
 
 
 

 
 
 

Version 
This is the Accepted Manuscript version.  This version is defined in the NISO 
recommended practice RP-8-2008 http://www.niso.org/publications/rp/ 
 
 
Suggested Reference 
Barrett, M. J., & Suresh, V. (2015). Improving estimates of the cerebral metabolic 
rate of oxygen from optical imaging data. NeuroImage, 106, 101-110. doi: 
10.1016/j.neuroimage.2014.11.041 
 
 
Copyright 
Items in ResearchSpace are protected by copyright, with all rights reserved, unless 
otherwise indicated. Previously published items are made available in accordance 
with the copyright policy of the publisher.  
 
© 2015, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International 
 
http://www.sherpa.ac.uk/romeo/issn/1053-8119/  
 
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm  

 

 

http://www.niso.org/publications/rp/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sherpa.ac.uk/romeo/issn/1053-8119/
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/


 

 

 

 

 

 

 

Improving estimates of the cerebral metabolic rate 
of oxygen from optical imaging data. 

Matthew J.P. Barrett1,†, Vinod Suresh1,2 

 

1Auckland Bioengineering Institute, The University of Auckland 
2Department of Engineering Science, The University of Auckland 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

†Present address and address for correspondence: 
Dr Matthew Barrett 
Institute of Pharmacology and Toxicology 
University of Zürich 
Winterthurerstrasse 190 
CH-8057 Zürich 
SWITZERLAND 
Phone: +41 44 635 6087 
Fax: +41 44 635 68 57 
Email: mbarrett@pharma.uzh.ch 



 

 

Abstract 
The cerebral metabolic rate of oxygen (CMRO2) is an important measure of brain function.  

Since it is challenging to measure directly, especially dynamically, a number of neuroimaging 

techniques aim to infer activation-induced changes in CMRO2 from indirect data.  Here, we 

employed a mathematical modelling approach, based on fundamental biophysical principles, 

to investigate the validity of the widely-used method to calculate CMRO2 from optical 

measurements of cerebral blood flow and haemoglobin saturation.  Changes in CMRO2 

calculated in this way differed substantially from the changes in CMRO2 directly imposed on 

the model, in model-only simulations and simulations of in vivo data under both steady state 

and dynamic conditions. These results suggest that the assumptions underlying the 

calculation method are not appropriate, and that it is important to take into account, under 

steady state conditions:  1) the presence of deoxyhaemoglobin in arteriolar vessels; and 2) 

blood volume changes, especially in veins. Under dynamic conditions, the model predicted 

that calculated changes in CMRO2 are moderately correlated with the rate of oxygen 

extraction – not consumption – during the initial phase of stimulation.  However, during later 

phases of stimulation the calculation is dominated by the change in blood flow.  We propose 

that a more sophisticated approach is required to estimate CMRO2 changes from these types 

of data.   
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Cerebral blood flow, energy metabolism, mathematical modelling, neurovascular coupling, optical 

imaging



1 

 

1 Introduction 

The cerebral metabolic rate of oxygen (CMRO2), which represents the rate at which oxygen 

is consumed to meet the energy demands of the working brain, is an important measure of 

neural activity in health and disease.  However, there are many aspects of the metabolic 

changes that are caused by variations in neuronal activity which are not fully understood; for 

example, the nature of the cellular energy pathways which drive the increased demand, the 

relative magnitude of the metabolic changes compared with changes in blood flow, and the 

evolutionary advantage conferred by this process remain unclear (Attwell et al., 2010; 

Buxton, 2010; Fox, 2012; Pellerin and Magistretti, 2012).  Better knowledge of this 

fundamental process is vital to improve our understanding of basic neuronal function.  In 

addition, it may also enable more accurate, and perhaps even quantitative interpretation of 

non-invasive neuroimaging modalities such as functional Magnetic Resonance Imaging 

(fMRI) using the Blood Oxygenation Level Dependent (BOLD) signal. 

Part of the uncertainty that surrounds neural metabolism is likely caused by the 

difficulty in measuring CMRO2 directly.  For example, steady-state measurements of CMRO2 

with PET require three separate scans, each with different oxygen-15 labelled tracers (Mintun 

et al., 1984). However, the measurements still rely on the assumption that there is no back 

flux of oxygen from tissue to the vasculature, and require a model to interpret the effects of 

CBF, CMRO2 and CBV (cerebral blood volume) on the observed tracer kinetics (Buxton, 

2010; Mintun et al., 1984). 

