-

set, using the power centered at 10 Hz during tapping instances in all sixty trials per 

condition corresponding to each of the 30 electrodes of member one and member two as 

features. Hence, the data set consisted of 60 electrode features, containing data from two 

classes: interactive and computer. Multivariate classification analysis (Haynes and Rees, 

2006) was performed using logistic regression. By fitting a logistic regression model (i.e. 

general linear model with a binomial cost and logit link function) (Stauffer, 2008), the 

two classes, 1) interactive and 2) computer control, were predicted based on the forward 

sequentially selected features (Guyon and Elisseeff, 2003). The classifier thus selected a 

subset of features from the data matrix that best predicted the class they belonged to, by 

sequentially selecting features until there was no improvement in prediction. This was 

done by starting with no features and computing cross-validation error for all subsets 

equal to the current feature subset plus one added feature, choosing the best subset out of 

all combinations and repeating the process once again with the current feature subset and 

one added feature. In order to assess how the results of the classification generalized to 

the rest of the data, a 10-fold cross validation was implemented, dividing the data into 10 

segments to use as training sets. Cross-validation errors were thus computed for various 

feature combinations, until there was no further improvement. It was ensured that the 

training and test errors were not vastly different (Lemm et al., 2011). This was done 

across all pairs, producing an output of selected features across each cross-validation, and 
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their classification training and test errors. The same procedure was repeated for power 

centered at 10 Hz features during time points corresponding to the anticipation of the 

task, spanning the 1-second interval prior to tapping.  

Finally, this procedure was also repeated for the beta oscillations, centered at the 

frequency range that yielded significant effects between the interactive and computer 

conditions (13-15 Hz), during task execution tapping times. 

 

2.5.1 Permutation test for multivariate analysis: 

A permutation test was used to determine whether the electrodes selected by the classifier 

(which were frontal) corresponded to a leader-follower strategy. Each participant was 

assigned the label of leader (L) or follower (F), based on the behavioural results. The 

classification results were used with an ROI set on the first 7 electrodes, which were all 

frontal. The threshold for a feature being selected was set to 9/10 cross-validation folds. 

The difference between the ROI classification results between member 1 and member 2 

was calculated, and the difference in number of selected times summed for the L-F pairs. 

The L-F pairs were randomly permutated 1000 times in order to obtain the permutation 

distribution, which was used to calculate the statistic. This permutation test was repeated 

for the beta oscillations, across frontal, fronto-central, and centro-parietal electrodes.  
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3 Results: 

3.1 Alpha and low-beta oscillations during interactive versus computer condition 

The cluster-based permutation t-test for dependent samples contrasting power spectra 

between the interactive and computer conditions revealed two significant negative 

clusters at 10 Hz (p = 0.008) and 13-15 Hz (p = 0.027). This indicates suppression of 

power during the interactive condition in contrast to the computer, from 4 to 6 seconds, 

thus during the entire tapping time of task execution (Figure 1 (c) and 1 (d)). The 

topography of 10 Hz effects revealed maxima in the left-central (i.e. contralateral to the 

tapping hand) and right-frontal electrodes. The topography of the ratio of power spectral 

density during the tapping period (time window from 3 to 6 seconds) against baseline (-1 

to 0 seconds before the start of the trial) for each condition is shown for a single 

participant in Figure 1 (b). Normalized power differences ([interactive – 

computer]/[interactive + computer], see methods for details) between the two conditions 

over the left-central and frontal electrodes are shown in Figures 2 (a) and (b). Figure 2 (c) 

shows that the sensorimotor alpha power suppression began at around 2 seconds, 

saturated at 3 seconds when the participants began to tap, and was maintained during the 

whole tapping sequence for both conditions, but stronger for the interactive one. These 

effects resemble the sensorimotor mu-suppression at 10 Hz (Pfurtscheller and Lopes da 

Silva, 1999), but with additional frontal components. Similarly, Figures 2 (b) and (d) 

show that 10 Hz power is also suppressed over the frontal electrodes (FP1, FP2, Fz, & 

F4) when the task is done interactively. This suppression is qualitatively present across 

the entire trial, although the difference only becomes significant from 4 seconds, as 

revealed by the permutation test. Additional post-hoc tests on the anticipatory period 
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revealed significant 10 Hz suppression in right-frontal electrodes from 1-3 seconds (t = -

1.80, p < 0.05).  

