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Abstract

Advancements in imaging protocols such as the high angular resolution diffusion-weighted 

imaging (HARDI) and in tractography techniques are expected to cause an increase in the tract-

based analyses. Statistical analyses over white matter tracts can contribute greatly towards 

understanding structural mechanisms of the brain since tracts are representative of the connectivity 

pathways. The main challenge with tract-based studies is the extraction of the tracts of interest in a 

consistent and comparable manner over a large group of individuals without drawing the inclusion 

and exclusion regions of interest. In this work, we design a framework for automated extraction of 

white matter tracts. The framework introduces three main components, namely a connectivity 

based fiber representation, a fiber clustering atlas, and a clustering approach called Adaptive 

Clustering. The fiber representation relies on the connectivity signatures of fibers to establish an 

easy correspondence between different subjects. A group-wise clustering of these fibers that are 

represented by the connectivity signatures is then used to generate a fiber bundle atlas. Finally, 

Adaptive Clustering incorporates the previously generated clustering atlas as a prior, to cluster the 

fibers of a new subject automatically. Experiments on the HARDI scans of healthy individuals 

acquired repeatedly, demonstrate the applicability, the reliability and the repeatability of our 

approach in extracting white matter tracts. By alleviating the seed region selection or the 

inclusion/exclusion ROI drawing requirements that are usually handled by trained radiologists, the 

proposed framework expands the range of possible clinical applications and establishes the ability 

to perform tract-based analyses with large samples.
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1. Introduction

Due to advancements in the diffusion weighted imaging techniques, white matter (WM) 

structures in the human brain can now be studied in vivo at a micro-structural level (Basser 
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et al., 1994a, 1994b). New imaging protocols such as the high angular resolution diffusion-

weighted imaging (HARDI) (Tuch et al., 1999, 2002), based on their superior 

characterization of the complex WM structure in regions of fiber crossing, have improved 

the reliability of fiber tractography (Côté et al., 2013; Fillard et al., 2011; Tournier et al., 

2012). This fact has led to an increasing interest in tract based analyses that have hitherto 

been performed over traditional (diffusion tensor based) tractography methods (O’Donnell 

et al., 2009; Smith et al., 2006; Snook et al., 2007). As an alternative to conventional 

statistical approaches such as the voxel based morphometry (VBM) (Ashburner & Friston, 

2000) and the region based morphometry (RBM) (Mukherjee et al., 2001), statistical 

analyses over WM tracts can contribute greatly towards the structural analysis of the brain 

since fiber bundles are the most representative of the connectivity pathways.

In this article, we refer to each single pathway of tractography as fiber. Groups of fibers are 

called fiber bundles. We use the term tract to refer to a WM structure of interest such as the 

arcuate or the corpus callosum, which can consist of a single (the arcuate) or multiple (the 

corpus callosum) fiber bundles. The main challenge with tract based studies involving group 

or longitudinal statistics, is the extraction of the tract of interest (TOI) from the whole brain 

tractography results in a consistent and comparable manner over a large group of 

individuals. Early works on tract extraction were limited to single subject studies and big, 

easily discernible WM tracts like the corpus callosum due to the lack of tools that enable 

extracting TOIs in different individuals automatically without requiring any knowledge of 

detailed anatomy. Recent research on fiber clustering (Guevara et al., 2012; O’Donnell & 

Westin, 2007; Tunc et al., 2013; X. Wang et al., 2011; Wassermann et al., 2010) has 

introduced several advancements to facilitate large scale population studies, increasing the 

applicability of fiber clustering in the real life clinical applications. In this work, we design a 

framework for automated extraction of the TOIs by introducing a group-wise consistent 

fiber clustering approach. This consists of firstly defining a connectivity based fiber 

representation, then using this representation to build a fiber bundle atlas, and finally an 

adaptive clustering of a new subject based on this atlas.

The common approaches for tract extraction rely on fiber tractography by using either 

supervised or unsupervised post processing of the reconstructed fibers. Supervised methods 

require the placement of inclusion and exclusion ROIs (regions of interest) to extract WM 

tracts by eliminating the unintended fiber pathways (Mori & van Zijl, 2002; Wakana et al., 

2007). This procedure can be automated by registering different scans of the subjects to a 

template space (Aarnink et al., 2014), thereby extracting any TOI simultaneously. 

Unsupervised methods, on the other hand, utilize fiber-based features within a clustering 

framework to automatically generate tracts that are characterized inherently by these 

features (Maddah et al., 2008; O’Donnell et al., 2006; Tunc et al., 2013). As an alternative to 

fiber tractography based approaches, another set of supervised methods have been proposed 

for direct segmentation of WM tracts by classification using voxel-based features such as 

principal diffusion direction, spherical harmonics coefficients, fractional anisotropy (FA) 

values, and crossing angles (Bazin et al., 2011; Ito et al., 2013; Nazem-Zadeh et al., 2011; 

W. Zhang et al., 2008). In this work, we use the fiber clustering approach to design an 
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automatic tract extraction framework. We discuss other approaches in some detail, in order 

to put our contributions in perspective.

