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Abstract

Dopaminergic networks modulate neural processing across a spectrum of function from perception 

to learning to action. Multiple organizational schemes based on anatomy and function have been 

proposed for dopaminergic nuclei in the midbrain. One schema originating in rodent models 

delineated ventral tegmental area (VTA), implicated in complex behaviors like addiction, from 

more lateral substantia nigra (SN), preferentially implicated in movement. However, because 

anatomy and function in rodent midbrain differs from the primate midbrain in important ways, the 

utility of this distinction for human neuroscience has been questioned. We asked whether 

functional definition of networks within the human dopaminergic midbrain would recapitulate this 

traditional anatomical topology. We first developed a method for reliably defining SN and VTA in 

humans at conventional MRI resolution. Hand-drawn VTA and SN regions-of-interest (ROIs) 

were constructed for 50 participants, using individually-localized anatomical landmarks and signal 

intensity. Individual segmentation was used in seed-based functional connectivity analysis of 

resting-state functional MRI data; results of this analysis recapitulated traditional anatomical 

targets of the VTA versus SN. Next, we constructed a probabilistic atlas of the VTA, SN, and the 

dopaminergic midbrain region comprised (SN plus VTA) from individual hand-drawn ROIs. The 

combined probabilistic (VTA plus SN) ROI was then used for connectivity-based dual-regression 

analysis in two independent resting-state datasets (n=69 and n=79). Results of the connectivity-

based, dual-regression functional segmentation recapitulated results of the anatomical 

segmentation, validating the utility of this probabilistic atlas for future research.
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1. Introduction

The dopaminergic midbrain receives information from and modulates neuronal physiology 

in widely distributed and diverse brain circuits to regulate motivated behavior. To 

accomplish these functions, highly convergent afferent inputs are mirrored by divergent (but 

not ubiquitous) dopaminergic efferents. However, amid the high convergence and 

divergence, anatomical and physiological evidence in animals has revealed parallel midbrain 

circuits (Haber and Fudge, 1997; Lammel et al., 2011; Watabe-Uchida et al., 2012) that 

support a spectrum of functions from perception to learning to action (Berridge et al., 2009; 

Salamone et al., 2007; Wise, 2004).

The spectrum of functions supported by midbrain nuclei reflects demonstrated gradients of 

connectivity and function, yet traditional anatomical nomenclature for dopaminergic 

systems differentiates the substantia nigra (SN) from the ventral tegmental area (VTA), 

based on anatomical features in the rodent brain. Although these anatomical divisions reflect 

functional organization with fidelity in rodents, evidence indicates that they do not capture 

the multiple functional gradients and dissociations in the midbrain of primates (Haber and 

Knutson, 2010; Williams and Goldman-Rakic, 1998; Düzel et al., 2009). Yet, functional 

differences undoubtedly exist - for example, there is no known disorder involving selective 

degeneration of VTA neurons as seen for SN neurons in Parkinson’s Disease (Dagher and 

Robbins, 2009; Damier et al., 1999; Fearnley and Lees, 1991). Establishing the utility of this 

specific anatomical schema in understanding primate brain function, particularly in humans, 

is thus an important step in integrating rodent, primate, and human models of dopamine 

function.

In humans, multiple challenges constrain attempts at anatomical or functional parcellation of 

dopaminergic systems. The resolution of conventional functional magnetic resonance 

imaging (fMRI) has made it difficult to discern small anatomical regions, like the midbrain, 

in average group images. Increased image resolution reduces but does not eliminate the 

related problem of binary voxel assignment into categorical regions. Increased image 

resolution often comes at the cost of a decreased field of view, precluding the study of 

whole-brain networks involving these nuclei and sites they modulate throughout the brain.

Using resting-state fMRI connectivity, we investigated the existence of dissociable 

functional networks within the human midbrain and their relationship to anatomical 

delineations between the VTA and SN. First we developed replicable anatomical 

segmentation. Rather than defining regions of interest (ROIs) on a group anatomical image 

(cf. Tomasi and Volkow, 2012), we directly visualized individually-identified landmarks in 

50 participants. The definition of these subject-specific subregions allowed us to then 

develop a probabilistic atlas of the human dopaminergic midbrain and its traditional 

subdivisions; crucially, the use of probabilistic rather than binary boundaries addresses 

partial volume effects and permits generalization to other brains. We contrasted connectivity 
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patterns in these anatomically defined SN and VTA ROIs. Then, in two independent resting-

state datasets, we examined patterns of functional connectivity within the combined (SN 

plus VTA) midbrain ROI via spatially-restricted independent components analysis (ICA) 

(Leech et al., 2012; Smith et al., 2014). Using these two complementary methods in a large 

human sample, we show robust, reliable, differences in the functional networks associated 

with SN versus VTA midbrain regions. Further, these findings demonstrate the utility of our 

publically available probabilistic atlases of the dopaminergic midbrain.

