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Abstract

To understand factors that affect brain connectivity and integrity, it is beneficial to automatically 

cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, 

based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering 

them into consistent and recognizable bundles can be difficult as there are wide individual 

variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract 

clustering algorithm based on label fusion – a concept from traditional intensity-based 

segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach 

extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a 

new dataset. We fuse clustering results from different atlases, using a mean distance fusion 

scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion 

images (HARDI) of 198 young normal twins. To compute population statistics, we use a point-

wise correspondence method to match, compare, and average WM tracts across subjects. We 

illustrate our method in a genetic study of white matter tract heritability in twins.
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1. Introduction

Diffusion-weighted magnetic resonance imaging (DT-MRI) (Basser et al., 1994) is a 

powerful non-invasive brain imaging technique introduced in (Le Bihan et al., 1986; 

Merboldt et al., 1985; Taylor et al., 1985). DT-MRI measures water diffusion in tissues, and 

provides biologically and clinically relevant information on white matter (WM) integrity and 

connectivity not available from other imaging modalities. It is increasingly used to study 

pathology and connectivity of WM pathways in the living brain (Thomason et al., 2011; 

Jahanshad et al., 2012; Daianu et al., 2013).

Recently, diffusion MRI has been extended to more sophisticated models of local diffusion, 

such as high angular resolution diffusion imaging (HARDI) (Tuch, 2004), diffusion 

spectrum imaging (Wedeen et al., 2005), or even hybrid imaging where large numbers of 

angular samples are collected at several diffusion weightings (Zhan et al., 2011). With these 

imaging protocols, we can more accurately reconstruct fibers that mix and cross.

Tractography is a method to reconstruct the pathways of major WM fiber bundles, by fitting 

a curved path through the directional diffusion data at each voxel. Deterministic 

tractography (Mori et al., 1999; Conturo et al., 1999; Basser et al., 2000) recovers fibers 

emanating from a seed voxel by following the principal direction of the diffusion tensor or 

the dominant direction of the diffusion orientation distribution function (ODF). However, 

deterministic tractography has limitations: it depends on the choice of initial seed points and 

can be sensitive to the estimated principal directions. To overcome those drawbacks, 

probabilistic tractography methods have been proposed (Behrens et al., 2003; Parker et al., 

2003a; Aganj et al., 2011). They can be computationally more intensive but can be more 

robust to partial volume averaging effects and uncertainties in the underlying fiber direction, 

which are inevitable due to imaging noise.

Several approaches have been developed to study brain connectivity using whole-brain 

tractography. Jahanshad et al. (2011) computed a whole-brain connectivity matrix based on 

streamline tractography and anatomical parcellation. Network-based analysis of this matrix 

can identify factors that affect the interconnectedness of regions in the brain. For example, 

Ingalhalikar et al. (2013) revealed connectivity pattern differences between males and 

females. Prasad et al. (2011) applied a probabilistic WM atlas to extract major fiber bundles 

and represented them using a “maximum density” path. A mean curve was used to represent 

each bundle in each subject. Fractional anisotropy (FA) values, and other indices of 

diffusion, can be compared along this path across a population, using ‘along-tracty’ statistics 

(Corouge et al., 2006; Colby et al., 2011).

Obviously it is important to accurately identify WM structures and fibers from whole-brain 

tractography. If fibers are grouped into bundles, the results can offer valuable insight on how 

disease affects the integrity of particular WM tracts (Price et al., 2007, 2008). Clustering 

methods can group fibers obtained from tractography into organized bundles or tracts, 

enabling large population studies of disease and genetic effects on tract integrity, or even 

tract shapes. One simple yet practical strategy selects anatomically well-known WM tracts 

that interconnect anatomical regions of interest (ROI) (Wakana et al., 2007; Zhang et al., 
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2010). 3D models of tracts can facilitate large-scale population studies (Yushkevich et al., 

2008; Brouwer et al., 2010). Even so, the final results often need substantial manual 

intervention to help screen out false positive fibers.

Automatic fiber clustering would accelerate and empower population studies, so long as the 

results are accurate and reliable. A typical framework for fiber clustering defines a pairwise 

similarity/distance between each pair of fibers in a large set of candidate fibers, to group 

them into separate and distinct tracts. Many different fiber similarity metrics have been 

proposed, such as the mean vector and the covariance matrix of fiber points (Brun et al., 

2004), the number of points shared within the same voxel (Jonassan et al., 2004), an 

associativity vector (Wang et al., 2012), the average mean distance (Gerig et al., 2004, Xia 

et al., 2005, O'Donnell et al., 2006), Hausdorff distance (Gerig et al., 2004, Xia et al., 2005), 

and Mahalanobis distance (Maddah et al., 2008), etc. Also, various clustering algorithms 

have been advocated, such as hierarchical clustering (Gerig et al., 2004; Xia et al., 2005; 

Visser et al., 2010), expectation-maximization (Wang et al., 2012), fuzzy c-means (Li et al., 

2010), k-nearest neighbors (Ding et al., 2003), normalized cuts (Brun et al., 2004), dual 

rooted graphs (Tsai et al., 2007), and spectral clustering (O'Donnell and Westin, 2007; 

Wassermann et al., 2008).

If clustering algorithms have no anatomical information to guide them, tracts may not 

correspond to any anatomically familiar subdivisions. There is also no guarantee that the 

same basic sets of bundles will be generated again in datasets from new subjects, making it 

hard to compare results from one study to the next. Also, a user typically needs to specify 

the number of clusters or a threshold to decide when to stop merging or splitting clusters. 

Clustering results can vary drastically when different numbers of clusters are specified. 

“Bottom-up” methods cluster fibers into larger groups until major tracts are aggregated, but 

they may not efficiently filter out erroneous fibers buried in the large number of streamlines 

(100,000-1,000,000) generated by whole-brain tractography.

