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Abstract

Voxel-based analysis is widely used for quantitative analysis of brain MRI. While this type of

analysis provides the highest granularity level of spatial information (i.e., each voxel), the sheer

number of voxels and noisy information from each voxel often lead to low sensitivity for detection

of abnormalities. To ameliorate this issue, granularity reduction is commonly performed by

applying isotropic spatial filtering. This study proposes a systematic reduction of the spatial

information using ontology-based hierarchical structural relationships. The 254 brain structures

were first defined in multiple (n=29) geriatric atlases. The multiple atlases were then applied to

T1-weighted MR images of each subject data for automated brain parcellation and five levels of

ontological relationships were established, which further reduced the spatial dimension to as few

as 11 structures. At each ontology level, the amount of atrophy was evaluated, providing a unique
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view of low-granularity analysis. This reduction of spatial information allowed us to investigate

the anatomical features of each patient demonstrated in an Alzheimer’s disease group.

Introduction

Analysis of images from multiple subjects necessitates that, first and foremost, anatomically

corresponding structures are identified across the subjects. The region-of-interest (ROI)

approach, in which specific target structures, such as the hippocampus, are manually

defined, is the most widely used approach and is considered to be the gold standard in the

field of quantitative neuroanatomy. This approach however, is time-consuming and is

applicable only to a small portion of anatomical structures. For example, with a 1 mm

isotropic spatial resolution, a brain with a 1.2 L volume would have 1.2 million voxels. The

hippocampus volume is typically about 4,000 voxels (4 ml), meaning only 0.3% of the

voxels are evaluated. An alternative approach is voxel-based analysis, in which

correspondence is established automatically across all 1.2 million voxels between the two

brains (see e.g., [1]). Suppose we have 50 control and 50 patient images. The entire dataset

can be expressed as two matrices of [(50 subjects) × (1.2 million voxels)]Control, Patient. This

voxel-vector (of 1.2 million voxels) needs to be re-ordered, such that any arbitrary vector

element, say, the ith voxel of the 1.2 million-element vector, identifies the same anatomical

locations across the 100 subjects. Then, we can contract the 50-element population

dimension to the average and the standard deviations; the two matrices are now [(average,

standard deviation) × (1.2 million voxels)]. The actual measurements could be voxel

intensity (e.g., T2, fractional anisotropy, mean diffusivity) or morphometric parameters

representing local atrophy or hypertrophy (e.g., Jacobian). This contraction now enables us

to perform a t-test at each voxel, identifying voxels with significantly different values

between the two populations.

Voxel-based analysis is powerful because it retains the maximum amount of location

information until the final statistical analysis; the entire brain is examined at the highest

granularity level, i.e., 1.2 million voxels. However, the limitations of this approach are also

widely recognized (see e.g., [2]). First of all, the information each voxel carries is noisy.

This issue is magnified by that fact that there are 1.2 million intricately dependent

observations. Second, the accuracy of voxel-based registration is not guaranteed (the 1.2

million voxel-vectors may not be well-aligned across subjects). This lack of accuracy can be

attributed to two sources: 1) lack of contrast—the voxel-to-voxel mapping between two

corresponding regions is not accurate if the regions lack contrast; and 2) anatomical

heterogeneity—excessive anatomical variability in certain areas, such as cortical folding,

could prevent us from accurately identifying corresponding voxels between two brains in

such areas. To ameliorate the issue of noise, we typically reduce the level of granularity by

applying a uniform spatial filter, effectively reducing the image resolution through voxel

averaging (Fig. 1).

In this study, we provide tools to analyze the 50 × 1,200,000 matrices using an alternative

approach. In many clinical studies, even if the patient population is as homogenized as

possible by stringent clinical criteria, a considerable amount of anatomical, and, potentially,
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pathological heterogeneity remains. Our primary interest is, therefore, to characterize the

anatomical heterogeneity within a patient group. Different patients may have abnormalities

in different locations. If so, our interest is the first subject dimension (e.g., n = 50) of the

matrices, and the group-aggregated statistics (reduction of the average and standard

deviation) at each location are no longer appropriate for analysis. This naturally leads us to

an alternative concept, which is the reduction of the second dimension (n = 1,200,000). In

VBA, this is achieved by spatial filtering. While this is an effective approach, the level of

granularity remains high (2,300) even with an 83 reduction of voxel size, and considerable

amount of anatomical information is lost. To address these issues, we used an alternative

approach, in which voxels are not grouped uniformly according to spatial proximity, but

rather, based on pre-defined anatomical criteria called atlases.

