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We present RIPMMARC (Rotation Invariant Patch-based Multi-Modality Analysis aRChitecture), a flexible and
widely applicable method for extracting information unique to a given modality from a multi-modal data set.
We use RIPMMARC to improve the interpretation of arterial spin labeling (ASL) perfusion images by removing
the component of perfusion that is predicted by the underlying anatomy. Using patch-based, rotation invariant
descriptors derived from the anatomical image, we learn a predictive relationship between local neuroanatom-
ical structure and the corresponding perfusion image. This relation allows us to produce an image of perfusion
thatwould be predicted given only the underlying anatomy and a residual image that represents perfusion infor-
mation that cannot be predicted by anatomical features. Our learned structural features are significantly better at
predicting brain perfusion than tissue probability maps, which are the input to standard partial volume correc-
tion techniques. Studies in test–retest data show that both the anatomically predicted and residual perfusion sig-
nals are highly replicable for a given subject. In a pediatric population, both the raw perfusion and structurally
predicted images are tightly linked to age throughout adolescence throughout the brain. Interestingly, the resid-
ual perfusion also shows a strong correlationwith age in selected regions including the hippocampi (corr= 0.38,
p-value b 10−6), precuneus (corr = −0.44, p b 10−5), and combined default mode network regions (corr =
−0.45, p b 10−8) that is independent of global anatomy-perfusion trends. This finding suggests that there is a
regionally heterogeneous pattern of functional specialization that is distinct from that of cortical structural
development.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

A fundamental challenge in the interpretation of functional images
of the brain is the extent towhich the observed function is driven by un-
derlying structure, since the goal of most functional imaging is to pro-
vide insight into physiological and pathophysiological processes that
may not be manifested in structural changes. In particular, a body of
prior work establishes that perfusion and structural signal is shared
across modalities. Franklin et al. recently showed that acute baclofen-
induced perfusion decreases induce changes in T1-derived gray matter
(GM) density (Franklin et al., 2013). A prior study showed increases in
observed GM density following acute administration of levodopa
(Salgado-Pineda et al., 2006). Chronically, decreased perfusion may
result in decreased cortical thickness (Fierstra et al., 2010). This connec-
tion between brain perfusion and structuremay confound efforts to cor-
relate disease processes with either perfusion or structure (Villain et al.,
hiladelphia, PA, 19104, USA.
l).
2008; Chtelat et al., 2008; Chen et al., 2011a; Tosun et al., 2010, 2012;
Jrnum et al., 2011). In brief, structural modalities are not purely struc-
tural and may inform and even directly predict functional signal.

To improve interpretability of effects that are correlated acrossmodal-
ities, it is common to apply a correction to emphasize the information
unique to a given modality. For example, many perfusion image process-
ing protocols correct the perfusion image for partial volume effects due to
variations in gray matter/white matter ratios (Muller-Gartner et al.,
1992), since graymatter andwhitematter havemarkedly different perfu-
sion values (Roberts et al., 1994). In addition to partial volume and other
technical challenges, though, perfusion in a given voxel may be at least
partially determined by the underlying brain anatomy. Therefore, we
seek to reframe this relation between brain anatomy and perfusion
more broadly: Given a perfusion image and a structural anatomical
image, how much information is unique to the perfusion image, and
how much of the perfusion image can be reconstructed given the struc-
tural image? A schematic of this approach is shown in Fig. 1.

As a motivating example problem, we consider perfusion measure-
ments of typically developing adolescents. Perfusion studies of typically

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2014.10.052&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2014.10.052
mailto:bkandel@seas.upenn.edu
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http://www.sciencedirect.com/science/journal/10538119
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Fig. 1. Schematic of predicting perfusion from structural MRI.
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developing children have shown changes over development (Chiron
et al., 1992; Wintermark et al., 2004; Biagi et al., 2007; Jain et al., 2012;
Satterthwaite et al., 2013; Wang et al., 2003; Wang and Licht, 2006). In
parallel, many studies have focused on structural brain changes over de-
velopment, including such metrics as cortical thickness (Shaw et al.,
2008) and white matter structure (Tamnes et al., 2010). Some of the
changes in perfusion are likely due to the development of the underlying
anatomical substrate, including changes in cortical thickness, gyrification
indices (Blanton et al., 2001; Su et al., 2013), andpossibly other,more sub-
tle anatomical changes. On the other hand, it is possible that some of the
changes in perfusion are due only to changes in the perfusion of specific
cortical areas that are not explained by structural changes.We seek to im-
prove the interpretability of perfusion imaging by separating the compo-
nent of cortical perfusion that can be explained by structural features
from the component of cortical perfusion that is due to biological process-
es not driven by the underlying anatomy. This separationwill help evalu-
ate what unique information is gained by using perfusion imaging as
compared to anatomical imaging modalities, thus enabling more
principled and informative integration of perfusion imaging into multi-
modal neuroimaging population studies. The residual perfusion signal
represents localized processes that are not explained by the global
anatomy–perfusion relationship, signifying development of functional
specialization.

Several image processing strategies incorporate knowledge of one
modality to improve the interpretability of a second modality, especially
where the two modalities offer complementary sources of information.
One of the most commonly encountered variants of this problem occurs
in positron emission tomography (PET) image processing. PET images
have low spatial resolution, leading to significant partial volume effects
(PVE) (Hoffman et al., 1979). A widespread method for correcting these
partial volume effects is to divide the PET image by gray andwhitematter
probability images (e.g., Muller-Gartner et al., 1992). By assuming that
PET activity within white matter is known, it is then possible to recon-
struct the amount of signal that would have resulted from a purely gray
matter voxel. Similar strategies have been pursued for arterial spin label-
ing (ASL) perfusion (Williams et al., 1992) partial volume correction.
Many ASL partial volume correction methods assume that white matter
has perfusion that is 40% of a comparable unit of gray matter (Johnson
et al., 2005), based on quantitative in vivo measures of ASL perfusion
(Roberts et al., 1994), even though this ratio is almost certainly dependent
on image resolution. More sophisticated models include partial volume
correction based on locally determined gray matter activation (Asllani
et al., 2008, 2009), a kinetic equation for multiple inversion time ASL
(Chappell et al., 2011), and specially designed pulse sequences (Petr
et al., 2012). In addition, some studies have incorporated the presence
of brain lesions for partial volume correction of ASL images (Schuff
et al., 2009).

Fundamentally, partial volume correction (PVC) aims to reconstruct
the ideal image that the scanner would have seen had technical imped-
iments, such as scanner resolution and point spread function, not inter-
fered. Although this correction is an important consideration when
interpreting perfusion images, it does not attempt to account for true ef-
fects of underlying brain structure. Besides technical difficulties with
obtaining accurate perfusion measurements, there may be genuine in-
teractions between the underlying anatomy and the observed perfusion
that go beyondwhite and graymatter probabilities. In this work, we ad-
dress a different problem from PVC: How much brain perfusion can be
related to the underlying structure, and howmuch cannot be predicted
from the underlying structure?

