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Abstract

Tests of generative semantic verbal fluency are widely used to study organization and 

representation of concepts in the human brain. Previous studies demonstrated that clustering and 

switching behavior during verbal fluency tasks is supported by multiple brain mechanisms 

associated with semantic memory and executive control. Previous work relied on manual 

assessments of semantic relatedness between words and grouping of words into semantic clusters. 

We investigated a computational linguistic approach to measuring the strength of semantic 

relatedness between words based on latent semantic analysis of word co-occurrences in a subset of 

a large online encyclopedia. We computed semantic clustering indices and compared them to 

brain network connectivity measures obtained with task-free fMRI in a sample consisting of 

healthy participants and those differentially affected by cognitive impairment. We found that 

semantic clustering indices were associated with brain network connectivity in distinct areas 

including fronto-temporal, fronto-parietal and fusiform gyrus regions. This study shows that 

computerized semantic indices complement traditional assessments of verbal fluency to provide a 

more complete account of the relationship between brain and verbal behavior involved 

organization and retrieval of lexical information from memory.
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1. Introduction

The question of how conceptual knowledge is represented, organized and accessed from 

memory continues to be the subject of much research in multiple disciplines including 

neuroscience (Caramazza & Mahon, 2006; Chan, Butters, Salmon, & McGuire, 1993; 
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Mahon & Caramazza, 2009; Patterson, Nestor, & Rogers, 2007; Pylkkanen, Llinas, & 

Murphy, 2006), neuropsychology (Salmon, Butters, & Chan, 1999; Troster et al., 1998; 

Weber, Thompson-Schill, Osherson, Haxby, & Parsons, 2009), psycholinguistics (Levelt, 

1989; Tverski & Hemenway, 1984), and computer science (G. Miller & Fellbaum, 1991; 

Rada, Mili, Bicknell, & Blettner, 1989; P. Resnik, 1999). Following Tulving (1972) this 

field of inquiry has drawn a distinction between a cognitive system that represents 

temporally dated events (episodic memory) and a system that constitutes a mental thesaurus 

of symbols that indexes information about cognitive referents and relations holding between 

them (semantic memory). The two types of memory have since been demonstrated to have 

different, albeit interdependent and interconnected, underlying neural mechanisms (Cabeza 

& Nyberg, 2000; Prince, Tsukiura, & Cabeza, 2007; Tulving, Kapur, Craik, Moscovitch, & 

Houle, 1994).

The test of generative semantic verbal fluency (SVF) is an instrument widely used to elicit 

responses from subjects when studying semantic memory, executive function, and language. 

On this test, one is asked to say as many words as possible in one minute that denote objects 

belonging to a certain semantic category (e.g., animals, fruits, vegetables, tools). The 

performance on the SVF test is typically measured by counting the number of correct 

responses (SVF score). Lower SVF scores have been widely reported in patients with 

various stages of Alzheimer’s disease (AD) dementia and Mild Cognitive Impairment (MCI) 

(Chan, Salmon, & De La Pena, 2001; Ober, Dronkers, Koss, Delis, & Friedland, 1986; 

Rosen, 1980; Troyer, Moscovitch, Winocur, Leach, & Freedman, 1998). Furthermore, 

performance on SVF tests often shows early and more pronounced decline relative to other 

language, attention, and executive abilities (see Lezak, (2004) and Henry et al., (2004) for 

review). The traditional SVF scores reflecting the number of words generated on this task 

assess performance consisting of several abilities including but not limited to semantic 

memory. Structural and functional neural imaging studies found that lower SVF scores are 

associated with lesions and atrophy in the anterior and inferior left temporal lobe regions as 

well as impairment in fronto-temporal connectivity (Libon et al., 2009). Evidence collected 

in fMRI studies supports the involvement of multiple frontal, temporal and posterior areas 

during word generation tasks such as SVF that include (but are not limited to) the left 

inferior frontal gyrus, the left inferior temporal gyrus, the hippocampus, the left superior 

occipital gyrus, and the left inferior medial parietal lobe (Birn et al., 2010; Wheatley, 

Weisberg, Beauchamp, & Martin, 2005). Furthermore, the basal ganglia exerts inhibitory 

control over motor, cognitive/executive, and affective systems which would make it an 

important part in a variety of tasks including aspects of the SVF performance. The 

involvement of multiple brain areas in generating words on SVF tests suggests that verbal 

behavior resulting from this task is supported by multiple neural mechanisms. However, the 

correspondence between various aspects of the generative verbal fluency behavior and 

distinct neural mechanisms is currently much less clear because of the difficulty involved in 

isolating quantifiable characteristics of the responses produced during SVF testing.

The overarching objective of the current study was to investigate the utility of a 

computational linguistic approach to capturing distinct components of verbal behavior 

manifest on SVF tests and to relate them to the underlying brain networks identified with 

Pakhomov et al. Page 2

Neuroimage. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



task-free fMRI. Using task-free fMRI in connection with behavioral performance on a 

specific task is well-motivated by the fact that the patterns of temporally correlated low-

frequency fluctuations observed in a resting state constitute the brain’s intrinsic architecture 

that predicts the brain’s functional responses to stimulation (Keller et al., 2011).

1.1 Clustering of Responses on SVF Tests

Optimal performance on SVF tests depends to a large extent on how well semantic 

information is organized into conceptually related clusters and whether the person is able to 

use an efficient strategy that accesses these clusters during the test (Estes, 1974; Hodges & 

Patterson, 1995; Laine, 1988). The size of semantic clusters and the efficiency of switching 

between clusters have been found to have different neuroanatomical correlates. Semantic 

cluster size was found to be associated with the left temporal lobe function, whereas the 

processing associated with switching was associated with the function of the frontal lobe 

(Rich, Troyer, Bylsma, & Brandt, 1999; Troyer, Moscovitch, & Winocur, 1997; Troyer, 

2000).

While manual assessment of clustering and switching behavior has proven to be useful, it 

has traditionally relied on subjective evaluations of semantic similarity between at least two 

(Rich et al., 1999; Troyer et al., 1997, 1998) or three (Laine, 1988) adjacent words to define 

semantic clusters. For example, the qualitative assessment proposed by Troyer et al. (1997) 

relies on manual categorization of words produced on the SVF test (e.g., Zoological 

Categories, Human Use, and Living Environment) with further more fine-grained 

subcategorizations (e.g. living environment category composed of African, Australian, 

Arctic/Far North, Farm, North American and Water Animals). In addition to their 

subjectivity, these manual qualitative approaches are time consuming and are difficult to 

implement and standardize, which may be responsible for some of the conflicting results 

obtained with these methods in studies of Alzheimer’s disease noted in previous work 

(Raoux et al., 2008).