This anatomy-specific filtering based on a pre-defined atlas, however, has several issues.

First, the number of defined structures is limited by available image contrasts. T1-based

contrast could define up to several hundred structures. If there are 300 defined structures,

each structure has, on average 4,000 voxels. Compared to VBA, the level of granularity is

substantially low, potentially making the measurement insensitive to highly localized

abnormalities. Second, there are multiple criteria by which to define structures, and,

depending on pathology, different criteria may be used. For example, for vascular diseases,

brain parcellation based on the vascular territories may make more sense than classical

ontology-based brain parcellation. Third, the accuracy issues of the VBA due to the lack of

the contrasts and cross-subject variability still exist for the structure-based analysis, although

they may influence the results in different ways. Once the voxels are grouped to define a

structure, the location information of each voxel inside the structure degenerates and there is

no longer a voxel-wise accuracy issue. Instead, it manifests as the accuracy of the boundary

definition

In this study, we developed a tool that can flexibly change the granularity level based on the

hierarchical relationships of 254 structures defined in our atlas. We tested this tool within

the framework of a multiple-atlas brain parcellation algorithm [3-9]. Using 29 pre-

parcellated atlases, test data were automatically parcellated into the smallest structural units

(254 structures). Then, these structures were dynamically combined at five different

hierarchical levels, down to 11 structures [10, 11]. This provides a flexible view to evaluate

brain anatomy at multiple granularity levels. This tool was first applied to a control group to

measure test-retest reproducibility and normal range of anatomical variability. Then, we

analyzed Alzheimer’s disease (AD) patients for demonstration purposes.

Methods

Subjects

Three study groups were used for this study: young adult controls; elderly controls; AD

patients. All studies were approved by the Institutional Review Board of Johns Hopkins

University and written, informed consent was obtained from all patients.

Young adult subjects—A database for normal adult subjects was obtained from previous

studies (n = 17, mean age = 31 years old, age range 22 to 49 years old) [12], in which each
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subject was scanned twice, two weeks apart. Scan parameters were MPRAGE, matrix

256×256, FOV 256mm×256mm, slice thickness 1.2mm, TE 3.15ms, and TR 6.747ms.

These data were used to measure the test-retest precision of the method and anatomical

variability within the young normal subjects.

Alzheimer’s disease (AD) patients and elderly controls—We used AD and elderly

data from a study of a well-characterized group of individuals conducted by the Johns

Hopkins Alzheimer’s Disease Research Center (ADRC), with written, informed consent in

accordance with the requirements of the Johns Hopkins Institutional Review Board and the

guidelines endorsed by the Alzheimer’s Disease Association [13]. Detailed demographic,

health, clinical features, and initial findings have been reported previously [14]. Briefly, the

study sample comprised 8 patients (mean age, 75.6) who met NINCDS/ADRDA criteria for

AD [15] and had a Clinical Dementia Rating (CDR) of 1, and 10 individuals (mean age,

74.3) who were cognitively normal and had a CDR=0 (normal controls or NC). The

demographic characteristics of the subjects were as follows: AD—mean age = 75.6, mean

education = 15.7, male/female = 5/3; and NC—mean age = 74.3, mean education = 16.2,

male/female = 3/7. Subjects were excluded from enrollment if they were under the age of

55, had a history of a neurological disease other than AD, or a history of major psychiatric

illness. As previously described [14], there were no differences among these groups with

regard to age, sex, race, education, and the occurrence of vascular conditions, such as

hypertension, hypercholesterolemia, and heart attack. Written, informed consent was

obtained under the oversight of the Johns Hopkins Institutional Review Board using

guidelines of the Alzheimer’s Disease Association [13]. MPRAGE scans were conducted

according to the protocol of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [16],

with an echo time of 3.2 ms and a repetition time of 6.9 ms. The imaging matrix was 256 ×

256, with a field of view of 240 × 240 mm, zero-filled to 256 × 256 mm, and a sagittal slice

thickness of 1.2 mm.

