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ABSTRACT 

A number of electroencephalography (EEG) studies have investigated the time course of 

brain activation during overt word production. The interpretation of their results is 

complicated by the fact that articulatory movements may mask the cognitive components of 

interest. The first aim of the present study was to investigate when speech artifacts occur 

during word production planning and what effects they have on the spatio-temporal neural 

activation pattern. The second aim was to propose a new method that strongly attenuates 

speech artifacts during overt picture naming and to compare it with existing methods. EEG 

and surface electromyograms (EMG) of the lips were recorded while participants overtly 

named pictures in a picture-word interference paradigm. The comparison of the raw data with 

lip EMG and the comparison of source localizations of raw and corrected EEG data showed 

that speech artifacts occurred mainly from ~400 ms post stimulus onset, but some earlier 

artifacts mean that they occur much earlier than hitherto assumed. We compared previously 

used methods of speech artifacts removal (SAR) with a new method, which is based on 

Independent Component Analysis (SAR-ICA). Our new method clearly outperformed other 

methods. In contrast to other methods, there was only a weak correlation between the lip 

EMG and the corrected data by SAR-ICA. Also, only the data corrected with our method 

showed activation of cerebral sources consistent with meta-analyses of word production. 
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1. INTRODUCTION  

The act of speaking is complex. Even the production of the simplest utterances, for 

instance saying 'dog' as a response to a picture of a dog, involves a diverse set of cognitive 

processes. Though current models of word production characterize these processes somewhat 

differently (Caramazza, 1997; Goldrick & Rapp, 2002; Indefrey, 2011; Levelt, Roelofs, & 

Meyer, 1999), there is good consensus that word production involves several steps, from 

conceptual processing over selection of a lexical representation, to phonological and phonetic 

encoding processes.  

A powerful research tool in current psycholinguistics is electroencephalography (EEG), 

which allows researchers to gain insight into the precise time course of the cognitive 

processes involved. However, EEG research of word production has been hampered by the 

fact that speech artifacts might contaminate the cognitive components of interest (Brooker & 

Donald, 1980; Grözinger, Kornhuber, & Kriebel, 1975; Wohlert, 1993). For instance, 

prevocalization potentials have been found to be severely affected by artifacts from the 

temporalis and the masseter muscles. Both are used for closing the lower jaw. The temporalis 

spreads widely over the frontal/temporal/parietal junction of the brain (Brooker & Donald, 

1980), and the master is located between the cheekbone and the jaw. 

Many event-related potential (ERP) studies investigating the time course of word 

planning have therefore relied on covert speech planning (i.e., speakers were asked to plan 

words without producing them), metalinguistic tasks (e.g. deciding whether a word includes a 

target sound), or delayed naming (i.e., naming once a cue is given) rather than immediate 

overt speech production (e.g., Hauk, Rockstroh, & Eulitz, 2001; Jescheniak, Schriefers, 

Garrett, & Friederici, 2002; Laganaro, Morand, Michel, Spinelli, & Schnider, 2011; Laganaro 

et al., 2009; Schiller, Bles, & Jansma, 2003; Schmitt, Münte, & Kutas, 2000; Van Turennout, 

Hagoort, & Brown, 1997, 1998). Though these studies have led to important insights, they 
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have their limitations. For instance, in covert speech experiments it is not possible to 

guarantee that participants actually follow the instructions, and these tasks either do not 

include all cognitive steps involved in overt speech production or the timing of the steps is 

altered. Thus, in many contexts the use of immediate overt production tasks is preferable. 

 Studies using overt production tasks have generally focused on early processes of word 

planning that occur within 400-600 ms after stimulus presentation, with the assumption that 

those processes are artifact-free because they occur before actual speech (for an overview see 

Christoffels, Firk, & Schiller, 2007; Costa, Strijkers, Martin, & Thierry, 2009; Ganushchak, 

Christoffels, & Schiller, 2011; Strijkers, Costa, & Thierry, 2010; Strijkers, Holcomb, & 

Costa, 2011; Verhoef, Roelofs, & Chwilla, 2009). But no study to date has investigated the 

exact timing of speech artifacts during picture naming, and we know of only two studies that 

have given some indication of how speech artifacts have affected ERPs (Laganaro & Perret, 

2011; Riès, Janssen, Burle, & Alario, 2013).  

The first aim of the present study was therefore to investigate when speech artifacts 

actually occur during word production planning and what effects they have on the spatio-

temporal neural activation pattern. To answer the former question, we examined 

electromyograms (EMG) of the lips during a word production study. To answer the latter 

question, we compared the relationship of the lip EMG with the raw ERP data recorded 

during the same experiment. A strong correlation between the lip EMG and the raw data 

would indicate that ERP data during word production studies are highly affected by speech 

artifacts. Furthermore, we conducted source-localization analyses of the ERP data, before and 

after speech artifact attenuation. The source localization analysis of the ERPs of the raw data 

can reveal the extent to which the spatio-temporal pattern of the ERPs is a reflection of 

cognitive processes or speech movements. Indefrey and Levelt (2004) conducted a 

comprehensive meta-analysis of behavioural word production studies to estimate the time-
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course of naming a picture and combined the results with brain imaging findings within the 

word production literature (82 experiments). This resulted in a map of the involved brain 

areas and the time course of their activation (see also the update by Indefrey, 2011). Their 

estimates for simple picture naming predicts a progression from early occipital and ventral-

temporal activation during conceptual preparation (0 and 175 ms), via activation at the left 

middle temporal gyrus during lemma retrieval and lemma selection (150-250 ms) and 

posterior temporal lobe during phonological code retrieval (including Wernicke’s area, 250-

330 ms) to frontal activation during syllabification and articulation (400-600 ms, including 

Broca’s area) (see also Hultén, Vihla, Laine, & Salmelin, 2009; Levelt, Praamstra, Meyer, 

Helenius, & Salmelin, 1998; Salmelin, Hari, Lounasmaa, & Sams, 1994; Sörös, Cornelissen, 

Laine, & Salmelin, 2003; Vihla, Laine, & Salmelin, 2006). Localizing ERPs should show 

such a progression if the ERPs truly reflect cognitive processes. Source localization is 

therefore an excellent tool to reveal in how far and during which processing time step the 

speech artifacts contaminate the raw data.  