Moreover, generating a feature vector for each voxel that contains all
the necessary information to reconstruct perfusion from anatomy is not
straightforward. Gray matter and white matter probabilities are nearly
always used when predicting perfusion from anatomical imaging, even
though they provide only a limited model of the structure–perfusion re-
lationship. Cortical thickness may also be correlated to perfusion. Here,
we present RIPMMARC (Rotation Invariant Patch-based Multi-Modality
Analysis aRChitecture), an alternative data-driven strategy of deriving
structure–perfusion relationships implicitly. RIPMMARC provides a way
to encode more detailed local structural information about a given
voxel in an image than a scalar intensity value, and this information
can be used to predict the perfusion at that point. From concurrently ac-
quired structural and perfusion images, we learn a dictionary of anatom-
ical patch features that can be used to predict perfusion, with the atoms,
or elements, in the dictionary corresponding to paradigmatic textural
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and anatomical features. Mean-centering each input patch ensures that
the dictionary contains gradient information invariant to raw intensity
value, with intensity represented in corresponding tissue probability
values. In contrast to traditional dictionary learning approaches, we con-
struct rotation-invariant dictionaries to enable more complete sharing
between similar anatomical structures across the brain. This rotation in-
variance allows, for example, sharing of information between right and
left sides of the brain, whichwould not be possiblewhen using tradition-
al dictionary learning techniques. Rotation invariance is particularly im-
portant in 3D images, as the number of possible orientations increases
with the number of dimensions. Projecting patches focused at every
voxel in the image onto the rotation invariant dictionary produces a lo-
cally varying feature weight image for each atom in the dictionary. We
combine the structural feature weights with the probabilistic segmenta-
tion images in a linear model to predict perfusion from the structurally
derived measures. This linear model then produces a “structurally pre-
dicted” perfusion image, corresponding to the predicted perfusion
given the structural features, and a residual perfusion image, corre-
sponding to the perfusion that cannot be explained by structural infor-
mation. A graphical abstract of our method is shown in Fig. 2.

RIPMMARC is inspired by feature learning methods (Ranzato et al.,
2007; Aharon et al., 2006; Mairal et al., 2008), rotation-invariant feature
transforms (Lowe, 1999; Ke and Sukthankar, 2004; Bay et al., 2006;
Toews and Wells, 2013), dictionary learning methods (Chen et al., 2012;
Barthelemy et al., 2012), and modality synthesis algorithms (Hertzmann
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Fig. 2. Graphical abstract of proposed method. Patches are sampled from image in modality 1
Patches corresponding to each point in the image are then projected onto the “eigenpatches” to
to predict the second image (here, perfusion image) from the feature-based description of the
predicted from the structural image and the unique contribution of the perfusion image.
et al., 2001; Wang et al., 2006; Rueda et al., 2013; Rousseau, 2010). To
the best of our knowledge, this work is the first to use rotation invariance
for image synthesis. In addition, our work uses a much more expressive
and accurate model for predicting CBF from structural information than
prior work.

In sum, we make the following contributions: 1) We propose a novel
rotation-invariant dictionary learning method for modality synthesis;
2) we show that these learned dictionaries are significantly better at
predicting perfusion than segmentation probability or cortical thickness
maps; 3)wedemonstrate that thismethod produces consistent perfusion
maps across session scans within a single subject; 4) we show that this
method decomposes the raw CBF signal into structurally predicted and
residual CBF signals, and all three signals are linked to age in a pediatric
population; and 5) the residual perfusion values display aweaker correla-
tion with age in the occipital cortex and precentral motor cortex and a
stronger correlation with age in precuneus and hippocampus, suggesting
regionally heterogeneous trajectories of functional specialization that are
distinct from trajectories of cortical structural development.

2. Methods

2.1. Representations of structure

Given an image I, we denote the segmentation probability for white
matter (WM) and gray matter (GM) at a voxel x ∈ I as pGM,WM(x). We
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(here, T1) and SVD is used to learn optimal features (“eigenpatches”) to describe patches.
create a representation of the input image in feature space. We then use linear regression
first image. This enables us to decompose the perfusion image into a component that is
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additionally denote the observed cerebral blood flow (CBF) value as
cobs(x), and the corrected CBF value as ccorr(x). Standard ASL partial
volume correction (Johnson et al., 2005) takes the form

ccorr xð Þ ¼ cobs xð Þ
pGM xð Þ þ 0:4 � pWM xð Þ : ð1Þ

This specific formulation derives from amore general assumption of
a linear relationship between the voxelwisewhitematter and graymat-
ter densities. Denoting the true GMandWMCBF levels at voxel x as cGM,

WM(x), we have

cGM xð Þ � pGM xð Þ þ cWM xð Þ � pWM xð Þ ¼ cobs xð Þ; ð2Þ

where assuming that cWM(x) = 0.4 ⋅ cGM(x), as in the earliest work on
PVC correction, leads to Eq. (1). Alternatively, it is possible to learn the
relation between GM and WM activity from the CBF image directly, ei-
ther by sampling over lobes (Johnson et al., 2005) or a local kernel cen-
tered on the voxel of interest (Asllani et al., 2008). Both approaches
directly analyze the gray matter and white matter probability images
as they relate to perfusion.

As explained in the introduction, we take a decidedly different
approach to incorporating anatomy into CBF analysis. Instead of
attempting to infer the unobservable true GM and WM perfusion in a
voxelwisemanner, we use all available anatomical information to create
a “best guess” at what the observed perfusion would be given the
anatomy at voxel x. Formulated as a prediction problem, we have

cobs xð Þ ¼ pGM xð ÞβGM þ pWM xð ÞβWM þ residual xð Þ; ð3Þ

where we have replaced cGM,WM(x) with βGM,WM to emphasize that
they are learned values that are constant across the image. The
“residual(x)” term accounts for the observed perfusion that cannot
be accounted for by the other predictors. In addition to the tissue
membership probability values, we incorporate a structural feature
vector that describes the anatomy surrounding the voxel of interest.
Denoting the value of the n'th feature of voxel x as sn(x), n ∈ {1, …, k},
we obtain

cobs xð Þ ¼ pGM xð ÞβGM þ pWM xð ÞβWM þ s1 xð Þβ1 þ…þ sk xð Þβk
þ residual xð Þ; ð4Þ

where βn is the weight for the n'th feature. As before, the βn weights
are learned over the entire image. Concatenating the anatomically de-
rived predictors for voxel x on the right hand side of Eq. (4) as Xx =
[pGM(x), pWM(x), s1(x), … sk(x)] and the weights as β =
[βGM, βWM, β1,…, βk]T allows us to reformulate Eq. (4) as a standard lin-
ear regression:

cobs xð Þ ¼ Xxβþ ε; ð5Þ

where the ϵ term corresponds to the residual(x) term in Eq. (4). Unlike
in standard linear regression, the ϵ term here is not i.i.d. Gaussian noise;
it corresponds to the component of perfusion imaging that cannot be
predicted from anatomical information. Although the presence of struc-
tured residuals may motivate the use of nonlinear prediction tech-
niques, we have found that linear regression works well for this
problem and does not suffer from overfitting, even when training on a
small proportion of the data. Further concatenating the observed CBF
value across the image as Cobs = [cobs(1), …, cobs(m)], where there are
m voxels in the image, and X = [X1; …; Xm], where [⋅;⋅] indicates
row-wise concatenation, we obtain

