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Abstract

Brain functional connectivity has been studied by analyzing time series correlations in regional

brain activities based on resting-state fMRI data. Brain functional connectivity can be depicted as

a network or graph defined as a set of nodes linked by edges. Nodes represent brain regions and an

edge measures the strength of functional correlation between two regions. Most of existing work

focuses on estimation of such a network. A key but inadequately addressed question is how to test

for possible differences of the networks between two subject groups, say between healthy controls

and patients. Here we illustrate and compare the performance of several state-of-the-art statistical

tests drawn from the neuroimaging, genetics, ecology and high-dimensional data literatures. Both

real and simulated data were used to evaluate the methods. We found that, Network Based

Statistic (NBS) performed well in many but not all situations, and its performance critically

depends on the choice of its threshold parameter, which is unknown and difficult to choose in

practice. Importantly, two adaptive statistical tests called adaptive sum of powered score (aSPU)

and its weighted version (aSPUw) are easy to use and complementary to NBS, being higher

powered than NBS in some situations. The aSPU and aSPUw tests can be also applied to adjust

for co-variates. Between the aSPU and aSPUw tests, they often, but not always, performed

similarly with neither one as a uniform winner. On the other hand, Multivariate Matrix Distance

Regression (MDMR) has been applied to detect group differences for brain connectivity; with the

usual choice of the Euclidean distance, MDMR is a special case of the aSPU test. Consequently

NBS, aSPU and aSPUw tests are recommended to test for group differences in functional

connectivity.
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1. INTRODUCTION

Brain functional connectivity has been studied by analyzing time series correlations in

regional brain activities. Neurophysiological brain activities are measured by blood

oxygenation level dependent (BOLD) signals from resting-state functional magnetic

resonance imaging (rs-fMRI) (Lindquist 2008; Smith 2011). Functional brain connectivity

can be depicted as a network or graph (Bullmore and Sporns 2009; Habeck and Moeller

2011; He and Evans 2010), which is defined as a set of nodes (or vertices) linked by

connections or edges. Nodes represent brain regions and a connection is attached with a

weight reflecting the strength of functional correlation between two regions (Varoquaux and

Craddock 2013). Most of existing work focuses on estimation of such a network for one

subject or a group of subjects (e.g. Cribben et al 2012; Honey et al 2007; Huang et al 2010;

Smith 2011; Zhou et al 2006). A key but inadequately addressed question is how to test for

possible differences of the brain functional networks between two or more subject groups,

say between healthy controls and patients.

Group-level comparison of functional connectivity may shed light on underlying biological

processes or disease mechanisms (Smith et al 2012). To study differences between groups of

individuals, either individual connections or summary network measures have been used.

When performing such group comparisons based on individual connections, a large number

of univariate tests are routinely undertaken, and a multiple testing correction, e.g. based on

Bonferroni’s method to control the family-wise error rate (FWER) or other methods to

control FWER or false discovery rate (FDR), is necessary, which would greatly reduce the

statistical power due to the large number of comparisons. At the same time, it is possible

that the differences of individual connections are weak, though their aggregated differences

can be strong. In such a case, mass-univariate testing, by focusing on the connection with

the maximal difference, is often low-powered. On the other hand, global network measures

can characterize systematic properties of brain networks (Rubinov and Sporns 2010) and

comparisons of one or few global network measures between healthy controls and patients

have been conducted to demonstrate connectivity abnormalities in neurological and

psychiatric disorders. For example, Wozniak et al (2013) have revealed significantly altered

network connectivities in children with fetal alcohol spectrum disorder (FASD) based on the

network measures of characteristic path and global efficiency. Yet some network measures

have robustness problems (Fornito et al 2010); some anatomical network measures are not

straightforward to interpret in the brain functional aspect (Honey et al 2009); and more

importantly, there is always the question of which global network measure or measures to

use, since the results will largely depend on such a choice. No matter which one to use, as a

summary statistic, any global network measure may ignore information about the complex

brain system, since each single measure is defined to represent only one aspect of a complex

brain network.

As a middle ground between the above two extremes, a global test can be applied to assess

significance of overall network differences by summarizing individual connection

differences. Network Based Statistic (NBS) is such an omnibus test developed specifically

for neuroimaging research to detect network differences (Zalesky et al 2010). NBS controls
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the FWER by considering an appropriate global statistic measuring the clustering structure

of changed edges based on mass-univariate statistics, each performed at every connection

comprising the graph, though the global statistic depends on an input parameter to be

specified. Since only one single global test is conducted, the issue of multiple comparisons

does not arise. However, other than NBS, not many other statistical tests are known or

widely used in functional network comparisons. Here, we review and compare the

performance of several state-of-the-art statistical tests originally proposed for genetics,

ecology and high-dimensional data, in addition to NBS that is familiar to neuroimaging

researchers. Specifically, we examine Multivariate Matrix Distance Regression (MDMR)

(McArdle and Anderson 2001; Zapala and Schork 2006, 2012), an adaptive sum of powered

score (aSPU) test and its weighted version (aSPUw) (Pan et al 2014), and Direction-

Projection-Permutation (Wei et al 2014). All of them are omnibus tests assessing global

significance of differences across multiple or all edges of the networks to be compared.

These methods require only minimal assumptions for validity and use resampling techniques

to deal with high dimensional data, whose number of parameters is often much larger than

the sample size, for which some classic multivariate tests like MANOVA are not applicable.

In particular, to our knowledge, it is the first time that the aSPU/aSPUw tests (Pan et al

2014) and Direction-Projection-Permutation (Wei et al 2014) are applied to high-

dimensional rs-fMRI data in this paper. We applied the methods to the FASD data

introduced in Wozniak et al (2013) and conducted an extensive simulation study based on

the FASD data. The simulation study confirmed the superior performance of NBS, though

none of the tests could be a uniform winner across all the situations. For example, in some

scenarios, the aSPU and aSPUw tests were more powerful than NBS. Overall, NBS, aSPU

and aSPUw tests were the winners and are thus recommended.

The paper is organized as follows. After reviewing basic notation and definitions, we discuss

several statistical approaches for testing group differences in brain functional networks. In

the following section, we apply the described methods to the FASD data to examine brain

functional connectivity differences between a group of children with FASD and a control

sample. In Section 4, we use simulations with realistic set-ups mimicking the FASD data to

compare the statistical methods for their Type I error rates and power. Discussions of related

work are given in Section 5.