Atlas inventory

In this study, we used multiple atlases (JHU T1 Geriatric Multi-Atlas Inventory) to perform

automated brain parcellation. This atlas inventory is designed for geriatric patient

populations with potential brain atrophy. The atlas data were based on a portion of the AD/

elderly population described above, specifically, AD patients (n = 15, age mean = 73 years

old, age range 56 to 80 years old) and normal elderly controls (n = 14, age mean = 75 years

old, age range 60 to 80 years old). To create the multi-atlas inventory, our JHU single-

subject brain atlas (Eve atlas) [17-19] was initially warped to the 29 multiple atlases using a

method described by Djamanakova et al. [20], followed by manual corrections for mislabels.

The resulting images were parcellated into 254 structures defined in the JHU brain atlas.

Image processing

The multiple-atlas brain parcellation was performed using the following steps on the test/

control subjects:

All T1-WIs were bias-corrected and skull-stripped using SPM5 (The Wellcome Dept. of

Imaging Neuroscience, London; www.fil.ion.ucl.ac.uk/spm). After initial linear alignment,
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all atlases were warped to the subject image using Large Deformation Diffeomorphic Metric

Mapping (LDDMM) [19, 21, 22]. The transformation matrix was then applied to the co-

registered parcellation maps of each atlas. The details of the multi-atlas fusion algorithm

used in this study are described in our previous publication [24]. Briefly, let A be a set of

given atlas-label pairs, A = {(Ia,Wa)}, where Ia denotes the gray-scaled T1-WI of the atlas-

label pair a, and Wa denotes the corresponding manual segmentations of Ia. Given a to-be-

segmented subject, I, we model the distribution of the intensity in each region-of-interest

(ROI) in the subject image as a conditional Gaussian random field, conditioned on the

unknown atlas-label pair and the ROI-specific unknown diffeomorphism. The algorithm for

segmentation iterates between the selection of the atlas-label pair and the construction of

locally optimized diffeomorphisms as a variant of the expectation-maximization (EM)

method. Define the Q-function as the conditional expectation of the complete-data log-

likelihood, given the incomplete-data and the previous segmentation estimation, according

to:

where the sum is obtained over all voxels, x, in the image domain, and over the atlas-label

pairs, a. The sequence of estimated segmentations, W(1), W(2), …, is updated by the

iteration:

whose calculation is alternated with the calculations of the conditional probabilities, PA(x)(a|

I, Wold). PA(x)(a|I, Wold) is derived from the conditional mean of the indicator function, and

encodes the set of atlas-label pairs being selected in the interpretation [23].

Ontology-based multi-granularity analysis using RoiEditor:MriStudio

All analyses were performed using the final parcellations in the native space of the subjects.

The 254 structures defined in the parcellation map were assigned a hierarchical relationship

based on their ontological relationship. This relationship consists of five hierarchical levels.

As the level goes up, the granularity of structural definition increases as following: 11 - 17 -

36 – 54 - 254. This relationship was implemented in RoiEditor (X. Li, H. Jiang, and S. Mori,

Johns Hopkins University, www.mristudio.org), as shown in Fig. 1. As the brain is

parcellated into multi-level structures, the sizes of all structures are calculated automatically

using this software. It is important to note that only one parcellation was performed for each

subject, at the highest granularity level. The subsequent reparcellation to different

granularity levels was achieved by the recombination of individual ROIs to create new,

larger ROIs. The hierarchical relationship of the structures in the 5 granularity levels as

defined by the authors is available for download at https://www.mristudio.org/wiki/

installation. The hierarchical relationship can also be user-defined through the text file.
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Test-retest measurements of multi-atlas segmentation

To assess the test-retest reproducibility of the whole-brain, multi-atlas parcellation method,

the data from the twice-scanned young adult subjects (n=17) were utilized. The volume data

were compared for all regions of each subject across the two scans. From this dataset, the

test-retest reproducibility for each subject was measured. In addition, anatomical variability

among the 17 normal subjects was measured. The test-retest measurement precision and the

anatomical variability were then compared using a principal component analysis.