The recording of EMG from orofacial speech muscles is not new even if it has not 

typically been used in combination with EEG recordings. Instead, it has been used to study, 

for instance, silent recitation (Livesay et al., 1996), speech in stutterers (Choo et al., 2010), 

covert verbal hallucinations in schizophrenia (Rapin et al., 2013), and articulation by aging 

participants (Rastatter et al., 1987b) and by articulatory disordered children (Rastatter et al. 

1987a). The muscle complex that has typically been focused on is the orbicularis oris (OO), 

which is situated in the lips and controls lip posture during overt speech. It consists of four 

sub-muscles, the left and right orbicularis oris superior (OOS) in the upper lip and the left and 

right orbicularis oris inferior (OOI) in the lower lip. The fibers of the lip muscles are not 

clearly separated from surrounding muscles. It is therefore not possible to obtain a signal that 

stems exclusively from the OO (Blair & Smith, 1986). However, Blair and Smith (1986) 
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argue, and subsequent studies have shown, that useful data can be obtained if electrodes are 

placed at the same place across participants. We therefore chose to record EMG from the OO 

in our study. 

The second aim of this study was to propose a new method that strongly attenuates 

speech artifacts during overt picture naming and to compare it with existing methods. While 

the majority of overt speech production studies have not attempted to remove speech 

artifacts, there are exceptions. Some studies have removed the strongest articulation-driven 

potentials by excluding responses whose acoustic onsets fell within the time-window of 

interest (e.g., Strijkers et al., 2011; Costa et al., 2009). However, as evident in the present 

investigation, articulators move much earlier than the acoustic onset. Such a procedure 

therefore does not necessarily lead to artifact-free data. Others applied filters: a low-pass 

filter of 12 Hz (Ganushchak & Schiller, 2008) or a band-pass filter of 0.2-20 Hz (Laganaro & 

Perret, 2011). Laganaro & Perret (2011) report that their filter did not make much of a 

difference to their results. However, the frequency content of facial muscle artifacts can 

overlap to a large extent with that of brain signals. Filtering therefore means that brain signals 

might be partly filtered out and results might nevertheless change (for a discussion see De 

Vos et al., 2010; Friedman & Thayer, 1991). To overcome this problem, De Vos and 

colleagues (De Vos et al., 2010) proposed a Blind Source Separation method based on 

Canonical Correlation Analysis (BSS-CCA) to separate cortical sources from 

electromyographic (EMG) responses. Their method appears to be the most promising 

approach and has been implemented, for instance, in studies by Riès and colleagues (Riès et 

al., 2013; Riès, Janssen, Dufau, Alario, & Burle, 2011). In the current study we introduced a 

new method of speech artifact removal, based on an Independent Component Analysis (ICA) 

procedure (Barbati, Porcaro, Zappasodi, Rossini, & Tecchio, 2004), appropriately modified to 
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fit the problem under investigation. For simplicity, we will refer to this approach as Speech 

Artifact Removal by ICA (SAR-ICA).  

We compared the artifact attenuation performance of our new SAR-ICA method with 

that of previously applied methods, namely BSS-CCA and the two filters 0.1-12 Hz 

(Ganushchak & Schiller, 2008) and 0.2-20 Hz (Laganaro & Perret, 2011). For validation 

purposes we conducted the following two analyses.  

First, we compared the different methods (0.1-12 Hz, 0.2-20Hz, BSS-CCA, and SAR-

ICA) with regard to the relationship of the lip EMG with the ERP data. A large reduction in 

the correlation strength between the lip EMG and the ERP data due to artifact attenuation 

suggests that a method is well suited to remove artifactual ERP components that are strongly 

related to articulatory muscle movements during word planning. As an additional validation 

of our SAR-ICA method, we investigated the relationship of the lip EMG with the ICA 

component of speech artifacts. A strong correlation between the artifact ICA component and 

the lip EMG together with a weak correlation between the lip EMG and the corrected data 

would confirm that our ICA method indeed separated and identified the components that are 

strongly related to speech artifacts during word planning. 

Second, as another validation method for the artifact attenuation procedures we used the 

results of the aforementioned source localisation analyses of the raw data and compared them 

with source localisations of the corrected data. Results are reported for our SAR-ICA 

procedure and the most promising other artifact attenuation method, the BSS-CCA 

procedure. As explained above, for picture naming one expects a progression from early 

occipital and ventral-temporal activation via activation at the left middle temporal gyrus and 

posterior temporal lobe to frontal activation (Indefrey, 2011; 2004). Consequently, a 

successful artifact attenuation procedure should reveal such a progression. 
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The speech production data that we used for all these analyses were the responses in a 

paradigm that is very typical for the study of word production planning and that has been 

used in several ERP and brain imaging studies with overt responses, namely the picture-word 

interference paradigm. In this paradigm participants name pictures with superimposed 

distracter words (Schriefers, Meyer, & Levelt, 1990). We used visually distracters that were 

either semantically related (e.g. orange) or unrelated (e.g. arrow) to the name of the picture 

(e.g. banana). Analyses of the distracter manipulation, including effects of distracter 

attenuation on the results, are not focus of this study and will be reported elsewhere.  