The most common way of tract extraction is generating fiber pathways for the whole brain 

and then using multiple inclusion and exclusion ROIs, that could be chosen based on an 

anatomical atlas that is registered to the subject (Mori & van Zijl, 2002; Wakana et al., 

2007). The main drawback with these multiple regions of interest (MROI) techniques is the 

fact that one needs to know which ROIs are to be used specifically for each TOI, which 

requires a detailed knowledge of the anatomy. Several authors have proposed improvements 

on automating selection of initial seed points and the ROIs, and on addressing registration 

issues for group studies (Li et al., 2010; Suarez et al., 2012; W. Zhang et al., 2008; Y. Zhang 

et al., 2010). However, these improvements cannot alleviate the need for knowing the 

anatomy of each TOI beforehand.

Once fibers have been generated for the full brain, instead of using the supervised MROI 

techniques, unsupervised clustering of fibers has emerged as a promising alternative to 

automate tract extraction by grouping the fiber pathways according to some predefined 

features such as geometrical or connectivity based measures (Brun et al., 2004; Liu et al., 

2012; Maddah et al., 2008; O’Donnell et al., 2006; Q. Wang et al., 2010; Wassermann et al., 

2010). The resulting fiber bundles delineate different characteristics of white matter 

depending on which features are described by the underlying fiber representation. Fiber 

clustering and MROI approaches were compared in (Voineskos et al., 2009) to estimate the 

confidence bounds of fiber clustering with respect to the manual selection, concluding that 

fiber clustering can be used with a high confidence. Despite the ease of the unsupervised 

clustering, these methods mainly suffer from the difficulty in setting up the correspondence 

between subjects, or may use an incomplete representation of the underlying data, using just 

the shape information of fibers.

Early works on fiber clustering did not facilitate automated correspondence of TOIs across 

subjects. Some research has been done on establishing the correspondence across subjects 

after clustering each subject individually (Ge et al., 2012; Guevara et al., 2012). One 

drawback of these methods is that clustering of a subject is not guided in any way by the 

information from other subjects. Several recent works addressed the automated 

correspondence problem by combining fibers of different subjects and clustering them 

together. In (Maddah et al., 2011) registration of fibers is handled together with clustering 

by using the expectation maximization (EM) algorithm (Dempster et al., 1977), to generate a 

clustering atlas. Clustering of new subjects based on previously generated atlases is studied 

in (O’Donnell & Westin, 2007; X. Wang et al., 2011). These works introduced a new 

perspective of building clustering atlases to enable the WM tract analysis in large scale 

clinical studies (O’Donnell et al., 2013). In this work, we follow this new exciting path to 

design a fully automated TOI extraction framework.

In real life clinical applications, one requires a group wise and longitudinally consistent TOI 

extraction method, so that statistical analyses can be performed subsequently. Moreover, the 

proposed method should be able to cluster the fibers of a new subject adaptively in a way 

that the correspondence with other subjects in the population is automatically established, 
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without rerunning clustering over the whole sample. We propose a clustering framework to 

address all these requirements. There are several methodological contributions of this work. 

First, we use a multinomial fiber representation that relies on the connectivity signatures of 

fibers to establish an easy correspondence between the individual pathways of different 

subjects, while utilizing the neuroanatomical attributes of fibers. Such a representation 

defines a hybrid model, one integrating the anatomical segmentation methods with fiber 

clustering (O’Donnell et al., 2013). Second, we propose the use of a Gaussian Mixture 

Model (GMM) (Bishop, 2006) based group-wise clustering technique that merges clusters of 

individual subjects to generate a fiber bundle atlas. Finally, we use an adaptive formulation 

of the GMM that incorporates the previously generated clustering atlas as a prior, to cluster 

the fibers of a new subject. We demonstrate the applicability, the reliability and the 

repeatability of our approach using the high angular resolution diffusion-weighted imaging 

(HARDI) scans of healthy individuals acquired repeatedly, establishing its use in group and 

longitudinal studies.

2. Material and methods

Here, we explain the proposed clustering framework that enables us to automatically and 

consistently extract any TOI over a large group of individuals. We first introduce the 

connectivity based fiber representation. This representation lets us compare or combine 

fibers of different subjects without utilizing their physical coordinates. Then, a fiber bundle 

atlas is built using the GMM. By generating an atlas, we define a prior model of the fiber 

bundles in the human brain. The space complexity of the atlas generation, which can be high 

due to a large number of subjects and fibers, is decreased greatly by an online version of the 

GMM that provides an incremental training scheme for the atlas building. Finally, an 

adaptive GMM that incorporates the generated atlas as a prior for clustering of the fibers of 

a new subject is introduced, so as to automatically establish the correspondence between the 

bundles of different subjects.

Dataset

Imaging was performed on six healthy male subjects (Age 31.25 ± 4.2 years) at three time 

points separated by two weeks. All participants were carefully screened to ensure that they 

did not have a history of current or prior neuropsychiatric symptomatology. For each subject 

at each time point, a whole brain HARDI dataset was acquired using a Siemens 3T VerioTM 

scanner using a monopolar Stejskal-Tanner diffusion weighted spin-echo, echo-planar 

imaging sequence (TR/TE=14.8s/111ms, 2mm isotropic voxels, b=3000 s/mm2, number of 

diffusion directions=64, 2 b0 images, scan time 18 minutes). A structural image was 

acquired, using an MP-RAGE imaging sequence (TR/TE/TI = 19s/2.54ms/.9s, 0.8mm in 

plane resolution, 0.9mm slice thickness) to facilitate the tissue segmentation. We generated a 

gray matter (GM) parcellation for each HARDI scan including 95 GM regions, by applying 

FreeSurfer to the corresponding T1 image (Desikan et al., 2006), which is used for the 

connectivity measurements. We used Camino package (Cook et al., 2006) both for 

tractography and connectivity analysis.
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Connectivity Based Fiber Representation

Existing fiber representations mostly encode information on the geometric attributes of 

fibers by treating them as sampled 3D curves (Maddah et al., 2008; O’Donnell et al., 2006). 