Steady-state CMRO2 can also be measured using several magnetic resonance 

spectroscopy techniques following inhalation of oxygen-17 labelled O2 gas (e.g. Mellon et 

al., 2009; Zhu et al., 2013).  These approaches have a number of advantages, particularly the 
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ability to distinguish between oxygen that has not been metabolised (i.e. O2) and that has (i.e. 

H2O).  However, measurements using these techniques are not yet widespread due to the high 

cost of oxygen-17 and difficulties in extending the approach to larger animals (Buxton, 2010; 

Zhu and Chen, 2011). 

Dynamic measurements of CMRO2 during neuronal activation are even more 

complicated, since the increase in CMRO2 (i.e. O2 demand) is confounded by a larger, 

concomitant increase in cerebral blood flow (CBF, i.e. O2 supply).  This phenomenon is often 

referred to as ‘uncoupling’ of CBF and CMRO2 (Fox and Raichle, 1986).  It is also possible 

to qualitatively estimate changes in CMRO2 independently of CBF using flavoprotein 

autofluorescence imaging (FAI, Vazquez et al., 2012; Weber et al., 2004), although it is not 

clear how to relate the measured change in fluorescence to quantitative changes in CMRO2. 

Therefore, because of the technical challenges and relatively poor temporal resolution 

of the direct approaches, many studies aim to infer dynamic changes in CMRO2 indirectly 

using an imaging modality sensitive to oxygenation, such as optical imaging (Dunn et al., 

2005; Jones et al., 2001; Mayhew et al., 2000) or BOLD-fMRI (Davis et al., 1998; Hoge et 

al., 1999; Hyder et al., 2010; Mandeville et al., 1999).  These techniques require a framework 

to convert a signal that represents oxygen concentration into a metric that represents the rate 

of oxygen consumption.  The approaches considered here rely on Fick’s principle, which 

states that the amount of oxygen extracted from the blood is proportional to CBF and the 

arterio-venous oxygenation difference.  We contend that these methods are limited by two 

assumptions. 

First, the approaches explicitly or implicitly assume that CMRO2 is proportional to O2 

extraction, which may be normalised and referred to as the oxygen extraction fraction or OEF 

(Davis et al., 1998; Dunn et al., 2005; Hoge et al., 1999; Jones et al., 2001; Mandeville et al., 
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1999; Mayhew et al., 2000).  Under steady state conditions, CMRO2 and O2 extraction are 

matched, as tissue oxygen partial pressure (PO2) does not vary significantly through time 

(Russell et al., 2012).  This steady-state coupling may be an important regulator of 

metabolism or vascular development, since capillary density is strongly correlated with the 

activity of the metabolic enzyme cytochrome oxidase (Weber et al., 2008), in addition to 

CBF and cerebral glucose consumption (Klein et al., 1986). 

However, O2 extraction and CMRO2 are not necessarily matched under dynamic 

conditions. A number of studies have reported a robust increase in tissue PO2 following 

neural activation (Masamoto et al., 2008; Thompson et al., 2003; Vazquez et al., 2010), 

suggesting that the O2 extracted from the blood may not be consumed immediately, i.e. 

transient changes in O2 extraction exceed changes in CMRO2.  Therefore, we propose that it 

is inappropriate to use O2 extraction as a proxy for CMRO2 outside of steady state conditions. 

Secondly, many of the approaches assume complete saturation of haemoglobin in 

arteries (Davis et al., 1998; Dunn et al., 2005; Hoge et al., 1999; Jones et al., 2001; 

Mandeville et al., 1999; Mayhew et al., 2000).  However, more recent evidence suggests that 

the small arteries which supply individual cortical regions contain non-negligible levels of 

deoxyhaemoglobin (Kasischke et al., 2011; Yaseen et al., 2011), and this is likely to be even 

more significant under free breathing conditions without supplied oxygen (Vovenko, 1999).  

In addition, vascular PO2 measurements imply that the saturation of cerebral arteries may 

change during neural activation, albeit by a relatively small amount (Vazquez et al., 2010). 