 

2. MATERIALS AND METHODS 

Ethical approval for the research was obtained from the Ethics Board of the School of 

Psychology at Birmingham University. 

 

2.1 Participants  

Eighteen monolingual native English speakers (mean age 23.3, SD 3.7, 10 males) took 

part in the experiment and received either course credit or £20 for their participation. All 

were right-handed determined by the Edinburgh handedness inventory (Oldfield, 1971) and 

all had normal or corrected-to-normal vision. 

 

2.2 Materials 

We selected 24 line-drawings of common objects (Snodgrass & Vanderwart, 1980) and 

paired them with distracter words from the same semantic category (e.g., banana (target 

picture) – orange (distracter word)). We created unrelated target-distracter pairs by re-pairing 

targets and distracter words. This ensured that related and unrelated distracters as a group 

were perfectly matched for all possible variables (length, frequency etc.). 
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2.3 Procedure  

Participants were seated in a quiet and normally illuminated test room 1 m away from a 

17” monitor with a resolution of 800 x 600 pixels. Before the experiment, participants studied 

a picture booklet to familiarize themselves with the names that they were asked to use when 

naming the pictures. In the experiment, participants saw the pictures with superimposed 

written distracter words as shown in Figure 1. They were asked to name the pictures as fast 

and as accurately as possible, while ignoring the distracter words. E-Prime (Psychological 

Software Tools, Inc.) was used to control stimulus presentation and data collection. 

Responses were recorded for off-line error analysis and response times were measured using 

a voicekey (PST SRBox). Each trial began with the presentation of a fixation cross for 800 

ms. Then followed a stimulus, which disappeared when the voice key was triggered or after 

400 ms, whatever occurred first. The short presentation time ensured that participants 

responded quickly and that re-reading of the distracters was minimized. Each trial lasted up 

to 3000 ms. The maximum response time was 2200 ms. We instructed participants to keep 

movements to a minimum (apart from moving their articulatory muscles in order to speak), to 

blink only after providing a response. 

We created two stimulus lists of picture-distracter pairs. Each list contained all pictures, 

but half of the pictures occurred with related distracters, the other half with unrelated 

distracters (and vice versa for the other list). The order of the items within the lists was 

random. Each participant saw each list four times in alternation. The order of the lists was 

counterbalanced across participants. There was a short pause after the completion of every 

second list. The trials up to the first break were considered practice trials and excluded from 

the analyses. The experiment lasted about 75 minutes (including breaks).  

 

3. EEG, EMG AND EOG RECORDING PARAMETERS 
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Electroencephalograms (EEG) were acquired using a 128 channel BioSemi Active Two 

EEG system, with electrodes placed in a nylon cap according to the 10–5 system (Oostenveld 

& Praamstra, 2001). Horizontal and vertical electrooculograms (EOG) and upper and lower 

lip electromyograms (EMG) were monitored by bipolar derivations. For the EMG we placed 

surface electrodes at the left orbicularis oris superior (OOS) and left orbicularis oris inferior 

(OOI), half way between the center and the corner of the mouth. This position has previously 

been found to be the optimal place for recordings of the OOI (Lapatki et al., 2010). Both EEG 

and EMG were sampled at 512 Hz. They were off-line referenced to an average of the left 

and right mastoids, and filtered with a band-pass of 0.1-30 Hz. 

 

4. DATA ANALYSIS 

For all analyses, we excluded trials with missed or incorrect responses, with reaction 

times below 250 ms or above 1800 ms, and with disfluencies or self-repair. 

 

4.1 Speech Artifact Removal using an automatic ICA approach (SAR-ICA) 

An independent Component Analysis (ICA) procedure, like many other blind source 

separation (BSS) techniques, decomposes the EEG data into sources with independent time 

course on the basis of the statistical properties of the generated signal (Makeig, Debener, 

Onton, & Delorme, 2004; Medaglia et al., 2009; Porcaro et al., 2009; Porcaro, Ostwald, 

Hadjipapas, Barnes, & Bagshaw, 2011; Porcaro et al., 2006). Following ICA model 

application, introduced for example in the context of fMRI (Beckmann & Smith, 2004; 

Porcaro, Ostwald, & Bagshaw, 2010) and Foetal Magnetoencephalography (Porcaro et al., 

2006), we applied an automatic ICA procedure (an appropriately modified version of Barbati 

et al., 2004) to the Raw Data to identify and classify artifactual non-cerebral activities, i.e. 

eye movements, speech artifacts, environmental and channels noise, without rejecting the 
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contaminated epochs. This method is based on statistical and spectral characteristics of 

Independent Components (ICs). Briefly, it consists of three main steps: (1) applicattion of 

ICA for blind source separation (here we used fastICA (Hyvarinen, 1999)). (2) automatic 

detection of artifactual components, based on statistical characteristics (percentage of 

kurtosis-outlier segments to detect cardiac artifacts, global kurtosis coefficient to detect  

environmental noise and percentage of entropy outlier segments to detect ocular artifacts) and 

spectral IC characteristics (significant correlation between PSD EOG/EMG and ICs, p<0.01). 

More specifically, for the statistical indexes (kurtosis and entropy), these measure 

distributions were normalized with respect to all ICs (mean 0 and standard deviation 1). In 

this way, thresholds in terms of number of standard deviations from the mean were applied 

(standard threshold set at ±1.64) and, if a certain percentage of segments (in our applications 

more than 33%) exceeded rejection thresholds, the corresponding IC was marked for 

rejection. (3) The final step was a control cycle on the ‘discrepancy’, i.e. on the difference 

between the original data and those reconstructed using only ICs retained after automatic 

artifact detection. The aim of the control cycle was to give a quick visual feedback on the 

quality of the automatic artifact identification. This step is based on visualizing PSD and ERP 

of the discrepancy. The feedback was positive when discrepancy contained only artifacts and 

noise. In case of negative feedback (i.e. presence of any brain activity in terms of brain 

rhythms or evoked activity in the discrepancy), the index thresholds used for artifactual IC 

detection was reduced and step (2) was repeated on these new thresholds. 