Recent hybrid approaches extract the well-known WM tracts using a combination of prior 

information from an anatomically-labeled atlas and similarity-based clustering. Wassermann 

et al. (2010) proposed a Gaussian process framework to generate a fiber ‘dendrogram’ and 

selected which ones to merge through a query system based on parcellated volumetric 

information. Li et al. (2010) clustered tracts via anatomical ROI guidance, and then passed 

them through similarity-based fuzzy c-means clustering. Guevara et al. (2012) implemented 

a two-level (intra-subject and inter-subject) centroid-based average-link hierarchical 

clustering. The resulting clusters were manually labeled to form a multi-subject WM atlas. A 

new tractography data set was similarly segmented and the clusters were labeled using a 

supervised classification based on the atlas.

The large number of false positive fibers produced by streamline-based tractography hinders 

large population studies. An atlas-based top-down clustering method resolves this, by 

requiring that all subjects’ WM tracts fall within a pre-defined set of shapes or regions. Even 

so, an atlas based on one individual subject's anatomy is not sufficient to capture the 

variability of individual WM tracts. One classical solution is called multi-atlas labeling or 

label fusion. This has commonly been applied to label brain structures on standard 
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anatomical MRI (Rohlfing et al., 2004; Hackemann et al., 2006; Lotjonen et al., 2010; 

Sabuncu et al., 2010; Chou et al., 2007, 2008, 2009).

In traditional image segmentation, a deformable atlas may be used, in which an atlas is non-

rigidly registered to the image to be labeled. The resulting deformation may then be used to 

map the training labels onto the new image. Multiple atlases and registrations may also be 

used to transfer multiple training labels to the new subject's space. The final labeling can be 

obtained by applying a weighting approach to the labels transferred from different atlases. 

Label fusion has two advantages: 1) it is easier to accommodate large individual variations 

in anatomy if one does not have to rely on a single atlas; 2) multiple registrations improve 

robustness against occasional registration failures and non-global minima of the registration 

cost function. The same idea can also improve voxel-based or tensor-based morphometry 

(Lepore et al., 2008).

Here we extend label fusion to fiber clustering and introduce a multi-atlas framework to 

automatically extract anatomically meaningful WM tracts. Based on the ROIs from a 

publicly available parcellated WM atlas (Oishi et al., 2009), we first manually construct a 

number of WM fiber tract atlases, consisting of several major WM tracts. In contrast to prior 

“bottom-up” methods, we use the WM tracts in multiple hand-labeled atlases as prior 

anatomical information. Our “top-down” approach transfers tract labels by selecting only 

fibers similar to the corresponding tracts in the atlases, based on a similarity measure. This 

eliminates many false positive fibers hidden in the ~1,000,000 fibers per subject produced 

by streamline tractography. Multiple atlases adapt to the variability of tract shapes in new 

subjects. This reduces the number of outliers and picks fibers that can be incorrectly omitted 

when registering a single atlas to the whole-brain tractography in a new subject. Finally, we 

use label fusion to combine the clustered results from individual atlases.

In the second part of the paper, we illustrate our method to study tract heritability based on 

the clustering results from our algorithm. Voxel-wise genetic analyses of DT-MRI show that 

many diffusivity measures, including FA, are heritable (Lee et al., 2009; Chiang et al., 2011; 

Kochunov et al., 2011; Jahanshad et al., 2013; 2014), but it is not yet well-understood which 

tracts are genetically influenced.

As individual WM fiber tracts are highly variable in shape, it can be difficult to find 

corresponding fibers that belong to the same tract across a population. Recent studies 

examined the skeleton of tracts, with methods such as tract-based spatial statistics (TBSS) 

(Smith et al., 2007; Bodini et al., 2009) or the average fiber tracts (Brouwer et al., 2010; 

Prasad et al., 2011) to perform statistical analyses of diffusion parameters in a large 

population. Nevertheless, these approaches do not always retain the full 3D profile of 

information from the tracts. To address this, we use a point-wise tract correspondence 

method to study clustered tract parameters in 3D. Finally, we calculate heritability statistics 

from corresponding tract points to understand genetic influences on the brain's tracts, and to 

demonstrate a practical use of our entire workflow.
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2. Label Fusion Clustering Framework

Here we summarize our clustering algorithm before explaining each step in detail, and the 

datasets used to test it.

2.1. Overview

First, whole-brain tractography needs to be generated, as a basis to perform clustering 

(Section 2.3). To help with clustering fibers in new datasets, we manually reconstructed 

multiple WM atlases to represent anatomically well-defined tracts. The ROIs of a single-

subject standard template were warped to our manual atlases through registration and the 

tracts were extracted using a look-up table and manually edited (Section 2.4). To cluster 

tracts in a new subject, the corresponding tracts from our manual atlases were warped to that 

subject's space and a multi-level fiber clustering scheme was applied to label the tracts 

(Section 2.5). Finally, labels were fused to synthesize the individual clustering results from 

different manually-created atlases (Section 2.6). These steps are summarized in Figure 1.

2.2. Subjects and Image Acquisition

We analyzed a dataset from 198 healthy young adult twins (mean age: 23.2 +/− 2.1SD) from 

99 families in Australia. All twins were right-handed. No subjects had any major medical 

condition or psychiatric illness. All subjects were evaluated to exclude any pathology known 

to affect brain structure. Diffusion imaging was available in 99 complete pairs – 62 

monozygotic pairs (21 male-only pairs) and 37 same-sex dizygotic twin pairs (12 male-only 

pairs).

HARDI scans were acquired with a 4T Siemens Bruker Medspec MRI scanner, using single-

shot echo planar imaging with parameters: TR/TE = 6090/91.7ms, 23cm FOV, and a 

128×128 acquisition matrix. Each 3D volume consisted of 55 2-mm axial slices, with no 

gap, and 1.79×1.79mm2 in-plane resolution. 105 image volumes were acquired per subject: 

11 with no diffusion sensitization, i.e., T2-weighted b0 volumes, and 94 diffusion-weighted 

volumes (b = 1159 s/mm2). The raw HARDI images were corrected for eddy-current 

induced distortions with FSL (www.fmrib.ox.ac.uk/fsl/). The gradient table that represented 

the diffusion scanning angles was adjusted accordingly.

