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Abstract

In this paper we introduce a new hierarchical model for the simultaneous detection of brain

activation and estimation of the shape of the hemodynamic response in multi-subject fMRI

studies. The proposed approach circumvents a major stumbling block in standard multi-subject

fMRI data analysis, in that it both allows the shape of the hemodynamic response function to vary

across region and subjects, while still providing a straightforward way to estimate population-level

activation. An e cient estimation algorithm is presented, as is an inferential framework that not

only allows for tests of activation, but also for tests for deviations from some canonical shape. The

model is validated through simulations and application to a multi-subject fMRI study of thermal

pain.

1 INTRODUCTION

Depending on their scientific goals, researchers in functional magnetic resonance imaging

(fMRI) often choose modeling strategies with the intent to either detect the magnitude of

activation in a certain brain region, or estimate the shape of the hemodynamic response

associated with the task being performed [Poldrack et al., 2011]. While most of the focus in

neuroimaging to date has been on detection [Lindquist, 2008], the magnitude of evoked

activation cannot be accurately measured without either assuming or measuring timing and

shape information as well. In practice, many statistical models of fMRI data attempt to

simultaneously incorporate information about the shape, timing, and magnitude of task-

evoked hemodynamic responses.

As an example, consider the general linear model (GLM) approach [Worsley and Friston,

1995], which is arguably the dominant approach towards analyzing fMRI data. It models the

fMRI time series as a linear combination of several different signal components and tests

whether activity in a brain region is related to any of them. Typically the shape of the

hemodynamic response is assumed a priori, using a canonical hemodynamic response
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function (HRF) [Friston et al., 1998, Glover, 1999], and the focus of the analysis is on

obtaining the magnitude of the response across the brain. However, it is well-known that the

shape of the HRF varies both across space and subjects [Aguirre et al., 1998, Schacter et al.,

1997, Handwerker et al., 2004, Badillo et al., 2013a]; thus assuming a constant shape across

all voxels and subjects may give rise to significant bias in large parts of the brain [Lindquist

and Wager, 2007, Lindquist et al., 2009]. The constant HRF assumption can be relaxed by

expressing it as a linear combination of several known basis functions. This can be done

within the GLM framework by convolving the same stimulus function with multiple

canonical waveforms and including them as multiple columns of the design matrix for each

condition. The coe cients for an event type constructed using different basis functions can

then be combined to fit the evoked HRF in that particular area of the brain.

The ability to use basis sets to capture variations in hemodynamic responses depends both

on the number and shape of the reference waveforms that are used in the model. For

example, the finite impulse response (FIR) basis set, consists of one free parameter for every

time-point following stimulation in every cognitive event-type that is modeled [Glover,

1999, Goutte et al., 2000]. Therefore, it can be used to estimate HRFs of arbitrary shape for

each event type in every voxel of the brain. Another, perhaps more common approach, is to

use the canonical HRF together with its temporal and dispersion derivatives to allow for

small shifts in both the onset and width of the HRF. Other choices of basis sets include those

composed of principal components [Aguirre et al., 1998, Woolrich et al., 2004], cosine

functions [Zarahn, 2002], radial basis functions [Riera et al., 2004], spectral basis sets [Liao

et al., 2002] and inverse logit functions [Lindquist and Wager, 2007]. For a critical

evaluation of a number of commonly used basis sets, see [Lindquist and Wager, 2007] and

[Lindquist et al., 2009].

Though basis sets allow the constant HRF assumption to be relaxed in the GLM framework,

they are still not without problems, particularly when performing multi-subject analysis.

Most analyses of multi-subject fMRI data involve two separate models. A first-level GLM is

performed separately on each subject's data, providing subject-specific contrasts of

parameter estimates. A second-level model is thereafter used to provide population inference

on whether the contrasts are significantly different from zero and assess the e ects of any

group-level predictors, such as group status or behavioral performance. However, it is

problematic to define appropriate first-level contrasts that truly capture the behavior we are

interested in detecting, when multiple basis sets are included in the model. For example,

when each condition consists of multiple basis functions it is not self-evident how to

properly define a relevant contrast comparing the di erence in activation between the two

conditions.

There have been a number of suggestions about how to deal with this issue, most no tably

using only the “main” basis set [Kiehl and Liddle, 2001]. In the case of the canonical HRF

and its derivatives, this entails only using the coefficient corresponding to the canonical

HRF, and treating the coefficients corresponding to the derivatives as nuisance parameters.

While this works relatively well for small deviations from the HRFs canonical form, it

quickly falls apart as the shape begins to differ. To circumvent this problem [Calhoun et al.,

2004] suggested using the norm of the coe cients for the canonical HRF and its derivatives.
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Another suggestion [Lindquist et al., 2009] is to re-create the HRF after estimation and use

the resulting amplitude as the contrast of interest.

In this work we introduce a new approach towards multi-subject analysis of fMRI data that

enables us to simultaneously estimate the specific shape of the HRF for a subject in a given

voxel, and to obtain a population-level estimate of the magnitude of activation. This

approach o ers the flexibility of basis sets while retaining the simplicity of multi-subject

inference with a single canonical HRF. We also provide an inferential framework that

allows us to test both for activations as well as for any differences in HRF shape from some

canonical form.

The idea of performing joint estimation and detection is not new in the neuroimaging

literature. For example, Makni and colleagues [Makni et al., 2005, Makni et al., 2008] have

suggested a Bayesian approach towards the detection of brain activity that uses a mixture of

two Gaussian distributions as a prior on a latent neural response, whereas the hemodynamic

impulse response is constrained to be smooth using a Gaussian prior. In this model all

parameters of interest are estimated from the posterior distribution using Gibbs sampling.

Later work has provided a number of interesting extensions of this model, including to

spatial mixture models [Vincent et al., 2010] and reformulating it as a missing data problem

that allows for a simplified estimation procedure [Chaari et al., 2013].

Our suggested model takes a different approach. Here the HRF is modeled as a linear

combination of B-spline functions (see e.g., [Genovese, 2000] for an early use of spline

functions in model fitting). We assume that subject-level HRFs are random draws from a

population-level distribution and that for any given voxel the population average response

across stimuli will vary only in scale. We provide an efficient algorithm for estimating the

model parameters as well as inferential methods. The latter includes both tests of activation

and for deviations in the HRF from some canonical form.