2. Materials and Methods

2.1 Methods Overview

The current manuscript describes two separate analysis streams on independent dataset. The 

methods section is organized to parallel the presentation of the findings in the results 

sections. First, we describe participant inclusion criteria (section 2.2) and imaging 

acquisition parameters (section 2.3), and preprocessing procedures (section 2.4), which are 

common across both analysis streams. Next, we describe the methodological procedures for 

our first analysis stream that includes details on anatomical ROI demarcation (section 2.5) 

and detailed methodology and statistical models for our seed-based functional connectivity 

analyses (section 2.6). Then, we describe the methodological procedures for our second 

analysis stream, which includes how construction probabilistic atlases (section 2.7) and 

detailed methodology and statistical models for our ICA (section 2.8) and Dual Regression 

(section 2.9) analyses.

2.2 Participants

A total of 209 participants with normal or corrected-to-normal vision completed a resting-

state fMRI scan as part of a larger study (results not considered here). During the resting-

state scan, participants were instructed to maintain fixation on a central cross and to not 

think about anything particular. Prescreening excluded individuals with prior psychiatric or 

neurological illness. Additionally, individuals were excluded based on data quality concerns 

(see Preprocessing), leaving a final sample of 189 participants. Given the large size of this 

sample, we subdivided the sample into three groups. Dataset 1 was utilized for our seed-

based functional connectivity analysis and generation of the dopaminergic midbrain 

probabilistic atlas [Dataset 1: N1 = 50 (25 females), mean age: 21, range: 18–25]. Datasets 2 

and 3 were used to run the ICA and Dual Regression Analysis (detailed below) to 

investigate the reliability of distinct networks across the VTA and SN across independent 

samples [Dataset 2: N2 = 69 (38 females), mean age = 21.9 years, range: 18–31; Dataset 3: 

N3 = 70 (46 females), mean age = 22.3 years, range: 18:30]. The ICA and Dual Regression 

Analysis was complementary to the seed-based functional connectivity analysis utilizing the 

dopaminergic midbrain probabilistic atlas. All participants gave written informed consent as 

part of a protocol approved by the Institutional Review Board of Duke University Medical 

Center.

2.3 Image Acquisition

Neuroimaging data were collected using a General Electric MR750 3.0 Tesla scanner 

equipped with an 8-channel parallel imaging system. Images sensitive to blood- 
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oxygenation-level-dependent (BOLD) contrast were acquired using a T2*-weighted spiral-in 

sensitivity encoding sequence (acceleration factor = 2), with slices parallel to the axial plane 

connecting the anterior and posterior commissures [repetition time (TR): 1580 ms; echo 

time (TE): 30 ms; matrix: 64 × 64; field of view (FOV): 243 mm; voxel size: 3.8 × 3.8 × 3.8 

mm; 37 axial slices; flip angle: 70 degrees]. We chose this sequence to ameliorate 

susceptibility artifacts (Pruessmann et al., 2001; Truong and Song, 2008). Prior to 

preprocessing these functional data, we discarded the first eight volumes of each run to 

allow for magnetic stabilization. To facilitate co-registration and normalization of these 

functional data, we also acquired whole-brain high-resolution anatomical scans (T1-

weighted FSPGR sequence; TR: 7.58 ms; TE: 2.93 ms; matrix: 256 × 256; FOV: 256 mm; 

voxel size: 1 × 1 × 1 mm; 206 axial slices; flip angle: 12 degrees).

2.4 Preprocessing

Our preprocessing routines employed tools from the FMRIB Software Library (FSL Version 

4.1.8; http://www.fmrib.ox.ac.uk/fsl/) package (Smith et al., 2004; Woolrich et al., 2009). 

We corrected for head motion by realigning the time series to the middle volume (Jenkinson 

et al., 2002), removed non-brain material using the brain extraction tool (Smith, 2002), and 

corrected intra-volume slice-timing differences using Fourier-space phase shifting, aligning 

to the middle slice (Sladky et al., 2011). Images were then spatially smoothed with a 6 mm 

full-width-half-maximum Gaussian kernel. Because of the broadband spectral power of 

resting-state fluctuations (Niazy et al., 2011), we utilized a liberal high-pass temporal filter 

with a 150 second cutoff (Gaussian-weighted least-squares straight line fitting, with sigma = 

75 s), capturing both high and low frequency fluctuations. Finally, each 4-dimensional 

dataset was grand-mean intensity normalized using a single multiplicative factor. Prior to 

group analyses, the high-resolution anatomical image was normalized to the MNI avg152 

T1-weighted template (2 mm isotropic resolution) using a nonlinear transformation with a 

10-mm warp resolution, as implemented by FSL’s fMRI Non-Linear Registration Tool. 

Thus, all coordinates are reported in MNI-space.

