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Abstract

The purpose of this review is to communicate and synthesize recent findings related to motion 

artifact in resting state fMRI. In 2011, three groups reported that small head movements produced 

spurious but structured noise in brain scans, causing distance-dependent changes in signal 

correlations. This finding has prompted both methods development and the re-examination of 

prior findings with more stringent motion correction. Since 2011, over a dozen papers have been 

published specifically on motion artifact in resting state fMRI. We will attempt to distill these 

papers to their most essential content. We will point out some aspects of motion artifact that are 

easily or often overlooked. Throughout the review, we will highlight gaps in current knowledge 

and avenues for future research.
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Introduction

Over the last decade, studies of correlated fMRI signal, as opposed to task-evoked activity, 

have come to represent a considerable portion of published fMRI studies. Such studies, 

called functional connectivity studies, have been used to examine the functional 

organization of the brain and to describe changes in this organization over development, 

aging, and disease states. Functional connectivity studies often involve no explicit task 

(other than for subjects to lie in the scanner for some period of time) and are therefore called 

“resting state” studies of spontaneous (or “intrinsic”) fMRI signal.

One finding that spanned many of the first functional connectivity fMRI studies is that the 

young, the elderly, and the diseased often exhibited “underconnectivity” relative to healthy 

young adults. For example, between (distant) regions of the default mode network, children 

had weaker signal correlations than young adults (Fair et al., 2007), and these same (distant) 

correlations were weaker in older subjects than in young adults (Andrews-Hanna et al., 

2007). These findings were part of a larger story whereby correlation values were modulated 

across the lifespan in a distance-dependent manner: in childhood, short-distance correlations 

were strong and longer-distance correlations were weaker, then as children aged into young 

adulthood, short-distance correlations weakened and longer-distance correlations 

strengthened, and then as subjects aged into later adulthood the short-distance correlations 

again became stronger and long-distance correlations became weaker. Interestingly, 

frameworks for understanding some diseases sometimes had similar aspects of distance 

dependence, such as “local overconnectivity but long-distance disconnection” in autism 

(Courchesne and Pierce, 2005).

In 2011, three groups reported a previously unrecognized aspect of motion artifact in 

functional connectivity MRI studies, which is that motion adds spurious variance that tends 

to be more similar at nearby voxels than at distant voxels, causing distance-dependent 

modulation of signal correlations (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et 

al., 2012). Troublingly, even relatively small movements that were traditionally not thought 

to be problematic could produce these effects. This meant that, all other things being equal, 

a higher-motion group would have relatively stronger short-distance correlations than a 

lower-motion group, and, depending on the processing strategy used, that long-distance 

correlations would often be weaker in the higher-motion group. The implications for 

functional connectivity studies of development, aging, and disease were clear, since 

children, the elderly, and patients tend to move more in the scanner than typical and/or 

young adult populations. Indeed, in the 3 initial studies, previously-described developmental 

(Power et al., 2012; Satterthwaite et al., 2012) and aging (Van Dijk et al., 2012) differences 

were reported to be at least partially explained by motion artifact.

The full impact of motion artifact on functional connectivity studies of development, aging, 

and disease is not yet clear, since methods to counteract motion artifact are still being 

developed and validated (Bright and Murphy, 2013; Jo et al., 2013; Kundu et al., 2013; 

Muschelli et al., 2014; Patel et al., 2014; Power et al., 2014; Satterthwaite et al., 2013a; 

Scheinost et al., 2014; Yan et al., 2013a; Yan et al., 2013b; Zeng et al., 2014). Studies that 

carefully control for motion artifact are beginning to determine which previous findings 
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might relate to motion artifact, and which findings withstand newer and more stringent 

corrections for motion artifact (Fair et al., 2012; Satterthwaite et al., 2013b; Tyszka et al., 

2014). On the one hand, some findings may be attenuated or overturned. On the other hand, 

improved removal of a biasing artifact may reveal effects that were previously obscured.

Artifact caused by small movements is not uniquely problematic to functional connectivity 

studies. Within the last year, scrutiny of small movements in diffusion weighted imaging 

(DWI) has determined that small movements also create previously unrecognized, spurious 

differences in this modality (Yendiki et al., 2013). This realization has prompted the re-

evaluation of prior structural connectivity findings with newer and more stringent methods 

of motion correction. One of the first such re-evaluative studies now indicates that many 

differences in white matter tracts previously attributed to autism may be attributable to 

motion artifact, though differences in the inferior longitudinal fasciculus withstand the 

newer motion correction procedures (Koldewyn et al., 2014). This report has a parallel in the 

reevaluative reports in functional connectivity studies: in data from control and high-

functioning autistic subjects, binning subjects by motion creates much larger group 

differences than binning by diagnosis (Tyszka et al., 2014). These findings underscore the 

importance of identifying and removing the influences of motion in MRI studies.

Motion is unique among artifactual influences in fMRI in that it can be measured from the 

data itself via realignment parameters (unlike, for example, cardiac- or respiratory-related 

artifact, which require external recordings). Thus, all fMRI datasets contain the substrates 

needed for many motion-targeting denoising procedures. Over one dozen papers have been 

published specifically on motion artifact in functional connectivity fMRI since 2011. The 

aim of this review is to synthesize and consolidate the knowledge gained to date, and, in 

doing so, to point out directions for future research. Much of the literature on motion artifact 

is technical; we will attempt to communicate this literature to a broad audience. The first 

portions of the paper concern findings and methods that are applicable to most existing 

datasets. In the final portions of the paper we consider emerging methods that may be useful 

in future datasets.

The reader should note that the field of denoising, especially with respect to motion, is 

rapidly evolving. There is not consensus about which methods are most successful at 

removing motion artifact, or even how to measure success in removing motion artifact. 

Different groups would likely have different interpretations of the literature. We have tried 

to steer a neutral course in this article. Our Figures present data from 11 studies (2 of our 

own) and we discuss nearly every paper on motion published after 2011 up until the time of 

submission (and some papers that emerged during review). Our intent is to collate most of 

the important new data regarding motion artifact and to help readers learn how to interpret 

various commonly-used analyses aimed at detecting or removing motion artifact. Our 

interpretation of the literature is unavoidably embedded in selecting and discussing certain 

data. Our intent is not to steer the field toward or away from a particular processing stream; 

we do not make processing recommendations. At the end of the article, we do suggest some 

data that, if reported, would help reviewers and readers assess motion-related effects in a 

given study.
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Features of motion artifact

For over two decades, it has been known that motion creates strong disturbances in fMRI 

signal (Friston et al., 1996; Hajnal et al., 1994). In the mid-1990s, nearly all fMRI studies 

were task studies, which modeled evoked activity from many trials or blocks of trials. In 

these studies, any source of noise, including motion, would be suppressed via averaging in 

the modeling process, unless the noise systematically related to experimental timing. Most 

studies of motion at that time focused on task-associated motion, where systematic 

relationships between experimental timing and subject motion (e.g., a spoken response) 

meant that motion-related variance could be mistakenly modeled as task-related activity 

(Barch et al., 1999; Bullmore et al., 1999).

In functional connectivity studies, where covariance among timeseries is the measure of 

interest, motion artifact cannot be suppressed by averaging. For a pair of voxels, depending 

on the timing, duration, and direction of motion, motion can add similar variance to signals 

in both voxels, it can add variance to only one of the voxel signals, or it can add different 

types of variance to each voxel signal. Thus, motion can cause both increases and decreases 

in observed correlations. Importantly, the similarity of motion-added variance is typically 

high between nearby voxels, and the similarity of added signal drops with distance between 

voxels, meaning that modulation of correlations is different in nearby versus distant pairs of 

voxels.

Measuring motion

Effort in recent years has been directed towards a fuller understanding of the signal 

disruptions caused by motion. To identify such disruptions, it is first necessary to establish 

measures of motion. Nearly every fMRI dataset in any institution undergoes rigid body 

realignment as one of the first image processing steps. The rigid body realignment estimates 

are derived relative to some fixed position and describe the displacement of the head from 

that position at every timepoint in the scan. An example of such realignment estimates is 

shown in the top panel of Figure 1A. Note that most fMRI data are acquired using 

echoplanar imaging (EPI) sequences, in which data are acquired as slices. Motion may 

impact all slices of an image, or only some of them, and different motions can occur within a 

single volume, impacting slices differentially. Almost universally across neuroimaging 

groups, realignment estimates are derived from volumes, not from slice data. The volume-

derived estimates are a simplification and summarization of movement over the acquisition 

of all slices. It is possible that slice-derived information could be used for denoising 

purposes in more specific and, perhaps, more efficacious ways than volume-derived 

realignment estimates (e.g., (Beall and Lowe, 2014)).

A useful distinction can be drawn between absolute displacement of the head and relative 

displacement of the head. In general, it is the relative movements, from one volume of data 

to the next volume, which cause the most difficult-to-correct disruptions in signal. The two 

types of displacement are illustrated in the middle panel Figure 1A, where absolute 

displacement from a fixed position is shown in dotted red lines, and relative displacement is 

shown in the solid red line. Below, in blue, is DVARS (Smyser et al., 2010), a measure of 

how rapidly and ubiquitously signal changes from volume to volume (discussed later). 
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These traces, and similar traces in hundreds of other subjects, indicate that relative 

displacement identifies prominent signal disruptions caused by motion.