Characterization of anatomical features of AD patients

To characterize the anatomical features of AD patients, multi-atlas segmentation was

performed on all patients, and the multi-granularity-level analysis was performed. The

anatomical features of each patient were presented by z-scores based on the age-matched

control data.

Results

Test-retest variability

The test-retest variability (percent volume difference) across all ROIs between the two scans

was found to be 2.6% ± 1.7%, 1.7% ± 1%, 1.4% ± .7%, 1.5% ± 0.7%, and 1.5% ± 0.9% for

the five different granularity levels (highest to lowest level). Fig. 2 shows the relationship

between the variability and the size of the parcellation at three different granularity levels

(Level 3, 4, and 5). A clear inverse relation can be seen, in which the variability increases

drastically for structures less than 1,000 voxels, while most of the structures larger than

1,000 voxels have a small amount of variability (< 2%). At Level 4, there are only two

structures that are less than 1,000 voxels in size and none in Level 1-3. Consequently, the

improvement in the average test-retest variability for Level 1-4 was negligible. Figure 3

shows the results of principal component analysis (PCA) using the 254 ROIs in the highest

granularity level. The plot based on the first three principal components clearly isolates

anatomical features of the 17 normal subjects, with respect to the test-retest variability,

suggesting the test-retest precision of this approach is high enough to characterize

anatomical features of the normal population.

Anatomical variation among the normal subjects

Fig. 4 shows the anatomical variability at two different granularity levels (level 1 and 4) of

segmentation for the young normal adults. A few things to note are: 1) the lateral ventricles

are the most variable features within normal adult populations, given that the average level

of variability is at ~40%; and 2) as the level of granularity increases (and thus, each defined

structure becomes smaller), the variability tends to increase, which could be the result of a

combination of true anatomical variability and reduction of parcellation accuracy. For

example, in level 1, the left telencephalon shows a variability of 2.6% in the normal

population. At level 2, regions that comprise the left telencephalon are the left cerebral

cortex, the cortical nuclei, and the white matter. Their average variability was 4.0%. Further

breaking down these regions into smaller sub-regions (i.e., the cortex is divided into the

frontal, parietal, temporal, limbic, and occipital cortices) at level 3, the average variability at
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this level is 5.8%. This indicates the trade-off between finer localization information and

measurement precision. We can expect that the higher granularity levels, in general, provide

more information about the shape variability. For example, the level 4 data suggest that the

large population variability of the ventricle volume seen in level 1 is mostly due to the large

variability of the anterior and posterior lateral ventricles, while the third and fourth

ventricles have much less variability.

Comparison of AD and age-matched control groups

Fig. 5 shows the “classical” view of anatomical abnormalities in an AD population. The

graphs show that, at the lowest granularity level, a statistically significant difference was

found at the ventricles (hypertrophy) and telencephalon and diencephalon (atrophy) between

the AD and NC populations. As the granularity level increases, a more detailed view of the

tissue atrophy can be obtained. At level 4, 20 structures reached statistical significance

(p<0.05) between the two groups. However, after a Bonferroni multiple comparison

correction, none of the regions from levels 3-5 were significantly different at α < 0.05.

Individual views of anatomical features

Fig. 6 shows an alternative view of the same AD data at level 5, in which the within-group

data contraction (e.g., population averaging) was not performed and the anatomical feature

of each individual was delineated using z-scores. In this analysis, we first calculated the

average and standard deviations of the volume of each structure from the age-matched

controls, and then, the z-scores were calculated for each AD patient. As expected, none of

the structures in the control group reached a z-score higher than 2 (or less than −2). On the

other hand, many “relatively” atrophic (indicated by pink) and hypertrophic (indicated by

green) structures existed in the AD group. For example, the ventricles stand out as regions

where many AD patients deviate substantially from the normal mean. However, even with

our AD population, with stringent inclusion criteria, the spatial distributions of atrophic

areas varied widely among the eight AD patients, which can be visually appreciated from

the two example cases shown in Fig. 6. The structure-by-structure population averaging

used in Fig. 5 could lead to: 1) the loss of patient-specific anatomical features; and 2) lower

sensitivity due to the inclusion of patients with abnormalities at different anatomical

locations. Fig. 7 shows an example of image-based representation of a multi-granularity

analysis result, in which the z-score of each defined structure is color-coded in a parcellated

patient image.