As part of our preprocessing steps, we examined three measures of quality assurance and 

excluded subjects with extreme values on these metrics prior to data analyses. First, we 

estimated the average signal-to-fluctuation-noise ratio (SFNR) for each subject (Friedman et 

al., 2006). Second, we computed the average volume-to-volume motion for each subject, 

and regressed out the variance tied to 6 parameters describing individual subject’s motion 

(rotations and translations along the three principle axes). Third, we identified and removed 

outlier volumes in our functional data. We identified outlier volumes in our functional data 

by evaluating the root-mean-square error (RMSE) of each volume relative to the reference 

volume (the middle time point). We considered a volume an outlier if its RMSE amplitude 

exceeded the 75th percentile plus the value of 150% of the interquartile range of RMSE for 

all volumes in a run (i.e., a standard boxplot threshold); this threshold is thus dynamic to 

account for subtle scaling differences between subjects and runs. This approach is 

conceptually similar to a —scrubbing approach described in Power et al, (2012), but 

different in two significant ways. Firstly, outlier timepoints are classified against a standard 

reference image (the middle time point) as opposed to the following time point (N+1). 

Notably, both of these approaches use RMSE intensity differences to identify outlier images, 
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they only differ in the reference message used to identify these images. Secondly, we 

identified and removed outlier time points from analysis with frame-specific regressors (i.e. 

one regressor per outlier), whereas the scrubbing’ method interpolates timecourses over 

outlier time points. Critically, both approaches accomplish the same goal of removing 

variance tied to sudden and discontinuous (i.e. non-linear) changes in intensity that cannot 

be accounted for with traditional motion parameter regressors.

2.5 Anatomical ROI demarcation

Regions of interest (ROIs) were hand-drawn on high-resolution anatomical MR images of 

individual subjects in Dataset 1 using the Multi-image Analysis GUI software (http://

ric.uthscsa.edu/mango/). The VTA was defined according to a procedure previously outlined 

by Ballard et al. (2011). To summarize, these were drawn in the axial section, with the 

anterior boundary at the CSF, posterior boundary at the coronal section that bisected the red 

nucleus, superior boundary at the top of the superior colliculus, inferior boundary at the 

bottom of the red nucleus, and lateral boundaries in the sagittal slice connecting the peak of 

curvature of the interpeduncular fossa with the center of the colliculus (see Fig. 1 for 

examples of drawn ROIs). The mean volume of the VTA ROI across participants was 

440.98 ± 100.6 mm3 (mean ± standard deviation). The average coordinates for the center of 

mass in standardized MNI space for the individual ROIs are as follows: left VTA: x = −2.7, 

y = −15.9, z = −13.9; right VTA: x = 4.1, y = −15.9, z = −13.9).

The SN was identified based on gray-white matter boundaries, and constrained by the 

following anatomical landmarks (Naidich et al, 2008), outside of which no gray matter 

voxels were included: the inferior boundary was the most inferior horizontal section before 

the cerebral aqueduct merged with the fourth ventricle. The superior boundary was the most 

superior horizontal section that did not contain the third ventricle. Finally, medial and lateral 

boundaries were drawn for each side of the SN (best visualized in the axial section). The 

medial boundary of exclusion on each side was a straight line between the posterior edge of 

the cerebral peduncle and the posterior edge of the interpeduncular fossa. The lateral 

boundary on each side was a curve from the peduncle’s anterior medial edge to its posterior 

medial edge, both often visible as small indentations on the CSF surface, to approximate the 

medial edge of the cerebral peduncle. The mean volume of the SN ROI across participants 

was 972.38 ± 267.5 mm3 (mean ± standard deviation). The average coordinates for the 

center of mass in standardized MNI space for the individual ROIs are as follows: left SN: x 

= −10.1, y = −18.9, z = −11.6; right SN: x = 11.3, y = −18.7, z = −11.7).

Fig. 1 shows examples the definition of the SN and VTA on a subset of participants included 

in the analysis. Instructions detailing the definition of these ROIs with illustrated guidelines 

are available at https://web.duke.edu/adcocklab/neuroimaging/neuroimaging.html.

2.6 Seed-Based Functional Connectivity Analysis

In Dataset 1 we utilized a seed-based analysis to investigate differences in the functional 

connectivity of anatomically-defined SN and VTA. Maintaining the specificity conferred by 

individually drawing ROIs for each subject precluded transformations of the ROIs. Thus, we 

first transformed functional data into high-resolution anatomical space and then extracted 
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the eigenvariate of a single time-series from each ROI for each subject. Because the ROI for 

the SN was larger than that of the VTA, to avoid differences in signal-to-noise in the 

extracted time-series, we created a 3mm sphere at the bilateral centers of mass for each 

hand-drawn ROI and used these for the time-series extraction. Time-series extraction was 

done using unsmoothed functional data, as averaging over whole individually drawn ROIs is 

a method of functional smoothing that does not detract from the critical anatomical 