This paper is organized as follows. In Section 2 we introduce our hierarchical model. In

Sections 3 and 4 we outline an efficient algorithm for estimating the model parameters and

performing inference on them. In Sections 5 and 6 we evaluate the performance of the

model on a series of simulated data sets and data from an experiment studying the effects of

thermal pain. Both the simulated and real data were previously used in a large study of

flexible HRF modeling procedures [Lindquist et al., 2009]. The proposed method is shown

to outperform each of the previously tested approaches, which include the canonical GLM

plus its derivatives, the smooth FIR model, and the inverse logit model. We conclude with a

discussion of the suggested approach.

2 METHODS

2.1 The Hierarchical Model

In this section we outline the proposed hierarchical model for simultaneous estimation and

detection. For simplicity, we assume only one session per subject and a single experimental

group. To study multiple groups, it suffices to apply the model below and the estimation

procedure of section 2.2 separately to each group. Similarly, the inference method of section
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2.3 easily extends to multiple samples. We assume that all scans have been acquired at the

same repetition time Δ and registered to a standard stereotactic space. For the jth subject (1 ≤

j ≤ n), we model the BOLD response at the vth voxel (1 ≤ v ≤ V) and tth scan (1 ≤ t ≤ Tj) as

(1)

Here the response consists of a linear combination of stimulus-induced signal of interest

(represented by the first sum on the right-hand side of the equation), nuisance signal (the

second sum) and noise. The stimulus function sjl is a stick-function that has baseline at zero

and takes the value one whenever stimuli of the lth type are presented. The nuisance signals

φjν, 1 ≤ ν ≤ q, typically include scanner drift, represented by polynomial and/or cosine basis

sets, and physiological noise such as head motion, heart beat, and respiration. The

corresponding nuisance parameters djν must be estimated from the data. The subject-level

HRF hjl decomposes into

(2a)

where hl is a population-level HRF (fixed e ect) and ηjl is a subject-specific (random) effect.

Hence, each subject-level HRF is assumed to be a random draw from a population with

mean hl. Thus, similar to other recent methods (e.g. [Sanyal and Ferreira, 2012] and [Zhang

et al., 2013]) this allows us to borrow strength across subjects to improve subject-specific

estimation. The functions hl(v,·) and ηjl(v,·) are represented using a set of basis functions

(Bk)1≤k≤K:

(2b)

so estimation reduces to solving for the coefficients γlk(v) and ξjlk(v). In practice we suggest

specifying the Bk as B-splines with regularly spaced knots over a time interval where the

HRF is believed to be non-zero, say in the range between 0 and 30 seconds. B-spline basis

sets have several desirable features. First, the coefficients of a function in a B-spline basis

are very close to the function itself, i.e., the function values at the knots (possibly up to a

scaling factor). For this reason, B-spline coe cients are immediately interpretable and

inference of local features of the HRF is greatly facilitated. In addition, the compact support

of B-splines typically induces sparsity in the design matrices and thus reduces the

computational load.

Noting that the shape of the HRF at a given brain location is mostly determined by

physiological factors that are independent of the nature of the stimulus, we further assume

that the population-level HRFs hl(v,·), 1 ≤ l ≤ L, have the same shape for all conditions and

di er only in scale:

(2c)
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Here the terms γk(v), 1 ≤ k ≤ K, determine the shape of the HRF, while βl(v) determines ther

amplitude of the response to stimulus of the lth type. To make these parameters identifiable,

we impose the scale constraint Σkγk(v)2 = 1 and the orientation constraint γk0(v) > 0, with k0

= arg maxk|γk(v)|. Assumption (2c) considerably reduces the number of HRF parameters

from KL to K + L (the same modeling assumption is used in e.g., [Makni et al., 2005]),

which allows one to use a reasonably large number of basis functions while maintaining a

good estimation accuracy. On the other hand, the product form of (2c) makes model (1)

nonlinear with respect to the parameters βl(v) and γk(v). Note that the shape coe cients γk(v)

are well defined only if at least one of the HRFs hl(v,·) is not identically zero, that is, if at

least one experimental condition induces an activation at voxel v.

The random effects ξjlk(v) in (2b) represent subject-specific deviations from the group-level

HRF coefficients γlk(v). They are assumed to be independent across subjects and conditions.

In addition they are assumed to be Gaussian random vectors with mean zero and correlation

structure that is stationary in time and constant in space:

(3)

In the previous equation,  denotes the common variance of the ξjlk(v) (1 ≤ j ≤ n, 1 ≤ k

≤ K), ρξl is an autocorrelation function, and δ the Kronecker delta (δxy = 1 if x = y, δxy = 0 if

x ≠ y). Note that ρξl(0) = 1.

To specify the dependence structure of the noise component ε, we consider a partition of the

spatial domain  into neuro-anatomic parcels  (e.g., Brodmann areas or any

suitable brain atlas). We assume that for each voxel v of a parcel , εj(v,·) is a stationary

Gaussian AR(p) process whose variance  and structural parameters θεm = (θε1m, . . . ,

θεpm) only depend on m. In other words, , where

the ej(v, t), 1 ≤ t ≤ Nj, are i.i.d. normal innovations. The specification of the noise

dependence at the parcel level reflects the belief that this noise is spatially smooth. An

alternative way to characterize the spatial smoothness of ε would be to model the AR

parameters  and θε as smooth functions of v.

Model Summary

For the jth subject and vth voxel, the BOLD time course yj(v) = (yj(v, 1), . . . , yj(v, Tj))′ can

be expressed in matrix form as

(4)

As in the standard GLM, the design matrix Xj is the convolution of the stimulus functions sjl

with the basis functions Bk. To be precise, Xj = (Xj1, . . . , XjL) with Xjl = (xj1l, . . . , xjkl) and

. We have also written

β(v) = (β1(v), . . . , βL(v))′ and γ(v) = (γ1(v), . . . , γK(v))′ for the amplitude and scale
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parameters of the population-level HRF; ε(v) = (εj1(v)′)′, . . . , and εj1(v))′ for the subject-

specific effects; Φj = (βjv (t))1≤v≤q,1≤t≤Tj and dj(v) = (dj1(v), . . . , djq(v))′ for the nuisance

signals; and εj(v) = (εj(v, 1), . . . , εj (v, Tj))′ for the noise. The symbol ⊗ denotes the

Kronecker product.