Multiple versions of relative displacement measures, often called framewise displacement 

(FD), have been proposed and used by various groups. For example, (Van Dijk et al., 2012) 

calculated the root-mean-square of the derivatives of the translational realignment estimates, 

whereas (Power et al., 2012) summed the absolute values of the derivatives of the 

translational and rotational realignment estimates (after converting rotational estimates to 

displacement at 50 mm radius). Other versions of these measures are calculated in various 

software packages such as AFNI (http://afni.nimh.nih.gov/afni/) or FSL (http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Subscripts will be used in this review to denote various 

versions of FD.

Several points are worth noting about the FD measures. First, though various versions of FD 

are calculated differently, they target similar properties of the data, and various measures 

often correlate highly (Figure 1B). For example, when using exact voxel-specific FD as a 

reference, the FD calculated in FSL (Jenkinson et al., 2002) correlates at r = 0.99, the FD 

calculated after (Power et al., 2012) correlates at r = 0.98, and the FD calculated after (Van 

Dijk et al., 2012) correlates at r = 0.85 (Yan et al., 2013a). Thus, across FD measures, the 

shapes of the FD traces are similar. A second and important point to note, however, is that 

the magnitudes of the measures differ. Though they are highly correlated, FDPower has 

values almost twice those of FDFSL, and FDFSL has values roughly twice those of FDVan Dijk 

(Yan et al., 2013a). A third and less obvious point to note is that FD magnitudes depend on 

TR, since this determines how rapidly movements will be sampled (and subdivided). A final 

point worth noting is that the realignment estimates themselves, because they are derived 

from the fMRI images and not from external measures of motion, may not be entirely 

accurate, may not reflect properties relevant to all slices, and can be influenced by how data 

is processed prior to realignment (e.g., if outlying voxel intensities are replaced by 

interpolation prior to realignment (Christodoulou et al., 2013; Jo et al., 2013)). Naturally, the 

accuracy of techniques that utilize FD (or any QC measure) is limited by the accuracy of the 

measure itself. For example, if slice-specific motion is not captured in the volume-derived 

motion estimate or volumetric DVARS, the utility of such measures for defining data to be 

censored is diminished, since some data that “ought” to have been identified would not be 

identified. The extent to which such considerations are practically important is not well 

understood at present. In sum, various FD measures all target and identify similar aspects of 

the data, but the magnitudes of the waveforms differ across measures and according to 

sampling rates. A practical corollary is that if FD measures are to be used in some dataset, 

FD waveforms and magnitudes should be established (and reported) for that specific 

dataset, since magnitudes from the literature may not be appropriately scaled to the data at 

hand.

Motion-induced signal disruptions

The signal disruptions produced by motion are both stereotyped and highly variable. 

Modeling of both the global signal and voxel signals during and after motion (Figure 2A) 

indicates that signal decreases are commonly found and that the magnitude of signal 
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decrease scales with the magnitude of movement (Satterthwaite et al., 2013a). However, at 

the single subject level, when FD traces are plotted along with the signals in gray matter, it 

is evident that disruptions are not always stereotyped (Power et al., 2014) (Figure 2B). 

Rather, signal disruptions can be increases, decreases, or complex waveforms. These 

changes are sometimes shared across much of the brain and are sometimes different in 

different parts of the brain. Such variability – both in waveforms across movements and 

waveforms across voxels – is likely due to the timing and duration of motion (impacting one 

slice, multiple slices, or all slices of a volume), the trajectory of motion, and a voxel’s 

position relative to the skull, sinuses, and other tissues with differing signal intensity. Note 

that the only processing applied to the data in Figure 2B is slice-time correction, image 

realignment, and removal of the mean and linear trend terms at each voxel in each run (to 

facilitate comparisons across runs). In other words, no frequency filtering or nuisance 

regression or other denoising has been performed in these data. Note also that finding 

stereotyped signal decreases in the TRs during and after motion (Satterthwaite et al., 2013a), 

but also variable and more prolonged effects for individual movements (Power et al., 2014), 

are not mutually incompatible findings. Importantly, unlike task fMRI, to impact resting 

state correlations, motion-induced signal fluctuations need only be present, they do not need 

to be similar across motions.

The spatial impact of motion on functional connectivity correlations

This section presents a conceptual framework for thinking about the spatial effects of motion 

on fMRI signal. The discussion should be understood as probabilistic, reflecting tendencies 

across motions and voxels. Any particular motion may produce a wide variety of signal 

changes that vary in duration, sign, and prevalence across voxels, and simulations that 

reproduce this complicated behavior are lacking. This discussion therefore summarizes the 

behavior of empirical data.

When a motion occurs, two voxels may experience similar disruptions in signal (increasing 

correlations), dissimilar disruptions (driving correlations to zero or to negative values), or 

only one voxel may be impacted (a dissimilar disruption driving correlations to zero). 

Nearby voxels often display similar disruptions. More distant voxels often display similar 

disruptions when the artifact is widespread, but they also frequently display dissimilar 

disruptions. Thus, motion acts 1) to typically increase signal correlations between nearby 

voxels, 2) to increase signal correlations between distant voxels if the signal disruption is 

widespread and similar in nature over much of the brain, and 3) to drive signal correlations 

to zero or possibly even cause negative correlations between voxels if the disruptions are 

different in character in different locations of the brain, an effect that typically occurs 

between distant voxels, though it can occur between nearby voxels. We will refer to these 3 

types of spurious variance as types 1, 2, and 3 in the following discussion.

The balance of these different types of signal disruption determines the distance-dependent 

character of motion artifact. In our data and experience, type 1 effects are prominent, type 2 

effects are also prominent, and type 3 effects are less prominent. Different datasets may 

inherently contain different balances of these types of motion artifact, but little is presently 
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known about whether and how motion artifact is modulated by acquisition parameters (e.g., 

slice orientation, interleaved vs. continuous vs. spiral acquisition, etc.).

Different denoising strategies can selectively remove different types of motion artifact, 

yielding different post-denoising profiles of distance-dependent artifact. For example, in all 

datasets that have been examined, prior to denoising, correlations at all distances are 

elevated by motion (due to type 2 effects), but correlations at short distances are more 

elevated (by type 1 effects) than those at longer distances (which are somewhat decreased by 

type 3 effects). Many studies have examined the impact of global signal regression on this 

profile of distance dependence. In data that have undergone global signal regression the 

profile is changed: at long distances, motion acts to slightly decrease correlations, whereas 

motion still increases correlations at short distances. This effect can be explained as follows: 

the global fMRI signal (averaged across the entire brain) presumably reflects many type 2 

disruptions, whereas focal type 1 effects must have a weaker representation, as must type 3 

effects (since different signal disruptions could partially or completely cancel each other in 

an average signal calculation (Jo et al., 2013; Muschelli et al., 2014)). Thus, regression of 

the global signal is expected to remove much type 2 variance, but will fail to remove much 

type 1 and type 3 variance. In terms of correlations, removal of type 2 variance should 

reduce (spuriously increased) correlations at all distances by removing global motion-related 

variance, but spuriously increased short-distance and spuriously decreased long-distance 

correlations will be only modestly corrected since the global signal only weakly represents 

focal (type 1 and 3) motion-related variance. Removal of type 2 variance by global signal 

regression thus “unmasks” the disparity between the effects of type 1 and type 3 variance. 

Both modeling and empirical findings are consistent with these ideas (Jo et al., 2013; Power 

et al., 2014; Satterthwaite et al., 2013a). Other denoising strategies that target focal variance 

as opposed to global variance should produce different distance-dependent profiles, 

discussed below.

Techniques to reveal distant-dependent motion artifact

The impact of motion on functional connectivity correlations can be quantified in several 

ways, two of which are discussed here (others will be discussed later). One way to 

characterize motion artifact is to measure subject motion (e.g., via mean FD over a subject’s 

scans) and to correlate, across subjects, subject motion with observed correlation values. For 

example, 120 subjects would yield 120 mean FD values, and these mean FD values could be 

correlated with a pairwise functional connectivity correlation, across subjects, to determine 

how that correlation is modulated by subject motion. We refer to these correlations as QC-

RSFC correlations (QC referring to quality control, measured by mean FD in the present 

example, RSFC denoting resting state functional connectivity). Figure 3A shows an example 

of QC-RSFC analyses, where FDFSL was calculated in 348 subjects, and the corresponding 

QC vector was correlated, across subjects, with all possible observed pairwise functional 

connectivity correlations between 160 regions of interest (ROIs). In Figure 3A, the 12,720 

(160*159/2) QC-RSFC correlations are plotted on the y-axis, and the x-axis shows the 

distance between the ROIs giving rise to each pairwise correlation. At left, the data without 

global signal regression indicate that all correlations are increased by motion, and that the 

dependence of correlation values on motion is strongest at short distances. The right panel 
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indicates that regression of the global signal decreases the dependence of correlations on 

subject motion at all distances (consistent with removal of type 2 disruptions), but that short-

distance dependence is still positive (consistent with unremoved, prominent type 1 

disruptions), while long-distance dependence is near zero or slightly negative (consistent 

with unremoved but less prominent type 3 disruptions). Note too, consistent with the 

previous discussion, how distance-dependent differences are enhanced by removing the 

global signal, a result that stems from near-complete elimination of long-distance motion 

dependence but only partial elimination of shorter-distance motion dependence.