2.3. Tractography

We performed whole-brain tractography with Camino (http://cmic.cs.ucl.ac.uk/camino/), an 

open source software package that uses either streamline or probabilistic methods to 

reconstruct fiber paths. It uses a spherical harmonic (SH) representation to represent the 

diffusion ODF; this can be more robust to noise and may even be more accurate for 

detecting fiber crossings than the original numerical q-ball reconstruction method 

(Descoteaux et al., 2007). Explicitly, the SH basis may be expressed as follows:

(1)
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where l denotes the order, m denotes the phase factor, θ ∈ [0, π], φ ∈ [0,2π], and  is an 

associated Legendre polynomial. Signal at each gradient direction may be approximated as a 

linear combination of a modified version of this SH basis. We used the 6th order (l=6) SH 

series to reconstruct orientation distribution functions (ODF) for our HARDI data and a 

maximum of 3 local ODF maxima (where fibers mix or cross) were set to be detected at 

each voxel.

Next, we performed fiber tracking with a probabilistic algorithm, called the ‘Probabilistic 

Index of Connectivity’ (PICo) (Parker et al., 2003b), in Camino. At first, we created a 

simulated data set for diffusion probability density function (PDF) calibration, based on the 

signal-to-noise ratio of our dataset. Then, based on different diffusion distribution 

uncertainty models (Bingham or Watson), simulated data was reconstructed to generate a 

look-up table, which was in turn used to produce the PDF estimates of the actual data from 

the derived local ODF maxima. Seed points were chosen at those voxels whose FA values 

were greater than 0.4. Monte Carlo simulation was used to generate fibers proceeding from 

the seed points throughout the entire brain. Streamline fiber tracing followed the voxel-wise 

PDF profile with the Euler interpolation method for 10 iterations per each seed point. The 

maximum fiber turning angle was set to 40°/voxel, and tracing stopped at any voxel whose 

FA was less than 0.2.

2.4. Tract Atlas Construction

We randomly selected five subjects (none were members of the same twin pair, three males 

and two females) from our HARDI data set and constructed WM tract atlases. In this 

context, atlas means a hand labeled representation of the fibers in a subject. The FA images 

of all the atlases were registered to a single-subject template in the ICBM-152 space called 

the “Type II Eve Atlas” (a 32-year old healthy female) (Oishi et al., 2009). The entire brain 

of the “Eve” template was parcellated using 130 bilateral ROIs (Zhang et al., 2010).

The labeled template ROIs were re-assigned to the five registered atlases, respectively, by 

warping them with the deformation fields generated by Advanced Neuroimaging Tools 

(ANTs) (Avants et al., 2008, http://picsl.upenn.edu/software/ants/). Fibers that traversed the 

ROIs were extracted according to the look-up table in Zhang et al. (2010). For example, the 

corticospinal tract was extracted from fibers passing between the precentral gyrus and the 

cerebral peduncle. Finally, each tract was manually edited to remove visible outliers. We 

rounded the floating point coordinate locations along a fiber to the location of the closest 

voxel. For a given tract, there is a certain set of ROIs that it is expected to intersect – this 

may be two or more. If any of the fiber's discrete lattice points fell into the ROI, we would 

consider that this fiber traversed the ROI; otherwise, it didn't. A fiber must traverse all the 

required ROIs for a given tract to be considered as a candidate member of that tract, or it 

will be discarded. There was no ambiguity in deciding whether a fiber belonged to a tract or 

not, because it was counted as traversing the set of expected ROIs or not.

Currently, each atlas is comprised of 17 major WM tracts: left (L) / right (R) corticospinal 

tract (CST), L/R anterior thalamic radiation (ATR), L/R cingulum (CGC), L/R inferior 

fronto-occipital fasciculus (IFO), L/R inferior longitudinal fasciculus (ILF), L arcuate 

fasciculus (part of the superior longitudinal fasciculus) (ARC), and six segments of the 
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corpus callosum – projecting to both frontal lobes (CC-FRN), precentral gyri (CC-PRC), 

postcentral gyri (CC-POC), superior parietal lobes (CC-PAR), temporal lobes (CC-TEM), 

and occipital lobes (CC-OCC) (Hofer et al., 2006). We did not include the right arcuate 

fasciculus as not all subjects had this tract in its entirety (Catani et al., 2007), and that would 

have made statistical analysis difficult. Figure 2 shows all 17 WM tracts that we created and 

views of overlaid tracts from different angles (back, left side, and bottom views).

2.5. Multi-level Fiber Clustering

For each test subject (i.e., each new data set to be labeled), whole-brain tractography was 

extracted using Camino as well. We designed a multi-stage fiber clustering scheme to pick 

out appropriate candidate fibers for each tract.

2.5.1 Length-based Clustering—Image noise and limits in image resolution cause 

whole-brain tractography to generate many implausible short-length streamlines. All of our 

target fiber bundles are major tracts, so it was reasonable to assume that no component fiber 

is shorter than 35 mm. Streamlines shorter than this were removed. Of course this leads to 

some arbitrary limit in the types of tracts surveyed, and we have to concede that some true 

short fibers may be suppressed as well as many false ones.

2.5.2 ROI-based Clustering—The labeled “Eve” template ROIs were re-assigned to the 

subjects in our data set with the ANTs registration. Fibers that did not traverse the ROIs for 

a particular tract were removed. This reduced the number of detected fibers from around a 

million to a few hundreds or thousands of fibers of interest.

A few previous studies showed reliable and reproducible clustering results with either 

manual ROI placement (Wakana et al., 2007) or automated placement (Zhang et al., 2010). 

In our workflow, this step was also helpful to ease the computation when further refining the 

results in the next step (Section 2.5.3). With the automated ROI placement, we could 

effectively reduce the number of fibers of interest for a particular tract. Since it was a 

standard procedure consistently applied to all the subjects in our dataset, it established a 

basis to compare subjects for population studies.

2.5.3 Distance-based Clustering—After applying ROI constraints and the filters above, 

most of the short and obviously erroneous fibers were removed. To eliminate the remaining 

false fibers (see Figure 3) we implemented a geometry-based clustering algorithm to select 

only those streamlines whose shapes and locations were similar to those of manually 

constructed WM atlases in Section 2.4.