2. METHODS

2.1 Data and Notation

Suppose we have N distinct brain regions of interests (ROIs), which define the nodes of the

associated networks or graphs. At each node, brain activity is measured in BOLD time series

using rs-fMRI (or task-specific fMRI). Given a set of graph nodes, brain connectivity is

measured between every pair of N nodes through pairwise correlations of their brain

activities; Pearson’s correlations are commonly used. Each pairwise correlation is used as a

weight on the edge (or sometimes simply called connection) between the two connected

nodes. In this situation, a total of k = N × (N − 1)/2 unique pairwise correlations are

estimated, since each node is connected with every other node.
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We focus on the case-control study design with possible covariates. To be explicit on the

data structure, suppose there are n unrelated subjects, either affected or unaffected by a

disorder. We denote a group indicator Yi = 0 for controls, Yi = 1 for cases, and covariates for

subject i are Zi = (Zi1, …, Zil)′. Denote Xi = (Xi1, …, Xik)′ a group of unique pairwise

correlations, such as k functional brain connections from the ith subject. Using matrix

notation, we denote Yn×1 a vector for group indicators, Xn×k a matrix of pairwise

correlations between nodes, and Zn×l a covariate matrix. As usual Fisher’s z-transformation

is applied to the Pearson correlations to normalize the local correlation measures (Zalesky et

al 2010).

2.2 Mass-Univariate Testing

To detect whether there is any difference between functional networks for cases and

controls, we might want to test on each individual connection separately. Hence a large

number of univariate tests are undertaken, and a multiple testing correction (e.g. based on

Bonferroni’s procedure or FDR control) is applied. The often use of a conservative multiple

testing correction procedure greatly reduces the power of the comparisons. In addition, we

might have a situation where individual connections have only small differences, though

their aggregated difference is significant. In such a case, mass-univariate testing is low

powered. Either a t-test or marginal logistic regression can be used as the univariate test; the

two are asymptotically equivalent. Instead of the Bonferroni correction, we use a

resampling-based method to yield an almost exact adjustment for multiple testing, as

implemented in the so-called UminP test in genetics.

2.3 Testing Based on Global Network Measures

A small number of neurobiologically meaningful global network measures are often used to

quantify some overall features of brain networks. Rubinov and Sporns (2010) reviewed

many global network measures that detect functional integration and segregation, quantify

centrality of individual brain regions or pathways, characterize patterns of local anatomical

circuitry, and test resilience of networks to insult. It is straightforward to compare these

global network measures between clinical patients and controls, e.g. to demonstrate

connectivity abnormalities in neurological and psychiatric disorders. Each metric is easily

computable with some positive normalized weights wij (i.e. 0 ≤ wij ≤ 1) for any edge

connecting nodes i and j, or with a binary measure (often obrained by thresholding wij)

denoting the presence or absence of the connection. For example, Wozniak et al (2013)

computed four global measures for cortical network connectivity to compare the FASD

patient group with the controls (i.e characteristic path length, global efficiency, local

efficiency, and mean clustering coefficient), finding that the characteristic path length and

global efficiency showed significant differences between the two groups.

For illustration, we review four commonly used and representative global network measures.

Characteristic path length and global efficiency attempt to measure functional integration in

the brain, which would relate to the ability to combine specialized information. Paths

connect distinct nodes and edges, representing routes of information flow between pairs of

brain regions. Shorter paths imply stronger integration. The average shortest path length

between all pairs of nodes in the network is known as the characteristic path length (Watts
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and Strogatz 1998). The global efficiency is defined as the average inverse shortest path

length (Latora and Marchiori 2011). When two nodes are disconnected, the path is defined

to have an infinite length and efficiency zero. A binary path length is equal to the number of

edges in the path; a weighted path length is equal to the total sum of individual connection

lengths which are inversely related to connection weights.

Local efficiency and clustering coefficient aim to measure functional segregation in the

brain, quantifying the features of clusters within the network. The presence of clusters in

networks suggests that segregated neural processes depend on each other. Connected three

nodes form a triangle and segregation measures are based on the number of these triangles in

the network. Locally, the fraction of triangles around an individual node is known as the

clustering coefficient (Watts and Strogatz 1998). Local efficiency is defined as the averaged

efficiency of each node. Latora and Marchiori (2011) suggested that the local efficiency of

each node i measures how efficiently information flows between the first neighbors of the

node i, when i is removed. The weighted local efficiency is broadly proportional to the

weighted clustering coefficient (Onnela 2005). More details on network measures are

defined in Rubinov and Sporns (2010).

To test for significant differences in a global network measure without covariates, we can

simply use the two-sample t-test for equal means of the network measure between two

groups. For example, once all pairwise correlations are measured, we compute a

characteristic path length for each subject; each subject is classified into one of two groups,

say affected and unaffected; then we would perform the two-sample t-test with the

characteristic path length measure of each subject. To incorporate covariates, a logistic

regression model can be used with each network measure and covariates as predictors while

a group indicator (i.e. disease status) as a binary response variable. For the FASD data

analysis and the simulation study, we used logistic regression to identify the network

differences between two groups.

Open source Matlab toolbox BCT provides functions to calculate global network measures

at http://www.brain-connectivity-toolbox.net.

2.4 Network Based Statistic

Network Based Statistic (NBS) is a method that takes advantage of the clustering structure

of network differences: the edges with different weights across the groups often form a

connected component or subnetwork, i.e. a cluster. In these situations, NBS potentially

yields greater power than other methods that ignore such a clustering structure.

NBS works as follows (Zalesky et al 2010). Suppose we have n subjects and k edges in each

subject’s network. For each edge j = 1, … k, a generalized linear model is separately fitted to

each connection to compute a contrast statistic. For our concrete situation of two group

comparison with covariates Z, we can consider two indicator variables, G1 and G2, denoting

G1i = 1 and G2i = 0 if subject i is a control; G1i = 0 and G2i = 1 otherwise. The jth connection

is modeled as
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where the errors eij are independent and identically distributed as Gaussian N(0, σ2). We can

formulate contrasts to compare a1 and a2 at each edge separately to test the hypothesis that

the edges between the two groups come from two distributions with equal means with H0:

a1 = a2, which can be described as c′a = 0 with  and

.