Discussion

Tradeoff between granularity and variability

The measurements of test-retest reproducibility of our automated brain parcellation using a

multi-atlas approach indicated that the measurement precision was high, with respect to

anatomical variability, among the normal subjects (Fig. 3). The test-retest precision became

lower as the granularity increased, and at the highest granularity level, the reproducibility

was 2.6 +/− 1.7% for all 254 measured structures. There was also a tendency for the amount

of anatomical variability among the young normal subjects to increase as the granularity
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increased (Fig. 4). This was probably due to the mixture of real anatomical variability and a

decreased level of measurement precision.

In PCA (Fig. 3), we calculate total variance of two measurements of the 17 subjects. This

variance contains scanning reproducibility (test-retest), automated segmentation errors,

cross-subject variability, and other sources of variability. PCA attempts to find sources of

variability in the measurements and determines three most dominant sources, which, in this

case, accounts for 65.9 % of the total variance. The three axes are the combination of

measured structures and thus do not have immediate anatomical meaning. What is important

is the two repeated measurements were naturally clustered in the PCA space with respect to

the cross-subject variability. Therefore, we can conclude that reproducibility of the

automated quantification method is high compared to expected amount of cross-subject

variability.

The multi-granularity analysis was also applied to a well-characterized AD population and

an age-matched control group. Our study sample size was too small to draw a solid

conclusion about AD pathology, but there were several interesting findings. First, as

expected from the test-retest reproducibility and the anatomical variability among the

normal population, the statistical power to detect the group difference decreases as the

granularity increases. The lower granularity analysis did detect statistical differences after

multiple-comparison correction, but the findings lacked spatial details about the pathology;

for example, the level 1 analysis simply told us that the AD population had brain tissue

atrophy and enlarged ventricles. On the other hand, if hypothesis-driven measurements of,

for example, hippocampal volumes of an AD population suggest 10% volume loss and,

simultaneously, our low-granularity analysis suggests 10% volume loss of the entire gray

matter, the conclusion that “hippocampal volume is different in AD population compared to

the control population” may be misleading because it singles out one structure as opposed to

the entire gray matter. Thus it is important to analyze not only structures of interest, but also

their substructures, and greater areas to which the structures belong. Observing MR data

from multiple granularity levels and investigating spatial specificity is, thus, important.

From the same T1 data sets, different granularity levels offer multiple options to analyze the

data with different statistical power and different levels of anatomical specificity. From the

sensitivity point of view, one could argue the sensitivity of analysis is at the highest when

the granularity level matches the spatial extent of the abnormality; we may lose the

sensitivity when the defined structures are too large (and thus, would include non-affected

regions) or too small (the atrophic areas would be divided into too many regions).

Brain parcellation criteria

The above argument leads to a fundamental question about all parcellation-based image

analysis: “are we parcellating the brain with proper anatomical criteria?” For example, we

know that the distribution of ischemic areas follows vasculature territories, but not the tissue

type. If our interest is to find the affected vasculatures, the atlas we employed, which is

based on tissue types, is not appropriate. And if we want to identify brain structures and

associated functions that are affected by an infarction, a parcellation scheme that represents

brain functional distribution would be needed.
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The multi-granularity parcellation scheme we offer in this paper is based on the brain

ontology used in the atlas by Mai et al. [10], as well as by the Allen Brain Institute (http://

human.brain-map.org/). Here, our assumption is that the evolutionarily-conserved, ontology-

based anatomical definition is the most suitable way to represent brain anatomy and

functions. However, there are multiple ontology definitions in the brain, and, thus, our

scheme cannot be considered a gold standard. In fact, our ontology may not be compatible

with the structural definitions with which we are most familiar. For example, in radiological

descriptions, the brainstem is typically divided into the midbrain, the pons, and the medulla.