In this study, we investigate the validity of these approaches using a predictive 

mathematical model.  Rather than assuming CMRO2 and O2 extraction are equivalent, the 

model treats CMRO2 as a tissue ‘oxygen sink’, in which oxygen is irreversibly consumed by 

the mitochondria during aerobic respiration.  Then, we model oxygen extraction 
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independently, using a mass balance approach, where net O2 flux from blood to tissue is 

driven by the PO2 gradient (i.e. Fick’s first law).  In addition, we do not assume complete 

saturation of arterial haemoglobin, and instead calculate the baseline oxygen saturation from 

in vivo measurements. 

While the basic principles behind our approach extend to any oxygenation based 

signal, in this study we focus on the widely-used calculation of dynamic CMRO2 changes 

from optical measurements of haemoglobin (Dunn et al., 2005; Jones et al., 2001; Mayhew et 

al., 2000).  Initially, we compare the existing calculation method to our proposed approach 

using model only simulations, and then we apply both methods to a published set of in vivo 

data (Jones et al., 2002). 

2 Materials and methods 

The blood flow and oxygen transport models used here have been described in detail 

previously (Barrett and Suresh, 2013; Barrett et al., 2012), but a summary of the theory and 

principal equations is given below.  Table 1 contains a list of dynamic variables used in the 

model, and Supplementary Table 1 contains a list of the parameters.  Similar to other models 

(Huppert et al., 2007; Zheng et al., 2005) we represent the complex cerebrovascular network 

as four lumped compartments: arteries, capillaries, veins, and tissue.  These are referred to by 

the subscripts 1, 2, 3, and t respectively. The subscripts 0 and 4 refer to unmodelled larger 

arterial and venous compartments. Continuing a previous convention, variables in upper case 

are absolute quantities, while those in lower-case are dimensionless. The superscript * 

(e.g. 
2

*
Ocmr ) represents a steady state value, typically at baseline.  
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2.1 Blood flow model 

The model of fluid dynamics predicts changes in CBF and CBV in response to functional 

activation.  Since the signalling pathways responsible for neurovascular coupling remain 

unclear (Attwell et al., 2010), in the model these changes are driven by an empirical 

vasodilatory stimulus which reduces arterial compliance and induces arterial dilation.  The 

model generates predictions consistent with in vivo experimental measurements of CBF, 

CBV, blood vessel diameter and red blood cell velocity (Barrett et al., 2012). 

The derivation and additional mathematical detail can be found in the original 

publication (Barrett et al., 2012), but briefly, the volume of blood within a vascular 

compartment i , ( )iv t , is conserved according to the equation 

 
1, , 1( ) ( )i

i i i i
dv f t f t
dt − += − , (1)  

where , ( )i jf t  is the blood flow from compartment i  to j . To conserve energy, the pressure at 

the entrance to each compartment, ( )ip t , can be written as 

 
1,

( )1( ) ( ) ( )
2 ( )

i
i i i i

i

v tp t r t f t
c t−= + . (2)  

Here, the viscous resistance  ( )ir t  is based on Poiseuille’s law and depends on ( )iv t .  The 

vascular compliance ( )ic t incorporates the effects of volume stiffening, viscoelasticity and 

smooth muscle activation.   Finally, the pressure drops across each compartment, ( )ip t∆ , 

must sum to the total (reference) pressure drop, rp∆ ,such that 

 3

1
( ) 0r i

i
p p t

=

∆ − ∆ =∑ . (3)  
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With three vascular compartments, Equations (1)-(3) define a system of seven differential-

algebraic equations in four flows and three volumes. 

2.2 Oxygen transport model 

The oxygen transport model couples to the model of fluid dynamics, and predicts changes in 

PO2 and haemoglobin saturation (SO2) in response to functional activation.  Since the 

pathways responsible for neurovascular coupling are complex and remain uncertain (Attwell 

et al., 2010), changes in CMRO2 are modelled using an empirical ‘stimulus’ applied to 

baseline CMRO2.  The model generates predictions consistent with in vivo experimental 

measurements of tissue and vascular PO2 at baseline and during functional activation (Barrett 

and Suresh, 2013). 