Independently of these efforts, a number of fully automated approaches to representing the 

degree to which any two words in a given language are semantically related have been 

developed in the field of computational linguistics based on lexical databases such as 

WordNet, as well as corpora of text (Pedersen, Pakhomov, Patwardhan, & Chute, 2007; 

Rada et al., 1989; P. Resnik, 1999). Many of these approaches utilize variations on a 

technique called Latent Semantic Analysis (LSA: (Landauer & Dumais, 1997)), a variant of 

factor analysis designed for representing lexical semantics. In addition to the LSA approach 

to semantic representation, several other alternatives have been proposed to model how 

semantic information is represented in the brain including neural networks (McClelland & 

Rogers, 2003), Random Indexing (Kanerva, 2009), Latent Dirichlet Allocation (LDA) 

modeling (Blei, Griffiths, Jordan, & Lafferty, 2003), and distributional memory models 

(Baroni & Lenci, 2010; Baroni, Murphy, Barbu, & Poesio, 2010).

The application of LSA to semantic representation is described in detail in the Methods 

section. In brief, LSA relies on the co-occurrence of words in a large corpus of text 

consisting of various types of discourse including newspaper articles, books, speeches and 

other sources of typical word usage to represent the semantic content of a word or a term as 
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a set of co-occurrence counts with other words used in the same context. These semantic 

representations can then be directly and automatically compared to each other to assign a 

numeric value indicative of the strength of semantic relatedness between them. Apart from 

improved scalability and objectivity as a result of automation, these computational 

approaches allow quantification of semantic relations on a continuous rather than a 

categorical scale which allows us to: a) directly control and systematically vary how 

measures such as the cluster size, for example, are calculated, and b) develop new semantic 

indices not possible with categorical judgments. We have previously reported on 

applications of these computerized semantic indices, either calculated from WordNet, a 

large lexical database (Pakhomov, Hemmy, & Lim, 2012), or from a a corpus of text 

(Pakhomov & Hemmy, 2013). In other prior work, computational models of word meanings 

derived from a very large corpus of text have been demonstrated to predict neural activation 

patterns observed with fMRI (Mitchell et al., 2008). These findings were based on 

representations for concrete nouns and thus provide a strong motivation for using 

distributional semantic approaches to represent the meaning of words produced in response 

to a verbal fluency task.

The mechanisms underlying semantic memory are negatively affected by aging (Meinzer et 

al., 2009) and are the target of several types of neurodegenerative diseases including the 

semantic variant of fronto-temporal dementia (Grossman, 2002; Hodges et al., 2004; 

Knopman et al., 2008) and the Alzheimer’s disease (AD) dementia (Hodges & Patterson, 

1995). In our previous work, we found that computerized semantic indices were sensitive to 

clinical differences between mild cognitive impairment (MCI) and AD dementia (Pakhomov 

et al., 2012), and could be used to estimate future risk of developing dementia in healthy 

individuals (Pakhomov & Hemmy, 2013). The current study relies on a sample consisting of 

cognitively normal individuals as well as MCI and AD dementia patients in order to 

investigate the relationship between SVF performance and functional connectivity in the 

language network ‘at rest’ assessed with task-free fMRI. Thus, the disease status is used in 

this study as a naturally occurring research instrument that modulates both the behavioral 

performance on SVF tests and the connectivity of brain networks that underlie verbal 

behavior. Therefore, we expect that the degree of differential impairment in the connectivity 

of functional brain networks that is characteristic of AD dementia (Stam et al., 2009; Stam, 

Jones, Nolte, Breakspear, & Scheltens, 2007; Supekar, Menon, Rubin, Musen, & Greicius, 

2008) will introduce detectable systematic variability into both behavioral and neural 

measurements. The specific aims of this study were: a) to confirm previously found neural 

correlates of the performance on the SVF test, and b) to determine if the new automated 

semantic clustering indices derived with the LSA-based computational linguistic approach 

are associated with connectivity in areas distinct from those related to the traditional SVF 

scores. Initially, our prediction was that the computerized semantic indices were associated 

with roughly the same brain networks as those associated with traditional SVF scores; 

however, while we did find some overlap between measures, we also found that they were 

associated with clearly distinct networks.
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2. Methods

2.1 Participants

A random target sample of 60 participants (mean age = 72.46; SD = 10.8) was obtained 

from the Mayo Clinic Alzheimer’s Disease Research Center (MCADRC). Of these 

participants, at the time of neuropsychological testing, 21 had a clinical diagnosis of 

probable AD dementia (DSM-IV/NINCDS-ADRDA criteria; (American Psychiatric 

Association, 1994; McKhann et al., 1984)), 20 had a clinical diagnosis of MCI (Petersen, 

2004) with or without an amnestic component, and 19 were cognitively normal elders (CN). 

The final study sample consisted of 49 participants (11 CN, 17 MCI and 21 AD dementia) 

that were selected from the target sample of 60 participants based on availability of good 

quality task-free functional MRI scans (TF-fMRI). The demographic characteristics of this 

sample are reported in Table 1.

All participants, or appropriate surrogates, provided written informed consent for 

participation. The Mayo Clinic Institutional Review Board approved the study and the 

consenting processes

2.2 Cognitive Assessments

All participants underwent a neuropsychological test battery that included the SVF test 

(“animals” category) on which they were asked to name as many animals as they could think 

of in 60 seconds. The responses were recorded on paper by a trained psychometrist and 

subsequently converted to electronic form for computerized analysis. The traditional SVF 

test score was calculated as the number of correct words excluding repetitions, intrusions 

and perseverations. The participants were also administered the Short Test of Mental Status 

(STMS: (Kokmen, Smith, Petersen, Tangalos, & Ivnik, 1991)). The STMS battery items test 

several cognitive domains: orientation, attention, immediate recall, arithmetic, abstraction, 

construction, information and recall after a 3-minute delay. This test is designed specifically 

for rapid (5 min) assessment of cognitive status at bedside and has been demonstrated to be 

more sensitive than the Mini-Mental State Examination (MMSE) in detecting deficits in 

individuals with normal cognition at baseline that later developed MCI or AD dementia 

(Tang-Wai et al., 2003). In addition to the STMS, Clinical Dementia Rating (CDR) scores 

were also obtained for all participants. The diagnoses of MCI and AD dementia were made 

during consensus conferences including neurologists, neuropsychologists and nurses and 

took into account the full neuropsychological test battery, the neurological assessment and 

the views of the family informants, as obtained by the examining neurologists and nurses.