The vector yj(v) has a multivariate normal distribution with mean and covariance

(5)

where , Tξ = diag(Tξ1, . . . , TξL) is a block diagonal

matrix with Tξl = (ρξl(|k — k′|)1≤k,k′≤K, IK is the K × K identity matrix, and Vξjm is the

covariance matrix of ξj(v) for . Here the first term of Vj(v) corresponds to between-

subject variation, while the second term is the within-subject variation.

Table 1 summarizes all model notations.

2.2 Estimation

In this section we outline our procedure for estimating the parameters of our model. Our

main objective is to estimate the population HRF at each voxel while taking into account the

covariance structure of the data. We formulate this objective mathematically as a

generalized, penalized, and constrained least squares problem. Since the corresponding

objective function is non-convex, our procedure is only guaranteed to yield a local

minimum. It is therefore important to select good starting values for the procedure, which

we do by constructing a consistent pilot estimator of the HRF. We then provide consistent

estimators of the data covariance parameters, after which we optimize the objective function

to obtain the final HRF estimates. The entire procedure is performed in the following five

steps, each described in detail in a subsequent subsection:

1. For each voxel v, estimate the HRF parameters γkl(v) by Penalized Least Squares

(PLS). This pilot estimation does not exploit the HRF shape assumption (2c) and

does not account for the covariance structure of the data.

2. For each parcel , estimate the parameters  and θεm of the AR noise process ε

by solving the Yule-Walker equations associated with the predicted errors .

The  are obtained from a least squares fit on the residuals of step 1.

3. Estimate the temporal correlation parameters ρξl(k) of the subject random effects by

Maximum Likelihood (ML). The ML estimates are obtained separately on a small

sample of voxels and pooled with a suitable statistic (e.g., trimmed mean or

median).

4. For each voxel v, estimate the between-subject variance  by Variance Least

Squares (VLS).

5. For each voxel v, estimate β(v) and γ(v) again using a generalized, penalized, and

constrained least squares approach.
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Step 1: Pilot estimation of the HRF—For each voxel v, the HRF scale and shape coe

cients β(v) and γ(v) are first estimated by penalized least squares (PLS):

(6)

where h is a vector of length KL that estimates the HRF coefficients γlk(v) and d = (d′1, . . . ,

d′n)′ is a vector of length nq that estimates the nuisance signals. The matrix P penalizes

departures of h from a linear space of “reasonable” HRFs (e.g., the canonical HRF and its

temporal derivative). More precisely, let Ψ be a matrix whose columns contain the

coefficients of a few realistic HRFs in the function basis (Bk)1≤k≤K. Then P = IK — Ψ(Ψ

′Ψ)–1Ψ′ is the projection on the orthogonal space of Ψ. The smoothing parameter λ0 > 0

determines the tradeof between fitting the data and closeness to Ψ. It can be selected

manually or, for example, by k-fold cross-validation with the subjects randomly partitioned

in k subsamples.

Note that the minimization problem (6) is unconstrained and does not rely on (2c). Its

solutions are  and

, 1 ≤ j ≤ n, where  is

the projection matrix on the orthogonal space of Φj. The estimator ĥ(v) is consistent and

asymptotically unbiased for the γlk(v) as the sample size n → ∞ and the smoothing

parameter λ0 → 0. In view of (2c), it follows that  is a

consistent estimator of β(v), where ĥ(v) = (ĥ1(v)′,..., ĥL(v)′)′ and the vectors ĥl(v), 1 ≤ l ≤ L,

have length K. Similarly, the scaled average 

consistently estimates γ(v) when the latter is well-defined, i.e., when the voxel v is activated

by at least one experimental condition.

Step 2: Estimation of the noise structure—We turn to the estimation of the noise

parameters  and θεm in each parcel , 1 ≤ m ≤ M. For each subject 1 ≤ j ≤ n and voxel

, consider the residual vector

resulting from step 1. Given (4) and the consistency of ĥ = ĥ(v) in step 1, it holds that rj(v)

≈ Xjξj + εj(v) for n large enough and λ0 small. The random effects ξj(v) and εj(v) can thus be

predicted by least squares based on rj(v), yielding

If the design matrix Xj is not full rank, the inverse  in the above formula is not

defined and can be replaced by its pseudoinverse . We then solve the Yule-Walker
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equations (see e.g., [Brockwell and Davis, 2006, p. 239]) associated with , producing

consistent estimates of  and θεm for each subject 1 ≤ j ≤ n and voxel . By taking

the medians of these estimates across subjects and voxels, we obtain robust estimates 

and .

Step 3: Estimation of the temporal dependence in subject-specific effects—
We estimate the temporal correlation parameters ρξl(k), 1 ≤ k ≤ K — 1, 1 ≤ l ≤ L, by

Maximum Likelihood (ML). For computational efficiency, ML estimates are separately

produced at a small number of voxels and aggregated with a suitable statistic such as the

median or trimmed mean. In practice, we propose to select a random sample of about 1000

voxels for the ML estimation. Following a common usage, we first perform a few iterations

of the EM algorithm to provide good starting values for the optimization of the likelihood

function.

In the rest of this section, we fix a voxel and omit ther index v for conciseness. Writing

 and ρξ = (ρξ1(1), ρξ1(2), . . . , ρξL(K − 1))′, we optimize the log-

likelihood function (multiplied by −2)

(7)

with respect to  and ρξ while fixing β, γ, d, , and θεm to their previously estimated

values. Note that although we are only concerned here with the estimation of ρξ, the

likelihood must also be optimized with respect to . These variance parameters, which must

be estimated at each voxel, will be assessed more e ciently in step 4. The implementation of

the EM algorithm and likelihood optimization is described in Appendix A. More details on

the EM algorithm for linear mixed models can be found in e.g., ([Pawitan, 2001], chap. 12).