Cobs ¼ Xβþ ε: ð6Þ

The Xβ term corresponds to the component of perfusion that can be
predicted from anatomical features, and the ϵ term corresponds to the
component of perfusion that cannot be predicted from anatomical fea-
tures. A greater correlation between Cobs and Xβ indicates a more accu-
rate reconstruction of observed perfusion from anatomical features.

2.2. Dictionary construction

We consider an image I with N scalar-valued voxels at locations
xn∈ I, n=1,…,N. We seek a function s : I(xn)↦ℝk that produces a vec-
tor descriptor of the structure around each voxel. Denoting the neigh-
borhood of voxel xn as N xnð Þ ¼ xj j∥xj−xn∥22≤r

� �
, where r is the

radius of the neighborhood, we generate for each voxel xn in the
image the vectorized patch P xnð Þ ¼ vectorize I x j

� � ��xj∈N xnð Þ� �� �
∈ℝp ,

where each neighborhood consists of p voxels and the “vectorize” oper-
ation returns the vector representation of elements in a set. In addition,
we denote the mean-centered patch as Pc(xn) = P(xn) − mean(P(xn)).
Mean-centering each patch serves to minimize the effect of intensity
inhomogeneity and concurrently emphasize the gradient and texture
information. We denote the sets of voxels in cortical gray matter and
white matter as xGM,WM respectively. Because our studies focus on corti-
cal perfusion, we only work with cortical voxels.

To generate the s feature descriptor function, we begin by construct-
ing a rotation-invariant dictionary. Creating a rotation-invariant dictio-
nary requires three steps: Determining a reference direction to reorient
all patches to; reorienting all patches to that direction; and constructing
a dictionary from the reorientedpatches. To find the reference direction,
we concatenate row-wise the vectorized patches Pc(xn) of 1000 voxels
sampled randomly from around the cortex into a matrix S ∈ ℝ1000× p.
The number of sample voxels to take is limited only by computational
power, but we did not observe any improvement in performance
when sampling more than 1000 voxels. Next, we perform an SVD of S
to obtain its eigenvectors and consider the first eigenvector of S the ca-
nonical reference frame.

We used a closed-form solution to align the image patches to the ref-
erence frame. The problem of aligning the orientation of two vectors is
known asWahba's problem (Wahba, 1965), and the analytical solution
is known as the Kabsch algorithm (Kabsch, 1976). Aligning two images
corresponds to aligning the orientations of the first eigenvector (or two
eigenvectors for a 3D image) of the covariancematrix of the gradient of
the image. We denote the gradient operator g : N xnð Þ↦ℝD, where D is
the number of dimensions in the image. The covariance matrix C
N xnð Þð Þ of the gradient of the neighborhood N xnð Þ is then given by

C N xnð Þð Þ ¼
X

xi∈N xnð Þ
g I xið Þð Þg I xið Þð ÞT∈ℝD�D

: ð7Þ

To align the patches of two voxels xi and xj, we denote the k'th eigen-
vector of C N xið Þð Þ aswk and the k'th eigenvector of C N xj

� �� �
as vk and

calculate the rotation matrix Q that best aligns them:

arg min
Q

X

k

∥wk−Qvk∥
2
: ð8Þ

Denoting B = wkvk
T, we compute the singular value decomposi-

tion (SVD) of B: B = UΣVT. Then the analytical solution to Eq. (8) is
given by Q = UMVT, where M = diag[1 1 det(U) det(V)]. We then
rotatet he voxel coordinates xi by Q and use a linear interpolator to
regenerate the neighborhood image after the rotation. A more com-
putationally expensive alternative is to use the Radon transform to
estimate orientation (Jafari-Khouzani and Soltanian-Zadeh, 2005).
Using the Kabsch-based approach, we reorient all patches in S to
the principal eigenvector of S. Then, we perform a second SVD of
the reoriented patches. These eigenvectors make up the rotation-
invariant dictionary. We retain enough eigenvectors to account for
95% variance explained. Pseudocode for this algorithm can be
found in Algorithm 1.
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Once we have the rotation-invariant dictionary, we construct the
feature vector for a given voxel xn ∈ xGM by constructing the vectorized
patch Pc(xn), reorienting the patch to the reference frame, and then
multiplying the reoriented patch by each atom in the rotation-
invariant dictionary. This procedure generates a k-vector for each
voxel, with the i'th entry corresponding to the response of the i'th ei-
genvector to the voxel neighborhood. Pseudocode for this algorithm
can be found in Algorithm 2.

2.3. Feature Learning

Once we have the rotation-invariant dictionary, we project the
reoriented patches corresponding to each voxel in the image onto
each rotation-invariant eigenpatch. This gives us ann× k featurematrix,
where n is the number of voxels in the image and k is the number of
eigenpatches. The columns of this feature matrix correspond to the
response of each eigenpatch to the patch centered on each voxel. In ad-
dition to the structural featurematrix,we use theGMandWMprobabil-
ities for each voxel in the image. The GM and WM probabilities are
usually the two strongest predictors of blood flow in a given voxel,
and we have found that they significantly increase the accuracy of CBF
prediction. Thus, although modern PVC approaches (Asllani et al.,
2008) move beyond this simplistic relationship between tissue type
and perfusion, even this primitive method of incorporating tissue prob-
abilities into the prediction results in a feature that is highly predictive
of perfusion, as it is a reasonable first-order approximation to the true
relationship between tissue type and perfusion. The GM andWM prob-
abilities also model each voxel's intensity value.