A different way to characterize motion artifact is to observe how correlations change when 

motion-impacted volumes are included or excluded from correlation calculations. This 

technique has a long history with respect to motion, including excluding volumes 

contaminated by speech-related motion artifact from modeling in task fMRI (Barch et al., 

1999) or excluding motion-contaminated data from resting state analyses (e.g., (Kennedy 

and Courchesne, 2008; Lemieux et al., 2007)). Excluding volumes from analysis is 

sometimes called “scrubbing”, a reference to the practice of discarding unreliable data, and 

the procedure is also called “censoring”. Figure 3B shows the changes produced by 

censoring volumes with FDPower > 0.5 mm in a cohort of 22 children scanned at 3T. These 

images complement the QC-RSFC analyses in Figure 3A, showing that, in data prepared 

without any nuisance regressions, censoring high-motion volumes decreases all correlations, 

with the greatest effects at shorter distances. When nuisance regression (including global 

signal regression) is performed, short-distance correlations are decreased by censoring, and 

longer-distance correlations are slightly increased, but the overall magnitude of change in 

correlations is considerably reduced.

A point that is sometimes overlooked in discussions of distance dependence is the fact that is 

that the disruptions produced by motion are also orientation-dependent. The strongest 

correlation changes produced by the censoring analysis in Figure 3B are shown in Figure 

3C. The blue lines, correlations that are decreased by scrubbing, are predominantly short-

distance and oriented laterally, whereas correlations that are increased by scrubbing are in 

red and are predominantly long-distance and oriented in the anterior-posterior and vertical 

axes. This orientation-dependence can be appreciated when the changed correlations are 

plotted from a common origin (Figure 3D). These data indicate that motion tends to increase 

correlations with predominantly lateral orientations, and decrease those with predominantly 

vertical or anterior-posterior orientations. It is possible that this phenomenon reflects a 

preponderance of motion in the form of head nodding (which is symmetric about the lateral 

axis), or that it is a property of specific acquisition sequences, but the cause is not presently 

known.

The techniques introduced in this section, QC-RSFC correlations and scrubbing techniques, 

have properties that are useful and/or limiting in different contexts. The QC-RSFC 

correlations are attractive since they can be applied to any dataset, regardless of the 

processing stream, to measure the success of various denoising strategies at unlinking 

subject motion from outcomes of interest (here, pairwise correlations were the outcome, but 

any outcome could be used, see (Yan et al., 2013a)). A limiting factor is that such analyses 

are generally not practical for single-subject or single-scan assessment, since the reliability 
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and accuracy of the correlations scales with the number of measurements (here, scans or 

subjects). Another limiting factor is that if subjects (or scans) have little variability in the 

QC measure, it is difficult to reliably establish a correlation. For example, the 348 subjects 

studied in (Satterthwaite et al., 2013a) span a wide range of mean FD values, allowing QC-

RSFC correlations to reveal distance-dependence. But consider a scenario where all subjects 

have high motion. In this case, it is conceivable that QC-RSFC correlations could be near 

zero (if motion-related increases had a ceiling effect, for example, or if all subjects had 

similarly high levels of motion and the QC range was narrow). A low QC-RSFC correlation 

would be falsely reassuring in this situation, since those subjects would certainly be 

influenced by motion artifact. In relation to this point, it should be noted that when subjects 

are binned into low-, medium-, and high-motion groups by mean FD, the slopes of FD-

RSFC relationships are highest in low-motion subjects, lower in medium-motion subjects, 

and still lower in high-motion subjects, consistent with a ceiling-like effect of motion on 

correlation values (Power et al., 2014). These caveats aside, successful removal of motion 

artifact should remove the distance dependent slope and the positive offset in QC-RSFC 

measures. It is possible that the variance of QC-RSFC values about their mean may also 

communicate something about a denoising strategy or dataset, and that a zero-mean 

distribution with a restricted range is preferable to a zero-mean distribution with a broader 

range of values, but this is not established.

The censoring technique is attractive because it precisely characterizes particular volumes of 

data, and because it can be applied to single scans. A limiting factor is that some threshold 

must be chosen (and justified) to define which data to censor, and a further limitation is that 

censoring reduces the number of datapoints from which to derive correlations. A major 

limitation is that censoring analyses reveal nothing about the uncensored data. It is easy to 

imagine scenarios where a denoising technique largely corrects high-motion volumes (e.g., 

via interpolation), but does not correct subtler influences of motion (e.g., artifact in medium-

motion volumes that do not meet interpolation criteria). In such a scenario, censoring high-

motion volumes might reveal little or no change in correlations, indicating that the high-

motion volumes were well-corrected, but the analysis would also fail to reveal the artifact 

still residing in medium-motion volumes. In this way, censoring analyses too can be falsely 

reassuring. For these reasons, no single technique necessarily establishes that a dataset is 

free of motion artifact. Instead, convergent evidence from several lines of inquiry is needed 

to give confidence that motion artifact has been removed. In our own work, we characterize 

motion artifact using scrubbing analyses and we incorporate scrubbing into the processing of 

data (discussed below), but the success of denoising is assessed by the elimination of QC-

RSFC correlations, by the inspection of post-denoising timeseries and QC traces for 

evidence of motion-related disruption, and by the elimination of group differences between 

motion-binned subjects (these subjects are typical, healthy subjects who, to our knowledge, 

differ only in amount of motion exhibited).

The temporal impact of motion on functional connectivity correlations

The data in Figure 2 indicate that stereotyped signal decreases are often seen in the ~5 

seconds during and after motion, but also that individual disruptions can last longer than 5 

seconds. Recall that to impact correlations, a signal disruption needs only to be present. An 

Power et al. Page 9

Neuroimage. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



important question is: for how long, post-movement, does motion artifact alter correlations? 

Prior to nuisance regression (i.e., in data such as are shown in Figure 2B), censoring 

volumes before, during, and after motion indicates that the alterations in correlations are not 

detectable before motion, are greatest during motion (defined as FDPower > 0.2 mm, see 

Figure 1A), and are detectable for roughly 8–10 seconds after motion (Power et al., 2014). 

This temporal pattern is unchanged by nuisance regression of white matter signals, CSF 

signals, and motion estimates (Power et al., 2014). When global signal regression is included 

in the nuisance regression, alterations are restricted to the period of motion and are no longer 

found in volumes after motion (Power et al., 2014). The duration of these effects is not 

easily attributed to some aspect of data processing. The asymmetric effects are present 

before nuisance regression (Figure S4 of (Power et al., 2014)), and, though frequency 

filtering is symmetric in time, no effects are seen in volumes immediately prior to motion 

after frequency filtering (Figure 8 of (Power et al., 2014)). In our data, similar duration and 

asymmetry of motion-induced signal disruptions are also seen when slice time correction 

(via sinc interpolation in our routines) is omitted from the processing stream.

The duration of motion effects in these analyses is surprising. One possibility is that motion 

co-occurs with other artifactual mechanisms to produce certain delayed effects. Anyone who 

has undergone a 10 or 20 minute resting state scan knows that such acquisitions can be 

boring. Yawning (even surreptitiously) causes head motion and also fluctuations in pCO2 

and heart rate. Some motions may reflect yawns, and some post-motion effects may be 

related to pCO2 changes or other changes due to deep inhalation or breath-holding. Future 

investigations of datasets with concurrent physiological recordings may identify such 

instances of linked physiological and motion artifact.

Methods to reduce or remove motion-related variance

Having covered many of the recent gains in understanding motion’s impact on signals and 

correlations, we now turn to recent developments in removing motion artifact. We first 

review progress in post-hoc corrections that can be applied to any existing dataset. Progress 

in acquisition methods is mainly relevant to future datasets and will be discussed later.

Realignment estimates

For many years, it was common practice in resting state analyses to regress the 6 

realignment estimates, and sometimes their first temporal derivatives, to remove motion-

related variance. The first three reports on motion artifact (Power et al., 2012; Satterthwaite 

et al., 2012; Van Dijk et al., 2012) followed such strategies, which inadequately removed 

motion artifact, and subsequent studies have also confirmed the inadequacy of these 

regressors (Kundu et al., 2013). In 1996, Karl Friston and colleagues proposed that 

expansions of realignment estimates might be useful to remove spin-history related aspects 

of motion-related artifact (Friston et al., 1996). The expansions, for R = [X Y Z pitch yaw 

roll], take the form [R R2], [R R2 Rt-1 Rt-1
2], [R R2 Rt-1 Rt-1

2 Rt-2 Rt-2
2], and so forth, each 

expansion incorporating information further back in time. In recent papers, 24-parameter 

(incorporating 2 timepoints) (Power et al., 2014; Satterthwaite et al., 2013a; Yan et al., 

2013a) and 36 parameter expansions (incorporating 3 timepoints) (Power et al., 2014) have 

been tested. Unfortunately, even expansions including terms from 3 timepoints leave much 
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motion-related variance in data (see Figure 4 for a visual illustration). Further expansions 

seem likely to yield diminishing returns and are unlikely to justify the degrees of freedom 

they would occupy in regression models. Measurable gains in explained variance are 

produced by increasing the number of motion regressors from 12 to 24 to 36, but the gains 

are modest and must be balanced against lost degrees of freedom. For the modest gains 

delivered, the cost of adding additional motion regressors may not be attractive in 

comparison to other methods to remove motion artifact (described below). It should also be 

noted that regression of voxel-specific motion measures (derived from whole-brain 

measures, see (Bullmore et al., 1999)) has yielded no denoising benefits over regression of 

whole-brain motion measures (Satterthwaite et al., 2013a; Yan et al., 2013a).

Non-gray-matter nuisance signals

The heterogeneity of motion’s effects suggests that fMRI-signal-based denoising may be 

more successful than motion-parameter-based denoising. Regression of mean white matter 

and mean CSF signals have been of modest utility in reducing motion artifact (Power et al., 

2014; Satterthwaite et al., 2013a; Yan et al., 2013a). Whether signals from those 

compartments may be used to better effect by subdividing those signals (and/or other 

nuisance signals) using spatial criteria (e.g., (Jo et al., 2010)) or data reduction techniques 

(e.g., (Behzadi et al., 2007)) is beginning to be explored.

