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Abstract

Proteomic and imaging markers have been widely studied as potential biomarkers for diagnosis, 

monitoring and prognosis of Alzheimer’s disease. In this study, we used Alzheimer Disease 

Neuroimaging Initiative dataset and performed parallel independent component analysis on cross 

sectional and longitudinal proteomic and imaging data in order to identify the best proteomic 

model for diagnosis, monitoring and prediction of Alzheimer disease (AD).

We used plasma proteins measurement and imaging data from AD and healthy controls (HC) at 

the baseline and 1 year follow-up. Group comparisons at baseline and changes over 1 year were 

calculated for proteomic and imaging data. The results were fed into parallel independent 

component analysis in order to identify proteins that were associated with structural brain changes 

cross sectionally and longitudinally. Regression model was used to find the best model that can 

discriminate AD from HC, monitor AD and to predict MCI converters from non-converters.

We showed that five proteins are associated with structural brain changes in the brain. These 

proteins could discriminate AD from HC with 57% specificity and 89% sensitivity. Four proteins 

whose change over 1 year were associated with brain structural changes could discriminate AD 

from HC with sensitivity of 93%, and specificity of 92%. This model predicted MCI conversion to 

AD in 2 years with 94% accuracy. This model has the highest accuracy in prediction of MCI 

conversion to AD within the ADNI-1 dataset. This study shows that combination of selected 

plasma protein levels and MR imaging is a useful method in identifying potential biomarker.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Emerging 

diagnostic techniques using multiple imaging modalities have contributed tremendously to 

our knowledge of the disease in recent years (Perrin et al., 2009), but AD’s pathophysiology 

still remains largely elusive. Emerging disease-modifying strategies for AD necessitate 

accurate biomarkers for early diagnosis, monitoring and prognosis more than ever before. 

Magnetic resonance imaging (MRI) measures have been shown to predict conversion of 

mild cognitive impairment (MCI) to AD (deToledo-Morrell et al., 2004; Jack et al., 1999; 

Risacher et al., 2010; Whitwell et al., 2008) and cognitive decline in elderly (Mungas et al., 

2002; Rusinek et al., 2003). Similarly proteomic indices have been shown to have diagnostic 

value in AD (Britschgi and Wyss-Coray, 2009; Hye et al., 2006; Ray et al., 2007) and predict 

MCI conversion to AD (Ray et al., 2007). There are potential advantages of proteomics over 

imaging as biomarkers in AD. For example, a recent study on familial AD estimated that 

changes in Aβ amyloid and tau protein levels may occur 5 years before brain atrophy is 

detectable in MRI (Bateman, 2012). A group of investigators recently used multivariate 

approach for analysing proteomic profile in Alzheimer's Disease Neuroimaging Initiative 

(ADNI) dataset and found that apoE, B-type natriuretic peptide, C-reactive protein, and 

pancreatic polypeptide are significantly different between MCI and AD group (Hu et al., 

2012). They also showed that CSF Aβ42 levels and t-tau/Aβ42 ratios correlated with the 

number of apoE4 alleles, plasma levels of B-type natriuretic peptide and pancreatic 

polypeptide (Hu et al., 2012). However it is not clear if any of these proteins are associated 

with changes in the brain, as they did not use any imaging data in their analysis.

Combining imaging markers with proteomics (i.e. Imaging Proteomics) provides an 

opportunity to identify proteins that are specifically associated with changes in the brain 

(Mattay et al., 2008; Meyer-Lindenberg and Weinberger, 2006). In addition, this approach 

may provide further mechanistic insights into pathophysiological mechanisms of AD, which 

in turn could serve as new targets for therapeutic strategies (Britschgi and Wyss-Coray, 

2009).

Data mining in a large dataset with many different variables is prone to the problem of over 

fitting, and is all the more challenging due to the within-modality correlations with mass 

univariate techniques (Pearlson, 2009). Simply reducing the number of features considered 

does not necessarily address the problem, as the relationship between variables may also 

provide crucial information; for example, the discovery of Metabolic Syndrome X (Eckel et 

al., 2005) was based on a set of closely correlated physiological variables.