Further detail can be found in the original publication (Barrett and Suresh, 2013), but 

briefly, the amount of oxygen in each vascular compartment, 
2

( )O in t, , is conserved according 

to  

 
2

2 2 21 1 1 1( ) ( ) ( ) ( ) ( )O i
i i O i i i i O i i O i

dn
f t c t f t c t j t

dt
,

− , , − , , + , , + ,= − − , (4)  

where 
2

( )O i jc t, ,  is the oxygen concentration of flow , ( )i jf t , and 
2

( )O ij t,  is the flux of oxygen 

to tissue, which is defined from Fick’s first law as 

 
2 2 2, ,( ) ( ) ( )O i i O i O tj t g p t p t,  = −  , (5)  

where ig  are oxygen conduction coefficients, 
2 , ( )O ip t  is the mean vascular PO2, and 

2 , ( )O tp t  

is the mean tissue PO2.  The amount of oxygen in the tissue compartment, 
2

( )O tn t, , is 

conserved according to  

 
2

2 2

3

1
( ) ( )O t

O i O
i

dn
j t cmr t

dt
,

,
=

= −∑ , (6)  
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where 
2
( )Ocmr t , the CMRO2 imposed on the model, is described mathematically in Appendix 

A. 

 For simplicity, we ignore the small fraction of oxygen dissolved in plasma and 

calculate input and output partial pressures using a Hill equation formulation to describe the 

oxygen-hemoglobin saturation curve, such that  

 1

2

2

2

1 50
1

( ) 1
( )

h

O max
O i i

O i i

c
p t p

c t

−

,
, , +

, , +

 
= − 

  
, (7)  

where the constant 50p  represents the PO2 at which haemoglobin is 50% saturated, 
2O maxc ,  

represents the maximum concentration of oxygen in whole blood, and h  is the Hill exponent.  

In tissue, the average oxygen partial pressure, 
2 , ( )O tp t , is calculated from Henry’s law so  

 
2 2 2, ( ) ( )O t O t Op t c t σ,= / , (8)  

where the constant 
2Oσ represents the solubility of oxygen in tissue. 

Assuming that haematocrit remains constant, the amount of haemoglobin, , ( )X in t  

(where { }, ,X HbT HbO dHb∈ ), can be calculated such that 

 

2

2

,

, ,

, ,

( ) ( ),
( ) ( ) ( ), and

( ) ( ) 1 ( ) ,

HbT i i

HbO i i O i

dHb i i O i

n t v t
n t v t s t

n t v t s t

=

=

 = − 

 (9)  

where HbT, HbO, and dHb, correspond to total, oxy-, and deoxyhaemoglobin, and 
2 , ( )O is t  is 

the oxygen saturation.  Note that the dimensionless values above do not explicitly depend on 

the haematocrit, and the absolute level of haematocrit enters into the model only through its 

influence on 
2O maxc ,  in the Hill equation. 
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On the basis of recent experimental observations that observed oxygen flux from 

arterioles to venules (Lecoq et al., 2011) and increasing venous PO2 values (Vazquez et al., 

2010; Vovenko, 1999), the model also includes an arterio-venous diffusive shunt in addition 

to the other terms in Equation (4).  The flux through the shunt, 
2

( )O sj t, , is subtracted from the 

arterial and added to the venous compartments, and is calculated such that 

 
2 2 2,1 ,3( ) ( ) ( )O s s O Oj t g p t p t,  = −  , (10)  

where sg  is the shunt oxygen conduction coefficient. 

Previous work from our group demonstrated that a dynamic increase in net capillary 

permeability,  an effect that may be the result of functional recruitment, is necessary to obtain 

predictions consistent with the data (Barrett and Suresh, 2013).  Therefore, we include this 

mechanism here, and allow capillary permeability to vary according to 

 
2 2 0 1( ) 1 ( )CapPermg t g k f t f ∗ ∗ 

  ,  
= + − , (11)  

where the constants 2g∗  and f ∗  represent values at baseline, and CapPermk  describes the 

magnitude of the change in capillary permeability for a given change in CBF. 

For a total of three vascular and one tissue compartments, Equations (4) and (6) 

expand to four ordinary differential equations in four oxygen amounts, and can be solved 

using the flows and volumes predicted by the  blood flow model. 

2.3 Estimating CMRO2 

Under steady state conditions where the derivative terms equal zero, Equations (4) and (6) 

reduce to a statement of Fick’s principle, and the rate of oxygen extraction from the blood, 

2

*
Oe , is equivalent to 

2

*
Ocmr  such that 
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 ( )2 2 2 2 2

3
* * * * * *

, ,0,1 ,3,4
1

O O i O O O
i

e j cmr f c c
=

≡ = = −∑ . (12)  

However, when the derivative terms in Equations (4) and (6) are non-zero, it is not valid to 

make Equation (12) dynamic; mathematically: 