ANATICOR (Jo et al., 2010) is a method that derives a nuisance regressor for each gray 

matter voxel from nearby white matter voxels within a specified distance. Because local 

motion effects (type 1 and type 3 disruptions) presumably cause much of the distance-

dependent nature of motion artifact, ANATICOR, by deriving and removing local nuisance 

signals, is in principle well-positioned to address this aspect of motion artifact. In (Jo et al., 

2013), ANATICOR largely suppressed distance-dependent artifact in a scrubbing analysis 

with FDAFNI > 0.25 mm as a threshold (Figure 5A). However, the amount of motion artifact 

in all other (non-scrubbed) volumes is unknown since no QC-RSFC correlations or residual 

timeseries were presented. ANATICOR thus appears to be a promising denoising strategy 

with respect to motion artifact, but further analyses are needed to understand its efficacy.

CompCor (Behzadi et al., 2007) is a method that defines voxels whose signal is presumably 

of no interest (in the white matter, CSF, or other non-gray matter locations) and uses 

Principal Component Analysis (PCA) to obtain a small set of nuisance regressors from the 

larger set of voxelwise signals of no interest. This method, like ANATICOR, could obtain 

more locally-specific signals that may not be well-reflected in mean CSF or mean white 

matter signals. One report has found that implementations of CompCor can reduce 

FD:DVARS correlations more than regression of mean white matter and mean CSF signal 

regression (Muschelli et al., 2014). However, QC-RSFC analyses indicate that after 

CompCor, QC-RSFC values center about r = 0.2, and increased values are observed at 

shorter distances, indicating incomplete removal of motion artifact (Figure 5B).

Gray matter signals: ICA denoising

Another way to derive nuisance signals is by matrix decomposition of whole-brain data, 

usually via Independent Component Analysis (ICA). ICA is a blind source separation 
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technique that reduces a set of signals to combinations of fewer signals (component signals). 

Ideally, in resting state fMRI, these components would separate neural signal from noise. In 

typical 3T datasets, however, “neural” ICA components exhibit motion dependence, 

indicating that motion-related variance is not effectively partitioned from neural variance 

(Mowinckel et al., 2012; Satterthwaite et al., 2012; Tyszka et al., 2014). It is not yet known 

whether higher-dimensional ICA (e.g., (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)) 

in high quality datasets (such as the Human Connectome Project data) will be able to 

adequately separate such variance; such investigations are underway. One point worth 

mentioning is that ICA, by definition, identifies maximally spatially independent signals in 

the data. More local signal disruptions (type 1 and type 3) may therefore be well-separated 

as sources by ICA. However, globally shared artifact (type 2 disruption) may be more 

difficult to isolate and remove by ICA, because this variance is shared across sources.

Gray matter signals: wavelet despiking

Recently, Patel and colleagues proposed a denoising method that decomposes voxel signals 

into wavelet space, identifies trains of “bad” high-amplitude wavelets that likely reflect 

motion artifact, and reconstitutes denoised voxel signals from the “good” wavelets (Patel et 

al., 2014). This method removes many motion-related artifacts from the timeseries, but it is 

not clear whether motion artifact is fully removed: QC-RSFC plots indicate that, after 

wavelet despiking, motion dependence remains positive in 2 of 3 datasets and distance-

dependence is seen in the highest motion dataset (Figure 5C). However, the mean values of 

these distributions are not within the top 2.5% mean values seen in permutation testing of 

the same data, and the authors argue that it is therefore possible that the observed QC-RSFC 

values arise by chance rather than due to motion artifact.

Gray matter signals: global signal regression

Several groups have noted that regressing the global signal is very effective at removing 

motion artifact (Power et al., 2014; Satterthwaite et al., 2013a; Yan et al., 2013a; Yan et al., 

2013b). The panels of Figure 4 visually shows the failure of several sets of motion 

regressors and mean white matter and mean CSF signals to remove motion artifact, and the 

visible efficacy of global signal regression relative to those regressors. Other successful 

techniques should show a similar visual elimination of motion-related variance. The utility 

of global signal regression in removing motion artifact (especially in combination with 

censoring motion-contaminated volumes at all stages of processing) can also be seen in the 

QC-RSFC plots in Figure 5D. Global signal regression is one of the more contentious issues 

in the field of resting state fMRI, and entering into that debate is beyond the scope of this 

review. We only note that the objections raised to global signal regression are mainly based 

on results from low-dimensional simulations (Murphy et al., 2009; Saad et al., 2012), and 

that further work that determines the applicability of these arguments to empirical data 

would usefully inform decisions about using global signal regression as part of denoising 

strategies.

Censoring motion-contaminated data

At present, most regression techniques leave residual abnormalities in the data during at 

least some periods of motion (i.e., the denoising regressions fail to fully correct motion-
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induced artifact). These abnormalities are sometimes easily seen in timeseries or images 

(e.g., the upper panels of Figures 4 or the slices in Figure 7A), and sometimes they are more 

subtle and better identified via DVARS or other data quality traces (e.g., even though the 

bottom panel of Figure 4 is less obviously impacted by motion, DVARS traces still identify 

abnormalities during some movements, see (Power et al., 2014)).

In the face of incomplete artifact removal, another step that can be taken is to censor the 

problematic timepoints. Many groups have found that censoring improves the removal of 

motion artifact (Carp, 2013; Power et al., 2012, 2013; Power et al., 2014; Satterthwaite et 

al., 2013a; Yan et al., 2013a). For example, a processing stream that incorporates global 

signal regression and censoring throughout processing nearly eliminates QC-RSFC 

correlations at all distances (though there may be a slight dependence at short distances, see 

Figure 5D) and reduces group differences between motion-binned typical adults to chance 

levels (though differences are still slightly elevated from mean chance levels, see Figure 

5D).

Censoring introduces a tension between removing volumes to reduce motion artifact and a 

desire to not remove volumes in order to preserve a dataset. An important question therefore 

is what criteria should be set to censor data. As Figure 2A indicates, the magnitude of 

motion artifact scales with the magnitude of motion (though not necessarily linearly). FD 

(and DVARS) traces, such as those shown in Figures 1 and 2, exhibit low values throughout 

most of the scan, which we refer to as “floor” values in the traces. Practically speaking, we 

find that volumes that rise above this floor (e.g., FDPower > 0.2 mm in Figures 1 and 2) 

contain demonstrable motion artifact, and we censor these volumes in our own processing 

streams (Power et al., 2014). In our initial report, to characterize motion-contaminated 

volumes, we used a threshold of FDPower > 0.5 mm (the top dotted lines in Figure 2B). 

Lowering the scrubbing threshold from 0.5 mm to 0.2 mm (the bottom dotted lines in Figure 

2B), in order to censor as much motion-contaminated data as possible without impacting 

“floor” volumes, reveals and removes more distant-dependent motion artifact (Power et al., 

2014).

Most analysis streams contain multiple linear regressions of nuisance variables (e.g., mean 

white matter signal). Censoring can be incorporated into multiple regressions by either 

deleting the unwanted timepoints via concatenation (Power et al., 2013; Power et al., 2014) 

or adding single-timepoint nuisance regressors (delta functions) at the unwanted timepoints 

(Lemieux et al., 2007; Satterthwaite et al., 2013a; Yan et al., 2013a). These methods should 

yield identical regression fits.

Concerns about censoring

Several concerns about censoring have been raised by various groups. Investigators who 

censor motion-contaminated data need to be aware of several limitations of the technique.

One concern relates to degrees of freedom. At a given threshold, the number of volumes 

removed by censoring will scale with the amount of motion in the scan, leading to fewer 

degrees of freedom in subjects who move more. This could lead to biases that covary with 

factors of interest, such as less data in higher-moving clinical cohorts. One way to deal with 
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this statistical bias is to censor all datasets to identical lengths, i.e., if the worst subject 

included in analysis only has 142 volumes remaining, to censor all other scans to include 

only 142 volumes as well. Alternatively, groups can be statistically matched for amount of 

data remaining. However, there are certain complications that should be considered. For 

example, contrast censoring the final 5 minutes of a 10 minute scan to censoring every other 

volume of a 10 minute scan. The data sum to 5 minutes in both cases, but due to 

hemodynamic autocorrelation, and the fact that lower frequencies contribute most of the 

power in resting state signal, in the latter scenario, much more than 5 min of signal 

properties are represented. In general, when the censored timepoints are many in succession, 

and/or temporally clustered, more information is lost about that scan than when an 

equivalent number of timepoints are censored sparsely throughout the scan, and the type of 

information lost may be specific to certain spectral or dynamic aspects of the data. Published 

examples of the duration of censored data portions are shown in Figure S1. These 

histograms indicate that most censored data are short segments of 1 or a few TRs, though 

many successive TRs are sometimes removed (Figure S1). Little attention has been given to 

the temporal “clustering” of censored timepoints and what effects this may have on data 

properties.

Another concern is that correlation estimates may become excessively noisy if data is 

removed. In general, as more timepoints contribute to a correlation, the correlation becomes 

more accurate and statistically reliable, and vice versa as timepoints are removed. For many 

years, the field has accepted ~5 min as an adequate resting state scan length (Van Dijk et al., 

2010). To ameliorate concerns about noisy estimates, investigators may choose not to use 

subject data that is reduced below this limit by censoring. There are no established or 

agreed-upon limits on how much data must remain after censoring, what proportion of a 

subject’s data may be censored, or even how to measure or report the amount of data that 

remains after censoring (e.g., to fully account for the considerations in the previous 

paragraph).