specificity. Critically, to characterize whether noise, such as physiological noise, was 

differentially contributing to the signal across the SN and VTA, we tested for differences in 

signal-to-fluctuation-to-noise (SFNR) across these extracted, eigenvariate time-series from 

both ROIs. The SFNR, defined as the mean of the signal across time divided by the standard 

deviation of the signal across time, can be used to quantify differences in signal quality 

across functional ROIs for fMRI analyses (Friedman and Glover, 2006). This analysis did 

not reveal any significant differences in SFNR across SN and VTA ROIs (p = 0.62, 

eigenvariate). To further determine whether noise may be differentially influence our time-

series, we compared SFNR across raw extracted time-series from the SN and VTA, by 

hemisphere. This analysis also did not yield any significant differences (left: p = 0.23; right: 

p = 0.63). We then used FSL’s FEAT (fMRI Expert Analysis Tool) Version 5.98 to create 

bilateral and hemispheric regression models (the general linear model, or GLM) that 

included the time-series for both the VTA and SN. It is important to note, that during the 

estimation procedure, any shared variance that existed between regressor was explicitly not 

assigned to either regressor, and thus did not influence the estimation of said regressors. 

This resulted in individual subject whole-brain maps of all voxels predicted by each 

regressor of the following contrasts of interest: VTA > baseline, SN > baseline, VTA>SN, 

SN>VTA. We constructed a group-level general linear model to estimate differences in 

resting-state connectivity between these midbrain sub regions using a one sample t-test of 

the contrasts estimated at the first level. Of note, a mask was created to analyze only 

activations that were positively correlated with either of the regions region. Z-score images 

were then corrected for multiple comparisons using cluster-based thresholding, with clusters 

determined by Z>2.3 and a (corrected) significance threshold of p=0.05 as implemented in 

FEAT 5.98 (Worsley, 2001).

2.7 Generation of the Dopaminergic Midbrain Probabilistic Atlas

To generate the probabilistic midbrain atlas, 50 sets of individual ROIs comprising the entire 

dopaminergic midbrain, the SN alone, and the VTA alone were normalized into standard 

space using the methods described above. These individual ROIs were binary, consisting of 

a value of 1 for regions within each ROI and 0 outside the ROI. Then, for each region, the 

50 ROI images were averaged using fslmaths tool as implemented in FSL. These atlases (SN 

alone, VTA alone, entire dopaminergic midbrain) are publicly available.

2.8 Independent Components Analyses

In Datasets 2 and 3, we used a complementary analysis to seed-based connectivity to 

investigate SN and VTA networks. Independent components analysis (ICA) identifies 

coherent spatial patterns in fMRI data—patterns that include functionally coherent networks 

and spatially structured artifacts related to physiological and machine-driven noise 

(Beckmann et al., 2005; Smith et al., 2009; Beckmann and Smith, 2004). This approach also 
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avoids several analytical pitfalls that are inherent to traditional seed-based methods for 

examining functional connectivity (Cole et al., 2010). Thus, to identify coherent resting-state 

networks in our datasets, we utilized a probabilistic group ICA of the entire dopaminergic 

midbrain, as implemented in MELODIC (Multivariate Exploratory Linear Decomposition 

into Independent Components) Version 3.10, part of FSL.

We first generated an ROI out of our probabilistic atlas set to a threshold of 10%, i.e. 

including all voxels that showed overlap of greater than 10% of participants (center of mass: 

x = 0.4, y = −17.8, z = −12.1). Within this ROI, we conducted spatially restricted group 

ICAs on each dataset (Leech et al., 2012). Prior to estimating the group ICAs, we submitted 

the functional data to additional preprocessing routines to ensure the validity of the ICA 

results; these routines consisted of voxel-wise de-meaning of the data and normalization of 

the voxel-wise variance. The resulting datasets were each whitened and projected into a 10-

dimensional subspace. The whitened observations were decomposed into sets of vectors that 

describe signal variation across the temporal domain (time courses), the subject domain and 

across the spatial domain (maps) by optimizing for non-Gaussian spatial source distributions 

using a fixed-point iteration technique (Hyvärinen, 1999).

2.9 Dual-Regression Functional Connectivity Analyses

To delineate SN/VTA network connectivity in Datasets 2 and 3, we employed a variant of 

the dual-regression analytical approach (Filippini et al., 2009; Leech et al., 2011; Utevesky 

et al., 2014), which quantifies whole-brain functional connectivity with each midbrain 

subregion (Leech et al., 2012). This analysis proceeds in two independent stages. First, 

spatial maps identified with the independent components analyses are regressed onto each 

participant’s functional data (spatial regression), resulting in a T (time points) × C 

(components) set of beta coefficients that characterize, in each subject, the temporal 

dynamics for each midbrain network. As part of the second step of the dual regression, the 

resulting temporal dynamics that describe each network, in each subject, are regressed onto 

each subject’s functional data (temporal regression). This temporal regression produces a set 

of spatial maps that quantify, within each subject, each voxel’s connectivity with each 

network identified with the group ICA while controlling for the influence of other networks

—some of which may reflect artifacts, such as head motion and physiological noise. Indeed, 

a recent fMRI analysis confirms this analysis approach by demonstrating that spatially-

restricted ICA analysis within the brainstem works as a operates as a means to suppress 

contributions of physiological noise (Beissner et al., 2014).