 

 

 
Figure 1 Experimental paradigm and intrapersonal results. (a) Participants are told which 
condition they are in (hearing other or computer) prior to task onset. The trial is initiated 
by 5 metronome beats at 120 bpm. The participants begin to tap at 3 seconds, while 
receiving auditory feedback from the other person or the computer. (b) Topography of 
power during tapping in relation to the baseline, as a relative difference (ratio of 
tapping/baseline), for a single participant. (c) Significant electrodes – those designated by 
‘*’ exceeded the p < 0.05 threshold – for the 10 Hz suppression when contrasting the 
interactive with the computer condition. (d) Significant electrodes for the 13-15 Hz 
suppression. The shown effects at 10 and 13-15 Hz are significant for all the time slots 
from 4 to 6 seconds, during task execution. The plots are a grand mean across all 18 
participants. 
 

 

 

!"#
$%&'#

(%)'*+%)#
,-./#

!0#
$%&'#

(%)'*+%)#
,-./#

!!!!!!!!!!!!!!!!!!!!!!!!!!###1"############2#####234####"#####"34####0#####034####5#63####################################7######834#9#######

"#$%&%'! ()*+,!-.//+,*!

:-;/%)%<-# =;>-/# ?%<@A;-/#

a 

c 

d 

!"#$%&%'"( )#*"$( +%',-#"$(

.(/( .01(/( 1(/( 101(/( 2(/(

34(56(

37831(56(

b 

9&#"$:;<="( +%',-#"$(

>(

401(

3(

301(

.(.(

8.(

4(

4(

7(

87(



	   18	  

 The normalized power-difference plot in Figure 2 (b) also reveals low beta (13-15 

Hz) suppression over the frontal electrodes during tapping, when doing the task with 

another person compared to a computer. In addition, significant clusters at 13-15 Hz were 

identified by the permutation test over the fronto-central and centro-parietal areas (Figure 

1 (c)).  

 

 

Figure 2 10 Hz modulation in interactive and computer conditions. Normalized power 
difference between interactive and computer conditions as a grand mean across subjects 
over (a) left-central electrodes, C3 and C5, and (b) frontal electrodes FP1, FP2, Fz, and 
F4. Time course of the mean 10 Hz power across (c) left-central electrodes, and (d) 
frontal electrodes, for the interactive (blue line) and computer (red line) conditions. The 
plots show the mean across participants, and standard errors of the mean at each time 
point. Note: tapping begins at 3 seconds. 
 

a 

b 

c 

d 
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3.2 Behavioural results  

In order to look for correlations between brain oscillations and behavioural data, 

we compared 10 Hz and 13-15 Hz power with synchronization indices of the pairs’ 

tapping data, lag -1 and +1 correlation coefficients (corresponding to emergent leader-

follower relationships), and prediction errors. However, no significant correlations were 

found with any of the behavioural measures, suggesting that the suppression of 10 and 

13-15 Hz oscillations has little or no relation to the strength of coupling or predictability 

of the stimuli.  

 However, behavioural analysis of lag 1 and lag -1 correlation coefficients between 

the inter-tap intervals of the two interacting partners in each pair revealed that lag 1 and 

lag -1 correlation coefficients were asymmetrically distributed in 8/9 pairs (Figure 3 (e) 

and 4 (b) show data across 5 different pairs; Figure 3 (d) shows sample inter-tap 

intervals), as revealed by significant t-tests in 8 pairs. This indicated emergence of a 

leader-follower dynamic in the interactive condition, and hence a difference in behaviour 

between the two members of most pairs, with one person being the “leader” and the other 

a “follower”. Only one pair showed equal leading behaviour.  

 

3.3 Multivariate classification of paired brain data across alpha and beta oscillations  

A multivariate classification analysis was run to decode the “interactive” from the 

“non-interactive” computer condition, with the attempt to identify emergent patterns from 

the two-brain data that extend those from individual data. The results of a representative 

pair are displayed in Figure 3, showing electrodes (features) that contributed successfully 

to the classification of the interactive and computer conditions at the power of 
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oscillations at 10 Hz. The classification results reveal a strong asymmetry in 8/9 pairs, 

such that the frontal electrodes of only one member in the pair emerged as good 

classifiers across all cross-validation folds (Figures 3 (a), 3 (b), 4 (a) show results of 5 

different pairs). The classification accuracy of the 8/9 pairs with the asymmetric pattern 

was 89%, 87%, 98%, 70%, 89%, 81%, 84%, and 97%. For the remaining pair, the frontal 

electrodes of both members were selected by the classifier, with an accuracy of 76%. 

