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ABSTRACT 

Characterization of brain changes produced by intrauterine growth restriction (IUGR) is among the 

main challenges of modern fetal medicine and pediatrics. This condition affects 5-10% of all 

pregnancies and is associated with a wide range of neurodevelopmental disorders. Better 

understanding of the brain reorganization produced by IUGR open a window of opportunity to find 

potential imaging biomarkers in order to identify the infants with a high risk of having 

neurodevelopmental problems and apply therapies to improve their outcomes. Structural brain 

networks obtained from diffusion magnetic resonance imaging (MRI) is a promising tool to study brain 

reorganization and to be used as a biomarker of neurodevelopmental alterations. In the present study 

this technique is applied to a rabbit animal model of IUGR, which presents some advantages including 

a controlled environment and the possibility to obtain high quality MRI with long acquisition times. 

Using a Q-Ball diffusion model, and a previously published rabbit brain MRI atlas, structural brain 

networks of 15 IUGR and 14 control rabbits at 70 days of age (equivalent to pre-adolescence human 

age) were obtained. The analysis of graph theory features showed a decreased network infrastructure 

(degree and binary global efficiency) associated with IUGR condition and a set of generalized 

fractional anisotropy (GFA) weighted measures associated to abnormal neurobehavior. Interestingly, 

when assessing the brain network organization independently of network infrastructure by means of 

normalized networks, IUGR showed increased global and local efficiency. We hypothesize that this 

effect could reflect a compensatory response to reduced infrastructure in IUGR. These results present 

new evidence on the long-term persistence of the brain reorganization produced by IUGR that could 

underlie behavioral and developmental alterations previously described. The described changes in 

network organization have the potential to be used as biomarkers to monitoring brain changes 

produced by experimental therapies in IUGR animal model.  
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1. INTRODUCTION 

Intrauterine growth restriction (IUGR) affects 5-10% of all pregnancies and is a major public health 

issue, being a prevalent condition that has been associated with a wide range of short- and long-term 

neurodevelopmental and cognitive dysfunctions (Arcangeli et al., 2012; Baschat, 2013), even in 

adulthood (Løhaugen et al., 2013). With the significant advance of magnetic resonance imaging (MRI) 

in the recent years, the brain alterations and reorganization underlying these neurofunctional 

alterations are starting to be elucidated. It has been suggested that brain reorganization starts in 

utero, where different patterns of cortical development (Egaña-Ugrinovic et al., 2013) and altered 

quantitative MRI texture predictive of altered neurodevelopment (Sanz-Cortes et al., 2013) have been 

shown in IUGR. At neonatal period IUGR has been reported to have decreased volume in gray matter 

(GM) (Tolsa et al., 2004) and hippocampus (Lodygensky et al., 2008) and discordant patterns of 

gyrification (Dubois et al., 2008). At one year of age, persistence of structural changes has been 

demonstrated, including reduced volumes of GM  (Padilla et al., 2011) and decreased fractal 

dimension in both GM and white matter (WM) that correlate with abnormal neurodevelopment 

(Esteban et al., 2010). Studies on IUGR at later ages have reported changes in regional brain 

volumes and cortical thickness in 4 to 7-year-old children(De Bie et al., 2011), reduced volumes for 

thalamus and cerebellar white matter (Martinussen et al., 2009), and thinning of corpus callosum and 

general WM reduction (Skranes et al., 2005) in adolescents. There is a need to better characterize 

the brain reorganization underlying neurodevelopmental and cognitive dysfunctions in IUGR. 

Likewise, the development of imaging biomarkers is an urgent clinical and experimental need (Ment 

et al., 2009). 

The study of brain connectivity holds great promise for the development of pathophysiological 

insights and biomarkers of human disease characterized with subtle brain changes that are not 

reflected in conventional MRI techniques (Gratacos, 2012). Indeed, one of the major recent advances 

in the application of new MRI modalities has been the emerging technique of “connectomics” 

(Hagmann, 2005), opening the possibility to extract macroscopic circuitry of the connections of the 

brain, in what has been called “the connectome” (Sporns et al., 2005). In particular, the use of graph 
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theory analyses on brain networks has been demonstrated to be a useful tool to characterize brain 

organization by a few comprehensible parameters (Bassett and Bullmore, 2009). Different sets of 

data, including functional MRI and diffusion MRI, have been used to extract macroscopic brain 

networks and analyze network features in healthy adults, adolescents and infants (Gong et al., 2009a; 

Hagmann et al., 2008; Hagmann et al., 2010; Iturria-Medina et al., 2008; Yap et al., 2011) and to 

report altered group connectivity parameters in a wide range of neurological, neurobehavioral and 

neurodegenerative diseases (Alexander-Bloch et al., 2010; Liu et al., 2008; Lo et al., 2010; Shu et 

al., 2009; Shu et al., 2011; Wang et al., 2009; Wu et al., 2009). Importantly, connectomics and graph 

theory features have been shown to be potential tools to develop biomarkers to predict neurological 

outcomes in adult (He et al., 2009; Li et al., 2009; Wee et al., 2010; Wen et al., 2011) and perinatal 

diseases (Batalle et al., 2012; Batalle et al., 2013; Tymofiyeva et al., 2012). Particularly, brain 

networks of one-year-old infants obtained from diffusion MRI have been reported to have reduced 

level of weighted organization and a pattern of altered regional network features that is associated 

with latter neurodevelopmental problems (Batalle et al., 2012), showing their potential to develop 

imaging biomarkers to detect infants at high risk of having neurodevelopmental problems one year 

later. Nonetheless, whether persistent brain reorganization produced by IUGR persists at long-term 

(adolescence and adult period) and whether connectomic analysis could be a suitable tool to 

characterize the patterns induced by this conditions is still unknown. 

Assessing long-term effects of IUGR in the human brain is a challenging task, limited by the 

influence of uncontrolled environmental factors (Hall and Perona, 2012) and the difficulty of obtaining 

sufficiently large sample sizes. The induction of IUGR in rabbit models has been proven to reproduce 

major features of human IUGR (Bassan et al., 2000; Eixarch et al., 2009; Eixarch et al., 2011). 

Furthermore, white matter maturation process in rabbit is closer to humans than other species, since 

it starts in intrauterine period (Derrick et al., 2007). Hence, albeit their obvious limitations, rabbit model 

may be a useful tool to analyze long-term brain remodeling in IUGR. They could play a key role in the 

definition of image biomarkers for early diagnosis that are critical to demonstrate changes after the 

application of experimental therapies, especially when those should be tested in fetuses or neonates. 

Besides highly reproducible experimental conditions, high quality MRI with long acquisition times can 
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be performed in isolated whole brain preparations. Using this model, regional brain changes in 

fractional anisotropy, correlated with poorer outcome in neurobehavioral tests has been reported in 

newborns (Eixarch et al., 2012), some of them persisting in preadolescent period (Illa et al., 2013), 

where changes in the connectivity of anxiety, attention and memory networks has been shown. Due 

to the recent development of an MRI rabbit brain atlas (Muñoz-Moreno et al., 2013), the possibility to 

obtain whole brain structural networks based on diffusion MRI arises. This opens the opportunity to 

assess long-term network reorganization associated with functional impairments without a priori 

hypothesis, taking advantage of the huge potential of graph theory measures to characterize brain 

functioning and organization (Bassett and Bullmore, 2009) that have been previously used to 

characterize one-year-old infants with IUGR (Batalle et al., 2012; Batalle et al., 2013). 

In the present study, graph theory features from diffusion MRI brain networks were calculated in 

15 rabbits with surgically induced IUGR and 14 controls at equivalent preadolescent age, in order to 

assess the long-term impact of IUGR in brain organization that could underlie behavioral and 

developmental alterations. The results showed a specific pattern of global network features altered 

in IUGR, characterized by an impaired network infrastructure, but an increase in the relative terms of 

organizational efficiency that we hypothesize to be associated with a compensatory effect in IUGR. 