In each dataset, we identified component maps corresponding to the VTA and SN by 

selecting maps with the highest spatial correlation with the parameter estimate images 

produced by the GLM-based analysis in Dataset 1, an independent sample (Dataset 2: VTA r 

= 0.36, SN r = 0.38; Dataset 3: VTA r = 0.47, SN r = 0.26). In addition, given the relative 

paucity of voxels in our spatially-restricted ICA, we also examined the robustness of the 

resulting components using a spatial correlation analysis between the components in Dataset 

2 and Dataset 3. Out of the 10 components, we found 7 components with a unique match in 

corresponding dataset (mean r = 0.55; range = 0.37:0.82). Components reflecting VTA and 

SN exhibited inter-dataset correlations of 0.37 and 0.42, respectively. Of note, these 
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correlations refer to the correlation of spatial patterns of activity within the spatially 

restricted ICA across the two groups (as opposed to whole-brain connectivity, for similar 

measures see Smith et al., 2009). Taken together, these observations indicate that our 

spatially restricted ICA produced reliable results, with components that can be uniquely 

linked to VTA and SN. Using these subject- and network-specific connectivity maps for 

VTA and SN, we constructed a group-level general linear model to estimate differences in 

resting-state connectivity between these midbrain sub regions using a single-sample t-test of 

contrasts generated at the subject specific level (SN > VTA, VTA > SN). Z-score images, 

for each dataset, were then corrected for multiple comparisons using cluster-based 

thresholding, with clusters determined by Z>2.3 and a (corrected) significance threshold of 

p=0.05 (Worsley, 2001). Additionally we conducted a conjunction analysis, in which there 

was evidence for significant activation in both datasets independently, i.e. testing the 

Conjunction Null Hypothesis’ (Nichols et al., 2005).

3. Results

3.1 Data Analysis Strategy

Our resting-state analysis involved two independent analysis streams performed in separate 

fMRI datasets (Fig. 1). In Dataset 1, seed-based connectivity analysis was performed on 

ROIs of the SN and VTA that were hand-drawn on individual subjects. This seed-based 

connectivity analysis compared functional coupling of the whole brain with time series 

extracted from 3mm spheres around the center of mass within the SN and VTA. In Datasets 

2 and 3, ICA combined with dual-regression analyses were performed using the probabilistic 

atlas of the entire dopaminergic midbrain (Figure 3, supplemental Fig. 2), which was 

generated from Dataset 1. In contrast to the seed-based approach, this analytic strategy 

estimated functional connectivity patterns with independent midbrain structures 

hypothesized to reflect SN and VTA while controlling for other midbrain signals via 

multiple regression. Finally, conjunction analyses quantified reliable patterns of SN-VTA 

differences across the two independent datasets.

3.2 Seed-Based Functional Connectivity Analysis

Using a seed-based connectivity analysis on hand-drawn ROIs of the SN and VTA from 

Dataset 1 (see methods), we performed a whole-brain functional connectivity analysis that 

identified regions showing preferential connectivity with the SN or VTA during rest. This 

analysis revealed that compared to the VTA, the SN demonstrated greater functional 

coupling with medial prefrontal cortices, precentral sulci, postcentral sulci, superior 

temporal gyrus, inferior parietal lobule, and the middle occipital gyrus (p< 0.05 whole-brain 

corrected; Table 1; Fig. 2). Conversely, the VTA showed greater functional coupling with 

the nucleus accumbens, hippocampus, cerebellum, and posterior midbrain encompassing the 

superior and inferior colliculi (p< 0.05, whole-brain corrected; Table 1; Fig. 2). To further 

test the validity of these results, we ran an additional model that included cerebral spinal 

fluid (CSF) as a nuisance regressor as a proxy for physiological noise. Inclusion of this 

nuisance regressor into our model did not result in substantial changes in our comparisons 

across the SN and VTA (supplemental Fig. 1).