2.4 Automated Semantic Relatedness Computation

To compute semantic relatedness between pairs of words, we relied on the LSA approach to 

semantic representation (Landauer & Dumais, 1997; Landauer, 2006). In order to compare 

the meanings of any given pair of words, we first represent the semantic content of each 

word as a set of other words found in the same context as the target word in a collection of 

texts. Since in this study, we are focused on the animal category SVF test, we experimented 

with the Wikipedia entries for animals, readily available electronically, as a source of textual 

co-occurrence information. For example, the meaning of the word “tiger” was represented as 
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a set of all other words that were found in the Wikipedia entry for “tiger” after exclusion of 

function words (e.g., “the”, “he”, “she”, “it”, “on”, “is”, etc.) including: “panthera”, “tigris”, 

“largest”, “cat”, “species”, “most”, “recognizable”, “feature”, “pattern”, “dark”, “vertical”, 

“stripes”, “reddish”, “orange”, “fur”, “Russia”, “Bangladesh”, “India”, “siberian”, “asia”, 

among others. Similarly, the meaning for the word “lion” contains words “panthera”, “leo”, 

“four”, “big”, “cats”, “genus”, “panthera”, “second”, “largest”, “living”, “cat”, “tiger”, 

“currently”, “exist”, “subsaharan”, “Africa”, “asia.” Clearly, the Wikipedia entries also 

contain many words irrelevant to comparing the meanings of animal names and constitute 

“noise” that needs to be removed automatically prior to comparing semantic representations 

distributed across Wikipedia entries. Furthermore, in some cases, it is useful to take 

advantage of the fact that a given pair of words may not appear in the same context but may 

still be linked through their co-occurrence with a third word. For example, the words, 

“tigris” and “leo” may never occur in the same Wikipedia entry but the word “tigris” co-

occurs with “panthera” and so does the word “leo”, thus forming a latent semantic 

association. We used LSA to take advantage of these latent associations between words 

never occurring in the same context.

LSA is a computational technique that operates by constructing a co-occurrence matrix for 

all words found in a given corpus of text (e.g., Wikipedia) and applying a variant of 

principal components analysis to filter out irrelevant words (dimensions) through singular 

value decomposition and to identify latent semantic associations between the 

words(Landauer & Dumais, 1997; Landauer, 2006). For the current study, we used a subset 

of the Wikipedia corresponding to 254 articles about the animals found in the SVF test 

responses as the source of co-occurrence information to construct semantic representations 

of animal names. The motivation for using a subset of Wikipedia stems from the fact that 

corpus-based statistical approaches to representing lexical semantics are subject to potential 

noise in the data and may result in some cases in “discovering” spurious relations. We took a 

number of steps previously reported elsewhere (Pakhomov & Hemmy, 2013; Pakhomov et 

al., 2012) to automatically reduce the amount of noise and to optimize the parameters used 

in LSA computation and subsequent clustering of responses. In order to eliminate potentially 

spurious associations, we limited Wikipedia to a subset consisting only of animal names that 

occurred in the responses. Thus, the original co-occurrence matrix was composed of 254 

animal names (Wikipedia documents) and 17,763 context words. While this is a departure 

from the standard LSA approach in which all available text from a corpus would be used, 

prior work by Pereira and colleagues (Pereira, Botvinick, & Detre, 2013) on the same 

dataset that was developed by Mitchel et al. (2008) demonstrated that reasonable topic-

model representations of semantic space of concrete concepts can be obtained from a 

relatively small (~ few thousand entries) subset of Wikipedia definitions.

Apart from the choice of text to be used for LSA, another source of variability has to do with 

selecting the most optimal dimensionality of LSA vectors. To select the number of 

dimensions we relied on calculating the proportion (share) of the sum of singular values for 

the first N dimensions in the LSA matrix to the total sum of singular values for all 

dimensions. The number of dimensions for LSA computation is difficult to estimate a priori. 

As described in detail in (Quesada, 2011, p. 82), unlike other related techniques such as 

multi-dimensional scaling, LSA does not currently have an internal criterion or a theoretical 
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way of determining the most optimal number of dimensions. Therefore, we determined the 

optimal dimensionality by using an external criterion – a small independent dataset 

consisting of pairs of animals manually assessed for semantic similarity as follows. As 

described in more detail in our previously reported work (Pakhomov & Hemmy, 2013), to 

control for the effects of source text selection and to find the optimal number of dimensions, 

we used a dataset developed by Weber and colleagues (Weber et al., 2009) that consists of 

nine animal names and all possible pairs (n=36) of these nine animals that were presented to 

participants in a series of behavioral and imaging experiments. The participants were asked 

to judge photographic images of these pairs of animals for similarity. While holding the 

source data constant (the Wikipedia corpus), we varied the proportion of the sum of singular 

values for the first N dimensions to the total sum of singular values for all dimensions. We 

experimented with several values for this criterion in the range between 0.05 and 0.50 and 

found that the optimal threshold was around 0.20. This threshold resulted in reducing the 

original word by document matrix to 14 dimensions, yielding a peak correlation of 0.65 

between the relatedness scores obtained with this LSA method and the manually derived 

Weber’s reference standard. The previously mentioned work by Pereira et al. also suggests 

that a relatively small number of dimensions (~ 25 – 100) is needed to model representations 

of concrete objects using Latent Dirichlet Allocation (LDA) which, similarly to LSA, 

models the distributions of words over documents in order to “learn” semantic features that 

best represent them (Pereira, Botvinick, & Detre, 2013).

Applying LSA to Wikipedia entries for all animal names that were produced by the 

participants in our study resulted in representing each animal name as a set of a number of 

latent semantic dimensions. We subsequently used the resulting matrix to compare pairs of 

animal names represented as vectors in this multi-dimensional space by computing the 

cosine of the angle between the semantic vectors that represented the meaning of each 

animal name. The cosine values range from −1 (180 degree angle between vectors, i.e., they 

are pointing in opposite directions), to zero (90 degree angle - the two vectors are 

orthogonal), to 1 (zero degree angle - the vectors are pointing in the same direction). Thus, 

these cosine values can be interpreted in terms of semantic relatedness between the words 

that the vectors represent. We used the cosine values to compute measures of clustering and 

cumulative semantic relatedness as described in the next two sections − 2.5 and 2.6.

2.5 Automatic Determination of Clusters and their Size in SVF Responses

Based on the semantic relatedness tools described in the previous section, we developed an 

automated approach that follows the clustering and switching analysis introduced by Troyer 

et al. (1997) as closely as possible. The one significant departure from Troyer’s approach in 

the current implementation is that the qualitative human judgments of whether any given 

pair of words belongs to the same semantic category are replaced by quantitative semantic 

relatedness scores with the cutoff threshold for the cosine values set to 0.90 to identify very 

closely related pairs (i.e., their semantic vectors point almost in the same direction). Thus, if 

the relatedness value between two words exceeds this threshold, the words (or to be more 

precise, the animal senses of these words) are treated as belonging to the same cluster. The 

rest of clustering computation was the same as described by Troyer et al. (1997), repeated 

here briefly for convenience. In order to be counted as a cluster, all words in a given 
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sequence of words found in a test response had to be closely related (i.e., have pairwise 

relatedness values above the predetermined threshold − 0.90). For example, a sequence of 

w1, w2 and w3 would be considered a cluster if w1 is closely related to w2, w2 is closely 

related to w3, and w3 is closely related to w1. The size of clusters was discounted by one – a 

single word cluster would have the size of zero, a cluster of two words would have the size 

of one, and so on; however, the total number of clusters used in the denominator for 

calculating the mean cluster size (MCS) included single word clusters. It is important to note 

that we followed Troyer’s methodology to make our results interpretable in light of the prior 

work; however, automated computation of semantic relatedness enables further 

experimentation with modified approaches that we reserved for future work1. For clarity of 

presentation we will refer to LSA-based automated computation of mean cluster size as 

MCS and manually computed cluster size based on Troyer’s guidelines as mMCS.