An exploratory analysis of the regional features altered by IUGR condition was also performed. Both 

global and regional network features were associated with neurobehavioral tests results. The results 

here presented contribute to the knowledge on long-term brain changes associated to 

neurobehavioral dysfunctions in IUGR, showing the feasibility of using brain networks features from 

diffusion MRI as biomarkers to assess and potentially monitor treatment in IUGR using experimental 

models.  
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2. METHODS 

The design of the study and each of the steps of the procedures are shown in Figure 1. A detailed 

description of the methodology used is included in this section. 

2.1 Animals, study protocol and surgical model 

Animal experimentation of this study was approved by the Animal Experimental Ethics Committee 

of the University of Barcelona (permit number: 206/10-5440), and all efforts were made to avoid or 

minimize suffering. 

Part of the animals used in this study has been previously used in a recent study (Illa et al., 2013). 

From 13 New Zealand pregnant rabbits provided by a certified breeder, we selected two cases and 

two controls of each dam at birth. At 70th postnatal day, all surviving cases and one control for each 

case were included resulting in a total population of 30 rabbits (15 with induced IUGR and 15 sham 

controls). Dams were housed for 1 week before surgery in separate cages on a reversed 12/12h light 

cycle, with free access to water and standard chow. At 25 days of gestation (term at 31 days), a 

ligation of 40-50% of uteroplacental vessels was performed following a previously described protocol 

(Eixarch et al., 2009). Briefly, after midline abdominal laparotomy, the gestational sacs of both horns 

were counted and numbered. Afterwards, only one uterine horn was kept outside the abdomen and 

the induction of IUGR was performed by ligating 40-50% of the uteroplacental vessels of all the 

gestational sacs from this horn. After the procedure, the abdomen was closed in two layers and 

postoperative analgesia (meloxicam) was administered for 48 hours. After surgery, the animals were 

allowed free access to water and standard chow for 5 days until delivery. Cesarean section was 

performed at 30 days of gestation and living pups were obtained. All living newborns were weighed 

and identified by a subcutaneous microchip inserted in their back (Microchip MUSICC, Avid Microchip 

S.L., Barcelona, Spain). Cases were considered those pups delivered from the ligated horn, whereas 

controls were those delivered from the contralateral horn (non-ligated). Both cases and controls were 

housed with a wet nurse rabbit with part of the offspring until the 30th postnatal day when they were 

weaned. Thereafter both groups of rabbits were housed in groups of three with a reversed 12/12h 
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light cycle with free access to water and standard chow. On the 70th postnatal day, which is 

considered to be equivalent to preadolescence period in humans in terms of sexual maturity 

(Moorman et al., 2000), functional tests were applied and the rabbits were anaesthetized and 

sacrificed thereafter. Left and right common carotid arteries were cannulated and the brains were 

perfused with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde PBS.  Then, brains 

were excised from the skull and immersed in 4% paraformaldehyde PBS at 4°C for 48h. 

 

2.2 Neurobehavioral tests and cognitive evaluation 

In order to assess neurobehavioral changes related to emotion and cognition, two standard test 

used extensively in rodents and recently adapted to rabbits (Illa et al., 2013) were used: Open Field 

Behavioral Test (OFBT) and Object Recognition Task (ORT). Neurobehavioral tests were performed 

in a subset of rabbits. Particularly, of the total sample of 29 subjects, 20 rabbits were selected to 

perform OFBT and ORT. 

OFBT evaluates locomotion and exploratory activities competing against fear, anxiety and 

attention (Bouet et al., 2003; Walsh and Cummins, 1975), based on the procedures originally 

described by Hall (Hall, 1934). Briefly, the testing area was divided into 36 squares of 23 x 23 cm, the 

four central squares were considered as the internal area and the remaining squares were defined 

as the external (peripheral) area. The rabbits were taken out of their cage wrapped with a cloth and 

placed close to one of the lateral walls (starting point) and behavior was assessed during 10 minutes. 

In order to minimize interference due to human contact, each session was videotaped and later 

evaluated by two blinded observers. Rabbits that escaped from the testing area were excluded from 

the analysis. The main parameters were recorded including latency of leaving the starting point 

(seconds) and number of squares explored (total, internal and external). In order to obtain a single 

dichotomic value summarizing a normal or an abnormal performance of a given subject, normality of 

the control population was established at the 25th centile for each of the four main parameters 
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recorded. Having two or more of these items below this 25th centile was considered to be an abnormal 

exploration. OFBT was performed successfully in 10 controls and 9 IUGR. 

ORT assesses short-term memory, especially recognition (Olton and Feustle, 1981) and attention 

capacity (Cowan et al., 1999), based on the tendency of rodents to explore new stimuli for a longer 

time compared to familiar stimuli (Dere et al., 2006; Ennaceur and Aggleton, 1997; Mumby, 2001). 

The test was adapted from the original description (Ennaceur and Delacour, 1988), including some 

modifications in the stimulus used (instead of a visual stimulus, an odor-based stimulus was used). 

Briefly, after a familiarization phase where the rabbit was presented with two boxes containing the 

same odor-based stimuli (apple), the animal was returned to its cage for a 30-minutes retention 

interval and returned to the testing area for a 5 minutes testing phase, where one of the boxes was 

removed and replaced by a novel stimulus (orange). Cumulative time exploring each object was 

recorded and discrimination index (DI) was calculated. DI represents the ability to discriminate the 

novel from the familiar object and was calculated as follows:  

𝐷𝐷𝐷𝐷 =
Novel Object Exploration Time −  Familiar Object Exploration Time
Novel Object Exploration Time +  Familiar Object Exploration Time

 

Learning criteria was considered when DI was above 0, and dichotomized version of the score 

was generated accordingly. ORT was performed in all animals with a successful OFBT test. Animals 

that did not explore the familiar object at least once in the testing phase or did not explore any of the 

objects in the familiarization phase were excluded from the analysis, as previously suggested (De Bie 

et al., 2011; Illa et al., 2013). ORT was performed successfully in 8 controls and 6 IUGR. Further 

details on the specifics of both tests can be consulted at Illa et al. (2013). 

2.3 MRI acquisition 

MRI was performed on fixed brains using a 7T animal MRI scanner (BrukerBioSpin MRI GmbH). 

High-resolution three-dimensional T1 weighted images were obtained in the brain samples by a 

Modified Driven Equilibrium Fourier Transform (MDEFT) sequence with the following parameters: 

Time of Echo (TE) = 3.5 ms, Time of Repetition (TR) = 4000 ms, 0.7-mm slice thickness with no 
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interslice gap, 70 coronal slices, in-plane acquisition matrix of 188 x 188 and Field of View (FoV) of 

28 x 28 mm2, resulting in a voxel dimension of 0.15 x 0.15 x 0.7 mm3. Diffusion-weighted images 

(DWI) were acquired using a standard diffusion sequence covering 126 gradient directions with a b-

value of 3000 s/mm2  together with a reference (b=0) image. Other experimental parameters were: 

TE = 26 ms, TR = 250 ms, slice thickness = 0.7 mm with no interslice gap, 70 coronal slices, in-plane 

acquisition matrix of 40 x 40 , FoV of 28 x 28  mm2, resulting in a voxel dimension of 0.7 x 0.7 x 0.7 

mm3. The total scan time for both acquisitions was 13h56m40s. Any potential tissue alteration, mainly 

significant tissue loss, was considered as exclusion criteria, being one control of the total population 

excluded for this reason. 

2.4 Pre-processing and tractography 

Brain tissue was segmented from the background in the T1 volume by means of an Otsu threshold 

method (Otsu, 1975). In the case of DWI, brain tissue was segmented from the background by means 

of an in-house algorithm previously described (Eixarch et al., 2012) based on the high SNR of the 

brain tissue on the average diffusion volume. The orientation diffusion function (ODF) of each voxel 

was reconstructed by means of a Q-Ball approach (Tuch, 2004) and used to reconstruct fiber tracts 

by means of a deterministic tractography algorithm with an angle threshold of 30 degrees 

implemented in Diffusion Toolkit (http://trackvis.org/dtk/) (Wang et al., 2007). Extracted brain volume 

size and number of fibers reconstructed for each subject were assessed. 