However, classical ontology divides it into the mesencephalon, metencephalon, and

myelencephalon, in which the mesencephalon includes the pons and the cerebellum

together. In many ataxia patients, atrophy occurs in the pons and the cerebellum together,

and, for a low granularity analysis, the classical ontology-based analysis could be more

appropriate. As such, there is certainly a large amount of latitude in defining the hierarchical

relationships of the brain structures.

There are several important issues related to this topic. When we define ontology-based

atlases, the criteria used to parcellate the brain and the way we define hierarchical

relationships are two different issues. The former could lead to multiple structural

definitions that are mutually exclusive. For example, the same brain could be parcellated

based on tissue type, vasculature territories, cytoarchitectures, or distribution of specific

receptors, etc. The latter is a question of how to combine structures defined in the higher

granularity levels (in our case, 254 structures) and establish a hierarchical relationship. For

the latter issue, RoiEditor provides a flexible interface to incorporate user-defined

hierarchical relationships through an ontology table.

The latter is also possible if users have their own brain parcellation maps. However, while

the latter issue (how to combine structures and build an ontology relationship) is purely an

issue of image analysis after the image parcellation at the highest granularity is complete,

the former issue is related to how we should parcellate the image to begin with. This issue is

discussed more in detail in the next section.

One interesting question is what defines the highest granularity level. Why doesn’t our

parcellation map contain more than 254 structures? The parcellation is generally driven by

available image contrast, but it is not an exact science and arbitrary judgment is involved.

For example, even though we know that the hippocampus consists of many substructures,

the hippocampus is defined as one structure. This is because we lack both resolution and

contrast to sub-divide the hippocampus using conventional MRI of live human subjects.

Indeed, because our parcellation map was created based on multiple contrasts (T1, T2, and

DTI) [18, 19, 24], there are certain structures that are delineated in the atlas, but are invisible

in T1-weighted images. One such structure, the pons, is divided into the middle cerebellar

peduncle, the corticospinal tract, and the medial lemniscus, which are clearly identifiable on

DTI but not on T1 images. In this case, T1-weighted imaging may not be able to detect

atrophy specific to the corticospinal tract. This level of structural granularity is reliable in

DTI, but it may not be reliable for T1. Therefore, the use and interpretation of the multi-

level granularity analysis requires anatomical knowledge.
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Multi-atlas approach

In this study, we employed our multi-atlas brain parcellation approach, called Diffeomorphic

Probability Fusion (DPF) [23], because we have found that it is generally more accurate than

a single-atlas approach. However, both approaches operate under the same concept: 1) all

voxels of the atlases are mapped to the corresponding voxels in a patient, based on image

transformation; 2) the brain structures are defined in the atlases as a “parcellation map;” and

3) the parcellation maps are then transferred to the patient using the transformation results

from step #1. If we have only one atlas, this is a single-atlas approach. If we have multiple

atlases, multiple parcellation maps are cast to a patient brain and a fusion process is required

to combine the multiple maps [3-9]. Our ontology-based analysis is independent of how the

brain is parcellated and can be used with either parcellation approach.

In the previous section, the issue of brain parcellation criteria was discussed. For example,

we have four different types of parcellation maps in our single-subject atlas called the “Eve

Atlas” (www.mristudio.org): the tissue type map used in this study; a vasculature map; a

resting-state functional connectivity map; and a cytoarchitectonic map [19, 24-26]. If a

single-atlas approach is used, the application of these different brain parcellation criteria is

straightforward; we simply need to apply the transformation matrix to any parcellation maps

of interest and warp the maps to the patient data. This concept can also be easily applied to

the multi-atlas approach, but, practically speaking, preparing multiple atlases with multiple

parcellation maps is a time-consuming step that requires an extensive amount of manual

work.

Individualized analysis

The biggest motivating factor to use low-granularity analysis, as opposed to voxel-based

analysis, is that the large reduction of spatial information from 1.2 million voxels to a mere

11-254 structures allows us to evaluate anatomical features of individual patients, as shown

in Fig. 6. In high-granularity analysis, such as voxel-based analysis, a common approach is

to contract the population dimension and average all patient information for each individual

voxel. This approach increases the statistical power when the entire population shares the

abnormality at similar locations. Our preliminary analysis of the AD population, however,

even with stringent inclusion criteria, revealed highly heterogeneous anatomical features

(Fig. 6). We believe that the reduction of spatial information is a key for individualized

image analysis for clinical diagnosis. The task of this ontology-based analysis is to compress

the 1.2 million voxel spatial dimension, while losing a minimum amount of pathology

information. This is an essential step, if we want to combine MRI-based anatomical features

with non-image clinical information, such as demography, lifestyle, clinical symptoms, lab

tests, etc., to improve our ability to stratify the heterogeneous patient groups or predict the

outcomes [25].