Step 4: Estimation of the between-subjects variance—For each voxel v, we

estimate the between-subjects variances  by a variance least squares approach (e.g.,

[Demidenko, 2004], chap. 3) that consists of minimizing the distance between the residual

covariance matrix and the theoretical covariance matrix:

(8)

subject to the constraint  for 1 ≤ l ≤ L. Recall that the residuals rj(v) are defined in

step 2 of this section, , and V̂
εjm and T̂

ξ are the estimates of Vξjm

and Tξ obtained in steps 2-3. The notation ∥A∥F stands for the Frobenius norm tr(A′ A)1/2 of

a matrix A. Problem (8) is a standard quadratic programming problem that expressed more

simply as
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(9)

where A is a L × L matrix with (l,l′) entry  and b is

vector of length L with lth entry .

The solutions to (8)-(9) can be computed by various methods (e.g., [Nocedal and Wright,

2006], p. 449) that are widely available in software packages.

Step 5: Generalized least squares estimation of the HRF—The pilot estimation of

the HRF can be improved upon in two ways: (i) by accounting for the dependence structure

of the BOLD signal, and (ii) by imposing the form (2c) to the HRF estimates. To integrate

these features in the estimation, we use a penalized, constrained, generalized least squares

approach. For a given voxel v, let  be the estimate

of Vj(v) resulting from steps 1-4. We seek to solve

(10)

under the constraint ∥k∥2 = 1. Like in the pilot estimation, the nuisance parameter d can be

eliminated from (10). To that intent, let  be

the projection matrix on the orthogonal space of Φj in the metric . Then (10) is

equivalent to .

Because of the tensor product  and the quadratic constraint ∥γ∥2 = 1, problem (10) is

nonlinear and has no closed-form solutions. However, (10) is a separable least squares

problem: for a fixed γ, solving (10) with respect to βreduces to a generalized least squares

problem that admits a closed-form solution. For a fixed β, solving (10) with respect to γ is a

quadratically constrained quadratic program that requires little more than a singular value

decomposition. As a result, (10) can be e ciently solved in an iterative way.

For conciseness, we omit the index v from notations in the remainder of the section. Let

 and . The solutions  and  of (10) are

obtained by cycling through the following equations until convergence:

(11)

(12)
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(13)

with  initially set to the pilot estimator . Equation (11) corresponds to the generalized

least squares problem that updates  for a given . Equations (12)-(13) correspond to the

quadratically constrained quadratic program that updates  for a given  using the method

of Lagrange multipliers. The Lagrange multiplier Ĉ is computed by performing the singular

value decomposition of  and numerically finding the root of a

monotone function (see e.g., [Golub and Van Loan, 2013, chap. 6] for details).

2.3 Inference

In this section we discuss the sampling distribution of the HRF estimates and illustrate how

to perform inference on model parameters. As before, we omit the voxel index v from

notations for conciseness. Recall that for a given voxel, the HRF shape parameter γ is well

defined only if at least one condition induces an activation in the voxel. Under this

assumption, for a sufficiently large sample size n and sufficiently small smoothing

parameter γ, the sampling distributions of  and  can be respectively approximated by

 and , where the

matrices V̂
j are replaced by the true covariances Vj in M and where N(μ,Σ) denotes the

multivariate normal distribution with mean μ and covariance matrix Σ. Further, neglecting

the uncertainty about γ (and about the covariance matrices Vj) in the estimation of β and

vice-versa, we obtain

(14)

The first result allows us to perform inference to detect activation, as is commonly

performed in the GLM setting. The second results allows us to test hypotheses regarding the

shape of the HRF. For example, after computing the values of γ that correspond to the

canonical the HRF,we could test for deviations in the shape across brain based on the fact

that  follows a χ2 distribution with K degrees of

freedom. A theoretical justification of (14) is provided in Appendix B.

Recall that the above inference procedures rely on the assumption that the voxel under study

is activated in at least one condition (otherwise γ is not well defined). This assumption

amounts to the fact that at least one of the unconstrained HRF coefficients γlk is not zero. It

can easily be tested using the pilot estimator ĥ of the γlk defined in (6). More precisely, ĥ
has a normal distribution with asymptotic bias zero and asymptotic variance
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 for large n and small

λ0. If the null hypothesis γlk = 0 for all k, l fails to be rejected, then no further inference

should be performed for this voxel. Another sensible approach is to use (14) first to test for

activations in all voxels and then to infer the HRF shape in activated voxels.

2.4 Simulations

The basic framework for this simulation study is similar to the one found in Lindquist et al.

(2008), where a number of different HRF modeling approaches were evaluated. Inside a

static brain slice, with dimensions 51 × 40, a set of 25 identically sized squares, with

dimensions 4 × 4, were placed to represent active regions (see Fig. 1A). Within each square,

we simulated BOLD fMRI signal based on different stimulus functions, which varied

systematically across the squares in terms of onset and duration. From left to right the onset

of activation varied from the first to the fifth TR. From top to bottom, the duration of

activation varied from one to nine TRs in steps of two. To create the response, we convolved

the stimulus function in each square with SPMs canonical HRF, using a modified nonlinear

convolution that includes an exponential decay to account for refractory effects with

stimulation across time, with the net result that the BOLD response saturates with sustained

activity in a manner consistent with observed BOLD responses (Wager et al., 2005). This

procedure gave rise to a set of 25 distinct HRF shapes. Fig. 1B shows examples of the 5

HRFs with no onset shift, which are representative of the remaining HRFs.

In total we performed five simulation studies in order to evaluate the properties of the

proposed model. Below follows a description of each.

Simulation 1—In this simulation the TR was assumed to be 1s long and the inter-stimulus

interval was set to 30s. This activation pattern was repeated to simulate a total of 10 epochs.

To simulate a sample of subjects and group random-effects, we generated 15 subject

datasets, which consisted of the BOLD time series at each voxel plus white noise, creating a

plausible e ect size (Cohen's d= 0.5) based on observed e ect sizes in the visual and motor

cortex (Wager et al., 2005). The value of  was set to 3. In addition, a random between-

subject variation with a standard deviation of size one third of the within-subject variation

was added to each subject's time course.