Murty et al. Page 8

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 Dual-Regression Functional Connectivity Analysis

Conjunction analyses between the dual-regression analyses of Dataset 2 and 3 revealed 

reliable patterns of functional connectivity that distinguished midbrain subregions (defined 

from ICA) hypothesized to reflect SN and VTA. Compared to the ICA-defined VTA, the 

ICA-defined SN consistently co-varied with a network of regions including the superior 

parietal lobe, postcentral gyrus, superior frontal gyrus, precentral gyrus, supplementary 

motor cortex, anterior cingulate cortex (conjunction null hypothesis of p< 0.05, whole-brain 

corrected in each group; Table 2; Fig. 4A). Conversely, compared to the ICA-defined SN, 

the ICA-defined VTA consistently co-varied with a network of regions including the 

anterior brain stem (encompassing the VTA), subgenual cingulate, nucleus accumbens, 

parahippocampal gyrus, and posterior brain stem (encompassing the inferior and superior 

colliculus; conjunction null hypothesis of p< 0.05, whole-brain corrected in each group; 

Table 2; Fig. 4A). Descriptive plots of t-scores for regions of interest independently were 

also extracted and plotted from Datasets 2 (blue) and 3 (grey), separately, for SN and VTA 

dual-regression analyses (Fig. 4B). Notably, patterns of differential connectivity 

significantly overlapped with the findings from dataset 1 (supplemental Fig. 3).

4. Discussion

Experiments in rodents indicate that the medial (VTA) and lateral (SN) aspects of the 

dopaminergic midbrain support distinct functions. Work in non-human primates and humans 

has brought into question the relevance of this distinction for human brain function (for 

review see Duzel 2009). Nevertheless, the two regions are dissociable in human 

neurological disease, in that Parkinson’s disease selectively affects the SN, not the VTA. 

Here we demonstrate the utility of differentiating the SN and VTA by showing robust, 

reliable differences in the functional networks associated with these two regions using two 

complementary methods in a large human sample. Further, to facilitate future study of the 

dopaminergic midbrain in humans and to encourage external validation of these maps, we 

have made our probabilistic atlases publicly available.

The analyses presented in this paper provide evidence that segmentation of the midbrain into 

the SN and VTA has functional significance in human participants, with functional 

connectivity that parallels the organization seen in rodents. This convergence of midbrain 

segmentation is crucial, as it suggests homology across human and rodent models of 

dopamine function. In our first dataset, seed-based functional connectivity analysis 

confirmed that our hand-drawn SN region was more strongly connected to sensory and 

motor cortices than the VTA. Conversely, the VTA was more strongly connected with the 

ventral striatum and medial prefrontal cortex, regions involved with reward and decision-

making processes, than the SN. Previous studies have used seed-based functional 

connectivity during rest to characterize other functional networks within the human brain 

(Di Martino et al., 2008; Kahn and Shohamy, 2013; Roy et al., 2009; Taren et al., 2011; 

Zhang et al., 2012), and have demonstrated that functional connectivity at rest mirrors 

structural connectivity, both mono- and poly-synaptic connectivity, within the brain (Honey 

et al., 2009; Skudlarski et al., 2008; Teipel et al., 2010). Our findings provide evidence that 
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the methodology is sensitive enough to delineate functional networks of small, neighboring 

nuclei within the midbrain (see also Tomasi and Volkow, 2012, discussed in detail below).

We further tested whether the above differences were evident with complementary methods 

that were generalizable across individuals and did not require hand-drawn individual ROIs. 

Using the hand-drawn ROIs from Dataset 1, we produced a probabilistic atlas of the VTA 

and SN. A complementary resting state functional connectivity analysis via dual-regression 

segmentation of the midbrain ROI in two additional datasets largely replicated the 

connectivity differences found in the original dataset. For example, our dual-regression 

analyses replicated preferential connectivity of the SN with pre-motor and motor cortex 

compared to the VTA, as well as preferential connectivity of the VTA with the nucleus 

accumbens and medial prefrontal cortex compared to the SN. These anatomical relationships 

are well documented in primates (Haber and Fudge, 1997). Thus, the findings from Datasets 

2 and 3 replicate seed-based connectivity findings using a complementary data-driven 

methodology, without hand-drawn ROIs, and highlight the utility of our novel probabilistic 

atlases to delineate SN and VTA functional networks.

Prior to the current study, one previous study has characterized resting state connectivity 

differences across the VTA and SN (Tomasi and Volkow, 2012). Our results partially 

replicate this prior work. The SN-motor cortex connectivity finding is consistent with 

Tomasi and Volkow (2012), however the prior authors did not find any differences in 

nucleus accumbens connectivity across the SN and VTA, despite the large literature 

demonstrating stronger connectivity with the VTA. These discrepancies in findings could be 

due to many factors that differed between the current study and Tomasi and Volkow (2012). 

For example, the definition of seed regions/ROIs differed across studies. Critically, Tomasi 

and Volkow (2012) identified their functional connectivity seeds on group anatomical 

images without consideration of individual differences in anatomy, whereas we both drew 

ROIs in individual anatomical space and used a probabilistic atlas to validate these in a large 

replication sample. In addition, other factors differed across these two studies, including 

sample size, pre-processing methods, analysis software (spm vs fsl), image acquisition, and 

homogeneity of data acquisition (single site vs multiple sites). Future studies will need to 

investigate how these factors contribute to differences in resting-state connectivity, with an 

emphasis on investigating the impact of accounting for individual differences in anatomy.