2.5 Brain parcellation 

Automatic brain parcellation of the subjects’ brain was performed taking advantage of a recently 

published New Zealand Rabbit MRI atlas (Muñoz-Moreno et al., 2013) available online 

(http://medicinafetalbarcelona.org/rabbitbrainatlas). The parcellation was performed on the T1 

volume of each subject by means of an elastic registration of the template atlas to each subject‘s 

brain performed with a customized software implementing a consistent version (Tristan-Vega and 

Arribas, 2007) of a block matching algorithm (Warfield et al., 2002). The elastic transformation 

obtained matching the template atlas and each subject’s T1 was applied to the ROI labels, obtaining 

http://trackvis.org/dtk/
http://medicinafetalbarcelona.org/rabbitbrainatlas
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a parcellation of each brain in 60 ROIs. In order to align the labels obtained for each subject in the 

T1 volume to its corresponding DWI, affine registration (Studholme et al., 1999) between T1 and the 

baseline image was performed with IRTK (www.doc.ic.ac.uk/~dr/software/). Discrete values of the 

labels were preserved by nearest neighbor interpolation in both transformations. ROIs comprising 

only WM tissue were discarded, leaving a total of 44 regions for each subject (Table 1), each of which 

considered as a node in the brain networks obtained. 

2.6 Network extraction 

Brain network of each subject was extracted by means of an in-house algorithm combining the 

fiber tracts obtained by Q-Ball tractography and the ROIs resulting from the automatic brain 

parcellation previously performed. Two nodes (regions) i and j were considered to be connected by 

an edge eij when there existed at least one fiber bundle f with end-points in i and j regions, with self-

loops excluded. In addition to the binary network produced with this approach, weights were also 

assigned to each edge eij. There is still not a gold standard in the literature to assign connectivity 

weight between two regions, hence, two of the most used approaches in the literature were followed 

to weight the connectivity between each pair of regions, wGFA, average generalized fractional 

anisotropy (GFA) along all the fibers connecting a pair of regions; and wFD, fiber density (FD) defined 

as Hagmann et al. (2008) with slight modifications: wFD(i, j) = 2
Vi+Vj

∑ 1/l(f)f∈Fij ; where wFD(i, j) is the 

FD-weight given to the connection between nodes i and j,  Vi is the volume of the ROI i,  Fij is the set 

of all fibers connecting ROI i and j, and  l(f) is the length of fiber f along its trajectory, introduced in 

the denominator to eliminate the linear bias towards longer fibers introduced by the tractography 

algorithm. In addition, the resulting weighted networks were normalized by the total weight of all the 

connections in the network, to assess the brain organization independently of the network average 

strength.  

In summary, five networks were extracted for each subject: binary, GFA-weighted, FD-Weighted, 

normalized GFA-weighted and normalized FD-weighted. 

2.7 Network analysis 

http://www.doc.ic.ac.uk/%7Edr/software/
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Network analysis by means of graph theory allows obtaining a set of features that summarize the 

organization of a brain network, represented as an adjacency matrix (binary or weighted). In the 

present study, we applied graph theory features over each of the five brain network classes computed 

for each subject. All the features were computed using Brain Connectivity Toolbox (Rubinov and 

Sporns, 2009). 

Global functioning of each network was assessed by its infrastructure (average degree for binary 

networks and average strength for weighted networks), integration (binary and weighted global 

efficiency) and segregation (binary and weighted local efficiency). In addition, binary and weighted 

characteristic path length and average clustering coefficient were also assessed. 

Regional characteristics were evaluated by means of nodal degree and strength, features that 

assess the total connectivity of a node in a network in its binary and weighted versions respectively. 

In addition, nodal efficiency was also assessed in its binary and weighted version. Nodal efficiency 

measures the efficiency of the sub-network associated to a given node. Nodes with a high nodal 

efficiency indicate a high fault tolerance of the network to the elimination of the given node, which is 

given by a high clustering of the neighborhood of this node (Achard and Bullmore, 2007). 

In order to assess the small-world behavior of the computed networks (Watts and Strogatz, 1998), 

binary characteristic path length (Lp) and binary clustering coefficient (Cp) were compared with the 

average characteristic path length and clustering coefficient of one hundred equivalent random 

networks with the same size and degree distribution of each subject’s network. The ratio of the values 

obtained for the original subject network and its equivalent random version allowed to obtain the 

normalized values  λ = Lp Lprand ⁄ ,  γ = Cp Cprand ⁄ , and  σ = γ λ⁄ . Small-worldness value (σ) is above 1 

in small-world regimes (Humphries and Gurney, 2008). 

Formulation of the graph theory features used to assess each network is based on the definitions 

compilated by Rubinov and Sporns (2009). 

2.8 Levels of analysis: raw, cost-corrected, cost-integrated and normalized strength 
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We analyzed the obtained networks with different approaches in order to catch different aspects 

of their organization. The first straightforward approach is to directly apply binary and weighted graph 

theory measures to the raw binary, GFA- and FD-weighted networks obtained for each subject. 

However, some of these measures could be closely associated to the measured infrastructure of the 

network, i.e., their average network strength and degree (Ginestet et al., 2011; van Wijk et al., 2010). 

In order to assess organization independently from network density (i.e., average network degree), a 

cost-thresholding approach was followed (Achard and Bullmore, 2007) obtaining binary networks for 

a set of costs in the rank from 0 to 0.39 at 0.01 steps, using GFA- and FD-weighted networks to select 

the “strongest” connections that yield to a network with the desired network cost for each subject. 

0.39 is the smallest network density value of any subject included in the study, hence being the largest 

network density value that it is possible to study for all subjects fairly. This approach allows comparing 

network features independently of differences in the raw number of connections (cost) between 

subjects. However, it increases the number of comparisons and the complexity of the results 

interpretation. In order to disentangle network density from topology in a single value for each graph 

theory feature, a cost-integrated version of each topological version was calculated as the mean value 

across the assessed rank. In addition, this cost-correction approach has an additional shortcoming in 

the fact that it leads to different connections sets across subjects. In order to assess the behavior of 

the networks using the same set of connections for all the subjects, an experimental approach is used 

in Supplementary Materials inspired in the methodology used by Gong et al. (Gong et al., 2009b). 

With the goal to assess the pure weighted organizational characteristic of the network topology, 

normalized weighted networks were also calculated for each subject in their GFA and FD versions. 

This normalization was performed by means of dividing each connection weight by the total weight 

on the network. Hence, normalized weights were calculated as wX
N(i, j) = wX(i, j) ∑ wX(i, j)∀i,j⁄ , where 

“X” is GFA or FD. By this means, each normalized weight wGFA
N (i, j) and wFD

N (i, j) corresponds to the 

percentage of connection weight used in the link between i and j relative to the total amount of weights 

in the network. This way the measures performed on normalized GFA- and FD-weighted networks 

were independent to the total amount of connectivity strength each subject had, and then assessing 

only its distribution of weights.  
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2.9 Statistics 

Comparisons among groups were performed by general linear models (GLM) with gender as co-

factor. Interaction of group and gender was first included into the model, but as it did not show any 

significant effect was excluded of the final model. Significance was declared at p<0.05 (uncorrected). 