Hence, this suggests that in all but one pair engaging in dyadic interaction, only one 

member shows the frontal suppression.  

 

 

 

Figure 3 Classification results for 10 Hz oscillations of representative pair. (a) The first 
set of features 1-30 represent electrodes of member 1, and the second set electrodes of 
member 2 of the pair. The list of corresponding electrodes from 1 to 30 is: Fp1, Fp2, F7, 
F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, 
TP10, P7, P3, Pz, P4, P8, O1, Oz, O2. 10-fold cross validations along the x-axis, and 

Member 1 
Electrodes 1-30 

Member 2 
Electrodes 1-30 

Cross-validation Fold 

Features Used a b 

e c 

-1 +1 0 

d 

interval # 
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features along the y-axis. Dark squares indicate that the feature was selected by the 
classifier during the corresponding cross-validation fold. (b) Topography of the 
classification results - the number of times each electrode is selected as a feature across 
10 cross-validation folds - for member 1, and (c) member 2. (d) Inter-tap intervals of 
member 1 (blue) and member 2 (red) across a single trial. (e) Behavioural results of the 
pair, indicating mean lag -1, 0, and +1 cross-correlation coefficients between inter-tap 
intervals of the two members. Higher lag -1 in relation to lag +1 indicates that member 2 
adapts more than member 1 during the interaction.  
 

The classification results corresponding to oscillations at low-beta frequencies 

(13-15 Hz) yielded a less successful classification accuracy, which was < 76% across all 

pairs. The data were also less consistent along the different cross-validation folds, as well 

as the corresponding electrodes that were selected among participants.  

 

3.4 Frontal alpha suppression is only associated with leaders of the interaction 

To investigate whether this tendency of one member’s electrodes to drive the 

classifier over the other’s, as seen with the classification for 10 Hz oscillations, is related 

to the interactive strategy of the participants, the results were compared to the 

leader/follower behaviour of the participants. As mentioned in the behavioural results, the 

lag -1 and lag +1 correlation coefficients between the inter-tap intervals of the two 

members in each pair were used as a measure of adaptability to the other person’s 

previous inter-tap interval, hence representing leading and following behaviour. Figure 3 

(e) shows correlation coefficients for the representative pair, indicating the selected 

member as the leader of the interaction (i.e. high correlation at lag +1 indicates member 2 

as following, member 1 as leading; high correlation at lag -1 indicates member 1 as 

following, member 2 as leading).  

In order to investigate whether this pattern was consistent among all pairs, we 
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grouped all eighteen participants as either leaders or followers, depending on their lag 1 

correlation coefficients. The driving member selected by the classifier corresponded to 

the behavioural leader of the interaction in 7/8 pairs that had a distinct dynamic (Figure 4 

shows classification (a) and behavioural (b) patterns of 4 other pairs), whereas both 

member’s electrodes were selected as features in the single pair with two behavioural 

leaders. Only one pair had the opposite pattern, with the frontal electrodes of the follower 

chosen. Figure 5 (a) shows the average classification topography (i.e. average number of 

times a feature is selected by the classifier) across all leaders, illustrating frontal 

electrodes as the selected features. The average classification topography of followers is 

shown in 5 (b), illustrating no notable difference between classes among the followers. 

For the leaders, the most common features were shown to correspond to the frontal 

electrodes. The corresponding normalized power difference between the two conditions 

for the leaders and followers is shown in Figures 5 (c) and 5 (d), respectively. The 

behavioural distribution of coefficients between the grouped ‘leaders’ and ‘followers’ is 

shown in 5 (e), with their mean adaptability captured by lag -1 and lag +1 coefficients, 

respectively.  

The permutation test revealed statistical significance of this association, as the 

null hypothesis was rejected (p = 0.04). Our results thus show distinctive neural patterns 

between leaders and followers during interaction.  

While these patterns were distinctive at 10 Hz, no significant differences were 

found between leaders and followers in the low beta frequency range. There was a slight 

tendency for electrodes to get more frequently selected as successful classifiers for 

leaders once again (p = 0.19), but the permutation test revealed no significant association 
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with leaders and any group of electrodes (frontal, fronto-central, centro-parietal).  