A variation of this concern is that the distribution of correlations will widen and is more 

likely to contain “extreme” values after censoring. From first principles, among random, 

uncorrelated signals, the distribution of correlations will narrow (around zero) as 

correlations are calculated from longer signals. Put differently, it is much easier to obtain a 

strong correlation (positive or negative) between noisy signals when only 8 timepoints are 

measured, as opposed to 80 or 800. Yan et al. (2013a) illustrated this issue in real data by 

successively removing timepoints from a ~7.8 min scan and displaying the median, 

maximal, and minimal correlations obtained in seed maps from the posterior cingulate 

(Figure S1). When a third of the data are censored, bringing the scan to ~5 min, very little 

change is produced in the correlation distribution. Below this point, the most negative 

correlations observed gradually increase in magnitude, and eventually, when only 50 or 8 

timepoints contribute to correlations, more obvious changes in the distribution are seen. 

These windows correspond to computing correlations on ~1.7 and ~0.25 min of data, 

respectively, well below the 5 min that is typically used in the field. Thus, when longer 

amounts of data are used, this concern is ameliorated, but when short amounts of data are 

used, this concern is amplified.
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Another concern is whether censoring biases the sampling of brain “states”. It is possible 

that transient motion-related brain states exist and that they become underrepresented by 

censoring. However, much or sometimes nearly all signal during motion is spurious (Friston 

et al., 1996; Kundu et al., 2013; Power et al., 2014; Satterthwaite et al., 2013a), spurious 

signal changes are of large amplitude and are found throughout the brain (i.e., not just in 

motor-related locations), and it is currently difficult to separate spurious signal from signal 

of interest. Future methods may enable better detection and characterization of “motion-

related” states, but at the moment it is difficult to confidently characterize “states” derived 

from fMRI during motion.

Many of these concerns could be helpfully addressed by simulations. Little simulation of 

motion-related effects has been performed (though see, e.g. the supplemental materials of 

(Satterthwaite et al., 2013a)), in part due to the complicated appearance of signal changes. A 

more mechanistic understanding of motion-related signal changes, in concert with relevant 

simulations, will advance the field.

Frequency Filtering

Many analysis streams also involve frequency filtering. Information on the frequency 

content of motion artifact is limited. One study found that high-motion subjects displayed 

increased power throughout the frequency spectrum typically examined in resting state 

studies (Satterthwaite et al., 2013a). This study also found that denoising regressions 

(including 24 motion parameters, white matter, ventricle, and global signals and censoring 

FDFSL > 0.25 mm) removed lower-frequency disparities in power (below 0.08 Hz) but not 

higher-frequency disparities in power (above 0.08 Hz), suggesting that band- or low-pass 

filters set to remove frequencies over 0.08 Hz may aid removal of motion-related variance. 

Another study noted spatially-specific, motion-dependent modulation of power in particular 

frequency bands, with effects in both fronto-parietal and default mode networks (Kim et al., 

2014).

Usually, frequency filtering is performed by convolving timeseries with a filter kernel, a 

method that requires continuous timeseries. As noted by (Carp, 2013), these filters can 

spread large-amplitude artifact from one motion-contaminated timepoint into temporally 

adjacent, non-contaminated timepoints. This poses a challenge for incorporating a censoring 

procedure into frequency filtering, a challenge that has been addressed in multiple ways. 

One way is to regress basis functions (e.g., sine and cosine waves) with the to-be-removed 

frequency content from the data, using delta functions to censor unwanted timepoints. This 

approach can be combined with nuisance regression in a single regression model (Hallquist 

et al., 2013; Jo et al., 2013). This approach can also be used to estimate the frequency 

content of discontinuous data (Power et al., 2014), and to generate frequency-based 

measures such as fractional amplitude of low frequency fluctuations (fALFF). Another 

effective way to reduce the spread of artifact during frequency filtering is to replace outlying 

to-be-censored values with less-outlying values via interpolation (discussed below; (Carp, 

2013)).

One issue raised by several groups is that the frequency content of nuisance regressors needs 

to match the frequency content of the data undergoing regression (Hallquist et al., 2013; Jo 
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et al., 2013; Patel et al., 2014). This frequency matching requirement means that 1) 

frequency filtering should be incorporated into the regression model (as described above), or 

2) regression should precede frequency filtering (as described above), or 3) if regression 

follows frequency filtering, then all nuisance regressors should undergo the same filtering 

process as the data. In two of the first publications on distance-dependent motion artifact, 

unfiltered motion regressors were regressed from data that had been bandpass filtered, re-

introducing high-frequency motion-related fluctuations into the data (Power et al., 2012; 

Van Dijk et al., 2012). Subsequent publications using frequency-congruent nuisance 

regressors (regression prior to frequency filtering) have reproduced the effects noted in the 

original papers (Power et al., 2014; Satterthwaite et al., 2013a; Satterthwaite et al., 2012; 

Yan et al., 2013a).

Interpolation

A practice conceptually linked to censoring is replacing abnormal data with synthetic data, 

usually via interpolation from surrounding timepoints. Data replacement raises many of the 

same issues as censoring (e.g., which data should be replaced, whether unintended biases 

may be created), but two additional and related issues are raised: what synthetic qualities are 

generated at interpolated timepoints, and how to treat the synthetic data in comparison to the 

real data.

The degree to which a dataset assumes the qualities of the (particular type of) synthetic data 

depends both on the amount of data replaced, and the sizes of the replaced portions of data. 

The qualities of any interpolation method should be similar over brief intervals, such as 1 or 

2 TRs of replaced data. But the interpolated data will diverge across methods as the size of 

the interpolation increases. For example, a spline fit can be very different than a linear fit 

over gaps larger than a few TRs. In certain situations, such as during frequency filtering, the 

type of interpolation employed may have appreciable effects on the adjacent non-

interpolated timepoints. In our own work, we have used estimates of the frequency content 

from the uncensored (“good”) data to construct synthetic data at censored (“bad”) 

timepoints, yielding a continuous signal which then undergoes frequency filtering, followed 

by re-censoring those “bad” time points (Power et al., 2014).

In addition to the qualities of the interpolation, investigators must decide how to treat the 

synthetic data in comparison to real data. Options include treating the data equivalently, 

weighting the different types of data, or ultimately censoring the synthetic data. As an 

example of the former approach, despiking procedures are sometimes used to replace 

outlying voxel intensities with less-outlying intensities, but the replaced timepoints may 

thereafter be treated no differently than the rest of the data. In contrast, as an example of the 

latter approach, when we replace abnormal timepoints, it is as an intermediate step in data 

processing (described above), and the synthetic data are ultimately censored (because they 

derive from uncensored volumes and do not add information to the data). When few 

timepoints are replaced, it may make little difference whether synthetic data are retained or 

censored, but the importance of this issue will scale with the proportion of data replaced.
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Other post-hoc subject-level methods

In a recent publication (Scheinost et al., 2014), Scheinost and colleagues investigated 

interactions between rigid body realignment interpolations, image smoothness, and motion. 

These authors found that motion correlates with image smoothness, that cubic and spline 

interpolations resulted in less image smoothing than linear interpolations, and that image 

smoothness correlated with several connectivity measures. An iterative smoothing procedure 

designed to bring subjects within a group to similar levels of smoothness was proposed, and 

this procedure lessened the dependence of the examined connectivity measures on motion.

Some groups have, at the subject level, generated scrubbing plots similar to those shown in 

Figure 3B, fitted those plots with polynomial curves, and regressed those curves from the 

subject-level data as a means of reducing motion-related effects (Fair et al., 2012).

Another approach to motion correction, proposed by Marko Wilke, involves deriving motion 

estimates and applying them to the first volume of a scan in order to create synthetic 

timeseries estimates of motion-related effects in the data, followed by derivation of signals 

from various portions of the synthetic dataset as nuisance regressors (Wilke, 2012). This 

approach can explain amounts of variance comparable to some motion regressions. 

However, the synthetic signals generated do not exhibit global modulations of signal, which 

are present empirically (Figure 2), indicating that the model used to generate the synthetic 

data would benefit from further refinement.

Group-level covariates

Beyond subject-level corrections, group-level corrections for motion are also possible. 

These corrections are typically implemented by including in statistical models covariates of 

no interest across subjects such as mean FD (Satterthwaite et al., 2012; Van Dijk et al., 

2012; Yan et al., 2013a) or global levels of correlations (Saad et al., 2013; Yan et al., 

2013b). A related technique is standardization, whereby a subject-level parameter is used to 

normalize some property of a subject, such as Z-standardization (Yan et al., 2013c). The 

merit of this approach is that regression of such covariates can reduce motion-related group 

differences, which is the primary aim of the technique. But as with any covariate of no 

interest (e.g., IQ, motion, etc.), if the covariate is collinear with an effect of interest (e.g., if 

motion covaries with age in a developmental study), across-subject regression of these 

covariates can also remove effects of interest. It is thus highly desirable to decouple motion 

covariates from anticipated variables of interest. Unfortunately, this is often difficult, since, 

as previously mentioned, motion tends to be higher in the young, the elderly, and clinical 

populations, who are often the focus of a study.