Normality was assessed with Shapiro-Wilk Test and homoscedasticity with Levene’s Test, and when 

the null hypothesis rejected, log-transformation was performed prior to GLM analysis. Descriptives of 

the variables were expressed as mean (standard deviation) for normal distributions and median 

(interquartile range) for non-normal distributions. Differences between cases and controls of 

dichotomized values of OFBT and ORT were assessed with a binary logistic regression with group 

and gender as co-factors. Association of network features with OFBT and ORT was performed by 

means of a partial correlation controlling the effect of gender. Association with dichotomized OFBT 

and ORT was performed by a GLM with gender as co-factor. The most discriminative network 

features of dichotomized OFBT and ORT were assessed by means of a conditional step forward 

binary logistic regression with an entry probability of 5%. Note that the population available with OFBT 

and ORT was 19 subjects (10 controls and 9 IUGR) and 14 subjects (8 controls and 6 IUGR) 

respectively. Regional features were corrected for multiple comparisons with a False Discovery Rate 

(FDR) approach (Benjamini et al., 2006), controlling alpha error to 10% and 5% for each feature 

calculated among all 44 regions. Regional alterations were shown in the rabbit brain atlas template 

using BrainNet viewer (www.nitrc.org/projects/bnv/) (Xia et al., 2013). The software package SPSS 

18.0 (SPSS, Chicago, IL) was used for the statistical analyses. Computational algorithms were 

implemented using MATLAB (2009b, The MathWorks Inc., Natick, MA).  

http://www.nitrc.org/projects/bnv/
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3. RESULTS  

3.1 Population 

After applying exclusion criteria, the final population under study consisted in 14 controls and 15 

subjects with induced IUGR. As expected, birth weight in IUGR subjects was significantly decreased 

(controls vs. IUGR: 47.7g (IQR 7.7g) vs. 37.4g (IQR 10.1g), p<0.001) (controls vs. IUGR: 50.2g (SD 

7.3g) vs. 38.8g (SD 6.5g), p<0.001), however, at 70 days of life the difference in weight disappeared 

(controls vs. IUGR: 2850g (IQR 400g) vs. 2700g (IQR 675g), p=0.423) (controls vs. IUGR: 2744g (SD 

438g) vs. 2596g (SD 635g), p=0.485). Concerning brain volume at 70 days, there was not a statistical 

difference between cases and controls (controls vs. IUGR: 9467 mm3 (SD 449 mm3) vs. 9308 mm3 

(SD 615 mm3), p=0.450), neither concerning the total amount of fibers reconstructed by the 

tractography algorithm (controls vs. IUGR: 34493 (SD 1595) vs. 33800 (SD 2328), p=0.371). The 

distribution of gender was also not significantly different between cases (8 males/7 females) and 

controls (7 males/7 females). 

Concerning functional exploration, results showed similar results to those obtained in a very similar 

sample (Illa et al., 2013). In OFBT, IUGR showed a decreased number of internal boxes crossed 

(controls vs. IUGR: 9.2 (SD 4.8) vs. 3.7 (SD 3.2), p=0.011), and increased latency (controls vs. IUGR: 

2.5s (IQR 17s) vs. 52s (IQR 241s), p=0.042). Total boxes crossed (controls vs. IUGR: 103.1 (SD 

35.6) vs. 73.1 (SD 36.5), p=0.105) and external boxes crossed (controls vs. IUGR: 97.2 (SD 36.7) vs. 

69.4 (SD 34.7), p=0.120) did not show statistically significant differences between groups. In ORT, 

reduced discriminatory index was found in IUGR group (controls vs. IUGR: 0.30 (SD 0.24) vs. -0.25 

(SD 0.46), p=0.016). Similarly, binary logistic regression of dichotomized values of OFBT with gender 

as a co-factor showed a significantly increased percentage of abnormal values in IUGR (controls vs. 

IUGR: 20.0% vs. 77.8%, p=0.021) and a tendency in dichotomized ORT (controls vs. IUGR: 12.5% 

vs. 66.7%, p=0.059). In summary, these results showed that IUGR rabbits have a significant degree 

of anxiety, attention and memory problems when compared to controls. 

3.2 Global network features 
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As shown in Figure 2, the analysis of the basic infrastructure of the network showed a decreased 

average degree (p=0.039) in IUGR cases. The analysis of the average strength of the weighted 

networks did not show any significant effect, although a tendency towards significance is found in FD-

weighted average strength (p=0.084). 

Analysis of small world characteristics (Figure 3) showed that both cases and controls have a 

small-worldness σ value higher than one for all subjects, a typical characteristic of small-world 

networks, however, no significant differences were found between cases and controls. 

The assessment of brain network organization by means of the analysis of global and local 

efficiency (Figure 4) demonstrated several differences between controls and IUGR. Having a 

significantly reduced average degree it is expectable to find that IUGR also had a reduced binary 

global efficiency (p=0.041). IUGR group did not show significant differences in any weighted measure 

of efficiency, however, the analysis of normalized brain networks, independent to differences in the 

average strength of each subject, showed that IUGR group had a significantly increased normalized 

GFA- weighted global efficiency (p=0.018), normalized GFA-weighted local efficiency (p=0.039) and 

normalized FD-weighted local efficiency (p=0.010). Note that while FD indirectly measures the axonal 

density connecting two regions, GFA measures have been related with the integrity of these axonal 

connections. These results were also confirmed when looking directly into normalized characteristic 

path length and average clustering coefficient (Supplementary Material). Finally, when forcing all the 

subjects’ networks to have the same density (cost-corrected approach), differences between cases 

and controls were found for several cost values in GFA-weighted global efficiency and FD-weighted 

local efficiency (Figure 5) and GFA cost-integrated measure of global efficiency was found to have a 

tendency of being increased in IUGR (p=0.070). Overall, global network features obtained suggested 

an altered brain network organization characterized by a reduced level of network connectivity and a 

compensatory effect after assessing pure organizational features by means of different normalization 

approaches. Although a compensatory effect in local efficiency was observed with both GFA and FD 

weighting approaches, statistically increased global efficiency was only observed for GFA-weights.  

3.3 Regional network features 
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The analysis of regional network features showed a pattern of alterations in IUGR group (Figure 

6, Supplementary Table 1). Particularly, IUGR is characterized by a significantly lower nodal degree 

in several brain regions, although vermis is the only region withstanding a 5% FDR correction. 

Interestingly, right cingulate cortex, lenticular nucleus and vermis also showed a significantly 

decreased GFA-weighted strength, both in absolute and relative terms (normalized), vermis also 

resisting a 5% FDR correction. In line with the results obtained for global network features, regions 

with a higher degree or strength in IUGR group were only found in relative terms. 

Concerning binary nodal efficiency, IUGR showed a significant decrease in right parietal cortex 

and right frontal cortex, but an increase in vermis. FD-weighted network efficiency also showed a 

significantly increase in left cerebellar hemisphere and vermis. In line with the significant increase 

found in global normalized weighted features, IUGR showed a wide pattern of regions with a 

significantly increased normalized efficiency, including basal forebrain, piriform cortex, cerebellar 

hemisphere and amygdala in normalized GFA-weighted networks (right piriform cortex and cerebellar 

hemisphere withstanding a FDR correction at 10%). Efficiency of mesencephalon, pons, right parietal 

and cingulate cortex, hippocampus, cerebellar hemisphere and vermis were also increased in 

normalized FD-weighted networks; with left cerebellar hemisphere resisting a 10% FDR correction 

and vermis resisting a 5% FDR correction. 

In summary, IUGR mainly showed a pattern of decreased features in raw networks, especially in 

binary nodal efficiency and degree and GFA-weighted strength, and a pattern of increased features 

in normalized GFA- and FD-weighted networks, especially in nodal efficiency. 

3.4 Association of network characteristics with altered neurobehavior 

The analysis of dichotomized OFBT normal/abnormal status with GLM showed significantly 

decreased GFA-weighted average strength (p=0.039), GFA-weighted global efficiency (p=0.035) and 

GFA-weighted local efficiency (p=0.017) in the abnormal group. A tendency to have increased 

normalized FD-weighted global efficiency (p=0.058) and cost-integrated GFA global efficiency 

(p=0.083) was also found in the group with an abnormal exploration. Analysis of ORT 
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normal/abnormal exploration showed only significantly increased cost-integrated GFA global 

efficiency (p=0.007) in the abnormal group. 

The association with normal/abnormal exploration in OFBT and ORT was confirmed by partial 

correlation of OFBT continuous values and global features (Supplementary Table 2). Briefly, OFBT 

scores showed significant correlations with several GFA-weighted measures (average strength, 

characteristic path length, average clustering, global efficiency and local efficiency) and with 

normalized FD-weighted global efficiency. ORT, however, only showed some tendencies towards 

significance with GFA-weighted clustering coefficient and GFA cost-integrated local efficiency. 