Abstraction of those geometric features into other mathematical objects such as Gaussian 

processes (Wassermann et al., 2010) or Gaussian mixture models (Liu et al., 2012) has been 

practiced to extract more reliable shape information. While using high level shape 

information such as length and curvature may alleviate the dependence on the physical 

coordinates, such representations can only provide geometric features without incorporating 

any information related to the diffusion data such as connectivity and integrity, limiting the 

interpretability of the selected representation.

Analyzing fiber bundles across individuals or groups to identify the personal characteristics 

or the group differences requires a reliable fiber correspondence among different subjects. 

This is a very challenging task since it is not possible to compare fibers having different 

coordinate systems without registering them. We address this problem by using the 

connectivity signatures of fibers, by building on our formulation in (Tunç et al., 2013).

The multinomial connectivity signature of a fiber is a collection of voxels that it traverses 

and their corresponding probabilistic connectivity signatures. We start with defining a 

parcellation of the brain into regions (Gi), e.g. important cortical regions, by mapping an 

anatomical atlas including these regions to each subject. In our experiments, we used 

FreeSurfer to parcellate the brain into 95 regions (Desikan et al., 2006). Then, the 

connectivity signature μ(x) of each voxel x is defined as the collection of the connection 

probabilities of the voxel to these regions Gi, resulting in an M dimensional multinomial 

vector, where M is the number of regions.

(1)

Each posterior probability p(Gi|x) is first calculated by counting the number of fibers passing 

through the voxel x and finally connecting to the region Gi. Then, the values are normalized 

for each voxel so as to sum to 1.

Then, a fiber is naturally represented by a matrix having the connectivity vectors μ(x) as its 

rows or columns. An illustrative example for a fiber selected from the corpus callosum is 

given in Figure 1. As expected, the matrix clearly favors two regions, namely the ones at the 

ends of the fiber. The main intuition behind the probabilistic representation is the 

enhancement of the results of tractography with the notion of uncertainty. This enhancement 

is especially helpful in fiber clustering as it affords additional information for separating 

fibers with respect to using only the two regions marking the ends of the fiber.

The matrix representation of fibers may introduce complexities with fiber clustering since 

we need either to define a proper metric for fibers of varying lengths or to introduce an extra 

fiber parameterization step to have equal lengths fibers. Hence, instead of working with the 

matrix representations, we take weighted average over voxels to have a compact 

representation of a fiber. We define different weights over voxels to emphasize the 
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contributions of the specific voxels such as endpoints (Tunç et al., 2013). Similar to the 

approach used in (Q. Wang et al., 2010), we use a weight function that assigns higher 

weights to the endpoints and symmetrically decreases towards the center. Finally, each fiber 

f is represented by a single multinomial vector

(2)

where the posterior probability p(Gi|f) is calculated by averaging over voxels of the fiber f 

and then by normalizing so as to sum to 1. Using the multinomial representation of fibers 

and the GMM as the clustering algorithm, we are able to define a clustering framework that 

produces highly consistent fiber bundles for a large group of individuals. We elaborate the 

clustering approach in the next two sections.

Fiber Bundle Atlas

When clustered individually, fiber bundles of different subjects are mostly incompatible due 

to the subject specific characteristics of fibers. Figure 2 illustrates this behavior for 

clustering of the corpus callosum of four subjects when the GMM is employed as the 

clustering algorithm. Especially, the splenium and the body of the corpus callosum are 

clustered differently, hindering meaningful correspondences and hence comparison across 

subjects.

To assure the correspondence among subjects, we assume that each subject is an 

independent observation from the underlying common bundle model i.e. an atlas of fiber 

bundles. The easiest way to define such a fiber bundle atlas is merging fibers of all subjects 

and clustering over the combined set. The resulting GMM is a parameterization of the atlas, 

with each Gaussian representing a common fiber bundle. This approach can be applied 

easily to the multinomial representation (see section Connectivity Based Fiber 

Representation) since it does not require registration of fibers. Figure 3 shows the fiber 

bundles of the subjects that were used in Figure 2, after combining fibers and clustering over 

the combined set. The anatomical parcellation of the corpus callosum as provided in (Hofer 

& Frahm, 2006) is also illustrated in Figure 3 for comparison purposes. We initially 

clustered the corpus callosum into twenty clusters then labeled the clusters to get the best 

correspondence to the anatomical division.

When compared to Figure 2, we see a substantial improvement in consistency between fiber 

bundles of subjects in Figure 3. However, combining fibers of all subjects poses some 

challenges. First of all, individual differences may be suppressed. This hinders capturing any 

important anomaly in the group. Second, this procedure is space intensive as thousands 

(even millions) of fibers will be combined. A common approach to get around this problem 

is using sampling or multi-scale approaches to decrease the amount of pairwise distance 

calculations between fibers (Guevara et al., 2011; O’Donnell & Westin, 2007; Visser et al., 

2011).