Simulation 2—The second simulated data set was constructed in precisely the same

manner as outlined in Simulation 1, except here instead of using white noise to simulate

within-subject variation we used an AR(1) noise process with θε = 0.3.

Simulation 3—The third simulated data set was constructed, using the exact same process

with AR(1) noise described in Simulation 2, expect here instead of using SPMs canonical

HRF we used a subject-specific HRF. These were randomly generated using 20 B-spline

basis sets with weights drawn from a normal distribution with mean equal to the weights

corresponding to the canonical HRF and standard deviation 0.1.

Degras and Lindquist Page 11

Neuroimage. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Simulation 4—The fourth simulated data set was constructed in precisely the same manner

as outlined in Simulation 1, except here we allowed for two separate conditions. For both

conditions the inter-stimulus interval was set to 30s and the activation pattern was repeated

to simulate a total of 10 epochs. However, the two conditions were interleaved to begin 15s

apart from one another. The β value for the two conditions were set to 0.5 and 1,

respectively. All other parameters were set according to the description of Simulation 1.

Simulation 5—The fifth simulated data set was constructed in precisely the same manner

as outlined in Simulation 1, except here we used a fast event-related design. The inter-

stimulus interval was randomized across each trial using a uniform distribution between 10

and 20s. All other parameters were set according to the description of Simulation 1.

For each of the five simulations, the basic data sets of dimensions 51 × 40 × 300 were fit

voxel-wise using both using the standard GLM/OLS approach and our proposed hierarchical

approach. For Simulations 1-3 an event-related stimulus function with a single spike

repeated every 30s was used for fitting the models to the data set described above. For

Simulation 4 this was supplemented by a second stimulus function with a single spike

repeated every 30s corresponding to the timing of the second condition. Finally, in

Simulation 5 we used a stimulus function with a single spike repeated according to the

outcomes of the randomization scheme outlined above.

This implies that for each simulation the square in the upper left-hand corner of Fig. 1A is

correctly specified for the standard GLM while the remaining squares have activation

profiles that are mis-specified to various degrees. When fitting our method we used 20 B-

spline basis functions of order 6. While our proposed method provides multi-subject

estimates and a framework for direct inference on these parameters, the standard OLS

(ordinary least squares) approach to multi-subject analysis in fMRI involves using a two-

stage model. It begins by fitting individual regression coefficients for each subject using a

standard GLM. Thereafter group estimates of the parameters are obtained by averaging

across subjects and variance components are obtained by computing the variance of the

estimates across subjects. Since this analysis is performed on the estimated regression

coefficients, the variance will contain contributions from both the standard error of the

estimates and the between-subject variance components. This method is the most popular

method in the neuroimaging community for estimating the parameters of a mixed-e ects

model [Mumford and Nichols, 2009].

After estimation we performed population level inference to determine whether β was

significantly different from 0. In each case we performed a one-sided test. In order to control

for multiple comparisons we used an FDR-controlling procedure with q = 0.05 [Genovese et

al., 2002].

2.5 Experimental Data

All subjects (n = 20) provided informed consent in accord with the Declaration of Helsinki,

and the Columbia University Institutional Review Board approved all procedures. Subjects

were all right-handed, as assessed by the Edinburgh Handedness Inventory, and free of self-

reported history of psychiatric and neurological disorders, excessive ca eine or nicotine use,
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and illicit drug use. They were pre-screened during an initial calibration session to ensure

that stimuli were painful and that they could rate pain reliably (r ≥ .65) between applied

temperature and pain rating). During fMRI scanning, 48 thermal stimuli, 12 at each of 4

temperatures, were delivered to the left forearm using a Peltier device (TSA-II, Medoc, Inc.)

with an fMRI-compatible 1.5 mm-diameter thermode. Temperatures were calibrated

individually for each participant before scanning to be warm, mildly painful, moderately

painful, and near tolerance. Heat stimuli were preceded by a 2s warning cue and 6s

anticipation period, lasted 10s in duration (1.5s ramp up/down, 7s at peak), and were

followed by a 30s inter-trial interval (ITI). At a time 14s into the ITI, participants were

asked to rate the painfulness of the stimulus on an 8-point visual analogue scale using an

fMRI-compatible trackball (Resonance Technologies, Inc.). Functional T2*-weighted EPI-

BOLD images (TR = 2s, 3.5 × 3.5 × 4mm voxels, ascending interleaved acquisition) were

collected during 6 functional runs each consisting of 6 minutes 8s. Images were corrected

for slice-timing acquisition delay and realigned to adjust for head motion using SPM5

software (http://www.fil.ion.ucl.ac.uk/spm/). A high-resolution anatomical image (T1-

weighted spoiled-GRASS [SPGR] sequence, 1 × 1 × 1mm voxels, TR = 19ms) was

collected after the functional runs and coregistered to the mean functional image using a

mutual information cost function (SPM5, with manual checking and adjustment of starting

values to ensure satisfactory alignment for each participant), and was then segmented and

warped to the Montreal Neurologic Institute template (avg152T1.nii) using SPM5's

“generative” segmentation [Ashburner and Friston, 2005]. Warps were applied to functional

images. Functional images were smoothed with a 6 mm-FWHM Gaussian kernel, high-pass

filtered with a 120s (.0083 Hz) discrete cosine basis set (SPM5), and windsorized at 2

standard deviations prior to analysis. Each of the models described above was fit to data

from each voxel in a single axial slice (z = −22mm) that covered several pain-related regions

of interest, including the anterior cingulate cortex. Separate HRFs were estimated for stimuli

of each temperature, though we focus on the responses to the highest heat level in the

results.

We fit the data using our proposed hierarchical approach with 12 B-spline basis functions of

order 6. As the fMRI data consisted of 6 functional runs for each subject, we combined the

results across runs in a manner corresponding to a fixed-effects model, assuming the same

HRF for all runs for a given subject and voxel. As an alternative it would be possible to

extend our model to allow β to be a random effect across runs in a manner analogous to that

outlined in [Badillo et al., 2013b]. After estimation we performed population level inference

to determine whether β was significantly different from 0. In each case we performed a one-

sided test. In order to control for multiple comparisons we used an FDR-controlling

procedure with q = 0.05 [Genovese et al., 2002].