First, we registered the test subject's FA image to the FA image of each tract atlas using 

ANTs. Each atlas's tracts were then warped to the subject space with the corresponding 

deformation fields generated from the FA registration.

We defined a fiber distance metric to decide the subject's fibers that should be included in 

any individual warped atlas tract. For any pair of fibers γi and γj, we defined the symmetric 

Hausdorff distance (Gerig et al., 2004):

Jin et al. Page 7

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2)

where dH′ is the asymmetric Hausdorff distance.

(3)

∥·∥ is the Euclidean norm and the ordered pair (γi, γj) indicates an asymmetric distance from 

γi to γj.x's and y's are the coordinate points along fibers γi and γj, respectively.

Initial fuzzy fiber labeling based on each individual atlas was performed simply by 

aggregating fibers passing within a neighbourhood of each atlas fiber, and setting the 

appropriate label. Figure 3 illustrates how the right corticospinal tract is parsed out from the 

original whole-brain tractography following the multi-level fiber clustering steps.

2.6. Fiber Label Fusion

We chose the Hausdorff distance metric for the fiber clustering phase to select only 

streamlines with similar geometric shapes, and lying in the same region as the atlas tracts. 

However, due to the WM variability of individual atlases, different atlases may ‘nominate’ 

different candidates. We extended the well-established label fusion concept from traditional 

structural image segmentation to the WM fiber space. We defined a mean fiber distance to 

rank the fibers nominated by individual atlases. For each fiber, the mean fiber distance was 

defined as:

(4)

where di is the Hausdorff distance between an unlabeled subject's fiber and the i-th atlas, 

dcutoff is the empirical cutoff threshold chosen in Section 2.5.3, dsup is the upper bound 

Hausdorff distance within which a subject fiber can be possibly considered a candidate for a 

given tract, and n is the number of atlases. We ranked all the candidate fibers from different 

atlases based on their dmean's. The smaller its dmean, the higher its rank. For each particular 

tract, a fusion percentage was defined to include fibers whose dmean's were among the top 

specified percentage. For example, if we set the fusion percentage as 90%, this means that 

we keep 90% fibers whose ranks were among the top 90% according to their dmean's% and 

throw away the rest.

3. Statistical Analysis of Heritability

3.1. Fiber Matching

To perform group studies, we first need to establish some kind of correspondence between 

fibers of the segmented tracts across the population. For each tract, we chose a 

representative sample among our manually constructed atlases. The representative sample 

was then projected into individual new subject space as follows. After applying the 

registration warp (Section 2.5.2) to the representative tract, we defined the corresponding 

point in the new subject space for each point in the sample tract. The corresponding point is 
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defined as the point in the new subject tract closest to the warped sample point, if such a 

point exists within a given neighborhood, or the original sample projection, if not. An 

illustration of fiber matching is shown in Figure 4.

3.2. Genetic Analysis

Monozygotic (MZ) twins share 100% of their genetic variants whereas dizygotic (DZ) twins 

share, on average, 50% of their genes. A simple and widely-used estimate of heritability in 

twin studies is to assess how much the intra-class correlation for MZ twin pairs (rMZ) 

exceeds the DZ twin correlation (rDZ). Falconer's heritability statistic (Falconer and Mackay, 

1996) is defined as:

(5)

The statistic estimates the proportion of the overall variance due to genetic differences 

among individuals. Of course more sophisticated structural equation models can be used, but 

here the main purpose was just to give an example of a statistical manipulation of the tracts, 

to compute a statistic of interest. Jin et al. (2011b) used the mean and the standard deviation 

of the Euclidean distances between individual fibers and the mean curve for a particular tract 

as metrics, where the mean distance is related to the tract thickness. Here, interpolated FA 

values at corresponding tract points (from Section 3.1) were used to calculate intra-class 

correlations rMZ and rDZ.

To account for the multiple comparisons problem that arises when testing a statistical 

hypothesis at every fiber point, the false discovery rate (FDR) was used (Benjamini and 

Hochberg, 1995) at the conventional 5% level to provide corrected critical p values for the 

maps of rMZ and rDZ in Falconer's heritability statistic. rMZ and rDZ whose associated p 

values were larger than 0.05 were set to 0. The Falconer's heritability statistic h2 was 

computed from rMZ and rDZ at points whose p-value passed FDR.

4. Results

4.1. Cluster Visualization

Figure 5 shows how we obtained one example tract - the left arcuate fasciculus - in a test 

subject – a new subject whose scan was not used to create the fiber atlases. The first row 

shows the atlas (hand-labeled) versions of the tract. The second row shows the different 

candidates for this tract in the same test subject, based on using each atlas to decide which 

fibers it should contain (Section 2.5.3). The final result for this tract was obtained by 

applying the label fusion scheme in Section 2.6. It is not hard to see that the label fusion 

process can help to eliminate outliers, and it can also add missing fibers to a single candidate 

labeling of the tract. A manually edited segmentation result is also included for comparison 

(see the right bottom panel).

Figures 6 and 7 show the label fusion results for the 17 segmented tracts in four randomly 

selected subjects. Despite individual variations, the overall tract shapes are consistent across 

the population. Figure 8 shows the combined WM fiber clustering results for the four test 

Jin et al. Page 9

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subjects. The types of tracts and their colors are as in Figure 2. The average fiber number in 

our full set of clustering results is ~40,000 per subject, or roughly 1/10th of the fibers from 

the initial tractography. There are three factors that affect how many fibers are included in 

the final results. First, in this work, we mainly focused on 17 major anatomically well-

known white matter tracts. Therefore, only those tracts are shown in Figure 8. Many other 

less-known tracts are not shown and could be added in future work, although it might be 

more challenging to reliably find smaller tracts in the mix of all the other major pathways. 

Second, streamline whole-brain tractography generates large numbers of false positive fibers 

and those need to be removed for our ultimate goal – population studies. Last, fiber 

clustering may show enormous individual variation when applied across a population. 