Another consideration is whether covariates of no interest, which are usually removed via 

linear regression, exhibit linear relationships to outcomes of interest, such as RSFC 

correlations. In our data, relationships between FDPower and RSFC correlations can be 

modeled linearly but they also exhibit some non-linearity: RSFC correlations increase most 

rapidly in the lower range of FDPower but level off at higher ranges of FDPower (Power et al., 

2014). Such non-linear relations limit the utility of FDPower as a covariate of no interest in 

group-level corrections. This nonlinearity is also a limitation for QC-RSFC analyses that 
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measure linear relationships between RSFC and FD (see the discussion of ceiling effects in 

the “Techniques to reveal distance-dependent artifact” section); this limitation is one reason 

why we advocate using multiple types of analyses to assess artifact removal. Whether other 

summary measures of data quality have linear relationships to outcomes of interest is 

unknown, though it is known that various FD measures correlate highly.

Partial correlations

One possible approach to removing motion artifact is to implement some denoising 

procedure that produces incompletely denoised timeseries (e.g., mean white matter signal 

regression), and then to use partial correlations rather than full correlations to study 

relationships among the timeseries. For example, given a set of N signals, for any 2 signals, 

the other N-2 signals can be used as regressors to derive the variance unique to those 2 

signals, forming the basis of the partial correlation. If signals share artifact, then partial 

correlation approaches may reduce the contribution of artifact to computed relationships.

There is limited information on how well partial correlation approaches reduce motion 

artifact. One publication has examined the influence of motion on properties of 90-node 

networks formed of AAL atlas parcels, comparing networks derived by full correlation or 

partial correlation (derived using graphical lasso methods) (Yan et al., 2013b). In this report, 

using partial correlations did not fully suppress the dependence of network properties on 

motion, and using partial correlations was less effective in suppressing such dependencies 

than was global signal regression. One useful avenue of future research will be to replicate 

this finding, and to determine why partial correlation approaches are not more successful at 

reducing motion artifact.

Multi-echo acquisitions

One emerging technique for correcting motion is to acquire fMRI signal at multiple 

timepoints during a single TR (i.e., to have multiple echo times). The fMRI signal observed 

at any time during a TR is a function of the intensity to which the voxel was raised by the 

electromagnetic pulse at the beginning of the TR (initial intensity, S0), the elapsed time (t), 

and the rate of exponential decay of the signal (the relaxation rate, R2*): S(t) = 

S0exp(−tR2*). Within a voxel, brain activity is measurable because neural activity increases 

blood flow, which increases the local ratio of oxy- to deoxyhemoglobin, which alters the 

magnetic properties of the blood, which ultimately changes the relaxation rate of the 

perfused tissue (R2*). Thus, signal intensity at a given time is a product of two factors (S0 

and R2*), only one of which reflects neural activity (R2*). As Figure 6A illustrates, under 

ideal conditions in which S0 is constant at all TRs, when signal is acquired at a single point 

during a TR, the relaxation rate can be inferred from measured signal intensity. However, in 

reality, S0 is not constant but is instead modulated by factors including motion. As Figure 

6B shows, acquiring data at a single echo time cannot distinguish whether signal changes are 

caused by altered relaxation rates or altered S0. Multi-echo methods, by acquiring data at 

multiple time points during a TR, can help to disambiguate S0 changes from relaxation rate 

changes (Figure 6C, see also (Kundu et al., 2012)).
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Thus far, limited information exists on the efficacy of multi-echo methods to reduce or 

eliminate motion artifact. In one study that used 2 echo times (Bright and Murphy, 2013), 

signal from the 1st echo time (TE = 3.3 ms, the “short” TE) was regressed from the signal at 

the 2nd echo time (TE = 35 ms, a “typical” BOLD-weighted TE), helping to adjust the data 

for changes in S0. This method explained motion-related variance beyond motion regressors, 

but did not eliminate the distance-dependent changes caused by motion artifact (Figure 6D).

In another study (Kundu et al., 2013), data were acquired at 4 TEs (12, 28, 44, and 60 ms) in 

order to partition the data into ICA components whose signal reflects artifactual S0 changes 

(such as those caused by motion) versus relaxation rate changes (such as those caused by 

neural activity or changes in pCO2), building on the ME-ICA methods outlined in (Kundu et 

al., 2012). Ultimately, the data were partitioned into components-of-no-interest (the 

artifactual non-BOLD-like components and any BOLD-like components that localize to 

venous structures) and components-of-interest (the remaining BOLD-like components).

Several motion-related findings from this publication are noteworthy. First, though DVARS 

traces indicate that the bulk of motion artifact is partitioned into the components-of-no-

interest, they also indicate that motion-related variance is partitioned into the components-

of-interest. For example, in Subject 2, both red and blue DVARS traces contains many 

spikes that correspond to spikes in the FD trace (Figure 7A). Images from this subject 

confirm the presence of abnormalities during motion in both BOLD-like and non-BOLD-

like components (Figure 7A). Second, ME-ICA identifies a significantly smaller number of 

BOLD-like components in high-motion subjects (~33) than in low-motion subjects (~40). 

Third, while distance-dependent artifact was not explicitly examined via scrubbing or QC-

RSFC analyses, group differences among motion-binned subjects were examined in several 

seed maps (Figure 7B), and the ME-ICA approach eliminated group differences in motion-

binned subjects (which were seen under “conventional” processing). Conventional 

processing consisted of “despiking with a tanh function”, regression of 12 motion 

parameters *R and R’+, and temporal filtering.

Multi-echo sequences enable new denoising techniques, and future datasets could benefit 

from these sequences. However, the extent to which these techniques advance beyond 

existing denoising techniques, with respect to motion, is not presently clear. The dual-echo 

study by Bright and colleagues did not eliminate distance dependent artifact (under 

demanding conditions of purposeful movement), and distance dependence has not been 

examined in the multi-echo studies of Kundu and colleagues. Elimination of motion-related 

group differences was accomplished by ME-ICA, but this has also been accomplished using 

post-hoc methods, as described above. Given that both post-hoc and emerging multi-echo 

methods may adequately control motion artifact, but that multi-echo methods cannot be 

applied to the vast majority of existing (single-echo) datasets, a valuable line of 

investigation will be to relate the nuisance signals (and RSFC correlations) derived from 

post-hoc methods to the nuisance signals (and RSFC correlations) derived from the multi-

echo approaches.
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Other considerations

Further measures of denoising success

Many different analyses have been used to measure motion artifact and the success of 

denoising strategies. We have discussed scrubbing, QC-RSFC correlations, and the 

formation and elimination of group differences in typical subjects binned by motion. 

Another type of outcome measure used in many studies is the reduction of correlations 

between motion traces and fMRI signal (or signal quality measures) across stages of 

processing. In general, early in processing, spikes in motion traces (e.g., FD) are closely 

reflected in signal quality traces (e.g., DVARS), and successful processing ought to reduce 

such correlations across stages of processing. Similarly, correlations among DVARS traces 

can be followed through stages of processing to track decoupling of waveforms over 

processing.

This type of outcome measure is sensible, but our own experience, as well as data from the 

literature, indicate that these outcomes may not be easy to interpret. For example, we have 

found that volumes with high, outlying DVARS values early in processing may be reduced 

to “typical” DVARS values during processing, and yet still contain distance-dependent 

motion artifact (Power et al., 2014). In other words, a spike in DVARS traces is practically 

eliminated, but the underlying distance-dependent artifact is not similarly eliminated. Such 

cosmetic improvement may result from correction of signal abnormalities at some voxels 

(which could reduce DVARS) and/or reduction of the amount of rate of signal change (since 

DVARS is a differential measure) without a full correction of the motion-induced 

abnormality. It is for this reason that we do not use reductions in FD:DVARS or 

DVARS:DVARS correlations to assess data improvement across stages of processing, and it 

is for this reason that we use initial (pre-denoising) DVARS values to identify data to censor 

(in addition to using FD for such purposes). It is possible that elimination of peaks in 

DVARS over processing steps are more veridical indices of improvement under processing 

streams other than our own. However, other reports also contain instances of reduced or 

eliminated FD:DVARS correlations with concomitant preservation of motion-related 

effects: in their report on CompCor, Muschelli and colleagues advocate a processing stream 

that reduced FD:DVARS correlations to being nearly zero-centered (Figure 4 of (Muschelli 

et al., 2014)), but which produced data that still exhibited robust QC-RSFC correlations 

(Figure S1 of (Muschelli et al., 2014), illustrated in Figure 5B).

It is worth emphasizing that the scale of DVARS traces changes throughout processing steps 

(see Figure 10 of (Power et al., 2014)), and will differ across scanners and sequences. For 

example, spatial blurring reduces DVARS magnitudes, and larger kernels produce larger 

reductions. Therefore, as was stated for FD traces earlier, if DVARS measures are to be used 

in some dataset, DVARS waveforms and magnitudes should be established (and reported) 

for that specific dataset, since magnitudes from the literature may not be appropriately 

scaled to the data at hand. In general, the magnitude of DVARS traces will become smaller 

with more thorough denoising, and spikes in the traces should be eliminated (but see above). 

However, a smaller spike in a smaller trace may be just as problematic as a large spike in a 

larger trace (see the example of the Kundu traces above). In our view, the greatest utility of 
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DVARS lies in the waveform’s ability to identify outlying volumes in a dataset, regardless 

of its magnitude. Thomas Nichols has proposed a standardization of DVARS1 that might 

enable easier cross-site comparability of DVARS, but this measure is not widely used at the 

present time.

FD:BOLD signal correlations, often at the voxel level, are sometimes used to assess the 

presence of motion artifact and the success of denoising strategies. In our own data, where 

motion (increases in FD) can variably produce increases or decreases (or both) in fMRI 

signal, it is difficult to envision how FD:BOLD correlations can be reliably linked to data 

quality or data improvement. Reinforcing this view, in one of the first reports to use 

FD:BOLD correlations as outcome measures, of 6 cohorts studied, the 3 cohorts reported to 

have the highest motion had lower (closer to zero) FD:BOLD correlations than all other 

cohorts (see Figure S2, modified from (Yan et al., 2013a)).