Here, we address these problems after elaborating some notations that will be used 

throughout this article. When using the GMM for clustering, it generates a set of Gaussian 
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distributions parameterized by (μi, Σi, πi), i = 1 …C, where C is the number of clusters in 

the mixture. Here, μi is the mean vector (the mean connectivity signature of the fibers 

assigned to the ith cluster), Σi is the covariance matrix, and πi is the prior of this cluster (the 

ratio of the number of the fibers assigned to this cluster over the total number of fibers of the 

subject). Each distribution corresponds to a cluster and therefore a fiber bundle. Each fiber f 

that is represented by the multinomial vector F (equation 2) is assigned to the ith bundle by 

the posterior probability p(i|F, μi, Σi, πi).

(3)

where the probability, p(F|μi, Σi) is the likelihood of the multivariate normal distribution 

parameterized by (μi, Σi).

We use an online version (i.e. incremental training scheme) of the GMM as defined in (Song 

& Wang, 2005) to decrease the space complexity of the atlas generation, which allows 

building the atlas incrementally by merging fiber bundles of subjects. We implemented two 

modifications in the original algorithm of (Song & Wang, 2005). First, a new distance 

measure between fiber bundles is used and second, a new decision step for merging bundles 

is introduced. The proposed online GMM algorithm is detailed in Table 1. Each subject is 

clustered individually, then fiber bundles are merged to generate a joint GMM. Given any 

two subjects, their fiber bundles are merged when the Fréchet distance (Dowson & Landau, 

1982) between them is lower than a threshold; otherwise, both bundles are directly added to 

the combined model. The final joint GMM consists of the merged bundles and the remaining 

single bundles of both subjects. The Fréchet distance between two multivariate normal 

distributions D1 and D2 is defined as

(4)

The merger of the bundles is performed by calculating a new mean vector, a covariance 

matrix, and a prior probability using the following formulas.

(5)

In the above equations, N1 and N2 are the total number of fibers in the datasets of the 

subjects. The jth bundle of the first subject is merged with the kth bundle of the second 

subject to generate a new bundle characterized by (μ̂, Σ̂, π̂). π1j and π2k are the prior 

probabilities of the bundles in their GMMs, hence the quantities N1 π1j and N2 π2k give the 

number of fibers in the bundles j and k, respectively. For each remaining bundle that is not 

merged, its new prior probability in the joint G MM is calculated as π̂ = N1 π1i/(N1 + N2) if 

it comes from the first subject and π̂ = N2 π2i/(N1 + N2) otherwise.
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Once the atlas is generated by either combining fibers of all subjects or using the online 

GMM, the resulting fiber bundles (clusters) are visually inspected and assigned labels 

indicating the WM structures that they belong to. This guarantees the automatic labeling of 

the bundles of a new subject that is clustered using Adaptive Clustering (explained in 

section Adaptive Clustering).

Adaptive Clustering

The clustering atlas defines a common model for the fiber bundles of the human brain. Once 

the fiber bundles in the atlas are annotated, any TOI can be extracted simultaneously for all 

subjects since the TOI will be represented by the same Gaussian distribution(s) both in the 

atlas and in the fiber bundles set of any subject that is clustered adaptively using the atlas as 

a prior model.

We use the adaptive GMM (Reynolds et al., 2000) method, which is a well known 

technique, commonly employed in the speech recognition literature. The usual way to 

estimate the parameters of a GMM is using the EM algorithm to maximize the data 

likelihood (Bishop, 2006). When we want to introduce a prior model (bundle atlas) into 

clustering, the maximum a posteriori (MAP) parameter estimation (Reynolds et al., 2000) is 

used instead of EM. Given a new subject with a set of fibers {F1, F2, …, FN}, after clusters 

are initiated by the parameterization of the atlas, the following quantities are estimated in the 

expectation step.

(6)

The posterior probability p(i|Fn, μi, Σi, πi) is calculated by equation (3). Then, in the 

maximization step, the estimates for the parameters are adapted to the atlas as follows.

(7)

where the parameters (μTi, ΣTi, πTi) characterize the ith cluster of the atlas. The parameters 

λπ, λμ, and λΣ, with values between 0 and 1, control the tradeoff between the individual 

specifications of the subject and the compatibility to the atlas. Note that, πi must be 

normalized so as to sum to 1, after being calculated for all clusters. Figure 4 shows the fiber 

bundles of two test subjects when using Adaptive Clustering. The atlas that is generated by 

merging four scans (see Figure 3) is used. It is clear that Adaptive Clustering provides high 

consistency across fiber bundles of subjects.
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3. Results

We performed experiments to demonstrate the applicability, the reliability and the 

repeatability of our approach using the HARDI scans of six healthy individuals each having 

three scans acquired at different time points. With investigations provided below, we 

validate the applicability of the framework to group and longitudinal studies to extract TOIs 

consistently across subjects.