Parallel independent component analysis (PICA) greatly diminishes this methodological 

problem (Liu et al., 2008). PICA is an unsupervised multivariate algorithm to extract 

independent within-modality patterns with strongest between-modality connections when 
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more than one modality is available. The intermodal associations between resulting 

components are then further identified and quantified. These components can be later 

compared on a component-wise basis between experimental groups. PICA has been applied 

widely in neurosciences research such as assessing relationships between 

electroencephalography (EEG), structural and functional MRI (fMRI), with single-

nucleotide polymorphism (SNP) array (Jagannathan et al., 2010; Liu et al., 2009a; Liu et al., 

2009b), EEG with fMRI (Wu et al., 2010) and positron emission tomography (PET) with 

structural MRI (Tosun et al., 2011). Here, we used PICA to explore the relationship between 

structural MRI data and proteomics in ADNI dataset. The goal was to determine proteins 

that were associated with brain structural changes and therefore could have potential value 

as biomarkers for diagnosis and monitoring AD as well as predicting MCI conversion to 

AD.

Methods

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative database (adni.loni.ucla.edu). The ADNI was launched in 2003 by 

the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year public-private partnership. 

The primary goal of ADNI has been to test whether serial MRI, positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. 

Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative 

is Michael W. Weiner, MD, VA Medical Center and University of California – San 

Francisco. ADNI is the result of efforts of many co-investigators from a broad range of 

academic institutions and private corporations, and subjects have been recruited from over 

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but 

ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols have 

recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of 

cognitively normal older individuals, people with early or late MCI, and people with early 

AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 

and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to 

be followed in ADNI-2. For up-to-date information, see www.adni-info.org. Here, we used 

ADNI-1 and ADNI Plasma QC Multiplex Data.

Subjects

The eligibility criteria for the inclusion of participants are described at: http://

adni.loni.ucla.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf. 

Subjects are divided into the following groups:

Healthy Controls (HC): Mini-Mental State Examination (MMSE) scores between 24-30, 

Clinical Dementia Rating (CDR) of 0, non-depressed and non-MCI.
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MCI subjects: MMSE scores between 24-30, with memory complaint, objective memory 

loss measured by education adjusted scores on Wechsler Memory Scale Logical Memory II, 

a CDR of 0.5, no significant levels of impairment in other cognitive domains, and preserved 

activities of daily living.

Mild AD subjects: MMSE scores between 20-26, CDR of 0.5-1.0, meeting NINCDS/

ADRDA criteria for probable AD (McKhann et al., 1984).

In this study, we chose AD and HC subjects from ADNI database who had baseline and 12-

month-follow-up plasma proteins measurement and had pre-processed quality checked 

structural MRI data. For the MCI patients, only those who had baseline plasma proteins 

levels and had been followed up for at least two years were selected (n=300), of whom 110 

subjects converted to AD during the follow up period.

Targeted Multiplex Proteomics

Procedure of plasma protein data collection and measurement is explained in detail 

elsewhere (http://adni.loni.ucla.edu/wp-content/uploads/2010/11/

BC_Plasma_Proteomics_Data_Primer.pdf). In brief, plasma proteins were measured in a 

subset of EDTA plasma samples (obtained in the morning following an overnight fast) at 

baseline and 1 year follow up, using a 190 analyte multiplex immunoassay panel. The panel, 

referred to as the human discovery map, was developed on the Luminex xMAP platform by 

Rules-Based Medicine (RBM) to contain proteins previously reported in the literature to be 

altered as a result of cancer, cardiovascular disease, metabolic disorders, and inflammation. 

In addition, RBM partnered with Satoris (Inc., California, USA) to include plasma proteins 

previously reported to change in patients with Alzheimer’s disease (Ray et al., 2007). Assays 

have been qualified based on the least detectable dose, precision, cross-reactivity, dilutional 

linearity, and spike recovery. Results of analyses on 148 analytes, which passed quality 

control, were used in this study.