Interestingly, the results showed that for all significant correlations, and for those showing a tendency 

towards significance, absolute GFA-weighted measures had a significant correlation with 

neurobehavioral scores in the opposite direction of cost-integrated and normalized measures. 

Regional features associated with abnormal neurobehavior were assessed by means of a GLM 

with dichotomized OFBT / ORT and gender as co-factor (Figure 7). The results showed a significant 

association of several regional features with neurobehavioral tests. As it could be expected from the 

strong association with global GFA-weighted network features, abnormal OFBT exploration was 

associated with a wide rank of GFA-weighted nodal measures, particularly with nodal efficiency 

features. The association of regional features with abnormal ORT was not so spread, but some 

consistent patterns of alterations across different kinds of networks were also observed, as it is the 

case of right thalamus and right caudate nodal strength and efficiency features.  

Further analysis to find the network features with a higher potential as an image biomarker of 

altered neurodevelopment was performed by means of a step forward binary logistic regression. All 

the assessed global network features were entered in a first analysis, selecting GFA-weighted local 

efficiency as the more discriminative in OFBT (90% sensitivity, 66.7% specificity, Nagelkerke 

R2=0.335, Chi2=5.494, p=0.019). The most discriminative global feature in ORT was cost-integrated 

global efficiency (88.9% sensitivity, 80% specificity, Nagelkerke R2=0.623, Chi2=8.467, p=0.004), 

selecting also normalized FD-weighted local efficiency which allowed a full separation of 

normal/abnormal ORT (Chi2=18.249, p<0.001). In a second analysis, all the assessed regional 
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network features were introduced. Regional features more discriminative of OFBT were GFA-

weighted right insular cortex strength and normalized FD-weighted septal nuclei nodal efficiency 

(90% sensitivity, 89.5% specificity, Nagelkerke R2=0.939, Chi2=23.101, p<0.001). In the case of ORT, 

the most discriminant regional network feature was normalized FD-weighted nodal strength of right 

thalamus, which also fully separated by itself normal/abnormal ORT (Chi2=18.249, p<0.001). 



Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction 

 
Batalle et al. 2014  17 

4. DISCUSSION 

This study describes the use of diffusion MRI brain networks to analyze the brain reorganization 

in a rabbit model of IUGR at 70 days of age, equivalent to preadolescence in humans. The results 

show that IUGR brain reorganization persists into pre-adolescence equivalent age with significant 

differences at various levels in network infrastructure. GFA-weighted features and regional network 

features were associated with poor neurobehavioral performance. Furthermore, the increased 

efficiency of normalized GFA-weighted networks associated with IUGR suggests the existence of 

reorganizational compensatory processes in post-natal life. 

4.1 Global network features 

Comparison of the brain networks obtained with random equivalent networks showed small-world 

characteristics. This result is coherent with previously found in humans, animals and a wide range of 

networks (Bullmore and Sporns, 2009). Small-world networks are suggested to be a balance between 

random and lattice networks, having a high level of organization but also allowing to communicate 

any given pair of nodes with relatively few intermediate steps. No differences in small-world features 

were found in IUGR, but the analysis of other global network features showed a pattern of brain 

reorganization persisting at preadolescent equivalent age. Particularly, reduced average degree is 

found in IUGR, supporting the idea that IUGR have an impaired network infrastructure. As expected, 

having a reduced network infrastructure may be producing a dysfunctional connectivity, expressed 

by a reduced binary global efficiency. Supporting this concept, we observed also a trend of IUGR to 

have reduced FD-weighted average strength. Note that strength can be understood as the total power 

of brain connections between regions. However, although having a less connected brain network, 

GFA- and FD-weighted efficiencies were not found significantly decreased in IUGR. Broadly, global 

efficiency assess how easy is on average to connect a pair of regions, while local efficiency has been 

related with the level of clusterization of the network. The results obtained in raw GFA-weighted 

efficiencies are in contraposition with previous findings suggesting significantly reduced fractional 

anisotropy (FA) weighted global and local efficiency found at one year of age in human IUGR (Batalle 

et al., 2012). One possible explanation could be related with changes in postnatal brain maturation 
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after IUGR. Previous studies have reported that there is a compensation in the long-term myelination 

and WM volume in a guinea pig model of IUGR (Tolcos et al., 2011). In this line, previous studies 

assessing WM alterations in a rabbit animal model of IUGR using voxel based analysis have reported 

a less prominent pattern of alterations in pre-adolescence age (Illa et al., 2013) than in neonatal age 

(Eixarch et al., 2012). On the other hand, in this study we could not reproduce previous observations 

in one-year-old infants’ networks showing reduced average degree in IUGR subjects (Batalle et al., 

2012). We hypothesize that this apparent discrepancy could be explained by evolutionary changes 

of brain network reorganization associated with IUGR at different ages. Alternatively, we cannot 

exclude that this effect could be specific of IUGR in this rabbit animal model.   

An interesting finding of this study was the observation of increased efficiencies in the normalized 

networks of IUGR compared with controls. Consistent with this finding, the evolution of graph theory 

measures in a cost-thresholding approach showed a discordant pattern in IUGR, particularly an 

increased FD local efficiency and an increased GFA global efficiency for several network costs. We 

hypothesize that this effect might reflect a compensatory mechanism in IUGR subjects, whereby 

available network resources seem to be optimized and reorganized more efficiently from a network 

perspective. This compensatory effect in brain connectivity could also explain some other intuitively 

non-expected findings in IUGR in the long-term, such as the reported, regional cortical thickening in 

small for gestational age children (De Bie et al., 2011; Martinussen et al., 2005).  

4.2 Regional network features 

Concerning regional differences found in IUGR, only vermis features withstood a FDR correction 

at 5%, while only features of cerebellar hemispheres and piriform cortex withstood a FDR correction 

at 10% (Supplementary Table 1). Particularly, degree and normalized GFA-weighted strength of 

vermis were significantly reduced in IUGR, and nodal efficiency of both raw and normalized FD-

weighted vermis were significantly increased in IUGR. We could interpret that IUGR subjects have a 

vermis with reduced neighborhood but with a stronger connectivity (higher clustering). Again, this 

would support the hypothesis of a compensatory effect and goes in line with the results obtained on 

global network features. Interestingly, alterations in cerebellum and vermis connectivity in infants with 
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IUGR have previously been reported by network analysis (Batalle et al., 2012; Batalle et al., 2013), 

as well as reduced WM volumes in cerebellar areas in short- (Padilla et al., 2011) and long-term 

follow-up studies (De Bie et al., 2011; Martinussen et al., 2009). Interestingly, cerebellar areas are 

implicated in motor learning, memory, cognition and behavior (Baillieux et al., 2008), and have been 

reported to increase their volume in infants with IUGR after intervention by means of individualized 

intensive care nursery associated with an improvement in executive function (McAnulty et al., 2013). 

Considering other animal models of IUGR,  in guinea pig it also has been reported a reduction in 

cerebellar WM volume (Tolcos et al., 2011), and a reduction in Purkinje neuronal population (Mallard 

et al., 2000). However, we must note that in previous voxel-based analysis studies in IUGR rabbit 

model (Eixarch et al., 2012; Illa et al., 2013) we only observed mild differences in cerebellar areas. 

We hypothesize that this could be partially explained by stronger alterations in the sub-network 

associated to cerebellum (described by network features), than in the structure of cerebellum by itself. 

Another factor that could explain this discrepancy can be the technical characteristics of voxel-based 

analysis technique, especially in cerebellar areas, where the limited resolution is especially critical for 

cerebellar WM.  