 
2 2 2,0,1 ,3,4( ) ( ) ( ) ( )O O Ocmr t f t c t c t ≠ −  , (13)  

where ( )f t  is the dynamic mean blood flow and can be calculated as a weighted average 

such that 

 3 3

1, , 1
1 1

( ) ( ) ( ) ( ) 2 ( )i i i i i i
i i

f t v t f t f t v t− +
= =

 = + ∑ ∑ . (14)  

However, as discussed in the introduction, many approaches (Davis et al., 1998; Dunn et al., 

2005; Hoge et al., 1999; Jones et al., 2001; Mandeville et al., 1999; Mayhew et al., 2000) rely 

on the normalised form of Equation (13), subject to the additional assumption that  

 
2 2

2 2

,0,1 ,3,4 ,3
* * *

,0,1 ,3,4 ,3

( ) ( ) ( )O O dHb

O O dHb

c t c t n t
c c n

−
≈

−
. (15)  

(Note, the left hand side of Equation (15) can be made mathematically equal to the right hand 

side subject to the additional assumptions 
2 ,0,1( ) 1Oc t = and *

3 3( ) 1v t v = .) 

While Equations (13) and (15) are not strictly true in the physical sense, it is not clear 

whether the resulting CMRO2 calculation is ‘close enough’ to be used as an approximation.  

Therefore, in order to quantify the error, we compared the following metrics calculated from 

model simulations: 

 
2 2

2 2

*

3 3
*

, ,
1 1

* *
,3 ,3

Imposed ( ) ,

Extracted ( ) , and

Calculated ( ) ( ) ,

O O

O i O i
i i

dHb dHb

cmr t cmr

j t j

f t n t f n
= =

=

=

=

∑ ∑  (16)  
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where ‘Imposed’ is the rate of oxygen consumption in the tissue that is directly imposed on 

the model and ‘Extracted’ is the rate of oxygen extracted from the vascular compartments in 

the model.  In contrast, the ‘Calculated’ metric is the rate of oxygen consumption that would 

be calculated using the most common calculation approach (Davis et al., 1998; Dunn et al., 

2005; Hoge et al., 1999; Jones et al., 2001; Mandeville et al., 1999; Mayhew et al., 2000).  

Although the calculated CMRO2 metric was originally intended to act as a proxy for 

extracted CMRO2, we hypothesised that there would be a significant discrepancy between 

these two metrics, and, importantly, between the imposed CMRO2 and both other metrics. 

2.4 Experimental design 

This section gives an overview of the design of the numerical experiments, which were 

carried out in two stages. 

Model only simulations: The first stage of simulations considered three illustrative 

scenarios that are representative of the in vivo situation under certain conditions, in order to 

characterise the behaviour of the model.  The scenarios were: (1) an increase in CBF without 

any increase in CMRO2 (similar to hypercapnic inhalation (Jones et al., 2002), but without 

any change in blood gas conditions, and with a more rapid onset and offset), (2) an increase 

in CMRO2 without any increase in CBF (similar to stimulation under sodium nitroprusside 

application (Masamoto et al., 2008), but without any change in baseline CBF), and (3) an 

increase in both CBF and CMRO2 (similar to functional activation). 

In vivo spectroscopic data: The second stage of simulations considered 

measurements of CBF and haemoglobin made by Jones and colleagues in response to 20 

second electrical stimulation of vibrissae in rats (Jones et al., 2002).  These simulations were 

performed to determine whether the results from the model only simulations persisted under 

conditions consistent with in vivo data.  The measurements were made at four graded 
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stimulus intensities, so include a range of flow and haemoglobin values.  First, we adjusted 

the model baseline conditions for the measured femoral artery PO2 (94.4 mmHg, Jones et al., 

2002), as per our previous work (Barrett and Suresh, 2013; details in the supplementary 

material of this reference).  For each stimulus intensity independently, we then adjusted the 

vasodilatory stimulus to fit the model predictions of CBF to the observations (Barrett et al., 

2012).  Finally, we adjusted the CMRO2 stimulus to minimise the error between the model 

predictions and experimental measurements of hemoglobin (oxy- and deoxyhaemoglobin 

simultaneously). 

Spectroscopic measurements of haemoglobin use assumed baseline concentrations to 

calculate relative changes (Dunn et al., 2005; Jones et al., 2001; Mayhew et al., 2000).   