Validation of Adaptive Clustering

We first demonstrate that the adaptive GMM model defined in the previous sections 

provides an increased correspondence among fiber bundles of different subjects or time 

points. Two subjects were selected as the test data and the remaining data corresponding to 

four subjects were used for the atlas generation. A single time point of each of the four atlas 

subjects was selected randomly. The data acquired at all three time points of the two test 

subjects were clustered adaptively using the generated atlas. Fibers from the whole brain 

tractography were used for this experiment. The intra-person distances (the distance between 

the fiber bundles of different time points of the same subject) and the inter-person distances 

(the distance between the fiber bundles of different subjects) were calculated. When 

calculating the average distance between two clustering results, the fiber bundles of the 

subjects/time points were first matched using a linear assignment algorithm (Kuhn, 1955), 

then the average of the Fréchet distances between the matched bundles was computed. This 

experiment was repeated 100 times with the test and the atlas subjects/time points being 

selected randomly. The average intra- and inter-person distances were compared to those 

that are calculated when Adaptive Clustering is not used. Figure 5 illustrates the effect of 

Adaptive Clustering. When Adaptive Clustering is used, both the intra- and the inter-person 

distances decrease to a great degree, as expected. To provide a better interpretation of the 

Fréchet distances, we also provided a baseline distance (the black line in Figure 5), by 

running a single GMM repeatedly with random initializations and calculating the distances 

between different runs. The baseline distance therefore defines an approximate lower limit 

that can be achieved, since we used random initializations in all experiments.

Invariance to Changing the Atlas Subjects

The repeatability of the framework was tested by fixing a randomly selected test subject and 

changing the atlas subjects repeatedly. None of the data acquired at any time point of the test 

subject were used in the atlas generation. The test subject was adaptively clustered, each 

time by a different atlas and the distances between clustering results were calculated by the 

Fréchet distance. The experiment was repeated with different number of clusters and atlas 

sizes (i.e. the number of subjects/time points used during the atlas generation). Only fibers 

seeded from the selected white matter regions, namely the corpus callosum, the corticospinal 

tract, the cingulum bundle, and the superior longitudinal fasciculus were used for this 

experiment. Figure 6 shows results of the repeatability experiments. As we increase the atlas 

size, the effect of changing the atlas subjects decreases.

The repeatability of the framework is illustrated, this time qualitatively, in Figure 7. For two 

test subjects, atlases were built three times by randomly changing the atlas subjects. Each 
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time, four subjects out of the possible five subjects (excluding the subject that is used for 

testing) were selected with one dataset acquired at a single time point. The corpus callosum 

is clustered into twenty clusters, same as Figure 3 and Figure 4. The visual presentation in 

Figure 7 together with the quantitative analysis in Figure 6 demonstrates the high tolerance 

of Adaptive Clustering to changing the atlas subjects.

Reliability of the Online GMM

The online version of the GMM is proposed to decrease the high space complexity caused 

by combining fibers of all subjects during the atlas generation. We hypothesize that 

clustering results of an incremental training approach will be very similar to those that are 

generated by simply combining fibers. This assumption was validated by comparing the 

results of the traditional GMM and the online GMM. For this experiment, a test subject was 

adaptively clustered, first using the atlas that is generated by combining fibers of all atlas 

subjects, and then using the atlas provided by the incremental approach. None of the data 

acquired at any time point of the test subject was used in the atlas generation. The distances 

between the generated atlases and the fiber bundles of the test subject were calculated. The 

experiment was repeated 100 times with the test and the atlas subjects/time points being 

selected randomly. Figure 8 shows the calculated distances. In general, the difference in 

clustering results that are caused by using the incremental approach instead of combining 

fibers of all subjects, is as low as the difference that is caused by changing the atlas subjects 

(compare to Figure 6). Thus, the incremental training can be used to decrease the space 

complexity of the atlas generation without introducing critical differences in clustering 

results.

Application for TOI Extraction

Finally, Figure 9 and Figure 10 show two successful applications of the proposed framework 

in group-wise consistent TOI extraction. Both experiments were performed using the whole 

brain tractography. An atlas was generated using four subjects and their data acquired at a 

single time point. Then, the data corresponding to all three time points of two test subjects 

were clustered adaptively. Figure 9 shows the association tracts (the inferior fronto occipital 

fasciculus, the inferior longitudinal fasciculus, the arcuate fasciculus, and the uncinate 

fasciculus) and the internal capsule for the two test subjects, selected automatically after 

being annotated in the atlas once. The atlas was generated by using the online GMM. For 

each atlas subject the number of clusters was fixed as 200. This number was determined 

empirically, which is large enough to catch important sub-bundles of the WM tracts. The 

threshold for merging the clusters was determined as 0.23 (Fréchet distance). The final 

number of clusters as determined automatically (see Table 1) was 327. Figure 9 shows all 

327 clusters of an atlas subject together with the selected TOIs. The consistency between the 

fiber bundles of the test subjects and the atlas is very promising, showing the feasibility of 

the proposed framework.