Denote G1 = (G11, …, G1n)′ and G2 = (G21, …, G2n)′ as n × 1 vectors,

 , and Xj = Da+e. The contrast for the jth connection, can be tested with

the following test statistic

Supra-thresholded connectivity represents edges each with a test statistic Tj that exceeds a

predetermined threshold. A cluster is defined as a connected component composed of supra-

thresholded edges. NBS identifies the maximum size (i.e. number of edges) of supra-

thresholded connectivity s, and detects a significant subnetwork (or cluster) differentiating

two groups. To make inference, permutation is used (Nichols and Holmes 2001). For each

permutation b = 1, … B, members of the two samples are randomly permuted and the size of

the largest identified cluster s(b) is calculated. This yields an empirical null distribution of

maximal suprathreshold cluster size. Then a p-value of testing for group differences is

calculated using this null distribution: .

For ease of notation, we use nbs(t) as a predetermined threshold that is the tth percentile in

absolute values of Tj’s; that is, t is the proportion of Tj’s satisfying |Tj | ≤ nbs(t).

NBS assumes that the edges associated with the contrast of interest are not isolated from

each other and thus form a cluster. In general, suprathreshold-cluster-tests are more

powerful for functional neuroimaging data than edge-based-threshold tests like the mass-

univariate testing. However, the power of NBS test depends on the specified threshold

parameter (Zalesky et al 2010). With a low threshold, large-scale networks composed of

many suprathresholds are to be expected, so intense and small-sized subnetworks will be

undetected. At higher thresholds, these small subnetworks will be detected, but lower

intensity clusters may go undetected below the threshold. Hence it is a drawback of NBS for

its dependence on the specified threshold parameter t while it is often unknown which t to

use in practice. An appealing aspect of NBS is that it provides the topological clusters

among the set of the suprathresholded edges as an evidence against the null hypothesis,

which allows to visualize significant subnetworks.
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Matlab Network Based Statistic toolbox is an open source implementing NBS approach at

https://sites.google.com/site/bctnet/comparison/nbs

2.5 Multivariate Matrix Distance Regression

MDMR is a nonparametric modification to MANOVA, avoiding the latter’s assumption of

multivariate normal responses (McArdle and Anderson 2001). For simplicity, we first

consider the situation without covariates. As MANOVA, MDMR is based on the following

multivariate regression model:

The key interest is to test H0: b1 = 0 versus H1: b1 ≠ 0. In addition to the normality

assumption on Xi, MANOVA requires that the sample size n > k, which is not the case here

with high-dimensional fMRI data. As an alternative, MDMR performs as follows.

Step 1. Calculate an n × n distance matrix for all pairs of subjects by D = (Dij) with Dij

= d(Xi, Xj) and d() being a distance or semi-distance metric.

Step 2. Calculate .

Step 3. Obtain a centered similarity matrix G = (I − 11′/n)A(I − 11′/n), where 1 is an n

by 1 vector of all 1’s.

Step 4. Denote Yn×1 as the vector of group indicators. Calculate the projection matrix H

= Y (Y′ Y)−1Y ′.

Step 5. Calculate a pseudo F-statistic as

(1)

where tr(A) is the trace of matrix A.

The equation (1) is analogous to Fisher’s F statistic for MANOVA when the Euclidean

distance d() is used. McArdle and Anderson (2001) suggested that any multivariate distance

measure like Bray and Curtis (1957) can be used and permutation is used to get the p-value.

For each permutation b = 1, …, B, two group memberships are randomly permuted to

generate Yb and compute F(b), the value of test statistic F based on the new data set {Yb, X}.

The p-value can be obtained as .

In multifactorial designs, an appropriate pseudo F statistic can be constructed to incorporate

covariates (McArdle and Anderson 2001; Reiss et al 2010). MDMR has been applied to

genetics (Wessel and Schork 2006) and more recently to brain connectivity analysis (Reiss

et al 2010; Shehzad et al 2014); while the application of Reiss et al (2010) was similar to

ours in testing all ROIs’ connections simultaneously, Shehzad et al (2014) considered each

ROI separately for its connections to other ROIs.
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In our analyses, we used the Euclidean distance metric d(). MDMR is implemented in R

package vegan.

2.6 The SPU and aSPU Tests

Pan et al (2014) proposed a family of association tests, the sum of powered score (SPU)

tests, aiming to yield at least one powerful test for a given situation. The SPU tests were

developed for conducting global testing for association between a response variable and

multiple genetic variants. Each SPU test is based on the score vector from a general

regression model, hence can be applied to various types of the response variable with or

without covariates. Consider a logistic regression model with k functional connections and l

covariates:

(2)

The null hypothesis to be tested is H0 : β = (β1, …, βk)′ = 0. Under H0, there is no group

difference in functional brain connectivity, and the model reduces to

(3)

Fitting the above null model (3), which is often much lower-dimensional as compared to the

full model (2), one obtains the maximum likelihood estimates β0̂ and δ̂
m’s, and thus

. The score vector U = (U1, …, Uk)′ for β in model (2)

is

Each score component Uj contains information on the significance of each βj, i.e. non-zero

effects of each connection. Intuitively, each Uj can be regarded as measuring the correlation

between the jth connection Xij and the residuals (resulting from ignoring the connection); if

the connection is indeed related to the response, then it is expected that the connection Xij

and the residuals Yi − Ŷi will be related. In fact, this is exactly the idea of diagnostic model

checking in examining a residual plot for an omitted predictor to see whether the omitted

predictor is needed in a regression model. Each SPU test can be depicted as combining a

collection of univariate tests, each on a connection of the network. Specifically, given γ ≥ 1,

the SPU(γ) test statistic is defined as
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where  can be regarded as a weight for the jth component of U. With various values

of γ ≥ 1, one of the SPU(γ) tests may maintain high power for a given situation. As γ

increases, the SPU(γ) test puts more weights on the fewer and larger components of U.

Eventually, as γ → ∞, it only takes the maximum component of the score vector and the

test statistic is defined as .