Our current findings have important implications for the characterization of the 

dopaminergic midbrain in humans. While research in rodents has provided strong support 

for a functional differentiation of VTA and SN, work in primates has opened a number of 

questions about midbrain organization in humans. First, there is the question of anatomical 

equivalence. It has been proposed that the dorsal portion of the SN is most similar to the 

rodent VTA (Haber and Fudge, 1997; McRitchie et al., 1996). Second, the anatomical 

location of dopamine neurons in primates differs from that of rodents, again supporting the 

idea that the primate SN may have greater functional similarity to the rodent VTA (Düzel et 

al., 2009). Third, in primates it is difficult to define an exact boundary between the VTA and 

SN (Lynd-Balta and Haber, 1994) suggesting that a gradient view of the region may be more 

useful (Tobler et al., 2003). Additional support for the gradient description of SN/VTA 

anatomy comes from the heterogeneity of efferent projections from the SN/VTA. In rodents, 
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most efferent connections to limbic structures come from the VTA, but in primates, there is 

evidence that dopamine neurons in the SN also project to limbic structures (Björklund and 

Dunnett, 2007; Haber et al., 2000; Smith and Kieval, 2000). In fact, recent research in 

humans using DTI has demonstrated a double disassociation in the degeneration of the 

medial and lateral portions of the SN in Parkinson’s disease and aging, respectively 

(Vaillancourt et al., 2012). Further, DTI measure of connectivity have demonstrated that 

only the most medial parts of the SN (closely neighboring the VTA, which was not 

examined) show enhanced structural connectivity with the nucleus accumbens (Chowdhury 

et al., 2013). Thus, the overall pattern of previous research about observed efferent 

projections from the midbrain is more similar to that predicted by the VTA/SN split than not 

(Haber and Knutson, 2010; Haber, 2003).

Our current findings support the interpretation that there is a differentiation of function 

across the human VTA and SN, as elucidated by their different connectivity patterns. These 

neuroimaging findings in healthy volunteers are corroborated by clinical studies of 

Parkinson’s Disease, which results in loss of dopamine neurons over a gradient within the 

SN while leaving the VTA spared. Research in Parkinson’s Disease has shown reliable 

deficits in a variety of dopamine-mediated behaviors, such as feedback learning (Foerde and 

Shohamy, 2011). Interestingly, however, behaviors that rely more on VTA-nucleus 

accumbens interactions are relatively intact in Parkinson’s Disease (Cools et al., 2003; 

Dagher and Robbins, 2009). Complementing these human functional dissociations, a recent 

primate study demonstrated working memory and reward learning signals that distinguished 

SN from VTA (Matsumoto and Takada, 2013). Thus, in line with our current results, these 

clinical and primate findings suggest functional distinctions between SN- and VTA-centered 

networks.

Here, functional interactions of the SN and VTA were characterized during rest. Thus, our 

current findings cannot speak to connectivity differences that may emerge while participants 

perform a task. Different SN and VTA connectivity patterns are likely to emerge during the 

execution of different behaviors. For example, previous research has demonstrated that 

although there was no intrinsic connectivity between the VTA and dlPFC at rest, significant 

connectivity emerged between the VTA and dlPFC during the initiation of motivated 

behavior (Ballard et al., 2011). Resting state analyses would also be insensitive to another 

proposed gradient structure for the dopaminergic midbrain, from work by Matsumoto and 

colleagues (Bromberg-Martin et al., 2010; Matsumoto and Hikosaka, 2009; Matsumoto and 

Takada, 2013). These authors report that the main difference between dopaminergic neurons 

in the VTA and SN is that those in the SN respond to both positively and negatively 

reinforced stimuli. However, these distinct functional gradients are not incompatible, and 

systematic integration of these schemas could better characterize midbrain function in 

humans.

Although the current study provided evidence for distinct network connectivity of the SN 

and VTA during rest, aspects of our experimental design limit the interpretation of our 

findings. Firstly, as mentioned above, multiple schemas for the organization of the 

dopaminergic midbrain exist, only one of which is a delineation between the SN and VTA. 