The network graph in Figure 1 illustrates the connectivity between names for the top 50 

most frequent animals found in the study participants’ responses. This network was 

constructed by first computing a fully connected adjacency matrix representing pairwise 

semantic relatedness values between all 50 animal names. We then applied the same 0.90 

threshold as was used in the determination of semantic clusters in participants’ responses to 

retain only the strongest associations. The resulting network was visually represented with 

an edge-weighted layout (Cytoscape software package, version 2.8.1, http://

www.cytoscape.org/) in which the length of the edges is proportionate to cosine values 

between retained word pairs.

2.6 Measuring Cumulative Semantic Relatedness

In the present study, in addition to clustering and switching, we assessed the cumulative 

approach to computing relatedness over the entire SVF sample. This approach consists of 

making automatic semantic relatedness measurements between all pairs of words produced 

during the test of verbal fluency regardless of the order in which they appear in the test 

sample. The pair-wise measurements are then averaged over the entire sample to obtain a 

cumulative relatedness (CuRel) score that represents a measure of semantic diversity of the 

response. We used the word “cumulative” to describe this approach to reflect the fact that 

the computation of the mean “accumulates” values across all pairs of words even though this 

approach is not purely additive. This approach is illustrated in Figure 1 in which each test 

sample is represented as an N × N matrix (N = number of words generated on the test) with 

the cells containing pairwise relatedness values with the exception of the on-diagonal cells. 

Since the same words are used both in rows and columns, these matrices are symmetrical 

and thus we do not need to compute values for half of the pairs (represented with blank 

cells). The example in Figure 2 illustrates the computation of CuRel in two samples. Sample 

1 is from a 77-year-old male diagnosed with multiple-domain MCI with an amnestic 

component (STMS: 36, CDR: 0.5). Sample 2 is from an 80-year-old male diagnosed with 

probable AD dementia (STMS: 30, CDR: 0.5). Theoretically, CuRel score may represent the 

degree of semantic diversity in the meaning of words produced on the SVF test. Higher 

1The methods for computing MCS and CuRel described in this manuscript as well as additional approaches to measuring clustering 
and switching in semantic and phonemic fluency test responses have been made publicly available as a Python package (https://
pypi.python.org/pypi/VFClust/0.1.1).
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CuRel scores may index a tendency to produce exemplars that are more closely related and 

are thus less semantically diverse. Lower CuRel score may indicate greater diversity in 

exemplars and a tendency to search across subcategories.

2.7 Task Free Functional MRI

Given that performance on the SVF test is multidimensional with various measures of 

semantic relatedness each likely capturing a distinct dimension of overall performance, it 

would be expected that the neural substrates supporting these measures would be distinct, at 

least to some extent, for each measure as well. However, it is also possible that the various 

aspects of overall performance on this test are controlled by the same or overlapping 

mechanisms. Therefore, we investigated the association between semantic relatedness 

measures and the brain systems-level organization of the language network using task-free 

fMRI.

Task-free fMRI data were acquired using a General Electric 3T Signa HDx scanner, 8 

channel head coil, gradient EPI, TR = 3000 ms, TE = 30 ms, 90° flip angle, 21 cm field of 

view, 64 × 64 in-plane matrix, slice thickness 3.3 mm without gap, and 103 or 113 volumes 

were obtained. Subjects were instructed to keep their eyes open during scanning. All task-

free fMRI data sets with greater than 3 mm of translational movement, 3° of rotational 

movement, or that failed visual inspection for obvious artifacts were excluded from analysis. 

Preprocessing and data analysis were performed utilizing a combination of the Statistical 

Parametric Mapping (SPM5) software (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) 

(Wellcome Department of Cognitive Neurology, University College London, UK), the 

Resting-State fMRI Data Analysis Toolkit (REST) v1.5 (http://www.restfmri.net) (Song et 

al., 2011), Data Processing Assistant for Resting-State fMRI (DPARSF) v2.0 (http://

www.restfmri.net) (Chao-Gan & Yu-Feng, 2010), group ICA of fMRI toolbox (GIFT) 

software v2.0c (http://icatb.sourceforge.net) (Calhoun, Adali, Pearlson, & Pekar, 2001), and 

in-house developed software implemented in MATLAB v7.11 (Mathworks Inc., Natick, 

MA).

Preprocessing steps included discarding the first 3 volumes to obtain steady state 

magnetization (sequences with 113 volumes were also truncated so all sequences had 100 

remaining volumes for analysis), realignment, slice time correction, normalization to SPM5 

EPI template, smoothing with 4 mm full-width half maximum Gaussian kernel, linear 

detrending to correct for signal drift, and 0.01–0.08 HZ bandpass filtering to reduce non-

neuronal contributions to BOLD fluctuations. In addition, regression correction for spurious 

variables included rigid body transformation motion effects, global mean signal, white 

matter signal and cerebral spinal fluid signal (Fox, Zhang, Snyder, & Raichle, 2009; 

Weissenbacher et al., 2009).

The language network was back reconstructed for each subject using the spatial-temporal 

dual regression (STR) method, as implemented in the GIFT software package (Calhoun et 

al., 2001), with scaling of the parameter estimates of functional connectivity to z-scores. The 

resulting spatial maps contain voxel-wise information about the spatial location and 

magnitude of language network connectivity at the individual subject level. Independent 

component analysis (ICA) applied to task-free fMRI identifies functionally connected brain 
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networks in a model-free manner by estimating spatially independent patterns from linearly 

mixed time courses of fMRI data. Multi-subject or group ICA (GICA) methods have been 

developed in order to draw inference about group data using ICA (Erhardt et al., 2011). 

Using the GICA approach, an aggregate estimate of intrinsic connectivity networks can be 

obtained. However, subject-level maps need to be back-reconstructed using the group-level 

solution to initialize the STR method to estimate a subject-level solution (Beckmann, 

Mackay, Filippini, & Smith, 2009). We have recently developed a well characterized high-

dimensional GICA atlas (Mayo Clinic Study of Aging Functional Connectivity Atlas) using 

a large (n = 892) population-based sampling of cognitively normal elderly individuals (Jones 

et al., 2012). This GICA atlas can be used to initialize the STR method in a manner unbiased 

by the connectivity profiles of the sample of subjects under investigation.