This paper is not intended to claim the superiority of individual-based analyses over group-

based methods. In fact, the two methods are used for different purposes. Population-based

analysis remains the better approach to analyze, for example, therapeutic effects. The tools

for individual-based approaches are probably more suitable to support clinical practices. For

example, z-score maps could supplement image reading (Fig. 7) and an individual’s atrophy
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pattern could be used to search past similar cases. Our study, however, did not prove the

clinical usefulness of our approach for individualized image analyses. What is lacking is the

knowledge database that can support the interpretation of certain anatomical features and

link them to clinical covariate, such as long-term outcomes. In the PCA-type analysis, the

population data are not reduced to population-representative numbers and an individual’s

data could be correlated to the population data. This type of analysis, combined with a large

knowledge database, is likely to be a key for future studies to effectively use past anatomical

information to enrich the clinical decision-making process.

Conclusion

In this study, we introduced the concept of low-granularity anatomical analysis, which relies

on ontology-based hierarchical relationships of brain structures. We combined this method

with a multi-atlas parcellation approach and applied it to T1-weighted brain MRI to perform

a comprehensive full brain atrophy analysis. The test-retest reproducibility of the multi-atlas

parcellation approach was high. Using the combined approach, the anatomical variability of

the normal population was measured at five different granularity levels as an estimate of

power calculation. This approach was then applied to AD populations. The potential of this

approach to perform individually-based anatomical analysis was discussed. The proposed

approach was integrated into RoiEditor to allow for fully automated, multi-granularity

analyses in future studies.
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Highlights

- We develop a new approach for analyzing neuroanatomical images

- Our approach uses a multiple-atlas algorithm to automatically parcellate the

brain

- Our approach utilizes ontology-based hierarchical structural relationships

- Our approach examines the brain anatomy from multiple granularity levels

- Our approach is suitable for phenotype analysis of individual patients
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Fig. 1.
Comparison of granularity reduction by isotropic resolution reduction (upper row) and

ontology-based structural reduction (bottom row).
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Fig. 2.
Plot of test-retest analysis using 17 healthy subjects, scanned twice. The variability between

scan 1 and 2 is plotted as a percent of ROI size for each ROI measured at three highest

granularity levels. The x-axis is the size of the structures in voxels (log10).
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Fig. 3.
PCA results of the test-retest analysis using 17 healthy subjects, scanned twice. The data are

plotted against the first three principal components, maximizing the separation of the data.

There are two data points for each subject indicated. Colors correspond to different subjects.

Axes represent principal components that account for the most variability between the 34

data points. Each principal component is a linear combination of the 254 parcels.
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Fig. 4.
Coefficients of variance for the volumes of measured structures from the 17 normal subjects

at two different granularity levels: level 1 (11 structures) and level 4 (54 structures). A

complete ontology table can be found at https://www.mristudio.org/wiki/installation.
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Fig. 5.
Comparison of volumes of the brain structures defined in level 1 and level 4 between AD

patients and age-matched control subjects. Statistical tests were based on a t-test without

multiple comparison correction.
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Fig. 6.
A “barcode” view of the population data for the 10 normal controls and eight AD patients.

For each of the 254 defined structures at level 5, a z-score was calculated based on the

normal control data. The structures with less than (pink) or more than (green) two standard

deviations from the normal values are indicated. Insert: Images of two representative AD

cases are shown.
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Fig. 7.
Illustration shows an image-based view of the multi-granularity analysis as it would be

calculated in RoiEditor. In practice, z-scores calculated in Fig. 6 would be used for color

coding. Green – relatively smaller region compared to a control group. Pink – relatively

larger region compared to a control group.
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