Once we have the final structural predictor matrix, we run a linear
model relating CBF to our predictor matrix:

CBF signal≈GM probabilityβGM þWM probabilityβWM
þ Structural predictorsβstructure: ð9Þ

To avoid overfitting, we train the model on 5% of the cortical voxels,
sampled randomly, and then predict on the remaining 95% of the cortex.
The use of a linear model and the fact that there are several orders of
magnitude more training samples than predictors further minimize
the risk of overfitting, and we did not observe a tendency to overfit in
our data. We typically found a drop in variance explained of roughly
2% when going from training to testing data (Fig. 13b). We note that
in the current study, we learned the relationship between brain struc-
ture and perfusion on a per-subject basis. A graphical outline of the
method is in Fig. 2, and a more formal description of the algorithm is
in Algorithm 2. An open-source ITK-based implementation can be
found at https://github.com/bkandel/PatchAnalysis.
2.4. Parameter settings

RIPMMARC has four free parameters: How many voxels to sample
when constructing the dictionary; the ratio of testing to training data
for the linear model; how many eigenvectors to retain; and the size of
the patches. We have found that algorithm performance is insensitive
to reasonable settings of the first three parameters, and the final param-
eter should be chosen in a principled way (Fig. 13). The number of
voxels to sample when constructing the dictionary is limited by compu-
tational power, but we have not observed improvements in prediction
accuracy or dictionary stability when using more than 1000 voxels
(Fig. 13c). Similarly, the prediction accuracy does not improve when
trained on more than 5% of the cortex (Fig. 13b). Choosing how many
eigenvectors to retain is an issue that does not have a clear resolution,
but we have found that retaining enough eigenvectors to account for
95% variance explained is a good rule of thumb and works well in our
experience. Beyond 95% variance explained, no improvement is seen
(Fig. 13a). The only parameter that has a significant effect on algorithm
performance is the patch size. However, the patch size can be chosen to
emphasize the spatial scale of features of interest. Becausewe are inter-
ested in features such as position along a sulcus, we chose a radius of
1.4 cm, but it is likely that this parameter will need to change for differ-
ent applications.
2.5. Clinical data

2.5.1. Test–retest data
The cohort consists of 12 healthy young adult participants (mean

age 25.5 ± 4.5 years, 7 female, 5 male). For each subject, data was ac-
quired at two time points in the sameday. For each time point, high res-
olution T1-weighted anatomic imageswere obtained using 3DMPRAGE
imaging sequence and the following acquisition parameters: TR =
1620ms, TI=950ms, TE=3ms,flip angle=15∘, 160 contiguous slices
of 1.0mm thickness, FOV=192× 256mm2, matrix= 192× 256, and 1
NEX with a scan time of 6 min. The resulting voxel size was 1 mm. Ad-
ditionally, pseudo-continuous ASL (pCASL) images were acquired with
80 alternating tag/control images all with 14 contiguous slices of
7.5 mm thickness, FOV = 220 × 220 mm2, matrix = 64 × 64; TR =
4000 ms, tagging duration 1500 ms, and postlabeling delay of 1 s. A
complete description of this dataset can be found in Chen et al. (2011b).

2.5.2. Pediatric data
Our pediatric data consists of 88 subjects, with mean age 11.72,

range 7.07–17.46 years (Fig. 3). Magnetization-Prepared Rapid Acquisi-
tionGradient Echo (MPRAGE) imageswere acquiredusing a 3D inversion
recovery sequence with TR/TE/TI = 2170/4.33/1100 ms. The resolution
was 1 × 1 × 1 mm2 with a matrix size of 256 × 256 × 192. Flip
angle = 7∘ and total scan time was 8:08 min. Pseudo continuous arterial
spin labeled (pCASL) images were acquired using TR/TE = 4000/22 ms,
with resolution of 3.125 × 3.125 × 6 mm3 over a 64 × 64 × 24 matrix.

https://github.com/bkandel/PatchAnalysis
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The M0 image was estimated by averaging the control (non-tagged) im-
ages. 40 label/control pairs were acquired. Generalized autocalibrating
partially parallel acquisition (GRAPPA) was done using an acceleration
factor of 2. Labeling duration was 1.5 s and the post-labeling delay was
1.2 s. Total imaging time was 5:30 min.

2.5.3. Image preprocessing
The set of T1 images from the first session was used from each

subject to construct a template using ANTs (Avants et al., 2011a).
Additionally, a three-tissue segmentation of the template (Avants
et al., 2011b) allowed the labels to be partially masked so only cortex
and deep gray structures were labeled. For each time point, the T1
image was registered to the template image using SyN (Avants
et al., 2008). The subject's T1 image was also registered to the
estimated M0 image as a reference for the pCASL using the
antsIntrasubjectIntermodality.sh script in ANTs. These transforms
were composed to map the cortical labels into ASL native space for
each time point. All anatomical data were downsampled to 2 mm
isotropic resolution for analysis. For pCASL images, the M0 image
served as a reference for motion-correction of all time-point vol-
umes. Nuisance parameters, including motion and physiological con-
founds, were included as regressors, along with the tag-control binary
label, in a robust regression scheme for CBF calculation (Avants et al.,
2012). Cerebral blood flow in physiological units was calculated from
the difference between control and tagged images as

f ¼ λ � ΔM
2α �M0 � T1b � e−w=T1b−e− τþwð Þ=T1b

� � ; ð10Þ

where f is the perfusion in physiological units (mL/100 g/min); λ is the
blood-tissue water partition coefficient (0.9 g/mL); ΔM is the mean dif-
ference between control and tagged images; α is the tagging efficiency
(0.85);M0 is the equilibrium brain tissue magnetization, approximated
by the mean of the control (non-tagged) images; T1b is the blood T1
value, modified for each subject based on gender and age, as below; w
is the postlabeling delay (1 s); and τ is the labeling duration (1.5 s).
Full details are available in the open-source script at https://raw.
github.com/stnava/ANTs/master/Scripts/antsASLProcessing.sh. For the
pediatric data, the blood T1 value was adjusted for age and gender as
T1 = (2115.6 − 21.5 ∗ age − 73.3 ∗ sex) ms, where female sex was
set to 0 andmalewas set to 1, as suggested inWuet al. (2010). One sub-
ject was eliminated because of extreme non-physiological CBF values,
and two subjects were eliminated because of poor image quality with
little differentiation between graymatter andwhitematter. Prior to dic-
tionary construction, the pCASL and T1 imageswere resampled to 2mm
isotropic resolution. To obtain region of interest (ROI) values for each
subject, we warped the MNI template to the population-specific tem-
plate generated with ANTs. This warp was concatenated with the
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Fig. 3. Histogram of ages of pediatric population.
template-to-subject warp to propagate the AAL label set to the subject
space.