To make statistical inference for a circumstance where the number of parameter k is large

compared to the sample size n, Pan et al (2014) proposed using the parametric bootstrap

(with covariates) or permutation (without covariates) to relax the asymptotic normality

assumption on the score vector U: First, we fit a null model under H0 by regressing Yi on the

covariates Zi to obtain fitted values Ŷ = (Ŷ1, …, Ŷn)′, then simulate new responses

 with  independently for b = 1, …, B. The test

statistic  is calculated based on simulated data {Y(b), X, Z}. Finally we compute the

 . For a case without covariates, the

permutation method can be used.

It is interesting to note that the family of the SPU tests cover several existing tests as special

cases. The SPU(1) test is equivalent to the Sum test, a burden test used in genetic rare

variant analysis (Pan 2009), and similar to that used in fMRI data for network testing

(Meskaldji et al 2011), in which the weights of all the edges are aggregated under the

working assumption that the edge weights are all changed with the same magnitude and

direction between the two groups. The SPU(1) test retains high power if all or most of the

edge weights of the networks for the two groups differ in one direction, each with a small

magnitude. However, the SPU(1) test may lose power when both positive and negative

differences across the edges exist, and/or there are only few edges with changes. On the

other hand, the SPU(2) test is more powerful under these situations (i.e. in the presence of

edge changes in both directions and/or few edge changes). As shown in Pan (2011), since

the SPU(2) test is exactly the same as the sum of squared score (SSU) test, it is closely

related to MDMR (McArdle and Anderson 2001) and kernel machine regression (KMR)

(Liu et al 2007; Ge et al 2012). The SPU(∞) test share the same spirit of mass-univariate

testing in that only the most significant component or edge is taken as the evidence against

the H0. They may differ in how to adjust for multiple testing; the SPU(∞) test employs a

resampling technique to have an almost “exact” adjustment.

Since the power of a SPU(γ) test depends on the choice of γ while the optimal γ depends on

the unknown true association pattern, Pan et al (2014) proposed an adaptive SPU (aSPU)

test that data-adaptively chooses an optimal value of γ from a set of supplied candidate

values of γ, say Γ. Suppose that the p-value of the SPU(γ) test is PSPU(γ), then the aSPU

test’s combining procedure takes the minimum p-value:
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Here, TaSPU is not a genuine p-value; we use the permutation or parametric bootstrap to

estimate its p-value. It is interesting to note that, with the same set of the resamples, the p-

values of all the SPU and aSPU tests can be simultaneously calculated. Specifically, once

resample Y(b) is generated and the corresponding score vector U(b) is obtained for b = 1, 2,

…, B, we calculate each SPU test statistic  and its corresponding p-value

 , for b = 1, …, B; then calculate the aSPU test

statistic, . The final p-value of the aSPU test is

.

As discussed in Pan et al (2014), the following considerations guide the choice of the

integers γ ≥ 1 in Γ. First, we would include γ = 1 and γ = 2 in Γ to cover the Sum and SSU

tests. Note that the SSU test is equivalent to MDMR if the Euclidean distance is used in the

latter as usual (Pan 2011). Second, depending on whether the individual connectivity

association directions vary or not between the groups, we may need to use either even or odd

integers γ’s to yield high power. Third, depending on how many individual connection

strengths are expected to be different between the two groups, we may use smaller or larger

γ’s. In general, if there is a smaller fraction of the true connection changes, then a larger γ is

needed. A pratcical rule is to use Γ = {1, 2, …, γ1, ∞} such that SPU(γ1) gives the result

close to that of SPU(∞). In this paper, for simplicity, we used Γ = {1, 2, …, 8, ∞}.

The aSPU test can be used for variable selection (Pan et al 2014). Suppose that the aSPU

test selects γ̂ = arg minγ∈Γ∞ PSPU(γ). The individual connections can be ordered based on

their contributions to the score statistics: the larger is connection j’s score statistic |Uj |, the

more significant is the connection j. In this way, we can order the connections by the

corresponding |Uj |’s. Alternatively, we can select the top 1 ≤ k1 ≤ k connections such that

their accumulative contribution  for a specified threshold 0 <

α < 1.

R code for the SPU and aSPU tests is provided by Pan et al (2014) and will be posted on our

web site.

2.7 The SPUw and aSPUw Tests

We follow the outline in Pan et al (2014) to construct a inverse-variance weighted version of

the SPU and aSPU tests, called the SPUw tests and aSPUw test respectively. The SPU and

aSPU tests ignore possibly different variabilities across the score components, while the

SPUw and aSPUw tests incorporate the variances as weights ηj. The test statistic of

SPUw(γ) test is computed as
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where Vjj is a diagonal element of

the estimated covariance matrix of the score vector under H0 with . The

aSPUw test combines the p-values of the SPUw tests:

Using the parametric bootstrap or permutation method described earlier, we can obtain p-

values for the SPUw tests and aSPUw test simultaneously for any given Γ; the choice of Γ is

similar to that for the aSPU test.

Similar to SPU(∞), the SPUw(∞) test is exactly a mass-univariate testing procedure in

considering only the most significant component among multiple (score) test statistics; it is a

maximum statistic as discussed by Nichols and Holmes (2002). The aSPUw test is also

useful in variable selection in the same way as the aSPU test, by ordering the connections by

the magnitudes of their corresponding score statistic components.

We implemented the SPUw and aSPUw tests in R; the code will be posted on our web site.

2.8 Direction-Projection-Permutation

Direction-Projection-Permutation (DiProPerm) is a non-parametric procedure that can be

used to test for equal distributions or equal means between two groups of high dimensional

data (Wei et al 2014). Binary classification is to separate a dataset into two groups based on

observed input vectors in ℝk, constructing a hyperplane. DiProPerm relies on the binary

linear classifier which achieves high classification accuracy on the training data in high

dimensional low sample sized settings.

To be explicit, DiProPerm assesses any difference in the distribution of k dimensional brain

connectivity between control and case groups. Let X01, mldr;, X0m and X11, …, X1nbe

independent random samples of k dimensional brain connectivity from multivariate

distribution F0 and F1 respectively (i.e. F0 for controls and F1 for cases). Here each sample

Xj is a k by 1 vector. The null hypothesis of interest is that cases and controls have the same

distribution (i.e. H0 : F0 = F1) and an alternative is Hα : F0 ≠ F1. Wei et al (2014) proposed

DiProPerm as a three-step procedure: direction, projection and permutation.