In addition to the criteria used in step (2) by Barbati et al. (2004), we used the following 

indices: a) a correlation index between lip EMG and ICs to identify which ICs are 

contaminated by speech artifacts (p<0.01), b) topographic distributions to identify ICs 

contaminated by ocular artifacts (see Figure 2 - first row eye blinking and second row 

horizontal eye movement) and noise (see Figure 2 - fourth row electrode noise and fifth row 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

 12 

environmental noise) through visual inspection. c) IC source localization was used to identify 

noise components such as environmental noise. For the source localization we used the 

equivalent current dipole (ECD) model with four concentric conductive spheres. See routine 

DIPFIT2 (Oostenveld & Oostendorp, 2002) of EEGLAB v5.0 (available at http:// 

www.sccn.ucsd.edu/eeglab (Delorme & Makeig, 2004)). EEGLAB expresses ECD positions 

in Talairach coordinates and projects them onto the template brain of the Montreal 

Neurological Institute (MNI). ICs with dipole localization outside the brain were considered 

artifacts. In general, the detection system rejected an IC when at least one of the criteria 

described above was satisfied. 

On the basis of the indexes described for step (2), we classified the ICs in the selected IC 

subsets described below. To this end, each IC dynamic was averaged within a time window 

of 2800 ms, i.e. from 500 ms before the picture presentation onset till 2300 ms afterwards. 

We then used averaged trials, single trials, topographical distributions and the localizations of 

the components to manually classify all ICs (Delorme & Makeig, 2004; Makeig, Debener, et 

al., 2004; Makeig, Delorme, et al., 2004; Medaglia et al., 2009; Porcaro et al., 2009) into the 

following 5 clusters (see Figure 3): Cluster1 – Evoked Responses (ER) of the Corrected Data 

(i.e. data without artifactual ICs), Cluster 2 – ER of Speech artifacts, Cluster 3 – ER of 

Environmental Noise, Cluster 4 – ER of Vertical Ocular artifacts (Blinking) and Cluster 5 – 

ER of Horizontal Ocular artifacts (Horizontal Eye Movements).  

After the identification of ICs and the cluster membership, the data at the scalp 

electrodes for each cluster were obtained by retro-projecting the selected ICs, 

 where  is the estimated mixing vector for the source  

and  is the resulting  retro-projection on the channel space. The five 

ER clusters were obtained by averaging each cluster dataset ( ) time-logged 

to the picture presentation onset (see Figure 3). 

kk

i

kCluster ICAEEG _
kA kIC

i

kCluster_EEG
kIC

i

kCluster_EEG
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4.2 Artifact attenuation by filtering and by BSS-CCA 

Results obtained by SAR-ICA were compared with previously used methods of speech 

artifact removal, i.e. BSS-CCA (De Vos et al., 2010), a low-pass filter (12 Hz; Ganushchak & 

Schiller, 2008) and a band-pass filter (0.2-20 Hz in Laganaro & Perret, 2011). For the 

filtering, signals were forward–backward filtered using a second order Butterworth filter in 

bands 0.1-12 Hz and 0.2-20 Hz. 

The artifact attenuation by BSS-CCA (De Vos et al., 2010) was performed on the same 

data as the one used for SAR-ICA. While both BSS-CCA and SAR-ICA are both blind 

source separation methods, only BSS-CCA decomposes the EEG data into sources that are 

sorted in decreasing order of autocorrelation (highly autocorrelated sources ranked first, 

weakly autocorrelated ones ranked last). A criterion has to be used to select the sources 

related with movement artifacts. We used the automatized version of the BSS-CCA method 

that we obtained by sending an email to the author (as suggested in De Vos et al., 2010). In 

this automatized version, the criterion for movement component selection is based on Power 

Spectral Density (PSD). Components are considered to be movement artifact activity if their 

average power in the EMG band (approximated by 15–30 Hz) is at least 1/n (with n being by 

default set to 7) of the average power in the EEG band (approximated by 0.1–15 Hz). The 

parameter n is usually empirically determined. In case of our particular dataset and in order to 

use BSS-CCA in an optimal way, we asked the author of the BSS-CCA method to set 

parameters for us, who recommended the default setting as this was a good compromise also 

in our case. Moreover, De Vos et al. (2010) showed that results of this method do not 

critically depend on the parameter settings.  
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4.3 The Effect of Speech Artifacts on the ERPs and Evaluation of Speech Artifact Attenuation 

Methods  

To investigate the effect of the speech artifacts on the ERPs, we compared the time-

course of the lip EMG with the time-course of the Raw Data. Because it is common practice 

in psycholinguistic ERP research to remove eye artifacts, we were interested in differences 

between Corrected Data and the Raw Data with eye artifacts removed. Therefore, we used 

our ICA procedure to create a version of the Raw Data with eye artifacts (Clusters 4 and 5) 

removed. Note that whenever we refer to the Raw Data we mean the Raw Data without eye 

artifacts. Whenever we refer to the Corrected Data using the SAR-ICA method we mean 

Cluster 1 described above. 

To validate that Cluster 2 (ER of Speech artifacts) identified by the ICA analysis indeed 

captured speech artifacts, we correlated it with the separately recorded lip EMG. As a 

validation procedure of all methods, we correlated the lip EMG with the ERP of the Raw 

Data and the ERPs of the Corrected Data.  