Therefore, in order to ensure the model predictions are comparable with the experimental 

data, we adjusted the predictions to use the same baseline conditions that were assumed in the 

experimental data.  We calculated these adjusted predictions of relative change in 

haemoglobin calculation, ( )Xc t∆ å , where { },X HbO dHb∈ , according to 

 

( )

2

2

3 3
* *

, , ,
1 1

3 3
* *

, , ,
1 1

( ) ( )

( ) ( ) 1

HbO HbO i HbO i O HbT i
i i

dHb dHb i dHb i O HbT i
i i

c t n t n s n

c t n t n s n

= =

= =

 ∆ = − 

 ∆ = − − 

∑ ∑

∑ ∑

å å

å å

 (17)  

where 
2Oså  is the average baseline saturation  assumed in the experimental data (50% in the 

data used here: Jones et al., 2002).  Since the model predictions are non-dimensionalised and 

total haemoglobin concentration is assumed constant in the blood, we do not adjust the model 

predictions of total haemoglobin.  Supplementary Figure 1 shows a comparison of the raw 

and adjusted dynamic model predictions, and Supplementary Figure 2 summarises the raw 

and adjusted predictions from all simulations in the sensitivity analysis. 
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2.5 Optimisation, parameter sensitivity, and data analysis 

All optimization was implemented in MATLAB R2010a (The MathWorks Inc., Natick, MA) 

using either a constrained Nelder-Mead simplex (Lagarias et al., 1998) or trust-region-

reflective (Coleman and Li, 1996) algorithm, with initial parameter values chosen from a 

uniform random distribution. We repeated each stage of optimisation with different initial 

guesses, typically more than four times, to ensure that the values converged to a true optimal 

solution, and used the best of these repeats.  

For the simulations of in vivo conditions, we also conducted analyses to determine 

whether the model predictions were sensitive to the choice of key parameters. We 

independently perturbed each parameter by a representative amount, typically ±10% (see 

Supplementary Table 2), and repeated the appropriate optimization stage(s) in each case.  

Raw experimental data were not available, so it was not possible to compare model 

predictions to the data directly using statistical methods. However, we used statistical tests to 

provide evidence of differences between model predictions, given some variation in the 

parameters. To test for statistically significant differences, we compared metrics (e.g. 

different types of CMRO2 increases) from the simulations in the sensitivity analysis using 

either a t-test or a non-parametric Wilcoxon rank sum test, depending on the result of a 

Shapiro-Wilk normality test.  Paired, two-tailed tests were used in all analyses unless 

specified otherwise, and results were considered significant for P < 0.05. 



13 

 

3 Results 

3.1 Model-only simulations 

Figure 1 shows the model predictions under three illustrative sets of conditions, and compares 

the CMRO2 imposed on the model with the CMRO2 calculated as per Equation (16).  In the 

first scenario, where CBF increased but there was no CMRO2 increase imposed on the model, 

the calculation predicted a substantial (~20%) increase in CMRO2.  Under the opposite 

conditions, where there was no CBF increase but a 10% increase in CMRO2 imposed on the 

model, the calculation was much closer to the imposed CMRO2, predicting an ~8% increase 

in CMRO2.  When the increases in both CBF and CMRO2 were imposed on the model, the 

calculation predicted a larger (~30%) increase in CMRO2 than the simulation with CBF 

increase alone.  The CMRO2 extracted from the blood to tissue differed from the imposed 

CMRO2 during periods of rapid change, such as during onset and offset of stimulation, but 

tended toward the imposed CMRO2 as the conditions approached steady state, such as toward 

the end of the 20 second stimulation period (Figure 1B).  The predictions of haemoglobin 

(Figure 1C) and tissue PO2 (Figure 1D) appeared reasonable and consistent with the 

conditions imposed on the model. 

3.2 Simulations of in vivo data 

Figure 2 shows the optimal model predictions of CBF (Figure 2A), haemoglobin (Figure 2B-

D), and tissue PO2 (Figure 2E) fit to in vivo data obtained by Jones and colleagues (Jones et 

al., 2002).  In general, the model predictions of CBF were a good fit to the data, although the 

model was unable to capture some of the more complex dynamics of the CBF data in 

response to 1.6 mA stimulation (Figure 2A).  Therefore, although the CBF predictions would 

have been unlikely to cause major errors, they may have had a small impact on the dynamics 

of the other predictions at 1.6 mA stimulation.  The model predictions of total haemoglobin 
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were generally consistent with the data, although had a slight tendency to predict larger 

increases than the measured data (Figure 2C).  This is unlikely to have had a significant 

impact on the predictions of oxygenation-related variables, since the oxygen transport model 

is not strongly affected by changes in total haemoglobin (effectively CBV).  The model 

predictions of oxy- (Figure 2B) and deoxyhaemoglobin (Figure 2D) were generally a good fit 

to the data, although the predictions in response to 1.6 mA stimulation may have been 

influenced by the minor discrepancies between model predictions of CBF and the data.  The 

model predictions of tissue PO2 (Figure 2E) appeared reasonable and consistent with the 

measurements of other physiological variables. 