Kim et al. Page 11

Neuroimage. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The direction step of DiProPerm is to construct a hyperplane for binary classification on the

two groups and to find the normal vector to the separating hyperplane. For the classifiers,

the Distance Weighted Discrimination (DWD) or the Support Vector Machine (SVM) could

be considered (Marron et al 2007; Hastie et al 2001). The second step is to project data onto

the normal vector and to calculate a univariate statistic such as a two-sample t-statistic or

mean differences. We used sample mean differences for the statistic for the FASD data

analysis and the simulation study. The final step of DiProPerm is to use permutation to

assess the significance of the test statistic. Since DiProPerm test cannot incorporate

covariates terms, it was only applied to the models without considering covariate effects.

Software for the DiProPerm procedure is available at http://www.unc.edu/~marron/

marron_software.html

2.9 Comparison of the Methods

It is noted that many of the methods are related. First, some of the global tests such as NBS,

SPU and SPUw tests are all related to mass-univariate testing. These global methods can be

regarded as various ways of combining the univariate test statistics. For example, each score

component Uj can be regarded as a summary statistic for testing for association between the

group indicator Yi and an individual network connection Xij. In fact, as mentioned earlier,

the SPUw(∞) test is exactly a mass-univariate testing procedure using a resampling method

(e.g. permutation or bootstrap) for multiple testing adjustment, which is almost exact and

more accurate than the more conservative Bonferroni method.

Second, for univariate testing, some methods, such as the SPU and SPUw tests, are based on

regressing Yi on each Xij, while others, such as NBS and MDMR, are based on regressing Xij

on Yi. These two ways of testing for association between Yi and Xij are (asymptotically)

equivalent. For simplicity, let us consider the case without covariates. The two regression

models are

for a fixed j and i = 1, …, n. The corresponding two null hypotheses are H0: βj = 0 and

. Since both models are generalized linear models (GLMs) with a canonical link

function (McCullagh and Nelder 1983), it is easy to verify that their score functions for βj

and αj under H0 and  respectively are both equal to

with  and . Hence their score tests will be exactly the same,

which will also be asymptotically equivalent to the Wald and likelihood ratio tests. In

particular, the t-test used in univariate testing or NBS is asymptotically equivalent to the
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above score test based on either model. This connection goes beyond univariate testing;

there is also an equivalence between regressing Yi on Xi = (Xi1, …, Xik)′, as used in the SPU

tests and KMR, and regressing Xi on Yi as in MDMR: if the Euclidean distance d() is used in

MDMR and if a linear kernel is used in KMR, then MDMR, KMR and the SSU (i.e.

SPU(2)) test are all equivalent (Pan 2011). This issue is also discussed in the framework of

GEE (Zhang et al 2014).

There is an asymptotically consistent and permutation-based test for high-dimensional data

(Szekely and Rizzo 2004), which gave results very similar to that of MDMR in our

numerical results (not shown). Hua and Ghosh (2014) pointed out its equivalence to KMR;

by the close connections among MDMR, KMR and the SPU(2) (i.e. SSU) test, we obtain its

equivalence to other tests.

As Pan et al (2014) pointed out, the SPU test (and SPUw test) can be extended to other

generalized linear models. Specifically, let a linear predictor be

, and a link function g(·) links the mean of the response

variable, μi = E(Yi), and the linear predictor: .

Then the jth component of the score vector and its variance are (Agresti 1990, p.448–449):

for j = 1, ···, k. For example, we can use a probit model, instead of the logit model, to test for

group differences in brain connectivity. The probit model employs a probit link function g()

= Φ−1(), where Φ() is the cumulative distribution function of the standard normal

distribution. Under the null hypothesis (i.e. β = (β1, …, βk)′= 0), the score vector of the

probit model is

where β̂
0 and δ̂

m are MLE under the null model; ; and ϕ() is the

probability density function of the standard normal distribution. Compared to the score

vector measuring the correlations between each connection and the residuals in the logit

model, the score vector here is based on a weighted correlation between each connection and

the residuals from the null model. Then we can plug-in the score vector into the SPU and

aSPU tests as before. Similarly, the SPU and aSPU tests can be applied to other regression

models for continuous or count response data.
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3. APPLICATION TO FASD DATA

3.1 MRI Acquisition and Processing

We used the FASD data of Wozniak et al (2013). For the initial MRI data acquisition, a

Siemens 3T TIM Trio MRI scanner with a 12-channel parallel array head coil was used.

Scans included a structural T1-weighted scan, a resting-state fMRI scan (TR= 2000ms, TE=

30ms, 34 interleaved slices, no skip, voxel size= 3.45 × 3.45 × 4.0mm, FOV = 220mm, flip

angle = 77 degrees, 180 measures.), and a field map; Additional details are in included in

Wozniak et al. (2013). During the resting-state scan, participants were instructed to close

their eyes and remain still.

The fMRI data were processed with modified “1000 Functional Connectome (TFC)”

preprocessing scripts (www.nitrc.org/plugins/mwiki/index.php/fcon_1000). Tools from

AFNI (Cox, 1996) and the FMRIB Software Library (FSL) version 4.1.6 (Smith et al., 2004;

Woolrich et al., 2009) were used in the TFC processing. This included skull stripping,

motion correction, geometric distortion correction using FSL’s FUGUE (added to the TFC

pipeline), spatial smoothing (FWHM of 6 mm), grand mean scaling, band pass temporal

filtering (0.005 to 0.1 Hz), and quadratic de-trending. The TFC processing of the T1 volume

included skull stripping and FSLs FAST tissue segmentation to define whole brain, white

matter and ventricular cerebrospinal fluid (CSF) regions of interest (ROIs). The skull-

stripped T1 and tissue segmentation ROIs were registered to the fMRI data using FSL’s

FLIRT. Time courses from the three tissue segmentation ROIs, along with the six motion

parameters, were used as voxel-wise nuisance regressors in the TFC processing of the fMRI

data. Cortical parcellation of the T1 volume in 34 ROIs was done with FreeSurfer version

4.5 (surfer.nmr.mgh.harvard.edu) (Dale et al. 1999). Data was visually inspected, but hand-

editing was not employed. As this paper is focused on comparing statistical methodologies,

we did not manually edit the Freesurfer segments; however, in actual patient or cognitive

studies, manual edits are necessary.