MRI Acquisition and Preprocessing

High-resolution T1-weighted MRI scans were acquired on 1.5 Tesla MRI scanners from 

Siemens, General Electric Healthcare, and Philips Medical Systems with the standard ADNI 

MRI protocol (Jack et al., 2008). Each subject was scanned with a sagittal 3D MP-RAGE 

sequence, with acquisition parameters: inversion time (TI)/repetition time (TR): 1000/2400 

ms; flip angle: 8°; 24 cm field of view; 192×192×166 acquisition matrix, and a voxel size of 

1.25× 1.25×1.2 mm3. In plane, zero-filled reconstruction yielded a 256×256 matrix for a 

reconstructed voxel size of 0.94×0.94×1.20 mm3, later reconstructed to 1 mm isotropic 

voxels. The scan quality was evaluated by the ADNI MRI quality control centre at the Mayo 

Clinic following standardized criteria. Images were calibrated with phantom-based 

geometric corrections to ensure consistency among scans acquired at different sites. Image 

corrections were applied using a processing pipeline at the Mayo Clinic, consisting of: (1) 

correction of geometric distortion due to gradient non-linearity (Jovicich et al., 2006), i.e., 

“gradwarp”, (2) “B1 correction” for adjustment of image intensity inhomogeneity due to B1 

non-uniformity (Jack et al., 2008), (3) “N3” bias field correction for reducing residual 

intensity inhomogeneity (Sled et al., 1998), and (4) geometrical scaling for removing 
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scanner and potential session specific calibration errors using a phantom scan acquired for 

each subject (Gunter et al., 2009). All original image files as well as images with all of these 

corrections are available to the general scientific community at http://www.loni.ucla.edu/

ADNI/Data/.

Voxel-Based Morphometry

For the cross-sectional (baseline) study, data pre-processing and voxel-based morphometry 

(VBM) were performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and MATLAB v7.11 

(Math-Works, Natick, MA, USA). First, tissue classification was carried out on MR images 

to separate gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using the 

standard unified segmentation model in SPM8 (Ashburner and Friston, 2005). Second, GM 

population templates were generated from the entire image dataset using the diffeomorphic 

anatomical registration using exponentiated Lie algebra (DARTEL) technique (Ashburner, 

2007). Third, after an initial affine registration of the GM DARTEL templates to the tissue 

probability maps in Montreal Neurological Institute (MNI) space (http://

www.mni.mcgill.ca/), non-linear warping of GM images was performed to the DARTEL 

GM template in MNI space. Fourth, images were then modulated to ensure that relative 

volumes of GM were preserved following the spatial normalization procedure. Finally, 

images were smoothed with an 8 mm full width at half maximum Gaussian kernel. To 

identify group differences in the modulated GM a two-sample t-test was used at each voxel. 

To find differences that were spatially extended, we used an inference method on the t-test 

images called Threshold Free Cluster Enhancement (TFCE) (Smith and Nichols, 2009). 

TFCE is an extension of cluster-wise inference that does not depend on a cluster-forming 

threshold. The risk of false positives over the brain was controlled with the family wise error 

rate (5% level) using a permutation method with 5000 permutations (Nichols and Holmes, 

2002), (FSL version 4.1.9, http://www.fmrib.ox.ac.uk/fsl/). A binary mask was created from 

voxels showing significant between group differences. Pre-processed GM images and the 

resulting masks were used as inputs for parallel ICA.

Tensor-Based Morphometry

Tensor based morphometry (TBM) was used to assess changes over time i.e. for longitudinal 

analysis mainly using SPM8 software package. Pre-processing stages for TBM have been 

described in detail elsewhere (Kipps et al., 2005). Briefly, the follow up T1-weighted MRI 

image scan was co-registered with the baseline image. A high-dimensional deformation field 

was used to warp the corrected late image to match the baseline image for each subject 

(Ashburner and Friston, 2000). The amount of volume change was quantified by taking the 

determinant of the gradient of deformation at the single-voxel level (Jacobian determinants). 

The following formula was applied to the segmented gray matter image obtained from the 

first scan and the Jacobian determinant map: (Jacobian value−1) × GM. The resulting 

product image represented a measure of the gray matter specific volume change between the 

baseline and follow up scans. The normalization parameters were estimated by matching the 

customized gray matter template that was created earlier with the segmented gray matter 

image from the first scan and were then applied to the product image (Ashburner and 

Friston, 1999). Normalized images were smoothed using an 8 mm isotropic Gaussian kernel. 

Finally, the smoothed images were multiplied by an inclusive gray matter mask. The value 
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of each voxel in pre-processed image shows volume loss or expansion during 1-year follow 

up. Statistical analysis was performed using permutation testing as described above. Binary 

mask was created from voxels showing significant group difference (AD<HC) in the pre-

processed images (p < 0.05 FWE-corrected) during one year. The resulting binary mask and 

pre-processed images from one year longitudinal TBM were used as inputs for monitoring 

disease progression (see below).