 

 

Figure 4 Classification results for 10 Hz oscillations of 4 other pairs. (a) The features 
selected by the classification analysis for member 1 (first set of features 1-30) and 
member 2 (second set 1-30). The electrodes correspond to those in Figure 3. (b) 
Behavioural results of each pair (top left – pair 1, top right – pair 2, bottom left – pair 3, 
bottom right – pair 4), indicating lag -1, 0, and +1 cross-correlation coefficients between 
inter-tap intervals of the two members in each pair.  
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Figure 5 10 Hz results across grouped leaders and followers. (a) Topography of 
classification results – the mean number of times each electrode is selected as a feature 
across 10 cross-validation folds – across leaders of the interaction, and (b) followers. (c) 
and (d) display the corresponding leader/follower normalized power difference between 
interactive and computer conditions. (e) displays the lag -1, 0, and +1 correlation 
coefficients between the inter-tap intervals of the leaders and followers. Lag -1 indicates 
the adaptation of the ‘leaders’, and lag +1 the adaptation of the ‘followers’.  

 

3.5 Anticipatory frontal alpha oscillations  

Since participants were aware of the auditory feedback they would be receiving 

prior to task execution, we also investigated whether this distinction between leaders and 

followers at 10 Hz oscillations can already be made during anticipation of the task. 

Consistent results were obtained, with the leaders’ frontal features selected in 7/9 pairs 

with the classification accuracy between 67 and 98%. However, the results corresponding 

to the pair with two leaders, whose frontal electrodes were mutually selected during task 

execution, identified only one member’s electrodes during anticipation of the task.  
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3.6 Addressing differences from original study (Konvalinka et al., 2010) 

It is important to note that the spontaneous emergence of a leader-follower 

relationship reported here is different from the findings in our original tapping study 

(Konvalinka et al., 2010). The behavioural results from the previous study indicated that 

participants adapted mutually to each other, becoming a unit of two (hyper-) followers, 

rather than one of them taking the lead over the other. While there were many differences 

between the setup of the current and the previous study, one difference that we could 

address was the length of tapping time. In the previous study, participants tapped 32 

times in each trial, while in the current study they merely tapped 10 times. In order to see 

whether this leader-follower relationship is more likely to occur during the 10 taps 

compared to 32 taps, we ran an additional cross correlation on the first 10 taps as well as 

the entire trial of 32 taps of the dyads from the original study (on the data corresponding 

to the 120 bpm tempo. Visually, the difference between lag +1 and lag -1 coefficients 

decreased across pairs after 32 taps compared to 10, as participants showed more mutual 

adaptation (Figures S.1 & S.2). While we could not address the statistical significance 

between adaptation of participants within each pair, given only 4 trials of the interactive 

(hear other) condition, we compared the absolute differences in +1 and -1 lag cross-

correlation coefficients from analysis on 10 taps versus analysis on 32 taps (Figure S.3). 

The difference between lag +1 and lag -1 coefficients was significantly higher after 10 

taps than after 32 (paired t-test, p = 0.019).  

Therefore, participants in the original study became more mutually adaptive over 

time. This explains why we might see differences in leader-follower behaviour between 

the two studies – given shorter trials, people tend to be more asymmetrical in their 
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adaptation.  

 

4 Discussion: 

In this study, we presented a minimal paradigm for studying between-person action-

perception coupling. The study extends previous work on mutually interacting brains, 

with a new analysis approach aiming to explain the complementary brain mechanisms of 

two-people as they engage in interaction. The multivariate decoding analysis of two-brain 

data enables statistical distinction to be made between neural processes of each member 

of the pair, showing that frontal alpha suppression is selectively found in the participant 

leading the interaction.  

 Consistent with previous studies of neural oscillations during joint attention 

(Lachat et al., 2012), coordination (Tognoli et al., 2007, Dumas et al., 2012, Naeem et al., 

2012a, b), and observation (Cochin et al., 1999, Caetano et al., 2007), 10 Hz suppression 

was found over left-central electrodes when interacting with another person versus a non-

responsive computer, with additional frontal components. While mu-rhythm suppression 

is well known to occur over the bilateral sensorimotor cortex (but stronger over the 

contralateral cortex) when engaging in motor activity in contrast to rest (Gastaut, 1952, 

Gastaut and Bert, 1954, Pfurtscheller and Lopes da Silva, 1999), it has also been found 

during action observation (Hari et al., 1998, Cochin et al., 1999, Caetano et al., 2007), 

and is hence thought to be part of a common coding mechanism of perception and action 

(Hari, 2006, de Lange et al., 2008).  