The STR method is a two-step process to derive subject-level parameter estimates of the 

intrinsic connectivity network (ICN). The first step uses spatial-maps from group average 

estimates of ICNs as spatial regressors against a single subject’s 4-dimensional dataset that 

produces a time-series for each subject. This time-series is then used in the second step as a 

temporal regressor against the same subject’s 4-dimensional dataset producing subject-level 

spatial maps of ICNs. The aggregate GICA language network template from the high-

dimensional ICA Mayo Clinic Study of Aging (MCSA) Functional Connectivity Atlas was 

used for the back-reconstruction (available at http://mayoresearch.mayo.edu/mayo/research/

jack_lab/supplement.cfm) (Jones et al., 2012). Each of the subjects’ back-reconstructed 

language networks were entered into a multiple regression SPM5 analysis with age and 

gender as nuisance covariates and SVF, CuRel, or MCS as the covariate of interest. A one-

sample t-test of the back-reconstructed language networks was performed to visualize the 

spatial extent of the entire language network at the group level (Figure 3). For each of the 

covariates of interest, a linear regression analysis was performed and considered significant 

at a FWE corrected cluster level significance p < 0.05 (voxel-wise p < 0.05, k > 93). Each of 

the identified significant clusters was further characterized using the Anatomy toolbox 

(Eickhoff et al., 2005) and the MCSA high dimensional ICA ROI atlas (Jones et al., 2012). 

The average functional connectivity in the most significant clusters for each contrast was 

extracted from every subject and correlated with the respective covariate of interest in order 

to better characterize the direction of the relationship between language network 

connectivity and behavioral performance on a language task.

2.8 Statistical Analysis

Correlations between continuous variables were estimated with Pearson correlation. 

Differences between group means were tested for statistical significance using one-way 

ANOVA with post-hoc tests carried out using the Tukey Honestly Significant Differences 

(HSD) method. Linear regression analysis was performed by including age, sex, and years 

of education as covariates along with the predictive covariate of interest. Comparisons 

between manual and automatic determination of clusters in SVF responses were performed 

based on manual clustering guidelines originally proposed by Troyer and colleagues (Troyer 

et al., 1997). All statistical tests assumed the significance threshold of 0.05. All statistical 

computations were carried out using the R statistical package (version 2.14.1) and software 

designed specifically for brain imaging analysis described in the previous section.
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3. Results

3.1 Comparison of Automated and Manual Clustering

Comparing MCS calculated with the LSA approach to mMCS - cluster size determined 

manually by following Troyer’s guidelines – resulted in a moderate correlation of 0.57 (n = 

49, p < 0.001).

3.2 Differences Between Diagnostic Groups

Demographic and clinical characteristics of the participants in this study are presented in 

Table 1. Significant differences in SVF score means between AD dementia and CN 

(adjusted p-value < 0.001), and between MCI and CN groups (adjusted p-value = 0.016) 

were observed with higher SVF scores in CN than in AD dementia and MCI groups. MCI 

participants were less impaired (higher SVF score) than AD; however, while this difference 

was in the expected direction, it only approached significance (adjusted p-value = 0.054). 

On STMS and CDR, post-hoc analyses revealed that both CN and MCI participants were 

significantly less impaired than AD (adjusted p-value < 0.001); however, the differences 

between CN and MCI on the STMS and CDR scales were not significant. The CuRel scores 

were highest in the MCI group followed by a tie between AD dementia and CN; however, 

these differences were not significant either. A similar pattern of results was observed for 

STMS, showing that CN and MCI participants performed significantly better than AD, with 

MCI scores being between CN and AD but the differences failing to reach statistical 

significance.

The traditional SVF score was not correlated with either MCS (r = 0.27, p = 0.06) or CuRel 

(r = −0.09, p = 0.52) measures. MCS and CuRel were also uncorrelated (r = 0.16, p = 0.28). 

We estimated three regression models with the STMS score as the dependent variable and 

SVF, MCS, or CuRel score as the independent variable, respectively. Each model also 

included sex, age and education level of the participants as covariates in addition to the SVF, 

MCS, or CuRel score. The model with the SVF score showed that it was a significant 

predictor of STMS (p < 0.001); however, the remaining models did not show significant 

associations between the LSA-based scores (MCS or CuRel) and STMS.

3.3 Associations Between Language Brain Network Connectivity and Semantic Clustering

The back-reconstructed language network recapitulated the typical regions of positive and 

negative functional connectivity found in the ICN shown in Figure 3. The spatial topography 

of ICNs represents the average composition of dynamic binary brain configurations (Jones 

et al., 2012), consisting of regions of positive synchrony in brain areas related to a specific 

cognitive task and regions of negative synchrony (i.e., anticorrelations) in brain areas which 

may serve related, yet competing, functions (Fox et al., 2009). Hence, the optimal brain 

organization that supports language-related tasks, captured by analysis of ICNs in both task-

related and task-free experimental paradigms, relates to the system’s ability to maintain 

appropriate positive and negative functional connectivity of these regions, shown in Figure 

3.
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In this study, we examined the associations between one of each of the three covariates of 

interest (SVF, MCS, and CuRel) and both positive and negative regions of functional 

connectivity in the back-reconstructed language network (Table 2 and Figure 3). We looked 

for associations between performance on semantic clustering measures with functional 

connectivity of individual language network regions giving rise to four possibilities: loss of 

positive functional connectivity, loss of negative functional connectivity, gain of positive 

functional connectivity, or gain of negative functional connectivity. In general, poorer 

performance on semantic indices was associated with a loss of either positive or negative 

functional connectivity highlighting the importance of both strong positive and strong 

negative connectivity for high performance. The only exception being the gain of positive 

functional connectivity seen in the medial frontal lobe associated with lower SVF scores 

discussed below.

The following results are organized in terms of the comparisons between the back-

reconstructed language network (see Figure 3 showing the sign of functional connectivity of 

various regions with the rest of the language network) and the relationship of specific 

language network areas to the covariates of interest (see Figure 3 showing the direction of 

the correlations between functional connectivity in language network areas and the 

covariates). It is important to note that yellow and blue colors in Figure 3 represent a 

different phenomenon from the colors in Figure 4. The colors in Figure 3 index areas of 

positive and negative functional brain network connectivity, whereas colors in Figure 4 

positive and negative correlations with semantic indices.

Better performance measured by the traditional SVF score was most strongly correlated with 

the left middle temporal gyrus and the basal ganglia (Table 2). Both of these areas display 

positive functional connectivity with the rest of the language network (see Figure 3, yellow 

and orange areas). The negative functional connectivity of the medial prefrontal cortex (see 

Figure 3, blue), which is part of the anterior default mode network (aDMN), was correlated 

with poorer performance measured with the SVF score (shown in Figure 4a, blue).

The MCS measure was found to be differentially associated with the middle temporal gyrus, 

superior parietal lobule, and fusiform gyrus. The middle temporal region had positive 

functional connectivity with the rest of the language network (Figure 3, orange and yellow). 

Greater positive connectivity in this region was associated with larger semantic clusters 

(Figure 4b, yellow); however, larger semantic clusters were also associated with greater 

negative connectivity of the left superior parietal lobule and fusiform gyrus (Figure 4b, blue 

and Figure 3, blue).