It has been suggested that FD:BOLD correlations reveal motion-related neural activity due 

to positive FD:BOLD correlations in motor and other peri-Sylvian cortex (Pujol et al., 2014; 

Yan et al., 2013a; Yan et al., 2013b). Several lines of data, in our view, suggest that that 

these correlations are probably not related to neural activity. First, it is unclear why 

FD:BOLD correlations would yield maps of neural activity when standard GLM-based 

approaches do not appear to yield motor-related activity during head motion but instead 

show signal decreases throughout the brain parenchyma (Satterthwaite et al., 2013a). 

Second, it is unclear why BOLD signal would instantly reflect motion-related neural 

activity, when multi-second delays are traditionally expected between neural activity and 

BOLD signal modulation. Third, in the report of Scheinost and colleagues, the iterative 

blurring approach to motion correction eliminates positive peri-Sylvian FD:BOLD 

correlations (Scheinost et al., 2014). Fourth, the positive FD:BOLD correlations span large 

portions of cortex beyond the motor strip, including much of the insula, much of occipital 

cortex, and portions of prefrontal and temporal cortex - tissue that is not traditionally viewed 

as having roles in motor processes (see Figure S2). Finally, positive correlations decrease 

with increasing motion and are seen in only the 2 lowest-motion datasets, making it difficult 

to establish such correlations as a neurophysiological correlate of motion; one must posit 

that motion artifact obscures these positive correlations in higher-motion cohorts to explain 

the data. Future work may reveal that FD:BOLD correlations are reflections of neural 

activity, but the existing data do not strongly support this account.

In sum, although FD:DVARS, DVARS:DVARS, and FD:BOLD correlations seem like 

sensible outcome measures, they can be complicated to interpret. More direct ways of 

identifying and measuring motion artifact, such as those mentioned at the beginning of this 

section, seem preferable outcome measures of denoising success in the view of the authors.

State versus trait considerations

Two studies of typical subjects who were scanned on multiple days indicate that within-

subject motion is correlated across scanning sessions (Van Dijk et al., 2012; Zeng et al., 

2014). That is, a subject who moves much one day is likely to move much on another day, 

1http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/fsl/standardizeddvars.pdf
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and a subject who is still one day is likely to be still on another day. Such trait-like behavior 

may reflect aspects of physiology (e.g., a person who tends to breath deeply, physical 

discomfort in the scanner, etc.) or perhaps cognitive traits (e.g., restlessness, impulsivity, 

etc.). An important question in interpreting findings related to motion is whether 

connectivity differences seen in high- and low-motion contexts reflect state effects alone 

(here, state meaning artifact) or state and trait effects.

In the first study to examine state versus trait motion characteristics of functional 

connectivity MRI, out of several thousand scans, Zeng and colleagues (Zeng et al., 2014) 

chose several dozen subjects who were scanned on 2 occasions but whose motion was 

relatively uncorrelated across scans (i.e., each subject had a low- and a high-motion scan, 

unlike most other subjects, whose motion correlated highly across scans). Another set of 

motion-matched scans, drawn from demographically matching subjects, was also created, 

but each subject only contributed one scan. These two sets of scans thus created a context to 

dissociate across-subject differences from within-subject differences in high- and low-

motion scans. After denoising involving global signal regression and volume censoring, 

group differences in long-range connectivity were found in the across-subject comparisons, 

but not in the within-subject comparisons, suggesting trait-like effects beyond the state-like 

effects of motion artifact. In particular, the authors suggest that reduced long-distance 

connectivity, notably within the default mode network, is a neurobiological signature of 

people who tend to move their head (Figure 8).

These findings are important and deserve replication and elaboration. If a neural trait-like 

predisposition to move manifests with a similar signature as the state-like effects of 

movement itself (here, this signature would be decreased long-distance connectivity, 

measured by long-distance degree), it will become difficult to determine appropriate 

strategies to measure and remove motion artifact. Three principal consequences will follow. 

First, it will become difficult to determine when state-like effects have been fully removed, 

since residual trait-like effects that resemble the state effects should remain in correctly 

denoised data. Second, it will become problematic to use the elimination of the state-like 

effects as a measure of denoising success. Third, it will become difficult to say whether 

residual group or individual differences consistent with motion artifact are not instead 

manifestations of a motion-predisposing “trait”.

For these reasons, the study by Zeng and colleagues merits careful reading, replication, and 

extension. However, two comments seem appropriate to contextualize the existing findings. 

The first comment is that, in our own studies, our processing strategies generally eliminate 

differences across subjects that differ by motion, although we have not previously 

investigated long-distance degree. Understanding how the trait-like effect of long-distance 

degree manifests under various processing strategies will be an important question for future 

work. The second comment is that a case can be made that across-subject and within-subject 

contrasts are qualitatively different types of analyses, with different sensitivities to across-

scan differences. This type of difference is, however, necessarily embedded in any 

experimental design aimed at discriminating state from trait characteristics. These caveats 

aside, the findings of trait-like signatures of motion is provocative and will stimulate much 

discussion (and work) on how to interpret differences in resting state correlations.
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Future Directions

It is likely that multiple independent methods will yield adequate control of motion-related 

variance. At the moment, investigators tend to independently examine and modify their own 

existing processing strategies. This approach has yielded improved and novel methods from 

several groups (e.g., (Beall and Lowe, 2014; Kundu et al., 2013; Patel et al., 2014; Power et 

al., 2014; Satterthwaite et al., 2013a; Scheinost et al., 2014)). In the future, it will be 

productive to determine whether particular approaches are more efficacious (e.g., if a white 

matter signal is to be used, is it equally productive to use ANATICOR or aCompCor?) or 

whether approaches can be productively combined (e.g., combining the iterative blurring 

method with other methods) to produce superior outcomes. It will also be useful to 

determine how well the volume-derived motion estimates, which underpin most techniques, 

correspond to external measures of subject motion, and to slice-specific measures of motion 

(e.g., those derived from SLOMOCO (Beall and Lowe, 2014)).

The motion-correcting methods being developed in resting state studies have relevance to 

task fMRI analyses. For example, two studies have investigated the impact of censoring 

high-motion volumes in task fMRI, both finding that statistical power can be increased by 

censoring (Christodoulou et al., 2013; Siegel et al., 2014). With the increased recognition of 

the prevalence and magnitude of motion-related effects in fMRI data, it may become more 

common to more aggressively denoise task fMRI datasets (e.g., (Kay et al., 2013)). As 

mentioned in the Introduction, increased scrutiny of motion has already begun to change 

both the analysis approach and neurobiological interpretation of some structural connectivity 

studies (Koldewyn et al., 2014; Yendiki et al., 2013). Whether scrutiny of small movements 

will reveal previously unrecognized artifacts in still other MRI modalities remains to be 

seen.

One issue that should to be mentioned before closing the paper is the substantial technical 

and conceptual difficulty of identifying a “ground truth” of what signals ought to be 

removed. Neural activity drives or reflects all aspects of motor function, including head 

motion, cardiac rate and contractility, blood flow, and respiration. At some level, complete 

removal of all signals related to these parameters must entail removal of neural signal 

(though such signals are usually considered “confounds” distinct from the processes of 

interest). Currently, we cannot achieve complete removal of all nuisance signals related to a 

nuisance parameter; we are limited both by our measurements of nuisance parameters and 

the models of how such parameters relate to fMRI signals. For example, our image-derived 

motion estimates are known to be imperfect, and regression of various sets of motion 

parameters has dampened but not eliminated the influence of motion in resting state data 

(Satterthwaite et al., 2013a; Yan et al., 2013a). Such imperfect motion regressors account for 

approximately 10–15% of the variance in resting state data (Hutton et al., 2011; Jo et al., 

2010). As an additional example, recording and modeling physiological parameters such as 

heart rate, respiration, and end-tidal pCO2, though a principled denoising strategy, explains 

only a small fraction of signal variance. Such physiologic regressors, in combination, tend to 

account for approximately 6–8% of variance in resting state data (Bianciardi et al., 2009; Jo 

et al., 2010; Shmueli et al., 2007). To provide a data-driven perspective on these numbers, in 

~200-dimensional ICA analyses of Human Connectome Project data, “neural” components 
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account for 4% of variance, “nuisance” components for 16%, motion regressors for 14%, 

and the rest is labeled unstructured noise (Marcus et al., 2013). There is, in general, a 

considerable gap between the variance we can currently explain using motion estimates or 

physiological recordings and the variance that is suspected to be non-neural. An objective 

for future research is to narrow this gap by improving our nuisance parameter measurements 

and the models of how such measures relate to nuisance signals. The multi-echo techniques 

discussed above may prove useful in refining estimates of neural versus non-neural variance.

An additional consideration is that although increasing the number of “confound” 

parameters during denoising should remove more of uninteresting signals, it also increases 

the chances of removing signals of interest, since it is always possible (and in some cases 

certain) that confound parameters will correlate with parameters of interest. For example, 

investigators may be wary of large numbers of motion regressors or ICA component 

regressors due to the possibility that they might also remove signals of interest. Denoising 

can therefore be viewed as a balance between maximizing the removal of uninteresting 

signal (minimizing false positives) and minimizing the loss of interesting signal (minimizing 

false negatives). In single-echo resting state data, it is difficult to discriminate between these 

classes of signals. Two approaches that can help guide discrimination of these signals (and 

development of denoising techniques) are the multi-echo approaches, which improve 

identification of non-BOLD signals (e.g., (Bright and Murphy, 2013; Kundu et al., 2013)), 

and task fMRI, where an evoked signal of interest should be better isolated by better 

denoising (e.g., (Christodoulou et al., 2013; Siegel et al., 2014; Wilke, 2012)).