3 RESULTS

3.1 Simulations

Figs. 2-4 show results of the first three simulation studies. Each contains estimates of β, θε,

, the t-map, and the thresholded t-map, obtained using both the standard GLM/OLS

approach and our hierarchical model. In each case, GLM/OLS (first row) gives reasonable
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results for delayed onsets within 3s and widths up to 3s, corresponding to squares in the

upper left-hand corner. However, its performance worsens dramatically as onset and

duration increase. As pointed out in Lindquist et al. (2008) this is natural as the GLM is

correctly specified for the square in the upper left-hand corner, but not well equipped to

handle large deviations from this model. Interestingly, in Fig. 2 we see that this model

misspecification gives rise to a positive autocorrelation in several of the most severely

effected squares, even though we used white noise in that particular simulation.

Almost all of these problems are solved using our hierarchical model. Clearly, irrespective

of the shape of the underlying HRF we were able to efficiently recover both β and the

variance component in each square. Clearly, these improved estimations lead to significantly

improved sensitivity and specificity in the population-level hypothesis tests.

The results of Simulation 4 are shown in Fig. 5. Here the first column contains the t-map

corresponding to the test of whether the contrast, β1 − β2, between the parameters of the two

conditions was significantly different from zero, while the second column shows the

analogous thresholded t-maps. Again, our hierarchical model is able to detect significant

regions with both high sensitivity and specificity. In contrast, the GLM/OLS approach

performs poorly, even in the upper-left hand corner where it is expected to be optimal.

Fig. 6 shows results for Simulation 5 where we used a rapid event-related task. The first

column contains the t-map corresponding to testing whether the parameter β was

significantly different from zero, and the second column corresponds to the thresholded t-

maps. The GLM/OLS approach performs somewhat better than in the other simulations,

perhaps due to the increased number of trials. However, our hierarchical model is again able

to detect significant regions with both a high degree of sensitivity and specificity.

To illustrate further, we see in Fig. 7 the results of 100 replications of the first simulation.

Fig. 7A shows the portion of times the standard GLM/OLS approach gave significant results

in each voxel across the simulated brain. Fig. 7B shows the same results for our hierarchical

model. Clearly, our hierarchical model is able to consistently detect truly activated regions,

while avoiding spurious findings. Not surprisingly, the GLM/OLS approach only performs

well in squares where it is correctly defined. Fig 7C shows the portion of times the estimated

HRF significantly deviated from SPMs canonical form (α < 0.05). This test was performed

by first computing values of γ corresponding to the canonical HRF and thereafter using the

χ2 test described in Section 2.3. The results show, again not surprisingly, that the HRF in

voxels in the lower right-hand corner of the brain deviate significantly from the canonical

form. Interestingly, these voxels corresponds closely to voxels that were erroneously

deemed non-active in Fig. 7A. This leads us to believe that our approach could have an

alternative use as a diagnostic tool for assessing the performance of standard GLM analyses.

Fig 8 shows the methods ability to recover the time-to-peak and width of the underlying

HRF used to generate the data. The left hand column shows the true values and the right

hand columns the mean estimated values across the 100 replications. Clearly we are able to

extremely accurately capture the true value of the time-to-peak. However, it appears that the
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estimates of the width, while close are somewhat confounded by the changes in onset, with

the best results occurring when there are no onset shifts present.

3.2 Experimental Data

The results of the pain experiment are shown in Fig. 9 for a single axial slice (z = −22mm).

The location of the slice used and an illustration of key areas of interest are shown in Fig.

9A. The highlighted areas are the rostral dorsal anterior cingulate cortex (rdACC) and the

secondary somatosensory cortex (S2); two brain regions known from previous work to be

involved in the processing of pain intensity [Ferretti et al., 2003, Peyron et al., 2000].

Activation in S2 is thought to be related to sensory-discriminant aspects of pain-processing,

while rdACC has been shown to be related to expectancy [Atlas et al., 2012].

In Fig. 10 we see examples of the estimated HRFs, obtained using our approach, from

voxels chosen because they lay in the center of the rdACC and S2, respectively. These

results include both the subject-specific and group-level estimates. The shapes of both

group-level HRFs are significantly different from the canonical HRF (p < 0.01) using the

g=x2 test. Note that the shapes of the HRFs are also quite different from one another. For

rdACCC, the width of the response is significantly wider from what we would expect from

the canonical HRF. While for S2, the onset is significantly delayed. However, interestingly

both HRFs appear to reach their peak at roughly the same time point following activation.

Due to the apparent variability in the HRF across the slice, it would be problematic to

analyze this data set using a canonical HRF or one that uses a constrained basis set. In fact,

the GLM showed no activation in either rdACC or S2. However, the flexibility of our

approach allows for large deviations in the shape of the HRF across voxels. In Fig. 9B we

see an activation map obtained using our method. In particular, note that there is significant

activation in S2 in response to the noxious stimulation. In previous analysis of this data set

[Lindquist et al., 2009], activations in this region were particularly difficult to detect using

standard GLM methods (e.g., the canonical HRF plus its temporal and dispersion

derivatives, or the finite impulse response (FIR) basis set). The inverse-logit (IL) model was

the only approach that showed activation in S2 contralateral to noxious stimulation. The

activation shown here is extremely robust in comparison.

4 DISCUSSION

In this paper we introduce a new approach towards the simultaneous detection of activation

and the estimation of the HRF for multi-subject fMRI. The suggested approach circumvents

a number of shortcomings in the standard approach for performing group analysis. In these

approaches there is often a tension between flexible modeling of the HRF at the first level

and straightforward inference in the second level. For example, if multiple basis sets are

used in the first-level GLM, then it is difficult to determine an approriate contrast to bring

forward to the second-level. Often, researchers use only a subset of the basis functions and

therefore potentially ignore important information contained in those left behind. The

proposed approach allows the shape of the hemodynamic response function to vary across

regions and subjects, as when using basis sets, while still providing a straightforward way to

estimate population-level activation using all the information from the first level analysis.
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An additional benefit of our model is that the suggested inferential framework not only

provides a means for performing the standard tests for determining whether a voxel is

significantly active, but also allows one to test whether the estimated HRF deviates from

some canonical shape (e.g., SPMs canonical HRF). This type of inference has been under-

utilized in the field, but we feel it can be extremely useful for diagnostic purposes, as it can

help identify regions that would normally not be deemed active when using a canonical

HRF.