Within humans, multiple studies have demonstrated functional gradients in functionality 
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across the SN in isolation (Chowdhury et al., 2013; Vaillancourt et al., 2012), while other 

studies have demonstrated gradients across the entire dopaminergic midbrain when 

including the VTA (Krebs et al., 2011). Future work will be needed to investigate the 

relative utility of gradients across the midbrain—which have been described in non-human 

primates (Bromberg-Martin et al., 2010; Matsumoto and Hikosaka, 2009; Matsumoto and 

Takada, 2013) and humans (Düzel et al., 2009; Krebs et al., 2011)—and whether the 

organization of the midbrain is better served by categorical, continuous, or both 

organizational schema. Specifically, future work using high-resolution fMRI should be used 

to determine whether there is functional segregation of the most lateral regions of the SN 

and the VTA. Secondly, the current study only investigated resting-state connectivity and 

did not specifically address how this measure associated with behavior. Although we believe 

identification of separable circuits across the SN and VTA advances our understanding of 

the organization of the dopaminergic midbrain, future work will need to investigate how 

connectivity differences across these regions relate to distinct behaviors, such as procedural 

versus goal-oriented behaviors. Finally, although the current study investigated connectivity 

of the dopaminergic midbrain regions, fMRI cannot directly assay dopamine release or the 

specific activity of dopamine neurons. Future resting-state neuroimaging studies could 

determine if the network connectivity highlighted in the current paper is sensitive to changes 

in dopaminergic tone via pharmacological manipulations (Honey and Bullmore, 2004).

In addition to demonstrating resting-state connectivity differences across the SN and VTA, 

our manuscript also introduces publically available probabilistic atlases of the dopaminergic 

midbrain (https://web.duke.edu/adcocklab/neuroimaging/neuroimaging). These include an 

atlas of the dopaminergic midbrain (SN+VTA) and separate atlases for the SN and VTA. To 

our knowledge, this is the first set of publically available atlases for these regions. These 

atlases will provide a much-needed tool in the community of neuroimaging researchers 

investigating the function of the dopaminergic midbrain, such as their utility in more ROI 

definition, anatomical labeling, visualization, and small-volume correction. We believe 

probabilistic atlases will be especially useful for the dopaminergic midbrain, which is a 

small anatomical nuclei. For example, the atlases will allow researchers to determine the 

probability that an activation cluster falls within on of these relatively small nuclei, which is 

difficult to determine on normalized images. Additionally, the atlases can be used as a 

means to perform anatomically weighted-ROI extraction, a procedure of data extraction that 

down-weights unwanted signals from other tissues (i.e., partial-volume effects). Finally, our 

current data set demonstrates that our atlases facilitate investigating the functional properties 

of the SN and VTA on datasets collected in standard spatial resolution (3*3*3 mm) in 

normalized space. Thus, these atlases may facilitate further neuroimaging research 

investigating the organization and functional properties of the human SN and VTA.

In conclusion, our findings that the SN and VTA differentially interact with a variety of sub-

cortical and cortical targets have important implications for understanding human behavior. 

Many human neuroimaging studies investigating the role of the mesolimbic dopamine 

system have characterized the SN and the VTA as a unified structure, and have not 

investigated the respective functional contributions of these two regions. Our findings 

clearly demonstrate that the SN and VTA have distinct functional connectivity, and thus 

differentially contribute to cognition. This demonstration also offers a tool for delineating 
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SN and VTA networks in neuropsychiatric disorders such as drug addiction, ADHD, 

schizophrenia, and depression. Neuropsychiatric research has implicated dopaminergic 

neuromodulation in the etiology and treatment of these disorders; however, specific circuits 

modulated by dopaminergic efferents are still an open area of research (Lee, 2013; 

Montague et al., 2012). The separate SN and VTA probabilistic atlases generated in this 

study will allow future studies to better delineate the role of these two dopaminergic 

midbrain nuclei. Thus, this study marks a significant step in accelerating the integration of 

rodent models of brain function and disease with human neuroscience to ultimately inform 

patient diagnosis and treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Substantia nigra and ventral tegmental area show distinct resting connectivity

• Connectivity differences are homologous with anatomical patterns in rodents

• Findings replicate across two convergent connectivity methods and three 

datasets

• The probabilistic atlas developed and validated here is now publically available
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Figure 1. 
Data analysis approach for comparing SN and VTA network connectivity
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Figure 2. Seed based connectivity reveals distinct SN and VTA functional networks
A group map of significant differences in SN and VTA functional coupling as assayed by 

seed-based functional connectivity in Dataset 1 (p < 0.05, whole-brain corrected).

Murty et al. Page 19

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Probabilistic Midbrain Atlas
Axial view of the SN and VTA probabilistic atlas. The topographical heat-map represents 

the percentage of overlap for a specific voxel across participants, with warm colors being the 

greatest amount of overlap. Of note, these images do not reflect the absolute volume of these 

regions but rather the extent of anatomical consistency across participants in normalized 

space.
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Figure 4. ICA/Dual-Regression analysis recapitulates connectivity-based segmentation of the SN 
from VTA
(A) A conjunction analysis between significant differences in SN and VTA network activity 

as assayed by dual-regression analyses across Datasets 2 and 3 (p < 0.05, whole-brain 

corrected). (B) Descriptive plots of t-scores for regions of interest independently plotted 

from Datasets 2 and 3 independently for SN and VTA dual-regression analyses. ROIs were 

generated from the Harvard-Oxford Cortical and Sub-cortical atlas as implemented by FSL.
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