3. Results

Before analyzing real neuroimaging data, we first present two
synthetic data analyses to provide a greater understanding of the
motivation andmechanics of our method. We demonstrate the oper-
ation of the perfusion-anatomy decomposition on simple synthetic
images to highlight the effect of orientation invariance when
predicting perfusion. We then perform a simulated population ex-
periment showing how observed changes in perfusion can in fact
be due either to the underlying anatomy or changes in perfusion
that are not explained by anatomical features. Following the synthet-
ic experiments, we show that our anatomical features are much bet-
ter than tissue probability maps or cortical thickness at predicting
perfusion, and that both the anatomically predicted and residual
functional images are highly reproducible within subjects. Finally,
we demonstrate that the anatomically predicted and residual CBF
signals in a pediatric population are tightly correlated with age in a
region-specific manner, and that in certain instances have opposing
trends.

3.1. Synthetic image decomposition

We generated synthetic data to demonstrate how the proposed
method decomposes simulated functional images into its purely func-
tional component and to the component that can be inferred from
structure. Fig. 4 shows the “anatomical” and “perfusion” components
of the data. Some aspects of the perfusion data, such as the increased ac-
tivity at the intersections of the lines, can be inferred from the structure
of the image (when trained on an appropriate reference functional
image). Other aspects of the functional data, such as the increased activ-
ity on the upper right-hand line, cannot be inferred from the structural
data: Given a patch-based descriptor of a given voxel in the structural
image, it is impossible to tell whether the corresponding perfusion
voxel has a high or low value. In addition, certain functional values
can only be inferred from the orientation of the structure. For example,
the horizontal central line has a higher functional value than the vertical
lines. Given only an orientation-invariant feature description of the cen-
tral line, it is impossible to tell what the functional value is. Fig. 4 shows
the result of the decomposition. As expected, both decompositions do
not predict the increased activity in the upper right-hand line from
the structural data, but do reconstruct the increased activity at the inter-
sections of the lines. Only the non-rotation invariant decomposition re-
constructs the increased activity on the horizontal line. On the other
hand, constructing orientation-invariant features enables sharing
more data across regions, leading to a lower-variance reconstruction
(Fig. 4e). We consider the structure of neuroimaging data to be “rota-
tion-invariant” in the sense that a gyrus pointing superiorly is equiva-
lent to a gyrus pointing inferiorly. This rotation invariance enables
information to be shared across hemispheres of the brain and reduces
the chances of overfitting to a specific region.

3.2. Simulated population study

To demonstrate the need for a structure-function decomposition
that differentiates between changes in perfusion that are due to struc-
tural abnormalities and those that are unrelated to the underlying struc-
tural substrate, we constructed a simulated data set that includes
structural and functional effects. Throughout the brain, we simulated
an ASL perfusion image based on the gray and white matter probability
maps, with added noise. Using the notation from Section 2.1, at voxel
x ∈ I:

cobs xð Þ ¼ 100 � pGM xð Þ þ 40 � pWM xð Þ þ noise: ð11Þ

https://raw.github.com/stnava/ANTs/master/Scripts/antsASLProcessing.sh
https://raw.github.com/stnava/ANTs/master/Scripts/antsASLProcessing.sh


(a) Synthetic anatomical data. (b) Synthetic perfusion data.

(c) Perfusion signal that can
be reproduced from anatomy,
using non-orientation invariant
features.

(d) Residual perfusion signal,
analyzed using non-orientation
invariant features.

(e) Perfusion signal that can
be reproduced from anatomy,
using orientation invariant features.

(f) Residual perfusion signal,
analyzed using orientation in-
variant features.

Fig. 4. Synthetic perfusion and anatomical data. Some aspects of the perfusion data, such as the higher activity at the intersection of the lines, can be deduced from the underlying anatomy
(the intersection of the lines), but other aspects of the perfusion data, such as the increased activity on the upper right line, cannot be deduced from the anatomy. Panels c and d: Decom-
position of synthetic data using non-rotational invariant features. The constructed features include orientation, so thehigher values in the horizontal line are correctly reconstructed. Panels
e and f: Reconstructed perfusion and residual perfusion decomposition of panel b. Because orientation invariant features were used, the higher perfusion of the horizontal line is not pre-
dicted, but the intersection of the lines does indicate a greater predicted functional signal. Orientation invariance enables greater information sharing across regions, leading to lower var-
iance in the reconstruction as compared to the reconstruction using non-rotationally invariant features (c).
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To the images in the experimental group, we added additional
anatomical and perfusion blobs in the following manner (Fig. 5).
In one blob (the “anatomical” blob), we increased the probability
of gray matter. This caused a corresponding increase in the perfu-
sion images. In the second blob, we increased the perfusion without
a corresponding increase in GM probability, creating a perfusion in-
crease that does not have a corresponding structural abnormality.
Denoting CBF that is not predicted from the underlying anatomy
as cr(x),

cobs xð Þ ¼ 100 � pGM xð Þ þ 40 � pWM xð Þ þ cr xð Þ þ noise: ð12Þ

In the third blob, we increased the GM probability and also added
additional perfusion above that predicted by the increased GM
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probability. This blob represents an area that has both a structural ab-
normality (increased GM probability) and a perfusion abnormality (in-
creased perfusion above that predicted by GM content). To recover an
anatomy-perfusion decomposition of the images, we regressed out the
anatomical information (GM and WM probability maps) from the per-
fusion images following the method in Section 2.3. This regression
gave us two images: The perfusion predicted from structure, and the re-
sidual functional activation that is not explained by structure, in addi-
tion to the original perfusion images.

We ran a voxelwise t-test comparing control vs. experimental
groups on the three types of images. The results are shown in Fig. 5.
The voxelwise p-statistic maps on the raw perfusion images shows all
three blobs, because all three blobs indeed had increased perfusion in
the experimental group (Fig. 5, top). p-statistic maps on the residual
functional images show both the residual perfusion blob and the com-
bined anatomical and perfusion blob (Fig. 5, middle). This image, how-
ever, ignores the potentially biologically important role of decreased
perfusion caused by abnormal anatomy. The p-statistic map on the per-
fusion images as predicted by anatomy shows this missing information
(Fig. 5, bottom).

3.3. Sample subject

The raw perfusion image, the perfusion that can be predicted from
structure, and the residual perfusion images for a sample subject are
shown in Fig. 6. For reference, the perfusion that can be predicted
fromprobabilitymaps is also shown.Our structural predictors are better
at predicting CBF than the probability maps, and in particular predicts
higher perfusion in sulcal pits. A quantitative depiction of the correla-
tion between predicted and actual CBF is given in Fig. 7.

3.4. Variance explained

The structural features we compute are significantly better at
predicting perfusion data than gray and white matter probability
masks and than cortical thickness maps. Fig. 8 compares predicted vs.
actual perfusion values using the proposedmethod, segmentation prob-
ability maps, and cortical thickness for the test-retest cohort. The corre-
lation is computed voxel-wise across the gray matter, and each sample
corresponds to one subject. The higher correlation of our structural
predictors with CBF as compared to the controls indicates that our
2

Fig. 5. Negative log p-value map (FDR corrected) for raw perfusion (top), structurally predicted
and functional, and functional areas all appear on the perfusion map. The structural and combin
structural and functional blob and the purely functional blob appear on the functional p-value
predictors are more effective at explaining observed perfusion than
the control predictors.