Finally, to investigate the effect of the speech artifacts on spatio-temporal activation 

patterns as well as to conduct an additional validation of the artifact attenuation procedures, 

we submitted the Raw Data and the Corrected Data to source localization analyses. We 

present the results using SAR-ICA as well as BSS-CCA, as the best alternative procedure. 

Localizations for the filtered data (0.1-12 Hz and 0.2-20 Hz) were very similar to those of the 

original raw data. We applied the sLORETA algorithm (Pascual-Marqui, 2002) as 

implemented in CURRY 6 (Neuroscan, Hamburg, Germany, http://www.neuroscan.com/) 

using a regular grid with a spacing of 4 mm throughout the brain region and a four shell 

spherical head model. The results were projected onto the template brain of the Montreal 

Neurological Institute (MNI) within CURRY software. Source localizations were carried out 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

 15 

for all ERP peaks up to speech onset (100 ms, 140 ms, 290 ms, 360 ms, 470 ms, 540 ms, 615 

ms, and 660 ms). 

 

5. RESULTS 

5.1 Lip EMG and the Raw Data 

Figure 4 shows the time course of lip EMG (black line) across 2000 ms post stimulus 

onset. Lip movements were especially pronounced from just after 400 ms onwards. The 

average speech onset measured by the voice key was 850 ms. Thus, lips started moving at 

least 400 ms earlier than the trigger of the voice key. We compared the Global Field Power 

(GFP) (Lehmann & Skrandies, 1984) of the lip EMG with the Raw Data. Figure 4 suggests a 

strong contamination of the Raw Data by speech artifacts. The GFP of the Raw Data 

followed a similar time-course as the lip EMG, especially after ~400 ms (compare black line 

= Lip EMG and dark blue line = Raw Data), with a very strong correlation between the two 

data sets (see Table 1). 

 

5.2 Validation of SAR-ICA’s Speech Artifact Component 

We compared the evoked response of the lip EMG with the Speech Artifact component 

(Cluster 2) of our SAR-ICA analysis to confirm that the identified component indeed 

captured speech motor movements. Focusing on lip movements, Figure 5 shows again strong 

movements after ~400 ms. More surprisingly, an additional smaller burst is visible at 160 ms. 

Given that the Speech Artifact component was categorized mostly on the basis of its 

correlation with the lip EMG, the Speech Artifact component should follow the same time 

course as the lip EMG and should highly correlate with it. Table 1 shows that this was indeed 

the case. The single subject correlations in Table 2 show very similar results across 

participants. 
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5.3 Validation of Artifact Attenuation Methods 

To validate the quality of the removal, we compared the GFP of the lip EMG with the 

Corrected Data for the four different methods of artifact removal (0.2-20 Hz filter, 0.1-12 Hz 

filter, BSS-CCA and SAR-ICA). As Figure 4 shows, the 0.1-12 Hz filter (light blue line) led 

to data almost identical to the Raw Data apart from the high frequency present in the Raw 

Data (dark blue line). It therefore turned out to be the worst artifact attenuation method. The 

BSS-CCA approach (green line) and the 0.2-20 Hz filter (pink line) were able to somewhat 

reduce the speech artifact. However, the reduction after 400 ms post stimulus onset is not 

enough to warrant a safe investigation of brain activity in this later time-window. It also 

should be noted that the BSS-CCA procedure reduced the activity during the first 400 ms, 

while the 0.2-20 Hz filter first reduced and then considerably increased activity before 400 

ms. Finally, the SAR-ICA (red line) reduced the presence of the speech artifact after 400 ms 

remarkably well and at the same time was able to keep the brain activity at the level of the 

Raw Data in the first 400 ms. To reinforce this qualitative impression, correlation analyses 

were performed between Lip EMG and Corrected Data for the different artifact attenuation 

methods (see Table 1). In relation to the correlation for the Raw Data, the correlation for 

Corrected Data applying either the BSS-CCA method or the two filters remained very strong. 

Within this set of methods, the BSS-CCA led to the weakest correlation, even though the 

correlation coefficients are very similar. In contrast, the correlation with the lip EMG was 

extremely reduced after applying SAR-ICA. Table 2 lists the single subject correlations for 

the SAR-ICA method and, as an example for the remaining methods, for the BSS-CCA 

method. These individual correlations confirm the overall results. 

 

5.4 Source Localizations of Raw Data and Corrected Data for BSS-CCA and SAR-ICA 

methods 
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    We identified sources for all ERP components before speech onset, i.e. at 100 ms, 140 

ms, 290 ms, 360 ms, 470 ms, 540 ms, 615 ms, and 660 ms post picture onset. Figure 6 shows 

the spatio-temporal activation sequence across these components for the grand average across 

all subjects for both Raw Data (left) and Corrected Data (BSS-CCA middle and SAR-ICA 

right). Both the Raw Data and the Corrected Data using BSS-CCA showed only the 

activation of an occipito-temporal network (plus cerebellum), with very similar activation 

patterns (apart from 360ms and 470ms).  

In contrast, the localization of the Corrected Data using SAR-ICA showed the 

expected involvement of an occipito-temporo-frontal network (plus cerebellum), with the 

following dynamics (for details see Table 3): bilateral occipito-temporal areas (BA 18, 19, 

20, 37) were activated from 100 ms to 290 ms. Predominant left temporo(-frontal) areas were 

activated from 360 ms. Wernicke’s area (BA 22) was activated from 360 ms to 540 ms, while 

Broca’s areas (BA 45) was identified at 360 ms as well as at a late 660 ms. Activation from 

540 ms involved also other left-frontal areas (BA 10, 11, 46), and the final localization at 660 

ms included the pre-central gyrus (BA 4 and 6). 