However, to perform an effective population study, we only included fibers whose shape 

shares the most common characteristics throughout the population for each tract. This was 

our intent when we built our manually constructed atlases. Clearly we would need to admit 

that some clinically interesting variation is missed by focusing on a set of standard tracts. 

But finding additional consistent tracts across subjects is challenging and runs the risk of 

including false positives.

4.2. Quantitative Validation

To quantitatively evaluate the proposed framework, we converted each of the fiber tracts to 

a binary image, where voxels that the tracts cross were marked as 1, and 0 otherwise. Then 

we used the Dice coefficient to assessing the overlap or agreement between two tracts, 

defined as:

(6)

where V()is the volume of the region that the tract penetrates.

Due to the wide variability between different tracts, we need to tune the parameters of our 

algorithm to optimize its performance. We have two key parameters to adjust. One is the 

Hausdorff distance threshold used to select fibers for each tract per atlas (dcutoff in Equation 

(4)), and the other is the percentage of fibers included in the final label fusion stage 

described in Section 2.6.

In addition to the 5 subjects we used for our manually constructed atlases, we randomly 

selected another 7 subjects (non-twin pairs, three males and four females) from our data set 

(12 in total) and manually segmented the 17 tracts mentioned in Section 2.4. Initially, we 

tuned dcutoff and the fusion percentage with the leave-one-out method using the 5 manually 

labeled atlases. We first used a loose Hausdorff distance bound (dcutoff = dsup in Equation 

(4)), 15 mm, to select the candidate fibers for each tract per atlas so that all the true fibers 

were included without introducing too many false fibers. Then we optimized the percentage 

threshold for inclusion in label fusion from 20% to 100% (in increments of 5%) to obtain the 

optimal percentage (the best Dice coefficients against manual segmentation). Next, we 

varied the Hausdorff distance threshold (dcutoff) from 3 mm to 15 mm (in increments of 1 

mm) to decide the optimal distance, while the optimal fusion percentage was used from the 

previous step. The optimal parameters for each tract are shown in Table 1. The optimized 
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parameters were then applied to the seven randomly selected subjects as the test data. 

Figure 9 compares the average Dice coefficients of all clustered tracts between the training 

data set and the test data. The error bars stand for the standard deviation of the Dice 

coefficients for each tract. Not surprisingly, the training data outperformed the test data for 

almost all the tracts, except for the left fronto-occipital fasciculus (L-IFO). Figure 10 shows 

the average Dice coefficients for all tracts with our label fusion method and ROI-only 

clustering (based on the look-up table in Zhang et al., 2010), against manual segmentation 

for the test subjects only. Overall, our algorithm outperformed the ROI method for every 

tract, and also gave a smaller variance, especially for those tracts that have unclear or loose 

ROI constraints (CGC, ILF, and CCTEM).

4.3. Genetic Analysis

For each tract, we selected a representative example among our 12 subjects with manually 

segmented tracts in Section 4.2. We projected the tract representation to the remaining 197 

subjects, following Section 3.1. The search range was a 1-cm radius sphere. The FA values 

at sub-voxel fiber points were used to calculate rMZ and rDZ for a particular tract. Falconer's 

heritability statistic was computed from Equation (5). To make the computation easier, we 

uniformly resampled each fiber at 15 equidistant points and reduced the number of fibers in 

the representative tract, ensuring that the region enclosing the original tract was still covered 

entirely by the remaining fibers.

Figure 11, 12, and 13 show Falconer's heritability statistics on FA after correcting for 

multiple comparisons with FDR. As heritability must be positive and lies between 0 and 1, 

Falconer's heritability statistics were set to 0 if their estimator was negative and 1 if it was 

greater than 1. Locations in red show greater genetic influence than those in blue. The 

percentages of points with high genetic influence (set arbitrarily to h2 > 0.7) for each tract 

are also listed in Table 2. Genetic factors tend to have greater influence on the tracts on the 

left side than the right side (ATR, CGC, CST, and ILF), except for the IFO.

4.4. Clustering Parameter Selection

To rationalize our choice of the two key parameters, the fusion percentage and the clustering 

distance threshold (dcutoff), here we examined how the clustering performance varied with 

these two parameters. Figures 14(a-c) show the changes in the average Dice coefficients 

over the seven test subjects used for each tract, respectively, when the fusion percentages 

increase from 20% to 100%, that is, choosing the top 20% to 100% ranked candidate fibers 

obtained from the five manually constructed atlases, based on the mean clustering distance 

defined in Equation (4), where dcutoff = dsup = 15mm.

A high fusion percentage leads to fewer missing or false negative fibers from the candidates 

obtained from other manually constructed atlases. However, a high fusion percentage will 

also include more false positive fibers from all the candidates. Tracts that have helpful 

constraints based on ROIs (ATR, CGC, CST, IFO, ARC, CC-FRN, CC- PRC, CC-POC, 

CC-PAR, and CC-OCC) usually have fewer false positives in each candidate. Therefore, the 

benefit of reducing the false negatives tends to overwhelm the gain in false positives when 

the fusion percentage goes up. Dice coefficients increase until they hit plateaus between 
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85% and 100%; however, for those tracts whose ROI constraints are relatively loose (IFO 

and CC-TEM), the plateaus come much sooner when the fusion percentages are still 

relatively low (less than 70%). This is because eliminating more false positive fibers in each 

candidate is more critical for maintaining a high Dice coefficient. The percentages listed in 

Table 1 were therefore adopted for all the subjects in our data set.

Figure 15(a-c) show the change of the average Dice coefficients versus the cutoff clustering 

distances dcutoff, when the fusion percentages are fixed at the values listed in Table 1. It 

seems that the average Dice coefficients become stable after dcutoff > 10mm. This is 

probably because a smaller dcutoff is too conservative and excludes too many true fibers. 

Hence, we chose dcutoff = 12mm uniformly for all the tracts, which corresponds to the 

percentage of fibers eliminated during manual labeling of the atlases for the given tract.