Beside those associated with cerebellar areas, other regional features were also significantly 

different in IUGR, although only normalized FD-weighted efficiency of right piriform cortex withstood 

a 10% FDR correction. It seems interesting that regional features of normalized networks were found 

significantly increased in IUGR mainly in specific basal and deep gray matter areas, such as 

amygdala, hippocampus, thalamus, medulla oblongata, and some of the cortical areas controlling 

essential functions for the rabbit, as is the case of piriform cortex, which has been strongly associated 

to the smelling processing (Kadohisa and Wilson, 2006). One possible interpretation of these results 

could be that a compensatory reorganization in IUGR brain might occur preferentially in brain areas 

regulating function with critical importance in survival, such as memory, attention or smelling 

processing. Considering other features that did not withstood FDR correction, we must note that the 

regional features altered in IUGR were coherent with the global results obtained, mainly showing 

reduced values in binary and raw GFA-weighted measures (especially in degree/strength) and 

increased values in normalized measures (especially in efficiency). Interestingly, changes in regional 
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features of raw networks were manly identified in brain regions located in the right hemisphere of the 

brain, suggesting a certain asymmetry in the reorganization associated with IUGR. Reports on 

asymmetrical brain alterations produced by IUGR are scarce in the literature, and further long-term 

studies in humans would be required to confirm this effect and discard that is exclusive to animal 

models. Another interesting finding was left cingulate cortex and right lenticular nucleus decreased 

nodal degree and relative and absolute GFA-weighted nodal strength. Cingulate cortex features were 

also correlated with OFBT performance, which is in line with previous results in a similar sample of 

IUGR rabbit model, where FA changes in the cingulate cortex were found to be correlated to a series 

of neurobehavioral domains, especially those of OFBT (Illa et al., 2013). Note that cingulate cortex 

has been strongly associated with anxiety processes (Kim and Whalen, 2009), which is thought to 

have an important role on the behavioral response in OFBT. In addition, cingulate cortex volumetric 

differences in humans (Emond et al., 2009; Spampinato et al., 2009) as well as histological changes 

in rodents (Miller et al., 2012) have been associated with traits of attention deficit and anxiety. 

Concerning the alterations in lenticular nucleus, FA changes have been previously reported in the 

putamen of neonatal (Eixarch et al., 2012) and long-term rabbit model of IUGR (Illa et al., 2013), as 

well as disrupted regional network features associated with putamen and globus pallidum in 1-year-

old infants (Batalle et al., 2012). Moreover, features associated to other subcortical GM nuclei 

including caudate and thalamus were also found affected in IUGR rabbits in this study. These findings 

are in line with previous evidence suggesting the important role of striatal injury as a risk factor of 

behavioral disturbances associated to IUGR (Toft, 1999), and alterations in cortico-striato-thalamic 

network has been associated to cognitive disorders such as attention deficit hyperactivity disorder 

(Castellanos et al., 1994; Faraone and Biederman, 1998), which in turn is more prevalent in IUGR 

(Heinonen et al., 2010). Concerning the specific associations with OFBT and ORT by means of a 

step forward binary logistic regression, features of insular cortex and septal nuclei were found strongly 

associated with OFBT and features of thalamus with ORT. Septal nuclei participation in the regulation 

of anxiety and depression in experimental models has been extensively documented (Estrada-

Camarena et al., 2002), as well as insular cortex, which has been proposed to have a key role in 

anxiety proneness (Paulus and Stein, 2006). Importantly, thalamus has been previously associated 



Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction 

 
Batalle et al. 2014  21 

to memory impairments in animal models (Mitchell and Dalrymple-Alford, 2005) and with poor 

performance in object recognition tasks in patients with schizophrenia (Heckers et al., 2000), disorder 

that has also been associated to low birth weight (Nilsson et al., 2005).  

In summary, a pattern of regional network features altered in IUGR were identified, some of them 

being specifically associated with abnormal neurobehavior. Noteworthy, alterations in network 

features of cerebellum stand out as the more strongly associated with IUGR condition, and septal 

nuclei, insular cortex and thalamus with poor performance in neurobehavioral tests. These results, 

and its association with previous literature, reinforce the potential of network features based on these 

regions to be used as biomarkers of altered neurodevelopment.  

4.3 Methodological issues and future work 

Although the study of brain networks in animal models has been seminal to the field (Sporns et 

al., 2005), brain networks obtained from diffusion MRI in small animals are scarce. To the best of our 

knowledge, this is the second study of this kind in small mammals (Iturria-Medina et al., 2011), and 

the first showing brain networks in rabbits. This animal model has some specific methodological 

difficulties that had to be overcome. The recent successful development of an MRI atlas for the rabbit 

brain (Muñoz-Moreno et al., 2013), allowed to automatically segment and analyze brain networks 

from this model. It is common in human studies to confine deterministic tractography only to WM 

tissue. However, due to the difficulty of properly defining a WM mask in rabbits, the deterministic 

tractography was computed for the whole brain. This could create some redundant fibers, and 

increase tractography noise, but it was partially overcome by the use of a high angular resolution 

diffusion MRI acquisition, and the use of graph theory, particularly weighted measures, to analyze the 

results obtained. This limitation also ramifies in the calculation of FD-weighted networks. Instead of 

the formulation proposed by Hagman et al. (2008) to calculate FD between two regions (using the 

surface of the WM-GM interface of the regions involved in a given link in the denominator), we 

modified this formula introducing the volume of each region instead of the surface of the WM-GM 

interface. In addition to specific limitations of the rabbit model, some others common to the study of 

brain networks must be discussed. Using weighted measures of the brain networks obtained has a 
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series of advantages, including a better management of weak and potentially non-significant links 

(Rubinov and Sporns, 2009); however, how the connectivity between regions must be quantified and 

its correlation with the underlying anatomical substrate is still an open question that has been 

approached in very different ways (Griffa et al., 2013). To this regard, instead of selecting a single 

approach, we decided to use two very different ways of quantifying the weight of brain connectivity: 

average GFA along the fibers, and fiber density between regions; characterizing different aspects of 

connectivity that we expected to be complementary. Furthermore, we also computed normalized 

versions of the networks, allowing disentangling the measures obtained from the variability of 

absolute weighted strength of each individual network. Notwithstanding this, connectivity could still 

be dependent to some extent to the variability in network density (average degree). To obtain 

measures independent of network density, analyzing the evolution of a brain network across a set of 

network costs is a common approach, although part of the intrinsic connectivity patterns of a network 

are lost by forcing all the subjects to have the same network density. This issue is especially important 

when isolated nodes in the network of subjects start appearing at some levels of cost.  Although the 

effect of isolated nodes is partially mitigated by the use of efficiency network features instead of 

characteristic path length and clustering coefficient measures (Rubinov and Sporns, 2009), brain 

networks with isolated nodes seem to be biologically implausible. Note that to address this issue 

some authors decide to restrict the range of network costs assessed in order to ensure fully connected 

networks without isolated nodes (Bassett et al., 2008). However, we decided to report the whole 

range of comparable network costs, given that even if this may lead to implausible brain networks at 

certain costs, the evolution of efficiencies in restrictive network costs is still giving relevant useful 

information about the weighted topology of the networks under study, directly associated to the 

backbone structure of each subject brain network. It is also important to note that although different 

normalization approaches might be capturing different aspects of brain network organization, 

compensatory effects found in normalized weighted networks (increased global and local efficiencies 

in IUGR group) were confirmed by the cost-corrected approach, hence minimizing the chance of the 

reorganizational patterns being dependent of the variability in network density. In addition, we 

acknowledge that in order to support some of the results, especially the compensatory effect found 
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after normalization of brain networks, it would be very advisable to report the evolution of the network 

features at previous ages, being of special interest the neonatal period. If the rabbit MRI atlas is 

successfully adapted to neonatal age, research on the brain networks of neonatal population of IUGR 

rabbit model will be the likely focus of future studies. Finally, we acknowledge that the relatively 

reduced sample size used might be reducing the statistical power of the comparisons between cases 

and controls, preventing to generalize some of the findings obtained, especially concerning regional 

characteristics that did not withstand a FDR correction.  