The 68 FreeSurfer cortical parcellations along with 12 sub-cortical regions were registered

to the TFC-processed fMRI data using FreeSurfer’s bbregister (Greve and Fischl, 2009).

The parcellations were dilated during registration but none were allowed to overlap and

voxels outside the TFC brain-mask were excluded. ROIs that contained fewer than 10 fMRI

voxels for any subject were excluded from the final analysis. This resulted in the exclusion

of 6 cortical ROIs (bilateral entorhinal, frontal pole and temporal pole), leaving a total of 62

cortical ROIs (31 per hemisphere). The mean fMRI time-series of all voxels within each

ROI were then extracted and used for each subject.

3.2 Data Analysis

Wozniak et al (2013) compared functional network connectivities in 24 FASD patients, aged

10 to 17, with 31 matched controls using resting-state fMRI. They compared four global

network measures of cortical network connectivity between FASD patients and controls:

characteristic path length, mean clustering coefficient, local efficiency, and global

efficiency. N = 62 cortical ROIs were considered. The resting-state fMRI signals for each

region were measured at 180 time points. For our analyses, N = 74 ROIs including 12 sub-
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cortical regions were considered. Fisher’s z-transformation was applied to the Pearson

correlations between all pairs of N = 74 ROIs for k = 2701 edges.

Table 1 contains the p-values from the discussed methods for testing differences in brain

functional networks between the two groups. The tests showing significant p-values (< 0.05)

are SPU(1), aSPU, SPUw(1), SPUw(3), aSPUw and NBS. These results are consistent with

Wozniak et al (2013), revealing altered network connectivity in children with FASD. To

specify a predetermined threshold for NBS analysis, nbs(0.1), nbs(0.25), nbs(0.5) and

nbs(0.75) (i.e. the 10th, 25th, 50th and 75th percentiles of the absolute values of Tj statistics)

were arbitrarily chosen, since we had no prior knowledge on which threshold would give

highest power. We also applied the SPU and aSPU tests based on the probit model (instead

of the default logit model), and obtained significant p-values, 0.013 and 0.045 for SPU(1)

and aSPU respectively, which were similar to the results based on the logit model shown in

Table 1. The p-values from the SPU/aSPU tests, SPUw/aSPUw tests and MDMR were

based on 1000 permutations (or bootstrap samples with covariates); NBS based on 5000.

For mass-univariate analyses, we first used univariate logistic regression with the Bonferroni

adjustment. Each edge was fitted as a predictor and the group indicator Yi was used as a

response variable. No individual test survived the corrected significance level of 0.05/2701

(not shown). Furthermore, the permutation-based univariate SPUw(∞) test did not give a

significant p-value either

As in Wozniak et al (2013), we computed four global network measures: characteristic path

length (CharPath), mean of clustering coefficient (Eclust), local efficiency (Eloc), and global

efficiency (Eglob). Network measures were computed based on the magnitudes of Pearson’s

correlations; a logistic regression model was used to test the group differences in each

network measure. As shown in Table 1, no network measure showed any significant

difference between FASD patients and controls, while Wozniak et al (2013) found the

significant differences in the characteristic path length and global efficiency. Wozniak et al

(2013) included 20% of edges which fully connected all regions to compute each global

network measure based on 62 ROIs, but we used all edges from 74 ROIs for a fair

comparison with the other methods.

Figure 1(a) illustrates the distribution of z-transformed correlations for 2701 edges. It shows

that all 55 subjects had bell-shaped distributions centered around 0 for the correlation

measures. The proportion of correlation measures having absolute value less than 1 was

about 90%. This implies that mostly weak edges or connections comprised the brain

functional networks in the FASD data. These features explain the results in Table 1. As γ

increases, the SPU(γ) test puts more weights on the larger components of the score vector,

ignoring components of weak edges, leading to less significant p-value. In contrast, the

SPU(1) and SPUw(1) tests gave the most significant p-values among the SPU and SPUw

tests. This was in agreement with the results of NBS: nbs(0.1) gave the most significant p-

value, since at a low threshold, we could include a larger number of weak edges comprising

clusters in the FASD data. At higher thresholds, larger p-values were observed. This

suggests that at high threshold, few isolated edges were less likely to comprise a large

cluster in the FASD data. Zalesky et al (2010) pointed out that, as the size of the cluster
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decreases, it becomes more difficult to identify group differences with NBS. Note that NBS

is utterly powerless in the extreme case when a single isolated connection comprises the

cluster.

Across the subjects, the minimum measure of correlations was −2.53 and the maximum was

4.41. We obtained mean values of z-transformed correlations for each connection and took

their differences between the FASD and control groups. Figure 1(b) shows the histogram of

the mean differences in z-transformed correlations for the edges. Among 2701 edges, 1870

edges (70 %) had the mean differences less than 0.1 between the case and control groups.

The direction of differences was slightly skewed to the left. Figure 2 illustrates the Pearson

correlations structure among the 74 ROIs with warm color representing positive

correlations, while cool color for negative correlations. In Figure 2(a) and (b), FASD and

control groups show similar features in its functional interactions among 74 ROIs (nodes).

Hence, there seemed to be only subtle but extensive differences in the individual network

connections between the two groups, explaining why the the SPU(1), aSPU, SPUw(1) and

aSPUw tests, and NBS with nbs(0.1) gave significant p-values.

The original study of Wozniak et al (2013) concentrated on two-sample comparisons using

the t-test on several global network measures. The presented methods here are based on a

general regression model, hence can deal with covariates. In our data analyses, we also

included gender and age as covariates, but reached similar conclusions, presumably due to

non-significant covariate effects (Table 2). The p-values from the SPU(1) and aSPU tests

based on the probit model were 0.014 and 0.045, almost exactly the same as those without

covariates. We also applied a data-normalization procedure called global signal regression

(GSReg) (Saad et al 2013) before testing group differences with the various methods,

yielding no significant results; the suitability of GSReg is currently still under debate (Saad

et al 2013; Shehzad et al 2014).