Lower CuRel scores were associated with loss of functional connectivity in the left angular 

gyrus and left frontal operculum areas (Figure 4c, blue). Both of these areas are shown in 

Figure 3 (yellow and orange) to be positively connected with the rest of the language 

network, thus the detrimental association with CuRel scores in this case is loss of positive 

functional connectivity. Higher CuRel scores were associated with greater negative 

functional connectivity of the ventral DMN areas (right precuneus and retrosplenial 

posterior cingulate cortex, Figure 4c, yellow). At first glance it may seem counterintuitive 

that larger CuRel scores are associated with detrimental loss of positive and negative 
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functional connectivity, particularly in light of the fact that CuRel means do not differ 

significantly across diagnostic groups. In order to further elucidate the relationship between 

CuRel scores and behavioral performance, we examined the association between CuRel and 

SVF scores by subgroups with higher and lower mental status using the STMS score 

threshold of 34 to separate participants into these groups. The motivation for using STMS 

score cutoff of 34 stemmed from findings of a previous large study that examined the utility 

of using STMS to predict MCI (Tang-Wai et al., 2003) that reported a mean of 34.2 for 

patients with MCI diagnosis. The results of this examination are shown in Figure 5 and are 

juxtaposed with the associations in Figure 4c, repeated in Figure 5 for convenience. These 

results show that there is a significant negative association between CuRel and SVF 

performance (r = −0.52, p = 0.022) in the higher functioning group (Figure 5a, left). No 

association with SVF performance (r = 0.01, p = 0.98) was found for the lower-functioning 

group. The direction of the associations between CuRel and loss of negative and positive 

functional connectivity in the left angular gyrus and the right precuneus, respectively, was 

preserved.

4. Discussion

4.1 General Discussion

In this study, we demonstrated that distributed semantic representations of animal names 

constructed using LSA from a small subset of a large online encyclopedia can be used to 

characterize verbal behavior elicited with SVF tests and investigate distinct brain 

mechanism(s) that support generative semantic fluency. While two-thirds of our study 

sample came from a clinical population, our focus was not clinical. In this study, the disease 

process that resulted in MCI and AD dementia in the participants was used as a naturally 

occurring research instrument that modulated the connectivity of brain networks involved in 

verbal responses to the generative semantic verbal fluency task. The results of this study 

confirm the original proposal by Troyer et al. (1997) that cognitive performance on the SVF 

test is multidimensional and that the traditional SVF scores do not account for every aspect 

of performance on this test. We have developed a computational linguistic approach that can 

help assess multiple behavioral aspects of SVF testing in addition to the SVF score in a 

standardized and reproducible fashion, and improve the test’s explanatory power with 

respect to the underlying brain mechanisms involved in various aspects of this task. Our 

approach leverages the information contained in a new generation of social media resources 

(such as the Wikipedia), that are constantly being created and updated through Internet-

mediated interactions among large numbers of people. Thus these resources can be used as a 

valuable source of information to represent distributional semantic properties of words.

Troyer et al.’s (1997) procedure is widely used in research; however, it has certain 

limitations. It relies on an experimentally defined shallow hierarchy (at most 3 levels) with 

three top-level categories (Living Environment, Human Use and Zoological Categories) and 

several sub-categories with multiple inheritance (the same animal name may appear in more 

than one category). The subcategories in this classification scheme were defined based on 

patterns experimentally observed (unfortunately, the authors did not specify what empirical 

patterns were used to determine category membership) in the tests administered to 95 
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healthy Canadian adults. Thus manual clustering using this categorization scheme assumes 

that the subject conceptualizes the animal kingdom in the same way as this relatively small 

and specific study population. For example, Troyer’s categorization places the word “seal” 

under “Arctic/Far North Animals”, which makes sense from the standpoint of someone 

living in Canada; however, seals are also found in many places other than the Arctic. This is 

a trivial example used here only to illustrate the arbitrary nature of picking the dimension 

(among the three available dimensions exemplified by the top level categories) along which 

an animal can be categorized.

In contrast to Troyer’s original manual approach, the LSA-based automated clustering 

approach that we propose results in semantic relatedness assessments between words along 

multiple dimensions derived from a large corpus of text based on co-occurrence frequency. 

Thus this approach implicitly classifies animal names according to a number of empirically 

determined dimensions. In contrast, Troyer’s et al. (1997) approach relies on several explicit 

semantic dimensions. The choice of a small number of dimensions for manual analysis is 

quite reasonable because higher dimensionality would prove to be exponentially more 

difficult for manual human assessments. However, a classification along this practical but 

small number of dimensions may not be able to capture the variety of possible ways in 

which people categorize concrete objects such as animals. However, one potential 

disadvantage of the LSA-based approach, as compared to Troyer’s approach, is that the 

dimensions of the semantic space resulting from LSA computation are not labeled and may 

not be as readily interpretable as the explicit manually determined dimensions.

4.2 Behavioral Measurements Across Diagnostic Groups

The results with respect to the traditional SVF scores show that they are strongly associated 

with diagnostic group membership (lowest SVF score in the AD dementia group, highest in 

the CN group, with MCI in the middle). Standard SVF scores are also strongly associated 

with STMS, a global cognitive measures of mental status. These results are consistent with 

prior work showing sensitivity of the SVF score to AD dementia (Henry et al., 2004) and 

confirm that the SVF performance in the sample used in this study is modulated by cognitive 

impairment affecting generative verbal fluency. Prior work on qualitative assessments of 

clustering performance on SVF tests is inconsistent with respect to the effects of MCI and 

AD dementia on cluster size. Some of the studies found significant differences between 

healthy controls (larger clusters) and patients with AD (Fagundo et al., 2008; Price et al., 

2012; Troster et al., 1998; Troyer et al., 1998), while others failed to find such differences 

(Epker, Lacritz, & Munro Cullum, 1999; Raoux et al., 2008). The findings of the current 

study are consistent with the latter - we also did not find a significant difference between 

diagnostic groups on either the MCS or the CuRel measures. As has been noted by Raoux et 

al. (2008), differences in qualitative methods and sampling may be responsible for these 

discrepant results, highlighting the need for computerized quantitative clustering analyses. 

For example, AD dementia patients in previous studies that found a significant difference in 

MCS were more impaired on the SVF test (SVF score averaged across studies − 7.73 (SD – 

4.3)) than AD dementia patients in studies that did not find significant differences (average 

SVF score − 9.44 (SD – 3.8)). A difference of 2 words at the lower end of the scale can have 

a much more significant impact on cluster size computation than the same difference at the 
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higher end of the scale because the very notion of clusters becomes meaningless as the total 

number of words to be clustered approaches one. The mean SVF score for the AD dementia 

group in the current study is 11 (SD 4.6), which reflects the fact that our participants are in 

earlier stages of dementia. Thus our results are more consistent in this respect with studies 

that involved higher-functioning participants and did not find significant differences in 

clustering measures.