Finally, we would like to stress the opportunity that represents the study of different neurological 

conditions with brain networks from animal models. In the specific case of IUGR, animal models are 

crucial not only to the better characterization of the pathophysiology of the condition, which is 

intrinsically difficult to assess, but also to the development of reliable image biomarkers of altered 

neurodevelopment. Hence, the application of brain networks in animal models might allow assessing 

and monitoring changes after possible interventions consisting on experimental drugs or enriched 

environment, in line with the recent reports showing that IUGR long-term prognosis significantly 

improves after intensive care nursing (McAnulty et al., 2013). Further work will involve the deeper 

characterization of changes in brain networks organization by means of the analysis in differences in 

individual links between regions (Meskaldji et al., 2011; Zalesky et al., 2010), the study of the 

predictive power of network features using machine learning, and the assessment of the results in 

long-term effects produced by IUGR in humans. 

5. CONCLUSIONS 

The evidences presented here support the hypothesis that previously described 

neurodevelopmental changes produced by IUGR in the long-term could be associated with underlying 

brain reorganization. This reorganization was characterized by an impaired network infrastructure, 

which was accompanied by an increase on the relative organization of GFA- and FD-weighted 

networks. In addition, a pattern of altered regional features was identified, among which changes in 

cerebellar areas stand out. Furthermore, global and regional network features were associated to 

behavioral and cognitive tests especially designed for a rabbit model. We hypothesize that IUGR at 
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long-term might result in compensatory effects to deal with an impaired network. The results obtained 

open the opportunity of developing imaging biomarkers of altered neurodevelopment based network 

features, which can assess and monitor experimental therapies in an animal model that could later 

be used in the clinical practice for a better management of human IUGR. 
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FIGURES 

 

Figure 1. Methodological scheme. (a) IUGR induction by means of an unilateral ligature at 25 days 
of gestation in a pregnant rabbit. At 30 days of gestation neonatal rabbits with and without IUGR are 
obtained by means of a caesarean section. (b) Functional evaluation of 70-day-old rabbits is 
performed by means of Open Field Behavioral Test (OFBT) and Object Recognition Task (ORT). 
Note that the blue object in the left panel corresponds to the blanket used to bring the subjects to 
the open field, serving also as the starting familiar point for the animal. (c) Subjects are sacrificed 
and brain samples are obtained. MRI acquisition consisting of 126 directions DWI and anatomical 
T1 volumes is performed. Brain parcellation is performed in T1 volume and Q-Ball reconstruction 
and tractography is performed on DWI volumes. Parcellation is registered to DWI space by means 
of an affine registration and brain networks are extracted. (d). Binary, GFA-weighted and FD-
weighted networks are obtained, as well as normalized GFA-weighted and normalized FD-weighted 
versions. Global and regional graph theory features are used to characterize the five brain networks 
obtained for each subject. 
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Figure 2. Basic infrastructure of the brain networks obtained compared between controls and IUGR, 

including average degree (a), GFA-weighted average strength (b) and FD-weighted average strength 

(c). *p<0.05. 

 

Figure 3. Small-world characteristics of controls and IUGR obtained from comparison with random 

equivalent networks. Lambda (a) is the normalized path length, gamma (b) is the normalized average 

clustering coefficient and sigma (c) is the small-worldness parameter, obtained as the ratio of gamma 

to lambda. 
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Figure 4. Global and local efficiencies of controls and IUGR. Results are expressed at different levels 

of analysis: binary efficiencies (a-b); GFA-weighted raw (c,e) and normalized (d,f) efficiencies; and  

FD-weighted raw (g,i) and normalized (h,j) efficiencies. *p<0.05. 

 

Figure 5. Cost-corrected (a) and cost-integrated (b) global and local efficiencies compared between 

controls and IUGR. *p<0.05. 
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Figure 6. Pattern of regional network features altered in IUGR group. Significance was declared at 

p<0.05 (uncorrected). Those regions withstanding a False Discovery Rate (FDR) controlling alpha 

error to 5% were indicated with dark blue (nodal degree/strength) and dark green (nodal efficiency). 
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Figure 7. Pattern of regional network features associated with abnormal Open Field Behavioral Test 

(OFBT) and Object Recognition Task (ORT). Significance was declared at p<0.05 (uncorrected). 

Those regions withstanding a False Discovery Rate (FDR) controlling alpha error to 5% were 

indicated with dark blue (nodal degree/strength) and dark green (nodal efficiency). * GFA-weighted 

nodal features associated with OFBT included nodal efficiency of right frontal cortex, right and left 

cingulate cortex, right and left entorhinal cortex, right parietal cortex, right and left occipital cortex, 

right insular cortex, right and left temporal cortex, right claustrum, right caudate nucleus, right 

lenticular nucleus, left thalamus, left amygdala, right and left olfactory bulb, right and left 

hippocampus, hypothalamus, basal forebrain and septum; and nodal strength of right and left frontal 

cortex, right and left olfactory bulb, hypothalamus, vermis and mesencephalon. 
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Table 1. Regions of interest used as nodes in the structural brain networks obtained 

ID Label Name  ID Label Name 

1 FCx-L Frontal Cortex Left  23 Len-L Lenticular Nucleus Left 

2 FCx-R Frontal Cortex Right  24 Len-R Lenticular Nucleus Right 

3 MFCx-L Medial Frontal Cortex Left  25 Th-L Thalamus Left 

4 MFCx-R Medial Frontal Cortex Right  26 Th-R Thalamus Right 

5 CiCx-L Cingulate Cortex Left  27 Am-L Amygdala Left 

6 CiCx-R Cingulate Cortex Right  28 Am-R Amygdala Right 

7 PiCx-L Piriform Cortex Left  29 OlB-L Olfactory Bulb Left 

8 PiCx-R Piriform Cortex Right  30 OlB-R Olfactory Bulb Right 

9 ECx-L Entorhinal Cortex Left  31 Hc-L Hippocampus Left 

10 ECx-R Entorhinal Cortex Right  32 Hc-R Hippocampus Right 

11 PaCx-L Parietal Cortex Left  33 FB-L Forebrain Left 

12 PaCx-R Parietal Cortex Right  34 FB-R Forebrain Right 

13 OcCx-L Occipital Cortex Left  35 CeH-L Cerebellar Hemisphere Left 

14 OcCx-R Occipital Cortex Right  36 CeH-R Cerebellar Hemisphere Right 

15 InCx-L Insular Cortex Left  37 Ht Hypothalamus 

16 InCx-R Insular Cortex Right  38 Ve Vermis 

17 TeCx-L Temporal Cortex Left  39 BF Basal Forebrain 

18 TeCx-R Temporal Cortex Right  40 De Diencephalon 

19 Cl-L Claustrum Left  41 Me Mesencephalon 

20 Cl-R Claustrum Right  42 Po Pons 

21 Cau-L Caudate Nucleus Left  43 MO Medulla Oblongata 

22 Cau-R Caudate Nucleus Right  44 Spt Septal Nuclei 
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1. Characteristic path length and average clustering coefficient 

Characteristic path length, which is inversely associated to global efficiency, was significantly 
increased in IUGR binary raw network (p=0.048), but significantly decreased in its normalized GFA 
version (p=0.017). Average clustering coefficient, which is closely related to local efficiency, was also 
significantly increased in IUGR normalized networks in its FD version (p=0.016) and had a tendency 
towards significance in its normalized GFA-weighted version (p=0.072). 

 

 
Figure S1. Characteristic path length and average clustering of IUGR and controls 
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2. Cost-correction of the networks using the same set of nodes for all subjects 

Inherent to characteristics of the approach of using individual thresholding to cost-correct each of the 
networks under study there is a direct shortcoming: while the total number of connections is 
guaranteed, this approach leads to a different number of connection sets across subjects. Hence, 
inspired by the idea of assessing the same sub-set of connections at a given cost (Gong et al., 2009), 
we calculated the connectivity backbone of our population as the connections that are present in all 
the subjects.  

This approach lead to a binary connected network with a network density of 22%. Multiplying this 
binary network for each subject GFA- or FD-weighted network we obtained individual networks with 
the same network cost and the same position of connections, only changing the individual weight of 
each connection.  