3.5. Reproducibility

A key measure of the reliability of a clinical measurement is its test–
retest reproducibility within a given subject. We evaluated the test–
retest reproducibility of our anatomically-predicted and residual perfu-
sion images and compared them to the reproducibility of the raw CBF
signal and reproducibility of perfusion as predicted by tissue probability
maps and cortical thickness (Fig. 9). We evaluated reproducibility by
voxel-wise correlation between the images at two time points for a
given subject. The most reproducible measure was the CBF predicted
by the probability maps, as this value is dependent only the CBF value
averaged across an entire tissue compartment and is therefore highly
reproducible. The voxel-wise reproducibility of CBF measurement was
found to be 0.71 ± 0.09, and this value serves as the upper bound on
the reproducibility of predictions from spatially varying anatomical pre-
dictors. Predictions from probability maps and thickness on the one
hand and our structural predictors have similar reproducibility to the
raw CBF images. The residual CBF image was less reproducible as com-
pared to raw CBF reproducibility (p-value = 6.69 × 10−6), but still
displayed relatively high reproducibility across subjects (0.52 ± 0.07).
Although the high reproducibility of the structurally predicted CBF
was expected, the high reproducibility of the residual CBF indicates
that it is not simply random noise and varies in a consistent way across
subjects.

3.6. Pediatric population study

To return to the motivating problem of this work, we examined
whether observed perfusion changes throughout adolescent develop-
ment are predicted by a global model relating brain structure to perfu-
sion. We examined trends from a variety of areas representing distinct
functional domains and developmental characteristics. The hippocam-
pus and precuneus represent higher-order memory and cognitive
functions (Cavanna and Trimble, 2006), and the occipital cortex and
precentral gyrus represent sensorimotor regions that are presumed
to mature relatively early in development (Gogtay et al., 2004;
Rueckriegel et al., 2008). The default mode network (DMN), a collection
of regions that are most active when subjects are not specifically
3 4 5 6 -log p-value

perfusion (middle), and residual perfusion (bottom). The structural, combined structural
ed functional and structural blob appear on the structural p-valuemap, and the combined
map.



0 50 100 150 mL/100g/m

-100 -50 0 50 100 mL/100g/m

Fig. 6. Comparison of mean CBF image (top left), reconstruction from anatomy using RIPMMARC (top right), reconstruction from GM and WM probability images (bottom left), and re-
sidual perfusion image (bottom right). Mean CBF image is shown at ASL resolution (3.4 mm × 3.4 mm × 7.5 mm); other images are shown at 2 mm isotropic resolution.
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engaged in any externally directed task (Buckner et al., 2008), continues
to undergo maturation during adolescence (Uddin et al., 2011; Supekar
et al., 2010). We therefore also examined the CBF trends for the most
consistent and conservative definition of the DMN, consisting of the
left and right precuneus, medial orbitofrontal cortex, and angular
gyrus (Buckner et al., 2008).

CBF trends are plotted in Fig. 10, with quantitative results in Table 1.
We found that although both the raw perfusion values and structurally
predicted perfusion changed throughout adolescence in all regions ex-
amined, the functional specialization of different regions, as measured
by the residual CBF values, followed a regionally varying trajectory. Hip-
pocampal and precuneal residual CBF values showed a strong correla-
tion with age, whereas the residual CBF values were not as strongly
associated with age in the superior occipital cortex and the precentral
gyrus. These trends were bilateral (see plots for the right hemisphere
in SupplementaryMaterial, Section 7).With the exception of the hippo-
campus, the structurally predicted CBF had lower variance than the raw
CBF, and in all areas the residual CBF had lower variance than the raw
CBF. For simplicity and to minimize overfitting, we used linear regres-
sion and did not include an interaction between age and gender, but it
is possible that this analysis masks nonlinear effects.
4. Discussion

We have presented here amethod to separate the anatomically pre-
dicted from the residual components of perfusion images as measured
by ASL MRI. Our method to generate structural predictors gives much
better prediction accuracy for predicting CBF than either probability
maps or cortical thickness. The test–rest reproducibility of both the
structurally predicted and residual CBF is close to that of the raw CBF,
implying that both the structurally predicted and residual CBF maps
contain stable signals. In addition, we found that although the anatom-
ically predicted and raw CBF were closely related to age, the residual
CBF showed a regionally heterogeneous pattern, suggesting that differ-
ent brain regions undergo different amounts of functional specialization
during development.

4.1. Interpretation of structurally predicted and residual CBF

RIPMMARC takes CBF and structural images as input, and produces
as output a structurally predicted CBF image and a residual CBF image.
At first glance, the interpretation of these two outputs may be some-
what obscure, but we believe that when properly understood, each
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(b) Prediction of CBF using only probability maps.

Fig. 7. Predictions of CBFwithin cortical GMusing our structural predictors andprobability
maps. Our structural predictors account for much more variance than probability maps,
which exhibit a strong ceiling effect. This figure indicates that even within the cortex,
where additional tissue probability information does not predict CBF, the proposed struc-
tural predictors can find a meaningful relation between structure and CBF.
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image has an intuitively clear interpretation that can be directly incor-
porated into clinical characterization of a subject. By way of analogy,
we imagine an experiment tracking subject performance on a test of
verbal ability in a group of children. A researcher may regress out “nui-
sance variables,” such as subject age and familial income, before exam-
ining the results. At the group level, the effect of these nuisance
variables may in fact be of interest, but looking at an individual's score
without accounting for these nuisance variables would be misleading.
In our method, we consider the “group effects” to be structural effects
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Fig. 8. Correlation of CBF with: retest CBF; probability images; probability images and thickness
than probability images, and account for roughly half there producible ASL signal. This result
perfusion than using only tissue probability images and cortical thickness.
shared across the brain, whereas the “subject-level” measurements
are the perfusion values at a given voxel. The group effects of underlying
brain structure, similarly to age and familial income in our imagined
verbal ability study, may be of independent interest, and wemay be in-
terested in looking at regional variations in perfusion as predicted by
structural measures. When looking at a given voxel, though, we may
also be interested in the amount of perfusion that is not predicted by
the underlying neural architecture, just as onemay look at a verbal abil-
ity result for a given subject when corrected for age and family income.
For both the structurally predicted and residual CBF measurements, the
units are in the same units of blood flow as the originalmeanCBF image.
Negative values for the residual CBF image correspond to areas with
less-than-expected perfusion as compared to structurally homologous
regions elsewhere in the brain. Finding regions of the brain that consis-
tently have lower CBF than other structurally similar regions may help
clarify which specific anatomical or microstructural characteristics
drive regional perfusion variations.