In Figure 10, two automatically extracted TOIs, namely the cingulum bundle and the arcuate 

of one of the test subjects are compared with those that are extracted manually with the 

inclusion and exclusion ROIs drawn by experts. Two experts extracted TOIs for the three 

time points of the test subject. Figure 10 provides a visual insight into the agreement 
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between experts and the clustering approach. As visual inspection shows, the proposed 

framework is successful in extracting WM tracts that are very similar to those drawn by 

experts with placement of the inclusion and exclusion ROIs that vary between experts. To 

provide a quantification of the agreement, the Sørensen Dice (SD) index (Dice, 1945; 

Sørensen, 1948) was used. When comparing two results (e.g. the arcuate by clustering vs. 

the arcuate by expert drawing), the SD index is calculated by 2c/(n1 + n2), where c is the 

overlapping tract volume (number of voxels) covered by both results and n1, n2 are the 

volumes for individual results. The SD index takes values in the interval [0,1], where 1 

means a complete agreement. For the cingulum bundle, the average agreement between the 

clustering approach and experts was 0.81 while the average agreement between the experts 

was 0.89. Both agreement levels decrease significantly for the arcuate as seen in Figure 10, 

with a SD index of 0.62 between the clustering approach and experts and 0.73 between the 

experts. We also quantified the reproducibility of the expert results by calculating the SD 

index for their repeated drawings. The same cingulum bundle (single subject, single time 

point) was drawn three times separated by 1–2 days. For the first expert, the average SD 

index was 0.93, and 0.85 for the second one, yielding an average SD index of 0.89. This 

gives an intuition of the limits on the reproducibility of a single tract when drawn by experts 

repeatedly. When using Adaptive Clustering on the same fiber set repeatedly, the SD index 

is necessarily 1 (ignoring the slight variations caused by the EM algorithm). Together with 

the fact that the results that are provided by the proposed framework are reliable enough to 

perform a population study, this suggests that the proposed framework can ably assist 

experts in the clinical studies.

4. Discussion

We have proposed a framework for the group-wise consistent clustering of fibers. A fiber 

clustering atlas is generated by clustering over the combined fibers of all subjects from a 

healthy sample. The combination of fibers of different subjects is achieved by defining a 

multinomial representation for the WM fibers that uses the underlying connectivity 

information. Then, a new subject is clustered adaptively by taking the atlas as a prior model. 

Adaptive Clustering grants an automated correspondence among fiber bundles of different 

subjects, each “adapted” from the same atlas.

The main contribution of the framework is a new fiber representation and clustering 

approach to automate TOI extraction for large groups of subjects, such that the extracted 

tracts have a correspondence established automatically. For any study dealing with group 

differences or longitudinal analyses over WM tracts, this is critical such that a joint 

comparative analysis can be performed. The unsupervised nature of fiber clustering 

eliminates the need for manually drawing any inclusion or exclusion ROI to define the TOI 

after tractography. Similarly, the determination of proper seed points to establish a clean and 

complete reconstruction of the TOI is not required. Human intervention is needed only for 

labeling the bundles in the atlas; however, this is not a limiting feature since it enables us to 

define the TOIs with any precision we want.

Another important advantage of a clustering based approach over the MROI-based 

techniques is the ability to select the sub-bundles of large WM tracts in a very precise 
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manner by controlling the number of clusters. For instance, when working with superior 

longitudinal fasciculus (SLF), a well formulated clustering scheme can extract SLF-I, SLF-II 

and SLF-III separately due to their different shapes or, as in our case, connectivity 

signatures. This improvement is essential for very large WM tracts such as the corpus 

callosum due to the effective heterogeneity in their neuroanatomical functioning. The usual 

way to study the corpus callosum is to segment it using an anatomical, geometrical, or 

histological parcellation. The clustering of the corpus callosum as illustrated in Figure 3, 

Figure 4, and Figure 7 is very similar to the anatomical segmentation of (Hofer & Frahm, 

2006). The ability to pinpoint the sub-bundles helps facilitate a detailed analysis of these 

tracts, as the sub-bundles are also in correspondence between subjects. Measures computed 

over these sub-bundles have greater specificity in identifying differences between subjects, 

than when the measures are computed over larger, more heterogeneous WM tracts.

The number of clusters, in the current formulation, is determined in a semi-automated way. 

When using the online GMM, the number of clusters for each subject is fixed manually. 

Then, depending on the merger threshold (see Table 1), the final number of clusters in the 

atlas, and consequently for test subjects, is determined automatically. The initial number of 

clusters as well as the threshold may change the resolution of the final result. One useful 

heuristic is to keep the initial number of clusters large enough to catch every meaningful 

sub-bundle of the important WM tracts. A large number of clusters does not increase the 

effort as labeling of the clusters is done only once for the atlas. Nevertheless, using a 

Bayesian approach may contribute with fully automating the task (X. Wang et al., 2011).

The reproducibility of clustering results is critical for the most group and longitudinal 

studies. Considering the fact that the bundle atlas is prepared using the selected subjects, we 

expect that the results of Adaptive Clustering to not change substantially when we change 

these subjects. This expected repeatability is validated both quantitatively and qualitatively 

in Figure 6 and Figure 7, respectively. On comparing the Fréchet distances in Figure 6 with 

those of Figure 5, we observe that changing the atlas subjects causes a difference in 

clustering results, that is as low as the difference between the fiber bundles of different time 

points of a single subject. As we increase the number of subjects used in atlas building, the 

robustness of the atlas improves while the total inter-subject variability increases due to 

broader anatomical variation. This nonlinear behavior will be studied thoroughly as a future 

work to demonstrate the effects of changing atlases over larger samples.

The challenge of space complexity in generating the atlas is resolved by use of the online 

GMM, that provides an efficient clustering strategy. Experiments using the online GMM for 

the atlas generation showed (Figure 8) that incremental training approaches can be used 

instead of simply combining fibers of all subjects to generate an atlas, without causing a 

critical difference in the generated atlas or in clustering of a test subject. However, the 

difference between the atlases that are generated by the traditional GMM and the online 

GMM tends to increase as we increase the number of subjects used in the atlas generation. 