Assessing the differences between cases and controls, we observed a tendency of IUGR to have a 
decreased FD-weighted average strength and global efficiency (p=0.079 and p=0.096 respectively). 
Note that with this approach we are assessing the differences in the average connection weight of 
the network most plausible connections (i.e. the network “backbone”). This result is coherent with 
previously reported tendency of IUGR to have decreased FD-weighted average strength in their raw 
networks, supporting the hypothesis that there is a reduced infrastructure in the “backbone” network 
of these subjects independently of their network density. Varying the threshold to generate this 
backbone binary network at different levels of network density we observe similar results than 
obtained for the maximum set of networks at 22% of network density (see Figure S2).  

 

Figure S2. Network cost, average strength, global efficiency and local efficiency of the network 
“backbone” compared between cases (red) and controls (blue) as a function of GFA- and FD-
weighted connectivity. + p<0.1.  
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Supplementary Table 1. Regions with IUGR statistically significant differences in regional network 
features  

ROI Binary 
Degree 

Binary 
Efficiency 

GFA-
weighted 
Strength 

GFA-
weighted 
Efficiency 

FD-
weighted 
Strength 

FD-
weighted 
Efficiency 

Normalized 
GFA-

weighted 
Strength 

Normalized 
GFA-

weighted 
Efficiency 

Normalized 
FD-

weighted 
Strength 

Normalized 
FD-

weighted 
Efficiency 

FCx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
FCx-R n.s. p=0.018 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

MFCx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
MFCx-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
CiCx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
CiCx-R p=0.017 n.s. p=0.020 n.s. n.s. n.s. p=0.046 n.s. n.s. p=0.014 
PiCx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.033 n.s. n.s. 
PiCx-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.003 n.s. n.s. 
ECx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
ECx-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
PaCx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
PaCx-R n.s. p=0.035 n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.029 
OcCx-L n.s. n.s. n.s. n.s. p=0.025 n.s. n.s. n.s. n.s. n.s. 
OcCx-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
InCx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
InCx-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
TeCx-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
TeCx-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Cl-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Cl-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

Cau-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Cau-R n.s. n.s. p=0.025 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Len-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Len-R p=0.017 n.s. p=0.028 n.s. n.s. n.s. p=0.036 n.s. n.s. n.s. 
Th-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Th-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.004 n.s. 
Am-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Am-R n.s. n.s. n.s. n.s. n.s. n.s. p=0.040 p=0.010 n.s. n.s. 
OlB-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
OlB-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Hc-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.007 p=0.018 
Hc-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.024 p=0.019 
FB-L n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
FB-R n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

CeH-L n.s. n.s. n.s. n.s. n.s. p=0.010 n.s. n.s. n.s. p=0.003 
CeH-R n.s. n.s. n.s. n.s. n.s. n.s. p=0.023 p=0.003 n.s. n.s. 

Ht n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Ve p<0.001 p=0.031 p<0.001 n.s. n.s. p=0.001 p=0.001 n.s. n.s. p<0.001 
BF n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.045 n.s. n.s. 
De n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Me n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.011 
Po n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. p=0.026 
MO n.s. n.s. n.s. n.s. n.s. n.s. p=0.035 n.s. n.s. n.s. 
Spt n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
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Supplementary Table 2. Correlation of neurobehavioral scores with the main global network 

features obtained 

 OPEN FIELD BEHAVIORAL TEST a OBJECT RECOGNITION 
TASK b 

 Latency Total Boxes 
Crossed 

Number 
External Boxes 

Number Internal 
Boxes Discriminatory Index 

Average degree ρ -0.427 0.308 0.265 0.353 -0.065 
p 0.077 0.214 0.288 0.151 0.833 

GFA-weighted 
Average strength 

ρ -0.561 0.607 0.548 0.492 0.329 
p 0.015 0.008 0.019 0.038 0.272 

FD-weighted 
Average strength 

ρ -0.330 0.319 0.249 0.215 0.011 
p 0.181 0.197 0.320 0.392 0.972 

Binary  
Characteristic Path Length 

ρ 0.297 -0.173 -0.141 -0.264 0.177 
p 0.231 0.493 0.576 0.290 0.563 

GFA-weighted  
Characteristic Path Length 

ρ 0.491 -0.496 -0.456 -0.269 -0.277 
p 0.039 0.036 0.057 0.281 0.360 

Normalized GFA-weighted  
Characteristic Path Length 

ρ -0.490 0.503 0.455 0.469 0.167 
p 0.039 0.033 0.058 0.049 0.586 

FD-weighted  
Characteristic Path Length 

ρ -0.074 -0.056 -0.044 -0.019 0.079 
p 0.770 0.825 0.864 0.940 0.799 

Normalized FD-weighted  
Characteristic Path Length 

ρ 0.256 -0.042 -0.010 -0.342 -0.382 
p 0.306 0.869 0.970 0.165 0.197 

Binary  
Average Clustering 

ρ -0.390 0.298 0.225 -0.100 0.328 
p 0.110 0.229 0.370 0.692 0.274 

GFA-weighted  
Average Clustering 

ρ -0.598 0.686 0.625 0.460 0.515 
p 0.009 0.002 0.006 0.055 0.072 

Normalized GFA-weighted  
Average Clustering 

ρ 0.266 -0.204 -0.183 -0.343 0.136 
p 0.287 0.416 0.467 0.163 0.659 

FD-weighted  
Average Clustering 

ρ -0.042 0.217 0.183 -0.057 -0.211 
p 0.870 0.387 0.466 0.822 0.489 

Normalized FD-weighted  
Average Clustering 

ρ 0.256 -0.042 -0.010 -0.342 -0.382 
p 0.306 0.869 0.970 0.165 0.197 

Binary  
Global Efficiency 

ρ -0.377 0.254 0.216 0.319 -0.113 
p 0.123 0.309 0.390 0.197 0.713 

GFA-weighted  
Global Efficiency 

ρ -0.563 0.634 0.576 0.473 0.412 
p 0.015 0.005 0.012 0.047 0.162 

Normalized GFA-weighted  
Global Efficiency 

ρ 0.511 -0.465 -0.420 -0.463 -0.043 
p 0.030 0.052 0.083 0.053 0.890 

Cost-integrated GFA-weighted  
Global Efficiency 

ρ 0.028 -0.097 -0.055 -0.067 -0.504 
p 0.912 0.700 0.829 0.793 0.079 

FD-weighted  
Global Efficiency 

ρ -0.041 0.080 0.032 0.099 0.094 
p 0.870 0.751 0.899 0.696 0.760 

Normalized FD-weighted  
Global Efficiency 

ρ 0.560 -0.596 -0.534 -0.369 -0.092 
p 0.016 0.009 0.022 0.132 0.766 

Cost-integrated FD-weighted  
Global Efficiency 

ρ 0.210 -0.045 -0.003 -0.089 -0.124 
p 0.403 0.859 0.991 0.725 0.687 

Binary  
Local Efficiency 

ρ -0.391 0.291 0.217 -0.102 0.335 
p 0.109 0.241 0.388 0.687 0.264 

GFA-weighted  
Local Efficiency 

ρ -0.576 0.677 0.621 0.486 0.501 
p 0.012 0.002 0.006 0.041 0.081 

Normalized GFA-weighted   
Local Efficiency 

ρ 0.407 -0.314 -0.273 -0.354 0.062 
p 0.094 0.204 0.274 0.150 0.840 

Cost-integrated GFA-weighted  
Local Efficiency 

ρ -0.150 -0.215 -0.276 0.113 0.465 
p 0.554 0.391 0.267 0.655 0.109 

FD-weighted 
Local Efficiency 

ρ -0.015 0.164 0.140 -0.040 -0.169 
p 0.953 0.515 0.579 0.873 0.580 

Normalized FD-weighted 
Local Efficiency 

ρ 0.373 -0.187 -0.122 -0.402 -0.390 
p 0.127 0.457 0.631 0.098 0.187 

Cost-integrated FD-weighted  
Local Efficiency 

ρ 0.215 -0.039 -0.038 -0.174 0.167 
p 0.391 0.876 0.880 0.489 0.585 

a 10 controls and 9 IUGR. b 8 controls and 6 IUGR. Highlighted in bold those correlations 
statistically significant (p<0.05), in italics those with a tendency towards significance (p<0.1). 

 