4. SIMULATION STUDY

4.1 Simulation Design

We used simulations with realistic set-ups mimicking the FASD data to compare the

discussed approaches for their Type I error rates and power to detect network connectivity

differences between two groups. For the main factors influencing power, we considered

general network dissimilarity between two groups, edge-wise network differences between

two groups, network sparsity, and thresholding effect.

The degree of network dissimilarity between two groups was controlled by a parameter ω.

Suppose μ0 and μ1 were respectively sample mean vectors of 2701 edges of the control and

case groups in the FASD data, and  and  were parameters to be used for simulating data

defined as
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When ω > 1, the extent of dissimilarity between the two groups (e.g. ) increased as

compared to that of the FASD data, while the dissimilarity decreased when ω < 1.

We defined a parameter τ to determine the proportion of edges from two groups to have the

same true mean. In other words, τ determines the edge-wise differences between two mean

vectors  and . Denote μ0 − μ1 = d. We then defined

where I is an indicator function operating component-wise, and τ is the τth percentile for

absolute values of the components of d, {dj, j = 1, ···, 2701}. That is, when |dj| ≤ τ, the

difference between the jth component of  and  was defined as 0 (i.e.  ). and

, where μ0j and μ1j were the jth components of sample mean

vectors μ0 and μ1. Hence, as τ increased, we had more edges unchanged between the two

groups.

Some studies have suggested that true brain networks may be sparse (Hilgetag et al 2002).

Hence, we generated sparse networks by setting most edges having mean weight 0 when the

edges’ weights were not changed between the two groups:

Hence we had  when |dj| ≤ τ.

There is evidence showing that connectivity changes between two conditions could be in

one direction; for example, functional connectivity could be weakened in cases than in

controls (Eloyan et al 2012; Mostofsky et al 2008). To mimic this circumstance, we defined

When |dj| ≤ τ, we defined . Then we had the edge weights

differed in one direction when |dj| ≤ τ, i.e. .

In each group, the correlation measures assigned to the edges were randomly sampled from

a multivariate Gaussian distribution with mean  for controls (or mean  for cases) and

covariance matrix Σ. We assumed a common true covariance matrix for both groups. Due to

the large number of parameter k = 2701 than the sample size n = 55, a shrinkage estimator

for the covariance matrix was employed to estimate the pooled sample covariance matrix for

the two groups based on the FADS data (Schafer and Strimmer 2005). When τ = 0 and ω =

1, the parameters  and  were equal to the sample mean vectors μ0 and μ1 in the FADS

data respectively. To evaluate Type I errors, we set τ = 1, leading to no difference between
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the mean vectors for the two groups (i.e. ). We evaluated power with τ varying

from 0 to 1.

Thresholding to eliminate weak edges is a simple way in functional network analysis, since

many of these connections are suspected to be spurious and their presence may obscure true

signals. To mimic this practice, we set a thresholding parameter κ to discard weak edges,

aiming to show how such a preprocessing procedure would influence analysis results. The

threshold parameter value was selected based on the distribution of the correlation measures.

Say, we generated 2701 × 55 number of edges in total for 55 subjects, then we selected some

top significant edges based on their absolute values. For example, if κ = 0.8, we only

preserved the 20% of the strongest edges and assigned 0 to the rest. After thresholding, we

calculated several global network measures based on the corresponding binary networks too.

We also included a case with larger networks with 200 nodes and k = 200 × (200 − 1)/2 =

19900 connections. In addition to the original 2701 edges based on our real data, we

augmented 19900–2701 edges having no differences between the two groups. Non-

significant edge weights were independently generated from a Gaussian distribution with

mean 0 and the smallest edge variance across all subjects in the FASD data.

Throughout the simulations, the test significance level was fixed at α = 0.05. The results

were based on 1000 independent replicates for each set-up to estimate Type I error and

power. 5000 permutations were used for NBS while 1000 for others.

We compared the performance of mass-univariate testing, logistic regression on global

network measures, NBS, MDMR, SPU/aSPU and SPUw/aSPUw tests, and DiProPerm. We

applied Fisher’s z-transformation to the Pearson correlations to obtain the weights for the

edges of the networks. Binary networks were only used for calculating global network

measures after thresholding was applied.

4.2 Main Results

We report empirical Type I error and power for the described statistical tests in the

following. At τ = 1, we obtained empirical Type I error rates when each test was applied to

data simulated under the null hypothesis of no group differences in network connectivity.

Results for power were illustrated with varying τ < 1.

First, non-sparse networks were simulated to resemble the actual FASD data with ω = 1. All

the tests had their Type I error rates close to the nominal level of 0.05 as shown in Table 3.

We can see the influence of edge-wise differences between the two groups on power: as

expected, increasing τ and thus decreasing the number of edges with changes between the

two groups tended to decrease the power of every test The SPU test and SPUw test had

greater power with an even γ than with an odd γ. This was due to the presence of both

positive and negative connectivity differences in simulated data. As predicted by the theory,

the SPU(2) test and MDMR performed similarly. Often the power of NBS increased as the

predetermined threshold parameter increased in this given scenario: for instance nbs(0.75)

showed greater power than nbs(0.1). This could be due to the existence of the clusters better

detected by supra-thresholding with a larger thresholding parameter. Yet, this pattern was
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not always guaranteed since nbs(0.995) had lower power than nbs(0.99). When we had few

edge-wise differences between cases and controls (i.e. when τ was large), the SPU(γ) or

SPUw(γ) test with a larger γ was more powerful, leading to high power of the aSPU or

aSPUw test. Overall, the aSPU test was the winner, closely followed by the aSPUw test. For

example, at τ = 0.995 the power of the aSPU test was over 3 times of that of nbs(0.99). This

suggests that the aSPU test might be preferred over NBS for network connectivity analysis

when few edges show substantial differences between the two groups. Regardless of τ, the

aSPU test showed greatest power when the simulated data resembled the FASD data with ω

= 1.