This fact defines an important tradeoff. We need to increase the number of subjects used in 

the atlas to make the resulting atlas a good representative of the sample (Figure 6). On the 

other hand, the increase in the number of subjects reduces the reliability of the incremental 
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approach (Figure 8). We are planning to improve our strategy to decrease the space 

complexity in the future.

The inter- and the intra-subject differences in Figure 5 illustrate a promising aspect of the 

framework. Adaptive Clustering noticeably decreases both type of differences. Such a 

decrease in the difference of clustering results is the key element of the framework that 

affords group-wise consistent TOI extraction. Additionally, the fact that the intra-person 

differences are lower than the inter-person differences after Adaptive Clustering, provides us 

with possibilities of personalized applications. For instance, person specific WM integrity 

measures along a TOI can be calculated and compared to the distribution of the whole 

sample since the distinction between the typical (i.e. specific to the group) and the individual 

(i.e. specific to the person) attributes is preserved.

Two successful applications of the framework were demonstrated with the whole brain 

tractography. For both experiments, four subjects were used for the atlas generation. The 

fiber bundles of the generated atlas were annotated once. Then by using the atlas as a prior 

model, the data corresponding to two remaining test subjects were clustered adaptively. 

Owing to the automated nature of the bundle correspondence between the novel subjects and 

the atlas, the TOIs of the test subjects were extracted automatically, without any manual 

intervention. Several WM tracts of the test subjects are illustrated in Figure 9 and Figure 10, 

demonstrating the notable success of the framework in automated TOI extraction. In the 

absence of histology, tracts drawn by experts were considered as “groundtruth”. The 

comparison of the results of Adaptive Clustering with groundtruth was provided in Figure 

10. The visual comparisons suggest a promising overall agreement between experts 

drawings and the results of the clustering approach, which was also quantified by Sørensen 

Dice (SD) index. Two cases were investigated, one with a low agreement (the arcuate) and 

one with relatively higher agreement (the cingulum bundle). The main body of the TOI was 

extracted successfully in both cases while several fiber pathways were mistakenly excluded 

or included by the proposed framework that is mainly due to the unsupervised nature of 

clustering, or by experts due to slight differences in the ROI placement (see Figure 9). In the 

absence of histology it is difficult to reach an agreement on the complete set of individual 

fibers. The differences could also be as a result of the way in which the atlas was generated 

since the tracts were labeled manually in the atlas. The imperfect agreement between the 

repeated drawings of experts demonstrates the indeterminacy of the WM fiber bundles, that 

always introduces uncertainty and thereby disagreement between any two methods of TOI 

extraction. Any future improvement, we believe, requires an investigation into atlas 

generation and subsequent improvements in fiber representation.

There are three sets of investigations that could be performed in the future. The first type of 

investigation can be identified as analyzing the effect of the ROI parcellation on the 

multinomial fiber representation. The probabilistic representation of fibers is identified by 

the selected cortical regions, which are used when the connectivity signature of a fiber is 

computed (see equations 1 and 2). Therefore, a set of empirical investigations will be carried 

out in the future, to study the effect of the ROI parcellation. Similarly, pros and cons of 

using a hierarchical clustering approach that will utilize a different representation at each 

level can be explored. A second future direction is performing more studies on features of 
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clustering atlases. The generalizability of atlases based on scanner parameter changes, 

differences in tractography techniques, and the effect of gender or age could be analyzed. 

Finally, the method will be used to extract the WM tracts in a population with a pathology 

that affects the connectivity such as neuropsychiatric disorders and brain tumors. As the 

effects of these diseases on the connectivity and the geometric features can be critical, a 

method that extracts WM tracts automatically will be beneficial for the tract-based 

investigation of the pathology.

The proposed study should be considered as a generic framework that can be employed with 

changing components. For instance, the connectivity based fiber representation can be 

replaced by any other representation such as the usual geometrical ones, as long as fibers of 

all subjects are registered to a common template. Similarly, different models of clustering 

can be utilized instead of using the online GMM for atlas generation. Another possibility is 

using an atlas that is generated by the MROI techniques, even though such an approach is 

computationally intensive.

5. Conclusions

A framework for automatic group-wise consistent TOI extraction is designed and presented. 

The framework introduces three main components, namely a connectivity based fiber 

representation, a fiber clustering atlas, and Adaptive Clustering technique. The connectivity 

based fiber representation encodes the connectivity signatures of fibers. The clustering atlas 

is generated from a set of subjects, by merging fiber bundles of individuals. Finally, a new 

subject is clustered adaptively by incorporating this atlas as a prior model. The final 

achievement is the consistency among fiber bundles of subjects of large groups and 

automating TOI extraction.

The sensitivity and the specificity of tract extraction is assessed by its application to the 

dataset including the HARDI scans of healthy individuals acquired repeatedly. The results of 

our experiments have established the use of Adaptive Clustering in group and longitudinal 

studies to select TOIs that could be used for subsequent statistical analyses. The 

correspondence between fiber bundles of different subjects and time points are examined 

both quantitatively and qualitatively. The repeatability of tract extraction is validated by 

empirical investigations by changing the atlas subjects.