4.5. Label Fusion vs. Single Atlas

Label fusion-based segmentation methods take advantage of the information of multiple 

atlases and generally outperform methods that only use a single atlas. We listed the mean 

Dice coefficients against manual segmentation between label fusion clustering and single 

atlas clustering in Table 3. The parameters of label fusion clustering were chosen as in 

Table 1. The mean Dice coefficients were computed over the 7 test subjects chosen in 

Section 4.2. For comparison, we calculated Dice coefficients using a single atlas out of the 

five manually constructed atlases with dcutoff = 12mm. The single-atlas mean Dice 

coefficients were averaged over all the five atlases and all the seven test subjects (35 

combinations) per tract. Table 3 justifies fusing multiple atlas results in cases where the 

performance of a single atlas is well below the average performance of all the five atlases.

4.6. Number of Atlases

How many atlases should be used in the label fusion scheme is always an open question. 

Among other examples, Chou et al. (2007, 2008, 2009) studied this for the case of lateral 

ventricular segmentation on standard anatomical MRI. In our case, we performed an 

experimental analysis to explore the choice of atlas number. We used the twelve subjects 

(including the five atlases) in Section 4.2 in our analysis. The five atlases plus two more 

additional subjects formed our atlas pool. We calculated the average dice coefficients 

between the clustering results of the rest of the five subjects against their manual 

segmentations while we used 1, 2, 3, 5, and 7 atlases from our pool. The atlas selection was 

random. The clustering parameters were chosen as the same as those in Table 1. The results 

are shown in Table 4. The Dice coefficients of L-ATR and R-ATR increased 8%~9% from a 

single atlas to two atlases and continued going up as more atlases were used. For R-CGC, L-

ILF, CCTEM, and CC-OCC, the Dice coefficients seemed to be benefited with more atlases, 

too. Overall, the Dice coefficients approaches stable after three atlases, while more atlases 

didn't decrease the Dice coefficients. However, by considering our small test sample size 

and balancing the tradeoff between stability and computation cost, five atlases may be 

suitable to be representative of our data set. Based on the validation results in Section 4.2, 

the five atlases we selected could effectively cluster the tracts for new subjects in our data 

set.
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4.7. Genetic Stability Analysis

Falconer's heritability statistic is defined as twice the difference between the MZ intra-class 

correlation and the DZ intra-class correlation as described in Equation (5). The intra-class 

correlations are associated with the variances between and across members of pairs of twins 

in each group. One important consideration is that the estimated heritability (or any other 

statistic) needs to be robust to the details of parameter selection – for example, it may 

change as the interpolated FA values of the corresponding fibers points change if different 

radii of sphere are chosen to find corresponding points for each tract across the population. 

We evaluated the stability of Falconer's heritability statistic for each tract by computing the 

percentage of fiber points whose Falconer's heritability statistics change by less than 0.2 

(this is admittedly arbitrary) when changing the radius of the sphere used to search for 

corresponding points across the population (those familiar with the TBSS method will note 

that a similar dependency may arise for the cross-subject correspondences used in TBSS). 

Table 4 lists the stability of Falconer's heritability statistics for all clustered tracts when the 

radius of the search sphere changes from 0.5 cm to 1 cm to 1.5 cm. Overall, Falconer's 

heritability statistic is stable for most tracts except CC-TEM. Therefore, the results in 

Section 4.3 do provide somewhat robust information on genetic influences for each tract. As 

the number of twin pairs increases, the Falconer's heritability should have tighter confidence 

limits. The relatively low stability of CC-TEM arises because the clustering result for the 

CC-TEM bundle has a large variance (its Dice coefficient in Section 4.2 is also the lowest). 

This is perhaps due to the large variations in the tractography results in that area.

5. Discussion

It is obvious that tract clustering quality is influenced by the quality of tractography. A 

better tractography algorithm that produces fewer false fibers makes clustering easier and 

more accurate. The whole-brain tractography methods place seeds throughout the brain and 

produce streamlines in a short period of time. However, many false fibers are created, for 

example, in the left and right inferior longitudinal fasciculi and the temporal segment of the 

corpus callosum, as there are multiple fiber crossings in the regions traversed by those tracts. 

Since our purpose was to perform large scale population studies, we were inclined to be 

more conservative and keep only fibers that form a consistent tract shape across the 

population. When we picked a representative sample for a particular tract, we followed the 

same principle. For example, the cingulums have many branches along their way from the 

frontal lobe to the temporal lobe. We removed those branches in our representative tract 

samples for population studies. It is not practical to find corresponding fibers for those 

branches across the population. We only studied the common areas across most subjects.

While our methods achieved robust performance in fiber clustering, it is important to note 

there are many parameters that could be tuned in whole-brain tractography, which no doubt 

could potentially affect the final clustering results. First, tractography is based on 

mathematical input models, such as tensor, ODF, fiber orientation density (Tournier et al., 

2004), etc.; then, tractography can be deterministic or probabilistic (e.x. PICo); next, in 

terms of the tracking algorithm, it can be fiber assignment by continuous tracking (FACT) 

(Mori et al., 1999), Euler (Basser et al., 2000), Runge-Kutta (Basser et al., 2000), tensor 
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deflection (TEND) (Lazar et al., 2003), etc.; as to interpolation algorithms, it may be 

nearest-neighbor, linear, TEND, etc..; finally, multiple stopping criteria can be chosen, such 

as masking, fiber maximum turning angle, the lowest anisotropy to terminate tracking, etc.. 

Furthermore, there are many tractography software packages available for brain imaging 

research (DTI Studio, Diffusion Toolkit, Camino, MRtrix, etc.). Each package might 

produce slightly different tractography results. Because of the lack of ground truth, the 

problem of selecting the parameters and software packages for optimal clustering 

performance needs more dedicated exploration and will be important future work.

In our multi-level fiber clustering algorithm (Section 2.5), non-linear FA registration was 

used to align fibers between the atlases and the subjects. Ideally, an ODF-based registration 

method might be used to reorient the fibers between different spaces. However, such a 

registration scheme would have much larger cost in terms of computing resources and time 

(a few hours per registration) if it were performed on a large-scale, as in the label fusion 

scheme. In contrast, FA registration takes only around 5 minutes per registration on our data 

set. Moreover, we have found that fiber alignment is indeed improved significantly with FA-

based elastic registration (Jin et al., 2011a).