Parallel Independent Component Analysis (PICA)

We used PICA to explore the relationship between plasma proteins and regional brain 

atrophy simultaneously. The details of PICA has been described elsewhere (Liu et al., 

2009b). Briefly ICA estimates sets of variables (components) that are maximally 

independent; specifically, it minimizes the mutual information between pairs of components. 

PICA, for two modalities, simultaneously optimizes the independence of components in 

each modality and the similarity of subject weights between the modalities. Thus two sets of 

components are produced; one for each modality, but a subset of the components will be 

defined by subject weights that are similar between the two modalities (Liu et al., 2009b). 

The number of components in each analysis was estimated by Akaike Information Criterion 

and Minimum Distance Length (Calhoun et al., 2001). All of the components were 

normalized to Z score to remove scaling and thresholded at z > 1.7 for visualization 

purposes. The Pearson correlation coefficients were computed for every possible pair of 

subject weights between the two modalities, and significant relationships determined using 

false discovery rate (PFDR < 0.05).

Following steps of analyses (see Figure 1) were carried out:

1- To identify proteomic makers that may have potential value as biomarkers for 

diagnosis of AD, we first used a two-sample t-test to find significant differences 

(increase or decrease) in plasma protein concentration between AD and HC 

groups as well as in their GM density separately. Then PICA was run on those 

proteins and brain regions that showed significant differences (increase or 

decrease) between groups (after correction for multiple comparisons, FWE for 

images, and FDR for proteomics. The result provides proteins that are closely 

associated with modulated GM at the baseline.

2- To identify proteins that may have potential value as biomarkers for monitoring 

AD progression, we first calculated TBM maps of AD and HC subjects over one 

year showing longitudinal structural brain changes. We then calculated plasma 

concentration difference (increase or decrease) of the proteins for each 

individual over one year. A two-sample t-test on the longitudinal protein 

concentration changes and TBM results to identify between groups difference 

(corrected with FWE, p<0.05). Finally PICA was run on the TBM and protein 

changes (increase or decrease) over 1 year in AD subjects only. This analysis 

identified proteins whose changes over one year correlated with the structural 

changes of the brain in AD.

3- To identify proteins that may have potential value as biomarkers to determine 

the prognosis of MCI, we first carried out logistic regression (using stepwise 
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forward Wald method) on the resulted proteomic factors of the cross-sectional 

analysis and corrected that for age and sex, to develop the best model for 

discriminating AD from HC participants. The rational for this model was that 

proteins that strongly correlated with brain structural changes were likely to be 

useful potential biomarkers for diagnosis of AD. In addition, protein changes 

might precede brain structural changes or/and cognitive changes. Also, we 

aimed to produce a totally data-driven model rather than using a priori. A similar 

approach was applied to the longitudinal data. We used this model to identify 

MCI subjects who converted to AD. Receiver operating characteristic (ROC) 

curves was graphed and areas under the curves (AUC) along with its 95% 

confidence intervals (CI) were computed. Note that MCI subjects were not used 

for developing the “predictive” model to obtain unbiased estimates of MCI 

conversion accuracy.

Results

Data from total of 49 HC, 300 MCI (of which 110 converted to AD within 2 years), and 85 

AD patients were analysed. Participants’ demographic and cognitive data are summarized in 

Table 1. Schematic presentation of steps of analysis and the results is shown in Figure 1. 

Plasma level of 18 proteins that showed cross sectional group difference at the baseline and 

64 proteins that showed significant longitudinal difference between groups in a year are 

shown in Table S1, S2, S3, S4 (supplementary data).

Cross-Sectional Analysis at Baseline

Eighteen proteins exhibited significant differences (p < 0.05, FDR-corrected) between AD 

and HC subjects (Table S1). The cross-sectional VBM analysis found significantly reduced 

(p<0.05, FWE-corrected) gray matter in AD subjects relative to HC in several brain regions, 

including hippocampus, amygdala, thalamic nuclei, posterior cingulate-precuneus junctions, 

inferior, middle and superior temporal gyri, parahippocampal/fusiform cortices and right 

angular gyrus (Figure 2). PICA showed that 8 imaging components (components that were 

resulted from running ICA on imaging data) associated with 9 protein components (Table 

S2). Of the 8×9=72 possible intermodal pairwise correlations, 5 components had statistically 

significant relationship (PFDR < 0.05) (Figure 2). Modulated GM in hippocampus, amygdala 

and several other temporal lobe structures along with posterior cingulate cortex and 

thalamus was associated with decreased interleukin-16 (IL-16), and apolipoproteinE (apoE) 

as well as increased thyroxin-binding globulin (TBG), and alpha-2-macroglobulin levels. 