Detecting and reporting motion in a dataset

We close with a few recommendations about information that would be helpful to convey 

the quality and range in quality of a dataset, as well as the existence of motion artifact before 

and after processing. A single multi-panel supplemental figure can communicate many 

important motion-related aspects of the data. These data would be reported for each group in 

a study (e.g., separately for typical and clinical populations). We emphasize that these are 

recommendations, not requirements, and they are offered to illustrate the type of information 

we find helpful when evaluating a study.

1. Report summary statistics for some measure of relative displacement, such as FD. 

An accompanying boxplot or scatterplot is helpful. Knowing the range of QC 

values is helpful for interpreting QC-RSFC correlations, as discussed earlier.

2. Whatever the processing strategy employed, it would be useful to present a QC-

RSFC plot before and after denoising. Such plots will help accumulate a body of 

data that may eventually identify sequences or pre-processing approaches that yield 

reduced motion artifact, and will also communicate the efficacy of denoising in 

easily understood terms that are comparable across studies. If censoring is 

performed, because the QC range is typically very compressed after censoring, and 

because certain processing approaches may leave effects of censored (bad) data in 

the uncensored (good) data, for QC-RSFC purposes we recommend using the 

original QC measures derived from all volumes, not QC measures derived only 

from the post-censoring data.
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3. If censoring is performed, include example QC traces of low, median, and high 

motion subjects so that it can be understood how the thresholds used identify 

outlying volumes. For reasons discussed earlier it is not especially helpful to simply 

apply thresholds from the literature. The point of the thresholds is to identify 

volumes that are not like most other volumes. Most subjects in our experience are 

usually still with readily identifiable QC excursions during movement. Showing 

traces allows readers to understand whether only especially bad data were 

censored, whether most motion-contaminated data were censored, and whether 

volumes with “floor” values were impacted by the threshold (which can happen 

when thresholds from the literature are applied to a dataset).

4. If censoring is performed, it is useful to know how many volumes each subject had 

initially, how many were removed, and what the proportion removed was. Again, 

summary statistics and scatterplots are helpful. This information communicates 

whether the post-censoring correlations are expected to be noisy due to aggressive 

censoring (e.g., if only 2 min of data remain per subject). It is useful to know 

whether the proportion of data censored covaries with any effects of interest (e.g., 

age).

Conclusions

Since the first reports in 2011 on motion artifact in resting state functional connectivity, 

much time and effort has been invested in understanding and removing effects of motion. 

Considerable progress has been made. Motion artifact is recognized to produce systematic 

decreases in signal, especially for larger movements, but it can also cause variable 

disruptions in fMRI signal. The duration of these disruptions can be brief or surprisingly 

long, impacting correlations for up to 10 seconds. Motion tends to increase all correlations, 

but proximal correlations are increased more than distal correlations, and the increases 

appear largest in correlations with a predominantly lateral orientation. Motion regressors are 

somewhat, but not adequately, effective in removing motion-related variance, even when 

voxel-specific or large sets of motion regressors are used. Mean white matter or mean 

ventricle signals are of modest utility as nuisance regressors. Fractionation of these signals 

via ANATICOR or aCompCor or other methods may provide additional benefit. An 

effective processing step is to regress the global signal. Many groups have found censoring 

to be helpful in reducing motion artifact. Newer methods, such as the multi-echo sequences, 

appear to hold promise for motion-related denoising. In sum, methods exist that can rid 

extant datasets of much motion artifact, and future datasets may benefit from new methods 

of motion denoising by dissociating BOLD effects from non-BOLD effects.
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Highlights

Reviews post-2011 research on motion artifact in resting state fMRI

Explains analyses to detect and quantify motion artifact

Presents evidence for removal of artifact by various processing strategies
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Figure 1. Measuring motion
A) For a single subject, realignment estimates, framewise displacement, absolute-rotational 

and translational displacements, and a DVARS trace calculated over the whole brain. 

Absolute displacements are the sum of the absolute values of the 3 translational and 3 

rotational parameters, respectively. Framewise displacement is the sum of the absolute 

values of the first derivatives of the 6 realignment parameters, after converting the rotational 

parameters to translational displacements on a sphere of radius 50 mm (roughly the radius of 

the brain). DVARS is calculated as the RMS value, at each volume, of the first derivatives 

of all voxel timeseries over the whole brain. The TR is 2.5 seconds. Modified from (Power 

et al., 2014). B) Comparisons of various FD measures, modified from (Yan et al., 2013a).
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Figure 2. Signal disruptions by motion
A) Modeling of the global signal during and after motion, for 3 magnitudes of motion, and a 

voxelwise map of modeled changes at the most severe level of motion. Modified from 

(Satterthwaite et al., 2013a). B) For two subjects, motion traces and gray matter voxel 

timeseries are shown, illustrating the heterogeneity and duration of motion’s impact on 

fMRI signal. The TR is 2.5 seconds, meaning the black scaling bar covers 25 seconds. These 

data have only been slice time corrected (for interleaved acquisition), realigned, registered to 

a target atlas, and the mean signal at each voxel has been subtracted, i.e., no frequency 

filtering or nuisance regression or other denoising has been performed. The dotted lines 

roughly denote FD = 0.5 and FD = 0.2 mm. Modified from (Power et al., 2014). Note that, 

within a single dataset. measured magnitudes of FDFSL are roughly half the magnitudes of 

FDpower.
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Figure 3. Spatial aspects of motion artifact’s impact on correlations
A) QC-RSFC correlations across hundreds of adult subjects, where the QC measure is 

FDFSL, modified from (Satterthwaite et al., 2013a).B) Scrubbing analyses of FDpower >0.5 

mm, modified from (Power et al., 2012). C) The locations of the top 2% of changed 

correlations in Figure 3B, with blue and red colors representing correlations that are 

decreased and increased, respectively, by scrubbing D) Projections of the top 3% of changed 

correlations of Figure 3B onto the X, Y, and Z axes.
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Figure 4. Effects of different regressors on gray matter signals
At top, the data from the 2 subjects shown in Figure 2. The middle 3 gray panels show the 

effect of regressing increasing numbers of motion parameters. The bottom panel shows the 

effect of regressing the global signal. WM: white matter signal; CSF: ventricle signal; GS: 

global signal; R: realignment estimates. The 12 motion parameters are [R R′], the 24 are [R 

R2 Rt-1 Rt-1
2], and the 36 are [R R2 Rt-1 Rt-1

2 Rt-2 Rt-2
2]. Modified from (Power et al., 

2014).
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Figure 5. Removal of motion artifact under various processing strategies
A) Scrubbing analyses of volumes with FDAFNI > 0.25 mm, when regressing only 12 

motion parameters or the 12 motion parameters and a local white matter regressor derived 

by ANATICOR. B) QC-RSFC correlations after applying aCompCor to a dataset C) QC-

RSFC correlations in 3 datasets after wavelet despiking. D) QC-RSFC correlations in 120 

adults under processing streams including or excluding global signal regression. 

“Unscrubbed” data have undergone the indicated regression, followed by temporal filtering 

and spatial blurring. “Scrubbed” data are obtained by censoring “unscrubbed” data with 

FDPOWER > 0.2 mm as a threshold. “Reprocessed” data undergo identical censoring, except 

the censored volumes are also withheld from the nuisance regression calculations and are 

interpolated over prior to temporal filtering. The bar charts indicate the number of 

significant differences amoiig 40-subject cohorts of motion-binned adults, identified by two-

sample, two-tailed t-tests with p< 0.0005. 10,000 permutations of FD values across subjects 

established null expectations and significance levels for these comparisons. WM: white 

matter signal;CSF: ventricle signal; GS: global signal; R: realignment estimates.
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Figure 6. Using multi-echo sequences to remove motion artifact
A–C) Schematic illustrations of the advantages of multi-echo sequences over single-echo 

sequences for identifying ΔS0-related artifact. D) Data from the dual-echo study of Bright 

and colleagues. Bar plots show correlations between regions of the default mode network in 

conditions of normal rest and purposeful movement, without and with short-TE signal 

regression. Slices show seed correlation maps for the posterior cingulate after short-TE 

signal regression in conditions of low and high motion. Modified from (Bright and Murphy, 

2013)
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Figure 7. Motion artifact reduction in the multi-echo ICA approach
A) FD and DVARS traces from 2 subjects. The y-axis scales differ between subjects, and 

green lines have been placed to aid comparison of the traces. Red and blue traces indicate 

“bad” (ΔS0-related) and “good” (ΔR2*-related) ICA components derived from ME-ICA. 

The slices at right illustrate the two types of components in Subject 2 at different timepoints 

in the scan. B) Observed vs. expected numbers of significant differences in several seed 

maps under “conventional” and multi-echo (ME-ICA) processing strategies. Each line 

represents a single seed map, where observed numbers of voxels surpassing a statistical 

threshold for group differences are plotted against null expecations for such differences. 

Lines above the black line (y=x) indicate that seed maps had greater-than-chance numbers of 

significantly drfferent voxels. Modified from (Kundu et al., 2013)
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Figure 8. Motion-related differences within and across subjects
At left, contrast images of long-distance degree. The within-subject contrast is between 

high- and low-motion scans within the same subjects, the across-subject contrast is between 

demographically and motion-matched scans that were acquired across subjects. Overall 

differences are quantified in the bar graph. Modified from (Zeng et al, 2014).
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