Next we investigated how the tests performed when we scaled down the magnitudes of

network differences between the two groups by setting ω = 0.45 < 1. As shown in Table 4,

the empirical Type I error rates of all the tests agreed well with the nominal one. As

expected, the power of any test decreased as compared to Table 3. Increasing τ tended to

decrease the power, as in Table 3. NBS performed best when τ = 0, 0.25, 0.50, 0.75, and

0.85, yet it showed relatively low power when τ = 0.95 and 0.99 where fewer edges had

significant differences between cases and controls. Again the performance of NBS depended

on the threshold parameter: as the threshold increased, the power went up, reaching the

highest at nbs(0.75), then started decreasing with a larger threshold. The SPUw tests and

thus the aSPUw test tended to perform better than the SPU tests and aSPU test respectively.

The SPU(∞) test and SPUw(∞) test had low power in Table 4 due to the many smaller

differences of network edges between the two groups.

Although not the main point of this paper, we considered localizing changed connections

between the two groups. As discussed earlier, NBS is attractive in that it can localize the

connections as an evidence for the test significance, while the aSPU and aSPUw tests also

can be used for edge selection. We applied NBS, aSPU and aSPUw tests to each of the

simulated data sets corresponding to Tables 3 and 4. τ was set 0.75 so that the true positive

edges being 25% of all the connections (i.e. 2701 × 0.25). Depending on the threshold being

used, NBS selected different numbers of edges. Hence along with NBS, we examined how

many true positive edges could be identified by the aSPU and aSPUw tests among a given

number of their top ranked ones. As depicted in Figure 3, the aSPU and aSPUw tests

showed better performance than NBS. For example in the case with ω = 1 and with 527

connections selected, NBS chose 118 true positives while both the aSPU and aSPUw tests

selected 343.

In all simulation settings, the mass-univariate testing with the Bonferroni or FDR correction

(at FDR=0.05 or 0.1), and the tests based on several global network measures performed

extremely poorly. We presented their Type I error rates and power in Table 7. In addition,

we replaced the logistic model with the probit model for the SPU and aSPU tests. The SPU

and aSPU tests based on the probit model had power (Table 7) very close to that of the

logistic model shown in Tables 3 and 4.

4.3 Sparse Networks

Figure 4 gives the results for case with true sparse networks. The parameters for general

dissimilarity (ω = 1 or 0.45) and the proportion of changed edges (τ = 0 to 1) were set to be
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the same as in Tables 3 and 4. The edges were simulated to have weights with mean zero if

edgewise-differences between the two groups were less than τth percentile in the FADS data.

Overall, the power tended to slightly increase compared to Tables 3 and 4, but the patterns

of relative power across the tests were similar to those observed in Tables 3 and 4. The

sparsity of true networks did not appear to have any significant effect on the performance of

any test.

4.4 Thresholding or Not?

As a preprocessing step, we applied thresholding to each network to create a sparse network

before applying a test. As shown in Figure 5, power tended to decrease as thresholding

parameter increased, implying no obvious gains from thresholding.

4.5 Networks with Connection Changes in One Direction

The power of some tests depends on the direction or directions of the differences of the

correlation measures between the two groups. In Figure 6, we simulated data based on the

assumption that all edges from one group had weights no smaller than those from the other

group. The power increased compared to those in Table 4. We did not include here, but it is

noteworthy that among the SPU and SPUw tests, the SPU(1) and SPUw(1) were most

powerful. In addition, as expected, the SPU(γ) test and SPUw(γ) test showed higher power

when γ was odd than when it was even. As observed in Figure 6, the power tended to

decrease with larger κ.

4.6 Larger Networks with 200 nodes

Tables 5 and 6 show the results for cases with larger networks of 200 nodes. The general

pattern in Table 5 is similar to that of Table 3. In Table 6, NBS is observed to lose power for

larger networks as compared to its better results in Table 4. As expected, the performance of

NBS critically depended on the threshold parameter, which however is difficult to specify in

practice. Again it was confirmed that the SPU(2) test and MDMR performed similarly,

while the SPU(4) test had the greatest power in this high-dimensional setting.

5. DISCUSSION

In general, mass-univariate testing and network measure-based tests may not offer sufficient

power to detect group differences in network connectivity. As a more powerful alternative,

group differences can be determined by a global test that combines statistical evidence

across many or all of the network edges. Since a global test does not test on each individual

connection, if the null hypothesis is rejected, it cannot tell which individual connections give

the significant difference. To deal with high-dimensionality of the data, each discussed

global test calculates its p-values using resampling techniques without depending on

questionable asymptotic assumptions.

Our simulation results show that the SPU/aSPU and SPUw/aSPUw tests are applicable to

functional connectivity analyses, yielding respectable power compared to that of NBS across

most simulations. In particular, in some situations (e.g. in Table 3 and Table 6), the SPU/

aSPU and SPUw/aSPUw tests showed improved power over NBS. Nevertheless, in many
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situations, with an appropriate choice of the threshold parameter, NBS could perform better

than the aSPU and aSPUw tests, which could be due to NBS’ exploiting the cluster structure

in network differences. However, in practice, it may be difficult to choose an appropriate

value for the threshold parameter in NBS, and strictly speaking, use of multiple threshold

values in NBS requires a corresponding multiple testing adjustment. In contrast, the aSPU

and aSPUw tests are easy to use; the overall result is given by the p-value of the aSPU or

aSPUw test, while the p-values of other SPU or SPUw tests may shed light on the

underlying association patterns. Following the idea of the aSPU and aSPUw tests, one may

also combine the results of multiple NBS tests with multiple threshold values.

In summary, the aSPU and aSPUw tests can be complementary to NBS to test for group

differences in functional connectivity. We hope that this study has introduced to the

neuroimaging community some useful global tests and offered some practical guidelines for

testing group differences in brain functional connectivity.
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Highlights

Considering a key but yet largely neglected issue of testing for network differences;

Introducing several new statistical tests drawn from other fields, e.g. genetics;

Conducting extensive numerical studies to assess the power of the tests;

Offering practical recommendations on the use of the tests.
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Figure 1.
Histograms of functional connectivity in the FASD data.
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Figure 2.
Heatmaps for functional connectivity in the FASD data.
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Figure 3.
Edge selection.
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Figure 4.
Sparse networks : empirical Type I error (for τ = 1) and power (for τ < 1) based on 1000

simulations.
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Figure 5.
Thresholding networks before applying a test: empirical power for detecting net-work

differences with thresholding applied (κ > 0) or not applied (κ = 0).
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Figure 6.
Networks with edge weight changes in one direction: empirical power based on 1000

simulations.
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