Modulated GM in right inferior and middle temporal gyri was associated with increased 

brain natriuretic peptide (BNP), pancreatic polypeptide (PPP), and peptide YY (PYY) 

concentrations. Thalamic GM was significantly correlated with decreased IgM, as well as 

increased Eotaxin-3, and PYY levels. Among the 5 significant intermodal components, a 

total of 9 proteins had significant Z-scores (PFDR < 0.05). The proteins and brain regions in 

these components are summarized in Table 2.
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Longitudinal Analysis

sixty-four proteins showed significant difference in their changes over 1 year in AD when 

compared with controls (PFDR < 0.05) (Table S1). Similarly, caudate, putamen, amygdala, 

fusiform cortex, posterior cingulate, lingual, and parahippocampal gyri, and right anterior 

cingulate and right middle temporal gyri showed significantly (PFWE< 0.05) more gray 

matter loss in AD than healthy subjects over 1 year follow up (Figure 3). PICA on AD 

subjects (n=85) identified 10 proteomic components associated with 12 structural imaging 

components (Table S1, S3 and S5). Of the 10×12=120 possible intermodal pairwise 

correlations, 4 components were significant (PFDR < 0.05) (Figure 3). In AD, right fusiform 

cortex atrophy rate was associated with decreased bone morphogenetic protein 6 (BMP6), 

and fibroblast growth factor 4 (FGF4), while these factors increased in healthy controls. 

Right fusiform atrophy was also associated with less reduction in AD (compared to normal 

reduction) of neuronal cell adhesion molecule (NCAM), and matrix metalloproteinase-10 

(MMP-10). In addition, increased matrix metalloproteinase-9 (MMP-9), and superoxide 

dismutase 1- soluble (SOD-1) levels were associated with right fusiform atrophy. Cingulate 

gyrus and left fusiform cortex atrophy rate were associated with more reduction (compared 

with normal reduction) of von willebrand factor (vWF) level. Atrophy rate of amygdala was 

associated with reduced E-selectin level (Table 2). Among the 4 significant intermodal 

components, a total of 8 proteins had significant Z-scores significant (PFDR < 0.05).

Diagnostic and Prognostic Utility of the Potential Biomarkers

The 9 proteins, which significantly correlated with regional brain atrophy at the baseline, 

were entered into the stepwise logistic regression and 5 proteins were found to be capable of 

meaningfully classifying AD from control (Table 3). This model discriminated AD from 

normal subjects with specificity of 62% and sensitivity of 93% (AUC=0.917, 

CI=[0.86,0.96], SD=0.02, p<0.0001). Cross validation using discriminant analysis with 

leave one out (DALOO) showed sensitivity of 89.4%, and specificity of 57%. When this 

model was applied on MCI patients (n=342) at the baseline, 64.5% (40 out of 62) of 

converters to AD were correctly identified.

In addition, the four proteins whose changes over time correlated with structural brain 

changes were used as a model to discriminate AD from control. This model had 92.9% 

sensitivity and 69.4% specificity. Cross validation of this model using DALOO showed 

sensitivity of 92.9%, and specificity of 91.8%. We, then, used this model to predict MCI 

converters and found that the model correctly identified 93.5% (58 out of 62) of the 

converters. When ApoE (a well known risk factor for AD) was removed from the model, the 

sensitivity and specificity of the model for discriminating AD from control dropped to %85 

and %50 respectively and the predictive power of MCI convertors to AD fell to 56%. 

Adding age and sex to the model did not affect the result significantly.