We believe that the future applications of the framework with possible improvements on the 

fiber representation and the atlas generation will enable new studies concentrated on the 

specific WM tracts, and even on their sub-bundles that could not be extracted in an 

automated manner before.
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Highlights

• Designed a framework for automated extraction of fiber tracts.

• Defined a fiber bundle atlas to introduce a prior model of clustering.

• Employed bundle atlas to cluster new subjects adaptively.

• Defined an automatic correspondence across tracts of large sets of subjects.

• Performed experiments on a HARDI dataset of healthy individuals.
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Figure 1. 
The illustration of the process to generate the connectivity based fiber representation. (1) 

The multinomial representation for a single fiber. The matrix is prepared by stacking 

connectivity vectors, corresponding to each voxel, as its rows. (2) The compact 

representation of the fiber is generated by averaging over voxels. (3) The same procedure is 

repeated for each fiber, resulting in a matrix representation of the bundle.
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Figure 2. 
The clusters of the corpus callosum for four subjects when each subject is clustered 

individually. The difference in clustering hinders reliable correspondence and hence 

comparison across the bundles of the subjects. The colors do not represent correspondence 

among bundles.
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Figure 3. 
The clusters of the corpus callosum for the same set of subjects that are displayed in Figure 

2 with clustering being run over the combined set of fibers collected from all subjects. The 

third column shows the anatomical parcellation (Hofer & Frahm, 2006) of the corpus 

callosum, as the proposed ground truth to be compared against. The colors are used to 

represent the correspondence across subjects that was achieved automatically.
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Figure 4. 
The clusters of the corpus callosum for two test subjects. Subjects are clustered adaptively, 

using the atlas displayed in Figure 3 as a prior model. The correspondence between the test 

and atlas subjects is noticeable (compare to Figure 3).
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Figure 5. 
The effect of Adaptive Clustering on the correspondence across fiber bundles. The average 

Fréchet distances were computed between the matched bundles of different subjects (inter) 

and different time points of a single subject (intra). The baseline distance is calculated by 

running a single GMM with different random initializations to illustrate an approximate 

lower bound for the Fréchet distance. Adaptive Clustering clearly decreases the average 

Fréchet distance, in both cases with the inter- and intra- subject comparisons.
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Figure 6. 
The effect of changing the atlas subjects for Adaptive Clustering. A fixed test subject was 

clustered using several atlases, each built with different subjects, and the average Fréchet 

distances were computed between the matched bundles. The baseline distance is calculated 

by running a single GMM with different random initializations to illustrate an approximate 

lower bound for the Fréchet distance. As we increase the atlas size, the robustness to 

changing the atlas subjects also increases.
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Figure 7. 
Clustering of the corpus callosum for two different subjects (top and bottom), each repeated 

three times by changing the atlas subjects. Each row shows the within subject variation of 

clustering results for a single subject while between subjects consistency is presented in the 

columns. The within subject variation is minimal for both subjects, showing promising 

robustness to changing the atlas subjects.
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Figure 8. 
The difference between using the traditional GMM and the online GMM to build an atlas. A 

test subject is clustered adaptively using two atlases generated by these two approaches. The 

average Fréchet distances both between the generated atlases and between the fiber bundles 

of the test subject are given. The size of the atlas is given in parenthesis. The baseline 

distance is calculated by running a single GMM with different random initializations to 

illustrate an approximate lower bound for the Fréchet distance. The difference between the 

results of traditional and online GMMs increases as the atlas size increases. This introduces 

a tradeoff between the reliability of the online GMM and the generalizability of the resulting 

atlas.
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Figure 9. 
The application of Adaptive Clustering for group-wise consistent TOI extraction. The first 

row shows an atlas subject with all 327 clusters and selected WM tracts. Results for two test 

subjects are shown in the second and the third rows. The bundles (all from left hemisphere) 

corresponding to the internal capsule, the inferior fronto occipital fasciculus, the inferior 

longitudinal fasciculus, the arcuate fasciculus, and the uncinate are shown. It can be seen 

that while the fiber bundles are comparable, the individual variability is maintained.
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Figure 10. 
Comparison of the results of clustering with the manual reconstructions by experts. Results 

for the arcuate and the cingulum bundles of a single subject and three time points (columns) 

are given. For each bundle, the first row shows the results with clustering and other two with 

the expert drawings. Visual evaluation shows a big overlap between results.
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Table 1

Algorithm of the online GMM.

Given a set of subjects = {S1, S2, …, SL}, the number of clusters C, and the distance threshold τ,

1 Cluster all subjects individually and parameterize results as (μij, Σij, πij), i = 1 …L; j = 1 …C

2 Define S1 as the initial atlas, T ≡ S1 and Ĉ = C; (μTj, ΣTj, πTj), j=1…Ĉ

3 For subjects i = 2…L

a. Calculate distances (djk) between all pairs of bundles (μTj, ΣTj) and (μik, Σik) using the Fréchet distance (equation (4))

b. Match the bundles of T and Si using the Hungarian algorithm (Kuhn, 1955)

c. If the distance djk between the matched bundles j and k is lower than τ, merge them using equations (5); add the 
resulting bundle as the jth bundle of the atlas

d. Otherwise, add the bundle k directly to the atlas as a new bundle and update Ĉ, (Ĉ = Ĉ + 1)

4 Apply steps 3[a-d] to the bundles of the final atlas to merge any similar bundles
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