 

6. DISCUSSION 

Almost all existing ERP studies into the time-course of speech production planning have 

either avoided immediate overt speech production because of speech artifacts, or they have 

considered neural correlates in early time windows only, usually until about 400-600 ms after 

picture onset (but see Laganaro & Perret, 2011; Laganaro, Valente, & Perret, 2012; Riès et 

al., 2013), assuming that this way contamination of artifacts are avoided. But no study to date 

has thoroughly investigated when speech artifacts actually occur and what effects they have 

on the spatio-temporal neural activation pattern. The first aim of the present study was 
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therefore to fill this gap. For that we conducted a picture-word interference experiment and 

recorded not only ERPs, but also lip EMG. 

The onset of lip movements in our data was earlier than expected. The ICA analysis of 

the ERPs and the separately recorded lip EMG identified large speech motor effects after 

about 400 ms, as one would expect. However, there was also a small burst of lip movements 

around 160 ms after stimulus presentation. As mentioned above, finding motor effects closer 

to speech onset (i.e. ~400 ms post stimulus onset and ~400 ms pre speech onset) is not 

surprising because articulators such as lips and tongue have to be brought into place before 

the articulation can begin. Earlier lip movements probably arose because participants moved 

their lips as a response to the picture presentation, in order to get ready to speak. Importantly, 

these results show that speech artifacts in a picture naming study occur much earlier than at 

voice onset.  

The effects of speech artifacts on the ERPs were very strong, especially after about 400 

ms post stimulus onset, evidenced by a very strong correlation between the lip EMG and the 

raw data and the spatio-temporal activation patterns revealed by source localization analyses 

of the ERPs. Removing speech artifacts (using our new SAR-ICA method) greatly improved 

the data quality in terms of source localizations of the ERPs. Source localization analyses of 

the raw ERP data detected reliable sources only at occipital brain areas and the cerebellum. In 

contrast, for data corrected with respect to speech artifacts (using our new SAR-ICA 

method), sources followed the expected progression from occipital to temporal and frontal 

areas, including the middle temporal gyrus, Wernicke’s and Broca’s areas, as found in 

previous imaging studies and brain lesion studies (Hultén et al., 2009; Indefrey, 2011; 

Indefrey & Levelt, 2004; Levelt et al., 1998; Salmelin et al., 1994; Sörös et al., 2003; Vihla et 

al., 2006). Future studies should therefore make the effort of attenuating speech artifacts from 

the data, especially if effects closer to speech onset are investigated. 
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The second aim was to propose a new method that strongly attenuates speech artifacts 

during overt picture naming and to compare it with existing methods. A number of artifact 

attenuation methods had been used in the literature, with the most promising method being 

the BSS-CCA method by Vos et al. (De Vos et al., 2010), but also two filters (12 Hz in 

Ganushchak & Schiller, 2008; 0.2-20 Hz in Laganaro & Perret, 2011). Evidenced by the 

relationship of corrected data with the lip EMG, only our new SAR-ICA method succeeded 

in removing the artifacts. Furthermore, the almost perfect correlation between the speech 

artifact component identified by our ICA procedure and lip EMG confirmed that the speech 

artifact categorization by our ICA method was successful. In contrast to the performance of 

our SAR-ICA method, corrected data resulting from any of the other methods still showed a 

very strong correlation with the lip EMG. In terms of reduction of the increased GFP due to 

speech artifacts after about 400 ms, the 0.2-20 Hz filter and the BSS-CCA method somewhat 

succeeded, but did not reach the same level as the SAR-ICA procedure.  

A comparison of the sources of the raw data with those of the corrected data confirmed 

the excellent artifact attenuation performance of the SAR-ICA method. While the raw data 

did not show any expected temporal or frontal activity, the corrected data using our SAR-ICA 

method did show the expected progression of activity. In contrast, corrected data using the 

BSS-CCA showed activity similar to the raw data with no activity of expected temporal or 

frontal areas. 

One might wonder whether removing speech artifacts from ERPs actually changes the 

results when investigating effects of experimental manipulations. We know of only two 

studies that give some indication of how speech artifacts affect the data. Laganaro and Perret 

(2011) used the 0.2-20 Hz filter and reported that cleaning did not impact on the results. Riès 

and colleagues (2013) implemented the BSS-CCA method and reported that some of their 

components were affected by the artifact attenuation. However, as we have seen in our 
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analysis, the methods that were applied in these two studies are only somewhat affective in 

attenuating artifacts from data. Our SAR-ICA method removed artifacts much more 

successfully and should therefore have a bigger impact on differences between experimental 

conditions.  

The excellent results obtained in attenuating speech artifacts using SAR-ICA 

notwithstanding, one has to be aware that ICA approaches have a weakness with respect to 

components that are temporally correlated with each other. In our specific case, the 

assumption that the ICs are temporally independent might be violated by a temporal 

correlation between the primary motor activity during articulation and the movement of 

articulators. An ICA approach would not be able to separate such correlated activity (Calhoun 

et al., 2001). However, we have some evidence that we do not need to be overly concerned 

about such a correlation. If the correlation was strong enough then one would expect that 

motor activities would be part of the speech artifact cluster (or any other artifact cluster) and 

not in the data corrected using SAR-ICA. We therefore conducted a localization analysis on 

the artifactual clusters (and in particular on the speech artifact cluster) and found no brain 

activities in the sensory-motor areas. In contrast, those activations were found in the SAR-

ICA corrected data close to speech onset (around 660 ms), as one would expect. 