Discussion

Protein changes at baseline

There are differences in GM in AD patients relative to controls in hippocampus, amygdala, 

thalamic nuclei, posterior cingulate-precuneus junctions, inferior, middle and superior 
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temporal gyri, parahippocampal/fusiform cortices and right angular gyrus. This is consistent 

with previous studies (Echavarri et al., 2011; Karas et al., 2003; Shiino et al., 2006; Singh et 

al., 2006). We also found that plasma levels of 18 proteins were significantly changed in AD 

subjects when compared with control group. Among these proteins the levels of IL-16, TBG, 

α2-Macroglobulin, apoE, BNP, PPP, PYY, IgM, and Eotaxin-3 were associated with regional 

brain atrophy at baseline. Current biological evidence supports relevance of these proteins to 

pathophysiology of Alzheimer disease. For example, many studies showed the role of apoE 

in AD particularly through its catalytic action on amyloid Aβ (Potter and Wisniewski, 

2012). In our study, apoE plasma level was associated with atrophy of hippocampus, 

posterior cingulate, inferior and middle temporal gyri, thalamic nuclei, amygdala, temporal 

fusiform cortex, and parahippocampal gyri. This is consistent with previous studies showing 

positive correlation between apoE level and GM density (Gupta et al., 2011), and apoE level 

and cognitive function (Yasuno et al., 2012a). A more recent study in a non-demented 

elderly population showed that persons with the APOEε4 allele have a smaller hippocampal 

volume (den Heijer et al., 2012). Another study showed that APOEε4 carriers exhibited 

greater atrophy of medial temporal lobe structures (Wolk and Dickerson, 2010). A task 

related fMRI study on AD patients, in which subjects were asked to detect novel items from 

previously learned items, showed that subjects with APOEε4 demonstrated less signal 

change in hippocampus (Johnson et al., 2006). Plasma apoE levels were also found to 

correlate with Aβ burden (Gupta et al., 2011) and cognitive performance in the aging 

population (Yasuno et al., 2011; Yasuno et al., 2012b).

Previous studies showed α2-Macroglobulin (A2M) increase in plasma (Hye et al., 2006) and 

its association with neural metabolism in hippocampus (Thambisetty et al., 2008) of patients 

with AD. In our study, association of A2M with atrophy of medial temporal lobe structures 

may be a representation of amyloid deposition and subsequent cell loss in these areas that 

often occur in AD. There are also independent studies showing A2M elevation in temporal 

cortex of AD patients (Wood et al., 1993). A2M is induced by inflammatory cytokines 

released by neural cells (Strauss et al., 1992) and is a marker for brain blood barrier 

breakdown (Cucullo et al., 2003). In addition, we found that IL-16 level was associated with 

atrophy of hippocampus, posterior cingulate, inferior and middle temporal gyri, and 

thalamus. Together these findings support an inflammatory process in early AD, which may 

be a useful target for future therapies. Interestingly, plasma IL-16 was reported to increase in 

mild and moderate AD but not in severe AD cases (Motta et al., 2007), suggesting that these 

proteins may only be useful markers at the early stages of the disease.

IgM, another inflammatory marker, was increase in AD group. Increased IgM in patients 

with AD has been previously reported (Kell et al., 1996; Soares et al., 2012) however there 

is no evidence to support the specificity of IgM for a pathologic process in thalamus in AD. 

IgM increase may be an epiphenomenon related to an inflamatory or infectious process in 

AD subjects (Miklossy, 2008).

We found that BNP level was associated with right inferior and middle temporal gyri 

atrophy. We found no evidence in the literature to support a specific link between BNP and 

these structures. However, a previous report showed independent association of raised N-

terminal pro-hormone of BNP (NT-proBNP) level with poor cognitive performance, even in 
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subjects with no history of prior stroke or coronary heart disease (Daniels et al., 2011). BNP 

is co-secreted from strained cardiac myocytes and has been associated with congestive heart 

failure. A study on a cohort of dementia showed that high plasma BNP levels was associated 

with vascular dementia, whereas they failed to demonstrate a significant increase in the AD 

subjects (Kondziella et al., 2009). Using a multiplex platform, it was shown that elevated 

NT-proBNP in CSF could discriminate mildly demented subjects from cognitively normal 

controls (Craig-Schapiro et al., 2011). Our findings indicate that BNP may not be a specific 

marker for AD (Soares et al., 2012) but it might indicate a vascular component for AD 

development (Zlokovic, 2011).

Thyroxine-Binding Globulin is produced by the liver and binds thyroxine in blood. TBG 

level change may be associated with thyroid dysfunction that is common in the elderly. Low 

and high tertile of serum thyrotropin concentration has been shown to increase risk of 

Alzheimer disease in women (Tan et al., 2008).