It is always difficult to compare different clustering algorithms quantitatively as we lack 

ground truth for both the tractography and the white matter segmentation. Even though their 

relative accuracy is hard to assess, it is easier to point to some conceptual similarities and 

differences among the various approaches that have been proposed for tract clustering. 

Many “bottom-up” methods (e.g., Gerig et al., 2004; Xia et al., 2005; O'Donnell and 

Westin, 2007; Maddah et al., 2008; Visser et al., 2010) use the relationship between 

neighboring fibers in one single subject and apply standard clustering algorithms to segment 

the tracts individually. These methods can assign each and every extracted fiber to a class, 

which means all the fibers are retained and represent white matter variability in an 

individual. Even so, they do not necessarily yield a method to match tracts across subjects – 

a step commonly needed for large-scale population studies. In other words, if clustering is 

applied independently to data from numerous individuals, there may be no easy way to 

match the tracts across subjects or find correspondences. On the other hand, “top-down” 

methods (Wakana et al., 2007; Li et al. 2010; Zhang et al., 2010) impose ROI constraints to 

effectively filter out a massive number of false positive streamlines generated by 

tractography. The tracts segmented may also have a clearer anatomical interpretation, as 

known ROIs are used to define them. This then offers a common set of tracts, enabling 

population studies. Still other methods (Maddah et al., 2008; Wassermann et al. 2010; Wang 

et al., 2012; Guevara et al. 2012) were driven by elegant mathematical/statistical models. 

However, many of these methods have not been used or widely tested in clinical research.

The contribution of our paper is to take account of individual variability by constructing 

multiple white matter atlases. A top-down method is also used to extract anatomically 

meaningful tracts. We also proposed a novel fiber correspondence scheme to show how to 

use our clustering results to answer a biological question.
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6. Conclusion

Here we presented an automatic fiber clustering workflow that uses anatomical information 

from multiple manually made atlases. The top-down approach helps to suppress effects of 

false positive streamlines by placing constraints on locations and shapes of tracts through 

their Hausdorff distance to warped hand-labeled atlases. The candidates from multiple 

atlases are combined with a fusion strategy. The clustering results are illustrated visually and 

quantitatively validated for a randomly selected sample data set. The clustering results from 

our method were more accurate than those from the ROI-only method. We also showed an 

example of how to perform a group statistical analysis (a heritability study) by using the 

sub-voxel fiber diffusion information mapped onto the clustered tracts. The complete 

workflow provides us with a practical tool for future large population studies that may 

reveal how the brain is affected by genetic factors, and by a variety of psychiatric or 

neurological disorders such as Alzheimer's disease.
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Highlights

• Developed a workflow to extract fiber tracts through whole-brain tractorgrphay.

• Extended the label fusion scheme to fiber clustering.

• Designed a point-wise fiber matching algorithm to facilitate population studies.

• Demonstrated a heritability population study with the proposed workflow.

• Provided a practical tool for future population studies (ex. Alzheimer's disease).
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Figure 1. 
Flow chart of steps in our fiber clustering framework. (1) Manual WM atlases were 

constructed through warped ROI extraction from a standard template; (2) A multi-level fiber 

clustering scheme was used to label tracts in new subjects; (3) Final results were created by 

fusing individual results from step (2).
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Figure 2. 
A representative WM fiber atlas computed, and manually edited, from 4-Tesla 105-gradient 

HARDI data, showing the 17 major tracts. We created these, with manual editing, in 5 

subjects and propagated the tracts into new subjects. The tracts on the left side and the 

corpus callosum segments are viewed from the left, while the tracts on the right are viewed 

from the right. Back, left side, and bottom views of tract overlays are shown in the middle of 

the figure.
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Figure 3. 
Here we show how many of the streamlines generated by the original tractography are 

filtered to form the corticospinal tract, step by step, through multi-level fiber clustering.
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Figure 4. 
An illustration of tract projection.
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Figure 5. 
Label fusion result obtained from the five manually labeled atlases for the left arcuate 

fasciculus (in blue) in a test subject (viewed from the left). A manual segmentation is 

included for comparison at the bottom right.
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Figure 6. 
Clustering results in four randomly selected subjects for the left and right anterior thalamic 

radiations (L/R-ATR), the left and right corticospinal tracts (L/R-CST), the left and right 

cingulums (L/R-CGC), the left and right inferior fronto-occipital fasciculi (L/R-IFO), and 

the left and right inferior longitudinal fasciculi (L/R-ILF). Tracts on the left side are viewed 

from the left, while the tracts on the right are viewed from the right.
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Figure 7. 
Clustering results - for the same four subjects as in Figure 6 - for the left arcuate fasciculus 

(L-ARC) and six segments of the corpus callosum – projecting to both frontal lobes (CC-

FRN), precentral gyri (CC-PRC), postcentral gyri (CC-POC), superior parietal lobes 

(CCPAR), temporal lobes (CC-TEM), and occipital lobes (CC-OCC). All the tracts are 

viewed from the left.
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Figure 8. 
Back, left side, and bottom views of the same four subjects’ (in Figure 6 and Figure 7) 

compositional fiber clustering results are shown. The original whole-brain tractography (the 

leftmost column) is included for comparison, clearly showing the utility of the data 

reduction.
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Figure 9. 
Average Dice coefficients of all the tracts described in Section 2.4 for the training data set 