In addition, our method could prove useful in situations when the standard HRF is either ill-

fitting, such as in studies of young or elderly populations, or when the exact onset time or

width of activation is unknown and added flexibility is needed to properly fit the data. An

example of the latter is the thermal pain data presented in this paper. In previous studies

[Lindquist et al., 2009], activations in S2 were particularly difficult to detect using either the

canonical HRF plus its temporal and dispersion derivatives, or the finite impulse response

(FIR) basis set. However, using our approach, the activation was extremely robust in

comparison.

To date the method has only been implemented in a voxel-wise manner. Hence, we make the

common, but rather implausible, assumption of independence between voxels with regards

to both the HRF shape and amplitude. However, we do allow for the possibility of a parcel-

specific noise structure. We are currently in the process of extending the method to also

estimate spatial dependences in the data. For that purpose two types of approaches can be

considered: one consists in spatially regularizing the estimation in local neighborhoods; the

other is to integrate a functional parcellation of the brain. In the latter case, one can either

resort to an existing atlas (see e.g. [Karahanoğlu et al., 2013]) or define a data-driven

parcellation (see e.g., [Chaari et al., 2012] for such a parcellation at the subject level). To

make the manuscript more manageable we decided to limit our discussion of this issue until

a later time.

The presented simulations and data set are identical to those used in a previous study

[Lindquist et al., 2009], where we evaluated the performance of seven different HRF

models. These included: SPMs canonical HRF; the canonical HRF plus its temporal

derivative; the canonical HRF plus its temporal and dispersion derivatives; the finite impulse

response (FIR) basis set; a regularized version of the FIR model (denoted the smooth FIR); a

nonlinear model with the same functional form as the canonical HRF but with 6 variable

parameters; and the inverse logit (IL) model. The results of that work showed that it was

surprisingly di cult to accurately recover true task-evoked changes in BOLD signal and that

there were substantial differences among models in terms of power, bias and parameter

confusability. While the derivative models were accurate for very short shifts in latency they

became progressively less accurate as the shift increased. The IL model and the smooth FIR

model showed the least amount of biases, and the IL model showed by far the least amount

of confusability of all the models that were examined. Both these methods were clearly able

to handle even large amounts of model misspecification and uncertainty about the exact

timing of the onset and duration of activation.
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The suggested model clearly outperformed each of the 7 other models in the same battery of

tests. For space purposes we only present the canonical HRF for comparison purposes, and

we encourage interested readers to look back at [Lindquist et al., 2009], for more results.

The hierarchical model was found to have a superb balance of sensitivity and specificity that

none of the other models was able to obtain. In addition, in the previous work the IL model

was the only model that showed significant activation in S2 contralateral to noxious

stimulation. Here the proposed model shows extremely robust signal in this region. For these

reasons we believe the proposed model is a useful approach towards e ectively modeling

multi-subject fMRI data.

A Matlab implementation of the proposed methodology is available upon request. The code

runs in a reasonable time for fMRI data sets of moderate size. By optimizing the code and

running it in parallel on voxels and/or on subjects, our methodology can scale up to large

fMRI data. Specifically, step 1 of the estimation algorithm can be solved in closed form and

requires few matrix multiplications. Step 2 is also very fast due to the definition of the noise

parameters at the parcel level and to the computational efficiency of the Yule-Walker

equations. Step 3 (maximum likelihood/EM algorithm) would be very slow if it was run for

each voxel but is in reality only carried for a small number of voxels. Step 4 consists in a

large number of standard quadratic programming problems that can be solved quickly and in

parallel. Step 5 is arguably the slowest part of the estimation procedure because of the

necessity to compute inverse data covariance matrices. However, linear algebra tricks can

reduce the dimension of the matrices to be inverted from the number of scans (Tj) to the

number of regressors (KL).
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Appendix

A Estimation of the dependence in subject effects

A.1 EM algorithm

We fix a voxel and omit the index v from notations. Since the random effects ξj are

independent, identically distributed, and stationary, it holds that  for

each subject (1 ≤ j ≤ n) and condition (1 ≤ l ≤ L). Hence, we first estimate  by the

empirical average . We initially assume working independence

for the ξjl so that  for each lag (1 ≤ k ≤ K − 1) and condition. At the (r + 1)th

iteration (r ≥ 0) of the EM algorithm, the E-step computes the conditional expectation of

(minus twice the logarithm of) the complete likelihood, i.e., the likelihood of the augmented

data (y1, . . . , yn, ξ1, . . . , ξn). The conditioning variables are y1, . . . , yn, the current

estimators , , and , , , . Up to constant terms, the conditional expectation

is
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(15)

where ,  is the

predicted random effect for the jth subject, and rj is the residual vector defined in step 2 of

section 2.2.

For 1 ≤ l ≤ L, the derivative of Q with respect to  is

(16)

where the matrix  has been partitioned in blocks , 1 ≤ l, l′ ≤ L, of size K × K.

Writing  and equating (16) with zero, we get

(17)

After plugging (17) in (15), the variance-profile function Qp to be optimized in the M step of

the algorithm is

(18)

For computational speed, we may use any suitable gradient-based optimazation method. Let

Dk be the K × K whose (i,j) entry 1 if |i — j| and 0 otherwise. then 

and the gradient of Qp is

(19)

for 1 ≤ k ≤ K−1 and 1 ≤ l ≤ L. The box constraints −1 ≤ ρξl(k) ≤ 1 and positive definiteness

of Tξl are enforced during the optimization. The updated variance estimator  is

obtained by plugging  in (17). Writing

, D = (vecD1),...., vec(DK−)),
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, and , the

gradient (19) can be compactly written as

where the division is taken element-wise and 1K−1 is a vector containing (K−1) ones.