Our study showed that pancreatic peptides and Eotaxin-3 significantly change in AD 

patients. This is consistent with previous reports (Craig-Schapiro et al., 2011; Koide et al., 

1995; Soares et al., 2012; Westin et al., 2012). However, we found no evidence to support 

specific contribution of pancreatic peptides and Eotaxin-3 in thalamic pathology in AD (as 

showed in our study). Reduction of pancreatic peptides binding sites have been reported in 

the temporal cortex and hippocampus of AD subjects (Martel et al., 1990), though there are 

reports against pancreatic peptide changes in AD (Wikkelso et al., 1991). Recently, it was 

shown that increased CSF concentration of Eotaxin-3 was associated with conversion of 

MCI to AD (Westin et al., 2012). Eotaxin-3, along with other CSF biomarkers, could 

enhance power of tau/Aβ42 ratio to discriminate between subjects with CDR=0 and CDR>0 

(Craig-Schapiro et al., 2011). Others showed correlation of CSF Aβ42 levels and t-tau/Aβ42 

ratios with the number of apoE4 alleles, plasma levels of B-type natriuretic peptide and 

pancreatic polypeptide have bee demonstrated (Hu et al., 2012). Our study partly confirmed 

the result of the latter study however there are difference in the methodology. For example, 

we only identified proteins that are significantly associated with brain structural changes 

therefore reducing the chance of epiphenomena in our result.

Taking together, current available evidence is not sufficient to suggest that these peptides 

would be useful potential biomarkers for detection of AD.

Protein Interval Changes

We found that plasma level of 64 proteins changed within 1 year in AD more than that seen 

in controls. However, only changes of eight proteins were associated with regional brain 

atrophy including the right and left fusiform cortices, cingulate gyrus and amygdala. These 

proteins were BMP6, MMP-9, NCAM, FGF4, MMP-10, SOD-1, vWF, and E-selectin. 

Previous reports showed that BMP6, MMP-9, FGF4, NCAM and SOD-1 were linked to 

regulation of adult neurogenesis (Boutin et al., 2009; Crews et al., 2010; Faiz et al., 2006; 

Ingraham et al., 2011; Kosaka et al., 2006), a neural replenishment mechanism that is 

believed to be impaired in AD (Lazarov et al., 2010). Moreover, it has been shown that 

MMP-9 and SOD-1 have anti-Aβ amyloid properties (Murakami et al., 2011; Yan et al., 

2006). Several previous studies found no significant difference in plasma MMP-9 level 
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between healthy controls and AD patients at baseline (Lim et al., 2011; Lorenzl et al., 2003; 

Martin-Aragon et al., 2009), whereas one study reported significantly decreased MMP-9 in 

AD (Horstmann et al., 2010) and another showed that MMP-9/biliverdin reductase ratio 

could predict MCI to AD progression (Mueller et al., 2010). It has been demonstrated that 

CSF concentrations of MMP-10 in association with that of Eotaxin-3, could enhance 

differentiation of demented patients from non-demented healthy controls (Craig-Schapiro et 

al., 2011).

We showed that Von Willebrand factor (vWF) changes over time showed negative 

correlation with left fusiform atrophy and positive correlation with cingulate gyri atrophy. 

vWF is a marker of endothelial dysfunction (Vischer, 2006) which, in a recent meta-

analysis, showed to be associated with all types of dementias particularly of vascular type 

(Quinn et al., 2011) supporting the notion implicating disturbance of endothelial activation 

in AD (Grammas, 2011; Zlokovic, 2011).

Potential proteomic biomarkers for diagnosis of AD

We showed that combination of plasma proteins levels of IL-16, TBG, BNP, PYY, and ApoE 

can discriminate AD patients from healthy individuals with sensitivity of 89% and 

specificity of 57%. However, changes of BMP6, Eselectin, MMP10 and NrCAM over a year 

can provide a more accurate model for AD diagnosis with 93% sensitivity and 92% 

specificity. This is superior to any other diagnostic test thus far, for example, when compared 

with CSF Aβ42 (Sensitivity 80%, specificity 82%), CSF Tau protein (Sensitivity 80%, 

specificity 83%), MRI (Sensitivity 83%, specificity 89%), FDG-PET (Sensitivity 90%, 

specificity 89%), and SPECT (Sensitivity 80%, specificity 85%).