(five manually constructed atlases by the leave-one-out test) and the test data set (the 

average of seven randomly selected subjects from our data set) using our label fusion 

method against manual segmentation. The general pattern of coefficients above 0.8 indicates 

good agreement of automatically segmented and hand-segmented tracts.
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Figure 10. 
The average Dice coefficients of all the tracts described in Section 2.4 for our label fusion 

method and the ROI method against manual segmentation. The label fusion method 

universally performs very well (dark blue bars), even when the ROI method (red) performs 

poorly.
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Figure 11. 
Color maps of Falconer's heritability statistic on FA for (a) the left anterior thalamic 

radiation, (b) the right anterior thalamic radiation, (c) the left cingulum, (d) the right 

cingulum, (e) the left corticospinal tract, and (f) the right corticospinal tract. Warmer colors 

show regions with higher genetic influence (h2 closer to 1). Tracts on the left side are 

viewed from the left, while the tracts on the right are viewed from the right.
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Figure 12. 
Color maps show Falconer's heritability statistic on FA for (a) the left inferior fronto-

occipital fasciculus, (b) the right inferior fronto-occipital fasciculus, (c) the left inferior 

longitudinal fasciculus, (d) the right inferior longitudinal fasciculus, and (e) the left arcuate 

fasciculus. Warmer colors show regions with higher genetic influence (h2 ~ 1). Tracts on the 

left side are viewed from the left, while the tracts on the right are viewed from the right.
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Figure 13. 
Color maps of Falconer's heritability statistic on FA for the six segments of the corpus 

callosum – projecting to both (a) frontal lobes, (b) precentral gyri, (c) postcentral gyri, (d) 

superior parietal lobes, (e) temporal lobes, and (f) occipital lobes. Warmer colors show 

regions with higher genetic influence (h2 ~ 1). All of the corpus callosum segments are 

viewed from the left.
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Figure 14. 
Changes in the average Dice coefficients are shown, over the seven test subjects against the 

fusion percentages that were applied in the label fusion stage (Section 2.6) for all the tracts 

described in Section 2.4.
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Figure 15. 
The changes of the average Dice coefficient in seven test subjects versus the clustering 

distance threshold (dcutoff) (Section 2.5.3) for all the tracts described in Section 2.4. Here, 

the optimal values of the fusion percentage (shown in Table 1) were selected.
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Table 2

The percentage of fiber points in all clustered tracts where high genetic influence is detected (arbitrarily set to 

h2 > 0.7). The high genetic influence detected in the frontal regions of the corpus callosum (CC-FRN) may 

reflect its generally higher FA, which tends to lead to higher SNR for statistical analysis.

Tract Name L-ATR R-ATR L-CGC R-CGC L-CST R-CST L-IFO R-IFO L-ARC

Pct. (%) 8.6 7.1 4.2 1.2 7.8 4.5 15.4 13.6 7.8

Tract Name L-ILF R-ILF CC-FRN CC-PRC CC-POC CC-PAR CC-TEM CC-OCC

Pct. (%) 7.7 11.2 17.5 7.9 6.2 4.6 5.6 6.8
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Table 3

The average Dice coefficients and their standard deviations over the seven test subjects against manual 

segmentation for label fusion on the five manually labeled atlases and only a single atlas being used (the 

average was computed over the five atlases).

Mean Dice Coefficients ± Standard Deviation

Tract Name L-ATR R-ATR L-CGC R-CGC L-CST R-CST

Label Fusion 0.92 ± 0.04 0.93 ± 0.02 0.88 ± 0.04 0.85 ± 0.09 0.91 ± 0.04 0.90 ± 0.03

Single Atlas Avg. 0.88 ± 0.05 0.90 ± 0.05 0.88 ± 0.04 0.84 ± 0.08 0.91 ± 0.04 0.89 ± 0.04

Tract Name L-IFO R-IFO L-ILF R-ILF L-ARC

Label Fusion 0.93 ± 0.04 0.91 ± 0.04 0.82 ± 0.06 0.80 ± 0.09 0.92 ± 0.02

Single Atlas Avg. 0.92 ± 0.04 0.89 ± 0.06 0.80 ± 0.04 0.78 ± 0.09 0.86 ± 0.06

Tract Name CC-FRN CC-PRC CC-POC CC-PAR CC-TEM CC-OCC

Label Fusion 0.95 ± 0.02 0.92 ± 0.04 0.91 ± 0.06 0.91 ± 0.03 0.81 ± 0.07 0.91 ± 0.04

Single Atlas Avg. 0.95 ± 0.02 0.92 ± 0.05 0.90 ± 0.06 0.91 ± 0.03 0.81 ± 0.06 0.89 ± 0.05
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Table 4

The average Dice coefficients over five test subjects against manual segmentation for different numbers of 

atlases applied.

Mean Dice Coefficients

# of Atlases 1 2 3 5 7

L-ARC 0.901 0.897 0.906 0.914 0.920

L-ATR 0.833 0.908 0.910 0.919 0.919

R-ATR 0.829 0.898 0.927 0.928 0.927

L-CGC 0.872 0.883 0.875 0.878 0.878

R-CGC 0.859 0.880 0.876 0.870 0.877

L-CST 0.921 0.917 0.914 0.911 0.911

R-CST 0.899 0.903 0.902 0.903 0.902

L-IFO 0.933 0.940 0.938 0.934 0.930

R-IFO 0.911 0.910 0.910 0.902 0.906

L-ILF 0.797 0.797 0.815 0.811 0.823

R-ILF 0.800 0.786 0.789 0.794 0.797

CC-FRN 0.943 0.947 0.946 0.946 0.945

CC-PRC 0.916 0.914 0.913 0.912 0.913

CC-POC 0.903 0.901 0.903 0.903 0.903

CC_PAR 0.908 0.902 0.906 0.908 0.907

CC-TEM 0.782 0.787 0.796 0.797 0.829

CC-OCC 0.897 0.911 0.911 0.912 0.911

Neuroimage. Author manuscript; available in PMC 2015 October 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jin et al. Page 40

Table 4

The stability of Falconer's heritability statistic (the percentage of points in the tract whose Falconer's 

heritability statistic changes by less than 0.2) with changes in the spherical neighborhoods (radius 0.5-1.5 mm) 

used to find corresponding points for each tract over the individuals in our dataset.

Stability (%) L-ATR R-ATR L-CGC R-CGC L-CST R-CST L-IFO R-IFO L-ARC

0.5mm vs. 1mm 89 90 91 90 89 86 81 81 87

1.5mm vs. 1mm 93 94 96 94 87 87 90 87 91

L-ILF R-ILF CC-FRN CC-PRC CC-POC CC-PAR CC-TEM CC-OCC

0.5mm vs. 1mm 77 84 90 80 84 78 61 83

1.5mm vs. 1mm 87 93 93 82 88 81 66 92
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