One of the objectives of this study was to determine if the overall SVF performance can be 

decomposed into components that may be associated with semantic processing. The fact that 

there was no significant association between MCS or CuRel scores and STMS, but that a 

significant association was found with the traditional SVF score supports the hypothesis that 

semantic measures (MCS and CuRel) tap into semantic-specific mechanisms rather than 

those involved in global functioning reflected by STMS scores. On the other hand, given 

that multiple mechanisms including executive function, attention, inhibition, motor, and 

semantic retrieval and organization systems are involved in producing speech on semantic 

verbal fluency tasks, it is not surprising that the traditional SVF score is strongly associated 

with global cognitive functioning.

4.3 Distinct Neural Mechanisms Underlying Semantic Indices

The task free fMRI imaging results show the intrinsic organization of large-scale neural 

networks in a task-free experimental paradigm from the perspective of the language 

network. Our results help elucidate the relationship of the networks to the traditional SVF 

score and other automatically derived semantic indices including MCS and CuRel. These 

results suggest that the SVF score, MCS and CuRel measures are dependent on different 

aspects of brain function, because each has an association with a distinct part of the ICN.

Brain regions found to be associated with SVF, MCS and CuRel metrics have been 

previously reported in the literature to be related to functions consistent with what one 

would expect these measures to reflect. The association between SVF scores and loss of 

positive functional connectivity in the left middle temporal gyrus and left basal ganglia may 

be indicative of impairment in fronto-temporal network interactions, which are coordinated 

by subcortical structures (Thames et al., 2012). These structures have been shown to support 

performance on generative semantic fluency (Libon et al., 2009) and to be involved 

specifically with lexical and semantic search and retrieval processes but not processes 

involved in overlearned automatic speech (Birn et al., 2010). Our results are also in-line with 

a previous task free fMRI study that found left middle temporal connectivity with various 

frontal and parietal brain regions was predictive of semantic processing in healthy 

individuals (Wei et al., 2012). The association between SVF scores and gain of positive 

functional connectivity of the medial prefrontal cortex, which constitutes a part of the 

aDMN, may index decreased ability to attenuate the activity of the default mode network 

during the SVF task resulting in interference and consequently poorer performance on the 

task. This finding is consistent with the previously observed association between increases 

in connectivity in the aDMN during normal aging, declining STMS scores, and progression 

to AD dementia (Jones et al., 2011).
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Similarly to SVF scores, the association between the MCS measure and gain of positive 

functional connectivity of the left middle temporal region with the rest of the language 

network is consistent with prior reports showing this area to be critical for supporting 

semantic language processing (Hodges & Patterson, 1995; Mummery et al., 1999; Turken & 

Dronkers, 2011). The loss of negative functional connectivity in the occipital temporal 

(fusiform gyrus) and superior parietal regions implies dysfunction in those brain regions, in 

that they are unable to form the appropriate relationship to the rest of the brain during 

language network formation, which is associated with suboptimal behavioral performance 

on aspects of the SVF test dependent on the integrity of those brain regions (e.g., smaller 

semantic clusters). A likely explanation for this finding has to do with the involvement of 

these areas in working memory (superior parietal region) (Koenigs, Barbey, Postle, & 

Grafman, 2009) and within-category identification and processing of dominant and 

distinctive semantic features (fusiform gyrus) (Mechelli, Sartori, Orlandi, & Price, 2006). 

The finding of the association with fusiform gyrus is also consistent with other fMRI studies 

of semantic relatedness demonstrating involvement of this area in processing of semantically 

related, unrelated, and identical pairs of words referring to concrete objects (Wheatley et al., 

2005) and processing of object’s visual attributes and structural identity (Bruffaerts et al., 

2013). Our findings are also consistent with the crucial role that the fusiform gyrus plays in 

semantic processing involved in the SVF task by being a critical part of the brain’s semantic 

network, with hypometabolism in this area highly predictive of SVF scores in a population 

with semantic dementia (Mion et al., 2010). A comparison of the brain areas associated with 

LSA-based MCS and manually computed mMCS (data not shown), confirmed that, 

consistent with the moderate correlation between the measures, they were associated with 

similar but not identical regions. Both were associated with loss of negative functional 

connectivity in the superior parietal regions and gain of positive connectivity in the temporal 

areas. The involvement of temporal areas was more bilateral for mMCS than for MCS and 

there was no association of mMCS with the fusiform gyrus. This may possibly be due to the 

fact that Troyer et al.’s guidelines for computing clusters are based on functional and 

taxonomic distinctions (e.g., Living Environment, Human Use, Zoological Categories) and 

thus does not include groupings of animals based on visual structural characteristics.

Higher CuRel scores were associated with loss of positive functional connectivity of the left 

fronto-parietal regions suggests possible impairment of mechanisms such as working 

memory and attention that underlie episodic memory retrieval in individuals with higher 

CuRel scores. This is consistent with prior work showing that the strength of connectivity in 

the left fronto-parietal network plays an important role in retrieval of previously studied 

information (Iidaka, Matsumoto, Nogawa, Yamamoto, & Sadato, 2006). The association of 

CuRel measure with loss of negative functional connectivity of the ventral Default Mode 

Network (vDMN) (right precuneus, medial temporal lobe) is also consistent with prior 

findings of the association between these areas and use of visual imagery during episodic 

memory recall of concrete and highly imageable words (Cavanna & Trimble, 2006). 

Similarly to the relationship between the MCS and the loss of negative functional 

connectivity in the occipital temporal and superior parietal regions, the relationship between 

CuRel and the loss of negative functional connectivity in vDMN regions implies the 

amelioration of functional distinction of that area from the rest of the brain during language 
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network formation. As shown in Figure 4, larger CuRel scores are differentially associated 

with overall test performance in groups with higher versus lower mental status. This is an 

interesting finding in light of the fact that both groups show detrimental associations 

between larger CuRel scores and loss of positive and negative functional connectivity in 

areas supporting working memory and attention mechanisms, yet only the higher 

functioning group shows the same detrimental association between larger CuRel values and 

SVF scores. This finding indicates that the same brain mechanism is at work in both groups 

and that optimal performance for individuals with higher cognitive function (as measured by 

STMS) consists largely of producing more semantically diverse responses. These results 

may also indicate the presence of a floor effect in individuals with lower SVF scores that is 

also evident to some extent in the association between gain of positive functional 

connectivity in the medial prefrontal cortex (Figure 4a).

In summary, our findings suggest that the computerized semantic indices capture 

components of the verbal behavior produced on the SVF task that are different from the 

traditional SVF score. Based on the findings of the current and multiple previous studies 

(Baldo, Schwartz, Wilkins, & Dronkers, 2006; Mummery, Patterson, Hodges, & Wise, 

1996; Tupak et al., 2012), the traditional SVF score indexes the function of frontal and 

temporal brain areas thought to be involved in executive control and semantic memory 

necessary for adequate performance on generative verbal fluency tasks. The current study 

further suggests that the traditional SVF score may not be sufficient to reflect the complexity 

of brain mechanisms involved in this task. Computational linguistic analysis of responses to 

this task provide a more complete, albeit most likely not exhaustive account. The MCS 

measure appears to be associated with the function of parietal and occipital, in addition to 

temporal areas, shown to be involved in working memory and semantic feature processing. 