4.2. Biological interpretation of CBF measurements

The reproducibility of the residual CBF, aswell as its correlationwith
age, indicate that it is not only the result of measurement noise, but
these results do not provide a true validation that the residual CBF re-
sults from a discrete biological process. Although this study establishes
an empirical link between local cortical structure and ASL-measured
perfusion, it does not conclusively demonstrate a specific biological
mechanism for this link. One plausible biological mechanism for a link
between cortical structure and perfusion is astrocyte-mediated vasodi-
lation. Astrocyte morphology and distribution is known to vary across
the cortex (Mittelbronn et al., 2001), and recentwork has demonstrated
that astrocytes are capable of modulating arteriole vasoconstriction
(Howarth, 2014). A careful evaluation of possible correlations between
cortical structure and cytoarchitectonic and vascularmodulation of per-
fusion is necessary to establish a clear causal link between cortical struc-
ture and perfusion.

4.3. Results from population study

We examined how structurally predicted and residual CBF vary
across age in a pediatric population. We found that although the raw
and structurally predicted CBF decreased across all regions throughout
adolescence, the trends for residual CBF exhibited a spatially heteroge-
neous pattern. In the precuneus, the residual CBF decreased with age,
�
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; and our structural predictors. Our structural predictors are much better at predicting CBF
indicates that our structural predictors are more appropriate for structural correction of
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Fig. 9. Reproducibility of mean CBF and derived CBF measures. Reproducibility is reported as the voxelwise correlation of the measure at two scans taken 1 h apart. Although the repro-
ducibility of the probability-derived CBF prediction is quite high, the low amount of variance explained by tissue probability values as opposed to RIPMMARC-derived predictors indicates
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(b) Structurally predicted and residual CBF for left precuneus.
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(c) Structurally predicted and residual CBF for left precentral
gyrus.
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(d) Structurally predicted and residual CBF for left superior oc-
cipital lobe.
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(e) Structurally predicted and residual CBF for default mode
network.

Fig. 10. Raw, anatomically predicted, and residual CBF as a function of age. The raw CBF signal contains a mixture of the structurally predicted and residual CBF signals. The residual CBF
shows a spatially heterogeneous longitudinal trajectory of functional specialization, with earlier-developing regions, such as the superior occipital lobe and precentral gyrus, showing less
change over adolescence than the later-developing precuneus and hippocampus. This relative stability is not apparent in the raw or structurally predicted CBF signal.
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Table 1
Statistics from linear models plotted in Fig. 10. Although the raw and structurally predicted CBF values showed strong trends with age, the trends for the residual CBF was more variable.
Residual CBF was strongly associated with age in the hippocampus and precuneus, but less so in superior occipital cortex and the precentral gyrus. This may suggest that there is a lesser
degree of functional specialization in the precentral gyrus and occipital cortex than in hippocampus and precuneus throughout adolescence. Slope is given in units of CBF (mL/100 g/min)
per year.

Raw CBF Structural CBF Residual CBF

Slope p-Value Slope p-Value Slope p-Value

Left hippocampus −1.62 ± 0.32 1.12 × 10−6 −2.87 ± 0.42 1.41 × 10−10 1.25 ± 0.24 9.09 × 10−7

Right hippocampus −1.28 ± 0.34 2.3 × 10−4 −2.89 ± 0.42 10−10 1.61 ± 0.24 3.99 × 10−10

Left precuneus −4.28 ± 0.55 7.27 × 10−13 −2.8 ± 0.41 1.08 × 10−10 −1.48 ± 0.24 4.41 × 10−9

Right precuneus −4.09 ± 0.54 2.04 × 10−12 −2.84 ± 0.4 5.69 × 10−11 −1.25 ± 0.26 3.7 × 10−6

Left precentral −2.37 ± 0.56 4.37 × 10−5 −2.56 ± 0.4 1.56 × 10−9 0.2 ± 0.25 0.42
Right precentral −2.2 ± 0.55 10−4 –2.55 ± 0.40.4 2.05 × 10−9 0.35 ± 0.25 0.16
Left occipital −2.1 ± 0.47 1.73 × 10−5 −2.68 ± 0.4 2.53 × 10−10 0.58 ± 0.24 0.02
Right occipital −2.64 ± 0.47 9.79 × 10−8 −2.65 ± 0.4 6.76 × 10−10 0.01 ± 0.23 0.96
DMN −3.42 ± 0.47 1.12 × 10−11 −2.69 ± 0.41 6.09 × 10−10 −0.73 ± 0.11 2.21 × 10−9

167B.M. Kandel et al. / NeuroImage 105 (2015) 156–170
whereas in the hippocampus, the residual CBF increased with age. In
both regions, the residual CBF showed a strong bilateral correlation
with age. In contrast, the residual CBF in the precentral gyrus and supe-
rior occipital cortex showed a much weaker correlation with age. These
findings suggest that the functional specialization in some areas follows
the cortical structural development, but in other areas displays a distinct
trajectory. For example, the precentral gyrus and the occipital lobe are
known to reach their mature cortical thickness relatively early in devel-
opment (Gogtay et al., 2004), and we found that the residual CBF of
these areas did not show a strong correlation with age. On the other
hand, the hippocampus has also been found to reach structuralmaturity
relatively early in adolescence (Gogtay et al., 2004), but we found a
strong correlation between residual CBF and age here. The precuneus,
in contrast, displays significant structural changes throughout adoles-
cence (Tamnes et al., 2013), and the precuneal residual CBF was also
found to correlate strongly with age. As a whole, these findings indicate
that functional specialization may follow a trajectory that is distinct
from that of cortical structural development.

In all regions examined, the trend throughout adolescence was for
the residual CBF to move towards zero, implying that in older adoles-
cents, a global model relating brain structure to perfusion is more accu-
rate than in younger adolescents.