A.2 Maximum Likelihood Estimation

For a given voxel v, the partial derivatives of the likelihood function (7) are

(20)

and

(21)

for 1 ≤ k ≤ K − 1 and 1 ≤ l ≤ L. Based on (20)-(21) and a suitable gradient-based

optimization procedure, we obtained the ML estimators  and . We then define

the aggregated correlation estimate  as the median of the  across voxels where

the estimation was carried.

B Sampling distribution of the HRF estimators

Here we provide the theoretical justification of the large-sample approximation (14) to the

sampling distribution of the estimators  and .

First, the estimators used in this paper rely on standard statistical procedures whose

consistency properties are well documented in the literature. In step 1, the penalized least

squares estimator ĥ(v) of the HRF coefficients γlk(v) is consistent as n → ∞ and λ0 → 0.

Note that increasing the number of scans Tj reduces the influence of the noise ε on the

estimation but not the sampling variability (subject effects ξ). In fact, the variance of the

pilot estimator ĥ(v) is dominated by the sampling variability: it is of order

, i.e.  if the Tj are of comparable size. Also, the parameter λ0

governing the penalty on HRF shapes lying outside the null space Ψ must go to zero to

render the pilot estimator asymptotically unbiased. In step 2, the Yule-Walker estimators of

the noise parameters  and θεm are consistent as maxj Tj → ∞. The consistency of steps

3-5 derives from the large-sample properties of least squares- and maximum likeklihood

estimators and from the consistency of the previous estimation steps. Note that the

estimators of the noise and random effects parameters are averaged across subjects and
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space (except for the variance estimators ). As a consequence, their variance is

generally small in comparison to the variance of the HRF estimators.

We now turn to the large-sample distribution of  and . Assuming that for each

subject, stimuli of each type are presented sufficiently often, the design matrices Xj are of

order  in norm and the matrix M = M(v) is of order  in probability.

Given the consistency of , V̂ j(v)the normality of the data, and the fact that Var(η) ≈ M,

one can apply Slutsky's theorem and the Law of Large Numbers in (11) to obtain the large-

sample approximation  (with 

in M replaced by ) as n, Σj Tj → ∞ and λ → 0. Turning to the estimator ,

simple algebraic manipulations in (11) and (13) show that . In other

words, the terms ĈIK and nλP in (13) are of order  in probability and thus negligible

in comparison to M. Applying the same arguments as with  in (11), we obtain the limit

distribution .
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Highlights

• Model for joint detection of activation and estimation of the HRF in multi-

subject fMRI studies.

• Allows the HRF to vary across regions and subjects, while allowing for group-

level inference.

• Inferential framework allows for tests of activation and deviations from

canonical HRF shape.

• Validated through simulations and application to a multi-subject fMRI study of

thermal pain.
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Figure 1.
Overview of simulation set-up (A) A set of 25 equally sized squares were placed within a

static brain image to represent regions of interest. BOLD signals were simulated based on

different stimulus functions, which varied systematically across the squares in their onset

and duration of neuronal activation. From left to right the onset of activation varied between

the squares from the first to the fifth TR. From top to bottom, the duration of activation

varied from one to nine TR in steps of two. (B) The five HRFs with varying duration. The

plot illustrates di erences in time-to-peak and width attributable to changes in duration.
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Figure 2.
Results of the first simulation shown for the standard GLM/OLS approach (top row), and

our hierarchical model (bottom row). From left-to-right the columns represent the estimated

values of β, θε, , t-map and thresholded t-map.
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Figure 3.
Results of the second simulation shown for the standard GLM/OLS approach (top row), and

our hierarchical model (bottom row). From left-to-right the columns represent the estimated

values of β, θε, , the t-map and the thresholded t-map.
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Figure 4.
Results of the third simulation shown for the standard GLM/OLS approach (top row), and

our hierarchical model (bottom row). From left-to-right the columns represent the estimated

values of β, θε, , t-map and thresholded t-map.
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Figure 5.
Results of the fourth simulation shown for the standard GLM/OLS approach (top row), and

our hierarchical model (bottom row). From left-to-right the columns represent the estimated

and thresholded t-map for testing whether the contrast between the two conditions was

significantly different from 0.
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Figure 6.
Results of the fifth simulation shown for the standard GLM/OLS approach (top row), and

our hierarchical model (bottom row). From left-to-right the columns represent the estimated

and thresholded t-map.
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Figure 7.
The results of 100 replications of the first simulation. (A) The portion of times the standard

GLM/OLS approach gave significant results in each voxel. (B) The same results for our

hierarchical model. Clearly the hierarchical model is able to effectively separate signal from

noise in a more consistent manner than the GLM/OLS. (C) The portion of times the

estimated HRF deviated from the canonical form using our model.
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Figure 8.
The results of 100 replications of the first simulation. (Top row) The true and estimated

values of the time-to-peak for the group-level HRF. (Bottom row) Same results for the

width.
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Figure 9.
(A) The location of the slice and an illustration of areas of interest. Both rdACC and S2 are

regions known to process pain intensity. (B) A statistical map obtained using the proposed

herarchical model.
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Figure 10.
Estimates of the subject-specific HRF computed using voxels from the rdACC and S2. The

group-level estimates are shown in bold.
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Table 1

Notations

j Subject index

k Basis function index

l Condition index

v Voxel index

n Sample size

K Number of basis functions

L Number of experimental conditions

V Number of voxels

Bk Basis function

Tj Number of brain scans for subject j

yj(v) fMRI time course for subject j at voxel v

X j Design matrix for subject j

X jl Design matrix for subject j, condition l

β(v) Amplitude parameters for the population HRF at voxel v

γ(v) Shape parameters for the population HRF at voxel v

ξj(v) Deviation of subject j from population HRF at voxel v

ξ jl(v) Deviation of subject j from population HRF for condition l and voxel v

Φ j Matrix of nuisance signals for subject j

dj (v) nuisance coefficients for subject j and voxel v

εj(v) Noise vector for subject j at voxel v

Dξ(v) Variance coefficients of subject effects at voxel v

T ξ Correlation matrix for subject effects at voxel v

T ξl Correlation matrix for subject effects for condition l and voxel v

V εjm Covariance matrix of the noise for subject j and parcel m

Vj (v) Covariance matrix of yj (v)
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