 In this experiment, we examined a simple action-perception loop, where one 

person’s motor output was another’s perceptual input, and vice-versa. Hence, the scenario 
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enabled participants to either follow the other person’s beat, by adjusting their immediate 

tapping time corresponding to the speed of the other person’s previous tap; to try to take 

the lead over the other member, e.g. by monitoring their own tapping more than the 

other’s; or to find a balance between their own beat and the other’s output. Notably, our 

results show that both participants of the leader-follower pairs display adaptive behaviour 

(Figure 3 (e), 4, 5 (e)), as seen in the behavioural study (Konvalinka et al., 2010). 

However, the two interactive partners do not take an entirely symmetrical position, as the 

‘follower’ is the more adaptive one in all but one pair (Fairhurst et al., 2013), indicating 

spontaneous emergence of a leader-follower dynamic. This seems contradictory to the 

findings from our previous study. However, additional analysis showed that participants’ 

relationship resembled that of a leader and a follower even in the original study if only 

the first 10 taps are analyzed. We can therefore conclude that dyads become more 

mutually adaptive over time, but we cannot say what factors determine whether people 

become leaders or followers. This aspect is left for future research.  

 Leader-follower dynamics have been investigated in behavioural studies before 

(Noy et al., 2011, Sacheli et al., 2013, Wing et al., 2014), and previous work on agency 

has addressed the roles of imitators (i.e. followers) and initiators (i.e. leaders) of action in 

reciprocal imitation paradigms in both interactive (Dumas et al., 2012, Guionnet et al., 

2012) and non-interactive scenarios (Decety et al., 2002). These studies have shown 

activation of the inferior parietal cortex during initiation and imitation of stimuli, in the 

absence of interaction (Decety et al., 2002), as well as recruitment of fronto-parietal 

regions during interactive imitation (Guionnet et al., 2012). In contrast to these studies, 

the aim of the current study was to develop a two-brain analysis, which uses data from 
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both brains to uncover the complementary neural mechanisms of spontaneous leader-

follower dyads in a tightly-coupled coordinative task.  

In this experiment, tapping with another person engaged the behaviour of one 

leader and one follower, whereas tapping with a computer engaged only behaviour of a 

follower who adjusted to a non-responsive beat without the ability to take the lead. Our 

results show that differences in frontal 10 Hz oscillations only of leaders of the 

interaction distinguish the two conditions. The fact that the classifier in our experiment 

does not pick up on any significant features distinguishing the two conditions in 

followers could be explained by the presence of following behaviour in both conditions. 

This suggests that frontal 10 Hz amplitude-modulation could correspond to leading 

behaviour during interpersonal coordination. This is consistent with recent findings by 

Fairhurst and colleagues (2013), who showed that leading (perceiving leadership as well 

as tapping with an overly adaptive stimulus) correlated with right lateralized frontal 

activation, measured using fMRI.  

Importantly, in addition to frontal alpha-effects during task execution, 

classification analysis carried out on the interval corresponding to 1 second prior to 

tapping shows that anticipatory 10 Hz suppression is also associated with the leaders of 

the interaction. This suggests that mentally anticipating an interactive task may set the 

system in an enhanced readiness state that enables the participant to quickly gain 

dominance over his/her partner. This is in line with previous work showing that top-down 

predictive mechanisms play a crucial role in facilitating successful joint coordination 

(Knoblich and Jordan, 2003, Pecenka and Keller, 2011, Kourtis et al., 2012, Vesper et al., 

2013).  
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Previous research has suggested that alpha band oscillations are closely related to 

functions of attention and prediction (Klimesch et al., 2007). Alpha suppression, or event-

related desynchronization, is typically seen as the consequence of excitatory input (or 

release from inhibition) (Pfurtscheller and Lopes da Silva, 1999, Jensen and Mazaheri, 

2010) from either bottom-up or top-down inputs (de Lange et al., 2008, Bauer et al., 

2012), and therefore considered to reflect an increase of neural activity – for example, 

over the sensorimotor cortex during production of movements (Kuhlman, 1978). In the 

current study, the decrease in 10 Hz power over left-central regions, seen across all 

participants, would thus suggest more attention allocated to the action-perception 

coupling aspects of the interactive task.  