This makes sense in light of the fact that MCS reflects the size of semantic clusters whose 

production is dependent not only on the availability of conceptual information but also on 

the ability to use a strategy for their retrieval. A successful strategy is likely to depend on the 

ability to identify relevant semantic features to produce within-category exemplars, and the 

ability to keep information online to avoid repetition. The CuRel measure is different from 

MCS in that it captures the degree of overall semantic relatedness among all concepts 

produced on the SVF task. Thus it can be thought of as a measure of diversity of the 

semantic space (i.e., animals in this case) that may be sensitive to impairment in areas 

involved in memory of previously learned information. It makes sense that individuals with 

more intact memory would be able to produce more semantically diverse responses – e.g. 

produce smaller size clusters but a greater number of them due to availability of more 

previously learned exemplars of a given category. The fact that SVF, MCS and CuRel are 

uncorrelated with each other and are associated with network connectivity in distinct brain 

areas suggests that these indices may serve as independent and complementary variables in 

the investigation of the relationship between brain function and verbal behavior.

4.4 Other Approaches to Clustering Analysis of SVF Responses

Several approaches inspired by graph-theoretic network analysis have been proposed for the 

analysis of responses on SVF tests (Chan et al., 1993, 2001; Goni et al., 2011; Lerner, 

Ogrocki, & Thomas, 2009). These approaches estimate the strength of semantic relatedness 
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between words based on their proximity in individual SVF responses averaged across a large 

number of subjects to create lexical-semantic networks and describe their properties using 

similar graph-theoretic methods used in brain network analyses. These approaches use 

neurodegenerative disease status to group individual responses and to generate and compare 

the emerging lexical-semantic networks across groups. The underlying assumption in these 

approaches is that words produced in close proximity to each other on an SVF test are more 

semantically related than words that are further apart. This assumption may not always be 

true, particularly for people with neurodegenerative disease. Also, SVF responses typically 

contain more switches than clusters (mean cluster size is typically between 1 and 2 words). 

This may present a significant source of “noise” for the analyses that rely on word proximity 

alone and require a large number of samples for maximum separation between co-

occurrences observed and those that are expected by chance. The advantage of the LSA-

based approach presented in this paper is that it does not assume that proximity of words in 

SVF responses defined their semantic relatedness or similarity. Instead, this approach relies 

on a source of information external to and independent of the SVF testing responses 

provided by a particular group and thus can be applied to analyze individual responses.

In our own prior work (Pakhomov, Hemmy, & Lim, 2012), we investigated the use of an 

alternative ontology-based method for calculating the strength of semantic association 

between pairs of words that was based on the distance between words in WordNet, a large 

manually constructed lexical database that contains mostly hierarchical relations. The 

corpus-based approach presented in the current study is complementary to the ontology-

based approach. The hierarchical ontology-based approaches tend to measure the degree of 

similarity between concepts (e.g. cat vs. panther), while the corpus-based approaches tend to 

also measure the degree of semantic relatedness (e.g., cat vs. mouse). Furthermore, corpus-

based approaches tend to be easier and less resource intensive to maintain and update over 

time; however, the ontology-based approaches tend to be more tractable and explicit (i.e., 

easier to determine the factors contributing to the various scores). In future work, we plan to 

experiment with hybrid approaches to computing SVF semantic indices that would leverage 

both the ontology-based as well as the corpus-based approaches to characterizing strategies 

used in response to the SVF task.

4.5 Limitations

For the current study, we started with the simplest and most straightforward approach to 

using LSA to represent word meanings in which each animal was represented as a document 

from a collection and each document was represented as an unordered list of words - “bag of 

words”. More sophisticated approaches may include targeting specific words in a predefined 

context such as a sentence or other syntactic units (Baroni & Lenci, 2010; Devereux, 

Pilkington, Poibeau, & Korhonen, 2009; Padó & Lapata, 2007), and combining text corpus 

co-occurrence data with word association norms (Andrews, Vigliocco, & Vinson, 2009; 

Durda, Buchanan, & Caron, 2009). A number of non-corpus based and hybrid alternatives 

for computing semantic similarity and relatedness have also been developed, including 

methods that rely on calculating path length between concepts in a hierarchy such as 

WordNet (Fellbaum, 1998; G. A. Miller, 1995), as well as methods based on overlap in 

word definitions in addition to corpus statistics (Jiang & Conrath, 1997; Lesk, 1986; 
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Patwardhan & Pedersen, 2006; Pedersen, Patwardhan, & Michelizzi, 2004; Resnik, 1999; 

Resnik, 1995).

6. Conclusion

A number of distinct aspects of verbal behavior exhibited on responses to semantic verbal 

fluency tests can be described and quantified using automated computational linguistic 

approaches. In the present study, we examined two different techniques that use the strength 

of semantic relatedness information to quantify clustering behavior (MCS) as well as the 

degree of semantic diversity present in the test response (CuRel). These two approaches 

appear to be supported by neural mechanisms not only distinct from each other, but also 

from those that support the overall performance on this task (SVF score). These findings 

have important implications for future studies focused on neural correlates of verbal 

behavior on generative verbal fluency tasks. Using these objective and relatively easily 

quantifiable measurements will enable a sensitive, systematic and fine-grained examination 

of the brain mechanisms involved in lexical access and retrieval. Future work may focus on 

introducing timing information into the examination of clustering and switching behavior on 

this task by using audio-recorded samples, as well task-related fMRI imaging to complement 

the findings obtained in the task-free fMRI paradigm.
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Figure 1. 
Network of top 50 most frequent animal names found in the study participants’ responses. 

This network was constructed based on applying a threshold (0.9) to pairwise semantic 

relatedness values computed from the dimensionality-reduced LSA matrix.
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Figure 2. 
Illustration of cumulative semantic relatedness (CuRel) computation.
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Figure 3. 
Group map of back-reconstructed language network. The one-sample t-test of all of the 

subjects’ back-reconstructed language networks is displayed on a surface rendering created 

using the Caret software package (http://www.nitrc.org/projects/caret/). The left hemisphere 

is presented in the left half of the image. The color bar encodes the t-statistic.
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Figure 4. 
Task free fMRI network connectivity associated with several aspects of performance on 

SVF tests. (a) – areas of positive (yellow) and negative (blue) correlation between the 

standard SVF score and language network connectivity; (b) – areas of positive and negative 

correlation between MCS and langue network connectivity; (c) – areas of positive and 

negative correlation between CuRel and language network connectivity.
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Figure 5. 
Comparisons of associations between CuRel score and overall performance on the SVF test 

(a) with loss of positive functional connectivity of the left angular gyrus (b) and loss of 

negative functional connectivity in the right precuneus (c).
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