Due to speech artifacts, processes of word production planning right before or after 

speech onset have been studied less often with overt speech paradigms than processes close 

to stimulus onset. A few studies have locked ERPs to overt responses. This has first been 

done in order to study effects that occur after the start of vocalization, namely error-related 

negativity (ERN) (Ganushchak & Schiller, 2008; Masaki, Tanaka, Takasawa, & Yamazaki, 

2001) and positivity error (PE) (Riès et al., 2011). Recently studies have also reported 

response-locked analyses to investigate processes leading up to overt speech responses 

(Laganaro & Perret, 2011; Laganaro et al., 2012; Riès et al., 2013). As one would expect, our 
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study showed that the time-window around speech onset is the one where the strongest 

articulatory movements occur. It is therefore important to clean the data from these artifacts 

when investigating processes close to voice-key onset. This had paid off in the study by Riès 

and colleagues (Riès et al., 2011). They found an ERN response for correct trials using the 

BSS-CCA artifact attenuation method, which had not been found by other studies. 

Given our results, one might conclude that major lip movements in overt speech 

production studies start around 400 ms post stimulus onset and therefore any effect earlier 

than 400 ms can be safely investigated. But the timing of lip movements cannot be 

generalized to other studies. We used a picture-word interference paradigm, which results in 

relatively long response times, especially when compared to picture naming in the absence of 

distracters. Articulators might move earlier or later than 400 ms depending on the stimuli and 

the complexity of the task. One should also not ignore the small, but consistent lip movement 

around 160 ms in our study, which suggest that earlier articulatory artifacts than the major 

movements directly linked to the overt production of the response cannot be completely ruled 

out. 

To conclude, we have shown the strong impact that speech artifacts have on both ERPs 

of word production processes and their sources, especially closer to speech onset (from about 

400 ms post stimulus onset and about 400 ms pre voicekey onset in our experiment), and to a 

small degree also during an early time-window. In addition, we demonstrated that our SAR-

ICA procedure successfully removed speech artifacts from overt speech production ERP data, 

and greatly outperformed alternative methods. In future ERP studies of overt speech 

production, care should be taken to identify and remove speech artifacts. Our procedure 

provides a safer investigation of word production planning processes, especially close to 

speech onset.  
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Table 1 – Correlation coefficients R for the relationship of Lip EMG with Raw Data, 

with Corrected Data using the different artifact attenuation methods, and with the 

Speech Artifact Component (Cluster 2) of the SAR-ICA method 
 

 R 

 0-850 ms 0-1350 ms 

Cluster 2 by SAR-ICA 0.99
a
 0.98

a
 

Raw Data 0.86
a 

0.91
a 

0.1-12 Hz filter 0.86
a 

0.91
a 

0.2-20 Hz filter 0.85
a
 0.87

a
 

Corrected data by BSS-CCA 0.84
a 

0.86
a 

Corrected data by SAR-ICA 0.22
b
 0.24

b
 

a
p < 0.001, 

b
p < 0.01, two-tailed 
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Table 2 – Correlation coefficients R for the relationship of Lip EMG with Speech Artifacts (Cluster 2 by SAR-ICA), Raw Data and 

Corrected Data using BSS-CCA and SAR-ICA methods - Single Subject Analysis 

 R 

 0-850 ms 0-1350 ms 

   Corrected data 

by 

Corrected data   Corrected data 

data 

Corrected data 

Subject Cluster 2 

2 

Raw Data 

$ ddata 

BSS-CCA SAR-ICA Cluster 2 Raw Data 

data 

BSS-CCA SAR-ICA 

S1 0.98 0.56 0.52 0.14 0.98 0.95 0.95 0.27 

S2 0.95 0.85 0.85 0.32 0.90 0.84 0.84 0.33 

S3 0.81 0.65 0.64 0.16 0.80 0.40 0.39 0.12 

S4 0.95 0.80 0.80 0.11 0.94 0.72 0.72 0.10 

S5 0.94 0.90 0.90 0.13 0.97 0.91 0.91 0.24 

S6 0.47 0.46 0.31 0.17 0.75 0.63 0.63 0.15 

S7 0.88 0.80 0.80 0.13 0.91 0.69 0.69 0.11 

S8 0.97 0.67 0.67 0.16 0.96 0.84 0.84 0.23 

S9 0.71 0.36 0.35 0.10 0.44 0.72 0.71 0.35 

S10 0.99 0.86 0.85 0.34 0.97 0.84 0.84 0.22 

S11 0.98 0.59 0.58 0.13 0.87 0.85 0.84 0.13 

S12 0.87 0.71 0.70 0.10 0.81 0.73 0.72 0.10 

S13 0.83 0.62 0.62 0.12 0.82 0.70 0.70 0.05 

S14 0.99 0.89 0.89 0.27 0.99 0.85 0.85 0.20 

S15 0.81 0.81 0.81 0.34 0.84 0.61 0.61 0.19 

S16 0.88 0.79 0.79 0.21 0.85 0.73 0.72 0.16 

16 
S17 0.99 0.95 0.45 0.28 0.93 0.86 0.85 0.17 

S18 0.94 0.84 0.84 0.11 0.97 0.90 0.90 0.31 
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Table 3 – Brain Areas activated in overt speech production (Corrected Data using SAR-

ICA) 

Networks 

Timing (ms) 
Location BA (Left) BA (Right) 

O
cc

ip
it

o
- 

T
em

p
o
ra

l 

(1
0
0
) 

Fusiform Gyrus (FG) 

Inferior Occipital Gyrus (IOG) 

Middle Occipital Gyrus (MOG) 

Inferior Temporal Gyrus (ITG) 

Middle Temporal Gyrus (MTG) 

19;37 

18;19 

19; 37 

20; 37 

37 

19;37 

18;19 

19; 37 

20; 37 

37 

O
cc

ip
it

o
- 

T
em

p
o
ro

 

(1
4
0
) 

Fusiform Gyrus (FG) 

Inferior Occipital Gyrus (IOG) 