In addition to sensorimotor effects, suppression of oscillatory alpha-power over 

frontal sensors has previously been reported during movement planning and execution 

(e.g. Verhagen et al., 2012). A follow-up study showed that stronger alpha-suppression 

over parietofrontal regions coincided with increasing task complexity, an effect that was 

seen prior to movement onset (Verhagen et al., 2013). This suggests a role of frontal 

alpha-suppression in action planning and execution. 

Finally, functional imaging studies have shown that planning and control abilities 

are typically associated with the prefrontal cortex (PFC) (Miller and Cohen, 2001). 

Specifically, previous research has suggested that the PFC has a role in self-other 

processing, with the ventral-medial PFC more strongly engaged in self-processing, and 

the dorsal PFC engaged during processing related to others (Mitchell et al., 2006, Sui et 

al., 2013).  

Taken together, these findings suggest that the frontal alpha-suppression found 



	   30	  

during anticipation and execution could reflect activation of frontal areas during 

interactive task planning and control. Since this frontal suppression is particularly 

enhanced in leaders, this could be interpreted as more resources allocated to self-

processing, allowing the leaders to attend to their own beat rather than merely monitor 

the output of their partner. However, since we do not have source localization data, we 

cannot pinpoint the exact area of this frontal suppression. Notably, this study supports 

recent findings showing activation of frontal brain areas (i.e. involved in cognitive 

control and self-processing) in leaders, measured using fMRI (Fairhurst et al., 2013).   

While it could be argued that the interactive task in this experiment is also more 

cognitively demanding than tapping with a predictable metronome, we did not find any 

correlation between 10 Hz suppression and prediction error. In addition, the presence of 

the effect during task anticipation also rules out that the 10 Hz suppression can be 

explained purely by cognitive load effects related to increased precision of motor control.  

We therefore propose that the frontal 10 Hz suppression is related to the increased 

self-monitoring required in leaders, at least in this simple tapping task. In the interactive 

condition, both participants made predictions about the behaviour of the other, as well as 

about the sensory consequences of their own action. After each tap, they mutually 

adjusted their future prediction and adapted their next action accordingly. In the computer 

condition, by contrast, they only had to monitor their tapping with respect to the external 

beat, which was at a steady rhythm and therefore required no updating. Leading the 

interaction thus required prospective planning and control, rather than the mere 

monitoring required of a follower. These aspects of leading the interaction may be 

enabled by enhanced cognitive efforts such as readiness for the task and increased self-
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monitoring, as reflected by stronger frontal alpha-suppression.  

We were not able to find any consistency in the two-brain analyses of beta 

oscillations, and can only speculate the reasons for this. It could be that the individual 

analyses showed more suppression of power in low beta oscillations in the interactive 

condition due to top-down influences – knowing (or rather, believing) that the partner 

they were interacting with was a human versus a computer; or that the role of beta 

suppression is related to aspects of the experience of interacting with another person. 

However, we have no evidence that beta oscillations were linked to leading or following 

behaviour.  

An important question for future research is whether the observed differences in 

participants are due to state-fluctuations that emerge from the particular combination of 

participants, or rather are stable traits that might generalize to more complex social 

interactions. Moreover, our paradigm and methodological approach leave considerable 

opportunity for further exploration. It could be used to disentangle how much of this 

effect is related to the belief that one is interacting with another person, and how much is 

due to how the other person adapts, by experimentally manipulating the belief of the 

interacting partner.  

In addition, our multivariate approach is particularly well suited for exploratory 

analysis of two-person brain signals. Given the methodological and conceptual 

challenges of studying brain mechanisms of social interaction, hyperscanning still has a 

long way to go, and explorative analyses can be useful in decoding both synchronized 

and complementary mechanisms in two-brain data during more natural interactions 

(Konvalinka and Roepstorff, 2012). While our original hypothesis was not regarding 
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differences in brain signals between leaders and followers, this distinction was uncovered 

given our data-driven approach. Crucially, development of multivariate approaches that 

can tap into interpersonal brain mechanisms during social interaction is necessary for 

future work. 

The real challenge that remains is extending a) low-level interactive tasks to face-

to-face interactions involving higher-level social tasks, and b) multivariate methods to 

explore changes in neural dynamics during the course of a trial. We suggest that the key 

message to emerge from this study of joint action is the demonstration of the importance 

of complementarity, rather than synchrony, at both the behavioural and neural level.  
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