Potential Proteomic biomarkers for predicting MCI conversion to AD

We found that combination of plasma proteins levels of IL-16, TBG, BNP, PYY, and ApoE 

can predict MCI converters with 62.5% accuracy. This is not better than currently available 

measures such as brain MRI, which has 73% sensitivity and 81% specificity. However 

changes in BMP6, Eselectin, MMP10 and NrCAM can predict 93.5% of MCI converters, 

which is superior to any marker currently available for this purpose.

These findings show a real potential for use of these proteins for early diagnosis and 

monitoring AD as well as predict MCI conversion to AD. Clearly blood tests are more 

convenient and probably cheaper than imaging for diagnosis and disease monitoring.

Conclusion

This report is the most comprehensive linkage study between proteomics and structural brain 

atrophy in Alzheimer’s disease. We showed that combination of selected plasma protein 

levels and MRI may be a useful method in identifying potential biomarker for diagnosis and 

monitoring of AD, as well as for predicting MCI conversion to AD. Further study is required 

to evaluate suitability of these proteins as biomarkers in differentiating AD from other types 

of dementia.
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Fig.1. 
Schematic representation of steps of data analysis.
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Fig 2. 
Results of VBM group comparison (top) using t-test corrected for multiple comparison 

using TFC thresholded at p>0.05. Bottom shows the result of parallel independent 

component analysis at the baseline thresholded at z>1.7.
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Fig 3. 
Results of TBM group comparison (top) using using t-test corrected for multiple comparison 

using TFC thresholded at p>0.05. Bottom shows the result of parallel independent 

component analysis over 1 year thresholded at z>1.7.

Nazeri et al. Page 19

Neuroimage. Author manuscript; available in PMC 2019 June 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Nazeri et al. Page 20

Table 1
Demographic and cognitive characterestics of subjects

Groups HC MCI AD F/χ2 (p-values)

Number 49 300 85

Age 75.1 (5.7) 74.7 (7.2) 75.2 (7.8) 0.171(0.84)

Percent Female 44.9% 35.3% 44.7% 3.73(0.15)

Education (yrs) 15.5 (2.9) 15.8 (2.9) 15.1 (3.1) 1.41 (0.24)

MMSE 29.0 (1.2) 27.1 (1.7) 23.5 (1.9) 196 (<0.001)

ADAS-Cog 9.7 (4.3) 18.2 (6.3) 28.7(7.6) 151(<0.001)

HC=Healthy Control; MCI=Mild Cognitive Impairment; AD=Alzheimer’s disease; MMSE=Mini–mental state examination; ADAS-
Cog=Alzheimer's Disease Assessment Scale-cognitive subscale.
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Table 3
Comparing the results of different logistic regressions

1st Logistic
regression

2nd Logistic
regression

3rd Logistic
regression

Diagnostic A2Macro BNP BNP

Angiotensinogen IL16 IL16

Apo AII PYY PYY

Apo B TBG TBG

Apo E APO E APO E

Calcitonin PLGF

CK-MB SGOT

Factor VII

FASLG Receptor

FSH

HGF

IL16

Interferon gamma

Induced Protein 10

MCP2

MMP9

PLGF

PYY

Resistin

SGOT

Vitronectin

Sens., Spec.
(DALOO)

100%, 100%
(89.2%, 79%)

94.1%, 81.6%
(91.8%, 81.6%)

92.9, 62.4%
(89.4%, 57%)

Monitoring BMP6 BMP6 BMP6

B2M Eselectin Eselectin

CLU MMP10 MMP10

MMP10 NrCAM NrCAM

NrCAM Leptin

PLGF PLGF

TFF3 TFF3

Thrombospondin1 VCAM

Sens., Spec.
(DALOO)

100%, 100%
(94.1%, 75.5%)

100%, 100%
(91.8%, 93.9%)

92.9%, 69.4%
(92.9%, 91.8%)

1st Logistic regression on 148 proteins.

2nd Logistic regression on proteins that showed significant difference between groups (18 in cross sectional and 64 in longitudinal analysis). (no 
MRI data used)

3rd Logistic regression on proteins identified from running PICA on the result of 2nd logistic regression and between group comparisons of VBM 
(9 in cross sectional and 8 in longitudinal).
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