Middle Occipital Gyrus (MOG) 

Inferior Temporal Gyrus (ITG) 

Middle Temporal Gyrus (MTG) 

19; 37 

18;19 

19; 37 

20; 37 

20; 37 

19; 37 

18;19 

19; 37 

20; 37 

20; 37 

O
cc

ip
it

o
- 

T
em

p
o
ra

l 

(2
9
0
) Fusiform Gyrus (FG) 

Inferior Occipital Gyrus (IOG)  

Inferior Temporal Gyrus (ITG) 

19 

18; 19 

20; 37 

19 

18; 19 

20; 37 

T
em

p
o
ro

- 

F
ro

n
ta

l 

(3
6
0
) 

Fusiform Gyrus (FG) 

Inferior Temporal Gyrus (ITG) 

Middle Temporal Gyrus (MTG) 

Superior Temporal Gyrus (Wernicke’s area) 

Inferior Frontal Gyrus (Broca’s area) 

20; 37  

20;37 

21; 37 

22 

45; 46 

 

20 

21 

O
cc

ip
it

o
- 

T
em

p
o
ra

l 

(4
7
0
) 

Inferior Occipital Gyrus (IOG) 

Inferior Temporal Gyrus (ITG) 

Middle Temporal Gyrus (MTG) 

Superior Temporal Gyrus (Wernicke’s area) 

18 

20 

21 

22 

 

 

 

O
cc

ip
it

o
- 

T
em

p
o
ra

l 

 
(5

4
0
) 

Inferior Occipital Gyrus (IOG) 

Inferior Temporal Gyrus (ITG) 

Middle Temporal Gyrus (MTG) 

Superior Temporal Gyrus (Wernicke’s area) 

Middle Frontal Gyrus (MFG) 

18 

20 

21 

22 

10; 11 

18 

 

 

 

 

F
ro

n
ta

l 

(6
1
5
) 

Middle Frontal Gyrus (MFG) 10; 11  

F
ro

n
to

-T
em

p
o
ra

l 

a
n

d
 

S
en

so
ry

-M
o
to

r
 

(6
6
0
) 

 

Inferior Temporal Gyrus (ITG) 

Middle Temporal Gyrus (MTG)  

Middle Frontal Gyrus (MFG) 

Inferior Frontal Gyrus (Broca’s area) 

Post-central Gyrus  

Pre-central Gyrus 

 

 

10; 11 

45; 46 

 

20;21;37 

21 

 

 

1;2;3 

4;6 
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Figure legends 

 

Figure 1 – Example of Experimental Stimuli 

The Figure shows an example of a stimulus with a semantically related distracter and an 

example of a stimulus with an unrelated distracter. 

 

Figure 2 – Artifact identification 

First column shows the Event Related Potentials (ERP) of the ICs in phase with the picture 

presentation onset: ocular artifact (vertical and horizontal movements) in first and second row 

respectively; Speech artifact in third row; Electrode and Environmental noise in forth and 

fifth row respectively. Second column shows for each IC the assial, coronal and sagittal view 

of the equivalent current dipole (ECD) model superimposed onto the template brain of the 

Montreal Neurological Institute (MNI). Third column shows the spatial distributions of each 

IC obtained by representing the corresponding IC weights (Topographic Map). Fourth 

column shows the probability density function to describe the distribution probability (pdf) of 

each IC. The red line indicates the normal probability density, the values of kurtosis (K), and 

skewness (S) are also provided. As ICA procedure performs whitened preprocessing, each 

quantity is expressed in arbitrary unit (a.u.).  

 

Figure 3 – SAR-ICA Cluster Identification  

Evoked Responses (ER) in the -500 – 2200 ms time window time-logged to the picture 

presentation onset (vertical dashed line) are shown for the 5 clusters identified by 

Independent Component Analysis (ICA). Blue rectangle: ER Raw Data not corrected by 

ocular artifacts. For each cluster and for the Raw Data the potential distribution on the scalp 

(topographic map) is shown at different latencies corresponding to the major peaks of the ER 

(100ms, 140ms, 290ms, 360ms, 470ms and 660ms). Red rectangle (Cluster 1): ER Corrected 

Data (i.e. data without artifactual Independent Components), Cluster 2: ER Speech artifacts, 

Cluster 3: Environmental Noise, Cluster 4: ER Ocular artifacts - Blinking, and Cluster 5: ER 

Ocular artifacts - Horizontal Eye Movements. 

 

Figure 4 – Global Field Power comparison of Lip EMG, Raw Data, and Corrected Data 

using the different artifact attenuation methods (0.2-20 Hz filter, 0.1-12 Hz filter, BSS-

CCA and SAR-ICA) 

Grand-average Global Field Power (GFP) of Lip EMG (black line), Raw Data (dark blue 

line), corrected data using 0.2-20 Hz filter (pink line), 0.1-12 Hz filter (light blue line), the 

BSS-CCA method (green line), and the SAR-ICA method (red line). Dashed line indicates 

picture onset. The Lip EMG was scaled to simplify the visualization. 

 

Figure 5 – Comparison of normalized Lip EMG and Speech Artifacts 

Grand-averages of Lip EMG (blue line) and Speech Artifacts (Cluster 2 identified in the ICA 

analysis, red line) plus correlation values of the two data sets are shown. Dashed line 

indicates picture onset. To simplify the representation in the figure the data was normalized. 

 

Figure 6 – Dynamics of Brain Activation of Raw and Corrected Data (BSS-CCA, SAR-

ICA), determined by source localization 

Spatiotemporal activation of the Raw Data (left) and Corrected Data (BSS-CCA middle and 

SAR-ICA right) during the task, applying the localization procedure described in the method 

section to the data averaged across participants. 
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