4.4. Comparison to partial volume correction techniques

Although the method proposed here falls into the general catego-
ry of atrophy and structure correction techniques, it has a fundamen-
tally different purpose from standard partial volume correction
(PVC) techniques (Meltzer et al., 1990; Muller-Gartner et al., 1992;
Thomas et al., 2011). Our method directly addresses the question of
the relationship between brain structure and perfusion, which is
not the purpose of PVC techniques. PVC aims to recover what the
scanner would have seen had technical impediments, such as partial
volume effects, not interfered with the imaging. This correction is
crucial to appropriately interpreting observed perfusion values, but
does not aim to discover what proportion of perfusion can be
accounted for by underlying brain structure. In contrast, we aim to
recover both the effect of anatomy on the perfusion image and the
perfusion that is independent of anatomy. The separation of struc-
tural from non-structural perfusion effects is distinct from PVC-
based approaches, which incorporate the structural information
directly into the output image. We did not explicitly investigate the
relationship between the eigenpatch-derived predictions and partial
volume effects. It is possible that the eigenpatch predictions are affected
by partial volume artifacts. However, the gradient information included
in the eigenpatch descriptors should also indicate how close a given
voxel is to the edge of the cortex, thus implicitly accounting for partial
volume effects.
4.5. Consideration of resolution

The different resolutions of arterial spin labelingMRI as compared to
T1 MRI present significant challenges when attempting to analyze the
relationship between the two modalities. Because the T1 image is at a
much higher resolution than the ASL image, it is difficult to disentangle
the effects of scanner characteristics on observed perfusion from true
perfusion results. As opposed to PET imaging, quantitative analysis of
ASL scanners using physical or computational phantoms is not wide-
spread, although some initial efforts have been reported (Noguchi
et al., 2007). The lack of quantitative tools for analyzing scanner proper-
ties complicates the effort towork across resolutions. To examine the ef-
fect of anatomical variation on observed perfusion, we resampled both
theASL images and the T1 images to 2mm isotropic resolution. This res-
olution was observed to minimize interpolation artifacts from the ASL
native space while still providing adequate anatomic detail. In addition,
we explicitly examined the dependence of the results on resolution.We
found that choosing the resolution to be 2 mm or 3 mm had a minimal
effect on either structurally predicted or residual CBF (Fig. 11).

4.6. Limitations

Although this work demonstrates that the proposed method has
promise, it does leave some unanswered questions that require further
study. First, although the results in the pediatric population imply that
the signal present in the residual CBF has biological significance, more
study is necessary to validate this finding in a variety of populations to
further elucidate its utility in broader applications. Second, we have
not rigorously examined here how the dictionaries and coefficients
vary across patients. Using only the predicted value from the dictionary
learning approach without examining how the predictions are made
may in fact throw away useful data, as the relationship between struc-
ture and perfusion itself may contain biologically significant informa-
tion. To compare the structure–CBF relationship across subjects,
though, it would be necessary to learn a consistent dictionary and
apply it to all subjects. Carefully examining the variability of learned dic-
tionaries across subjects and across different populations is necessary to
establish appropriate techniques for constructing population-wide dic-
tionaries. Third, the residual CBF retains significant amounts of the noise
present in the raw CBF images, such as transit effect artifacts from large
blood vessels as evident in Fig. 6. The residual CBF image will in general
be noisier than the structural CBF image, as the residual image will con-
tain both biologically significant signal and noise, whereas the structur-
ally predicted CBF image will not be affected by ASL noise. For ASL
sequences that are noisier than pCASL, such as PASL-derived sequences,
the additional noisemay interferewith detection of the residual CBF sig-
nal. Finally, this method assumes a good registration between the ASL
and T1 images. We have found that using an affine registration coupled
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with a small deformable registration is provides a reliable and accurate
way to align cortical perfusion images. In applications with dynamic
structural images, such as cardiac or muscular imaging, finding a good
correspondence between structural and perfusion images may be
more difficult.

4.7. Future work

4.7.1. Variations of the technique
In this work, we learned the relationship between brain structure

and perfusion on a per-subject basis. The motivation for this is that al-
though there may be global variations in the function that relates
brain structure and perfusion, the function is a global signal over the en-
tire brain,whereas the use of imaging is intended to highlight regionally
varyingmeasures of perfusion. This correction for global signal changes
is similar in spirit to the use of relative CBF (Aslan and Lu, 2010), where
correcting for global perfusion has been found to increase the ability to
find regional differences in blood flow. For application to patient popula-
tions, though, itmaybemore appropriate to learn the structure–perfusion
relationship in an age-matched control cohort and apply the structure
correction to the patient population. Alternatively, it may be ideal to
learn eigenpatches from an independent population and project all sub-
jects in the test population to that basis.

A related question that this study raises is how the structure–
perfusion relationship changes across the brain. It may bemore appro-
priate to learn the structure–perfusion relationship across individual
lobes, rather than over the entire brain. RIPMMARC can be easily mod-
ified to perform such an analysis by sampling the patches and training
only over lobes, as opposed to over the whole brain.

The infrastructure for constructing a patch-based representation of
imaging data has many other applications. It may be possible, for exam-
ple, to use the patch descriptors to drive registration of images in cases
where scalar intensity values are not sufficiently discriminatory. The
patch-based descriptors would allow for a more expansive description
of anatomy, similar to landmark-based registration techniques
(Thompson and Toga, 1996), while still enabling a dense representation
of the images, as is common in voxel-based registration techniques
(Avants et al., 2008).

4.7.2. Additional applications
Although this study is limited to the connection between brain

structure and perfusion, themethod is fundamentally agnostic to imag-
ing modality and can be applied across a wide range of imaging tech-
niques. An obvious application of this work is atrophy correction for
neurodegenerative populations (Chen et al., 2011a). Although several
studies have shown that brain perfusion, as measured by ASL imaging,
changes in Alzheimer's disease (Wolk and Detre, 2012), the extent to
which this decrease could be determined by atrophic and other
structural changes has not been addressed using methods similar to
the proposed work. Some studies have shown hippocampal hyperper-
fusion in early Alzheimer's disease, notwithstanding hippocampal atro-
phy (Alsop et al., 2008). These contrasting trends of increased perfusion
and atrophy highlight the need for rigorous structural correction of per-
fusion imaging.

RIPMMARC may also be useful for missing image imputation. Stan-
dard methods for data imputation rely onmethods borrowed fromma-
trix imputation (Xiang et al., 2013; Thung et al., 2014). Using an
imputation method that incorporates image characteristics into the im-
putation may result in a more accurate imputation method. Traumatic
brain injury represents a disease state where RIPMMARCmay be partic-
ularly useful. In many cases, pre-injury perfusion scans of subjects are
not available, confounding disease effects with natural inter-subject
variation. By imputing perfusion based on structurally similar areas of
the brain, RIPMMARC can provide a subject- and region-specific esti-
mate of expected brain perfusion for the damaged region. Finally,
RIPMMARC provides a scalable approach to novelty detection in
multi-modal imaging studies.

5. Conclusion

Themethod presented here shows promise in decomposing CBF im-
ages into anatomically predicted and residual perfusion components.
The algorithm proposed explains significantly more of the variance in
CBF images than the segmentation probability maps commonly used
for performing partial volume correction, and therefore may be more
suitable for structural correction of perfusion images than tissue seg-
mentation images. In addition, the method can be used to improve the
interpretability of perfusion images by indicating how much of the ob-
served changes in perfusion are caused by global structural trends and
how much by localized processes. This separation of global from local
effects can provide greater sensitivity for correlating spatially localized
neuronal processes with perfusion images.
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