 Figure 3 compares predictions of the different estimates of CMRO2 under the 

conditions shown in Figure 2.  The CMRO2 increase calculated from blood flow and 

haemoglobin differed significantly from the CMRO2 increase imposed on the model across 

all stimulus intensities (all P < 0.001).  There was also a small but significant difference 

between the increases in extracted and imposed CMRO2 across all stimulus intensities except 

1.6mA (P < 0.001).  The parameters defining the imposed CMRO2 increase are listed in 

Supplementary Table 3. 

 Figure 4 shows the global correlation, across all stimulus intensities, between 

calculated CMRO2 and other state variables, separated by the stimulus phase. (The raw data 

used to calculate the correlation coefficients are plotted in Supplementary Figure 3, and 

correlation coefficients calculated separately for each stimulus intensity are shown in 

Supplementary Figure 4.) Across all stimulus phases, there was a weak correlation between 

calculated CMRO2 and the CMRO2 imposed on the model (Pearson coefficient ρ < 0.4).  

There was moderate correlation between calculated and extracted CMRO2 during stimulation 

onset (ρ = 0.66), but weaker correlation during the plateau and offset phases (ρ < 0.4).  There 
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was a weak to moderate correlation between calculated CMRO2 and CBF during stimulus 

onset (ρ = 0.41), and a very strong correlation (ρ > 0.95) during the plateau and offset phases. 

Figure 5 shows the predicted ‘coupling’ between increases in CBF and imposed 

CMRO2 using the four stimulus intensities considered in this study.  There was a very weak 

correlation between the increases in CBF and imposed CMRO2 (ρ < 0.15), and the predicted 

coupling ratio n (=ΔCBF/ΔCMRO2, see Buxton, 2010) varied by nearly an order of 

magnitude across the four different stimulus intensities. 

4 Discussion 

In this study we used a mathematical modelling approach to investigate the validity of the 

widely-used method to calculate CMRO2 from optical measurements of cerebral blood flow 

and haemoglobin saturation.  We compared the CMRO2 calculated in this way with the 

CMRO2 directly imposed on the model and the rate of oxygen extraction from blood to tissue 

using both illustrative model-only simulations (Figure 1) and simulations under conditions 

consistent with in vivo data (Jones et al., 2002; see also Figures 2-5).  The results showed that 

the calculated CMRO2 differed substantially from the imposed CMRO2 in terms of both the 

dynamic (Figures 1B and 3A) and steady-state changes (Figure 3B).  In addition, despite the 

approach being derived from Fick’s principle, which is used to estimate steady-state oxygen 

extraction, the calculated CMRO2 correlated only moderately with the extracted CMRO2 for 

most phases of stimulation (Figure 4).  While the extracted CMRO2 tended toward the 

imposed CMRO2 as the conditions approached steady-state, there were important differences 

between these two metrics during periods of rapid change, such as stimulus onset and offset.  

This difference manifests as tissue PO2 changes, which are observed experimentally 

(Masamoto et al., 2008; Thompson et al., 2003; Vazquez et al., 2010).  Therefore, we suggest 



16 

 

that the widely-used calculation method based on measurements of CBF and haemoglobin is 

not sufficient to provide an accurate estimate of the underlying CMRO2, and that a more 

sophisticated approach is required.  In addition, we suggest that oxygen extraction is not an 

appropriate proxy for CMRO2 outside of steady-state conditions.  

4.1 Estimating CMRO2 using a model-based approach 

While it is not possible to validate our model predictions of dynamic CMRO2 definitively 

without data from a ‘gold standard’ measurement technique, we believe the model represents 

a substantial improvement on the existing calculation method for four primary reasons. 

First, as with previous models (Boas et al., 2008; Huppert et al., 2007; Huppert et al., 

2009; Zheng et al., 2005), we make an explicit distinction between the rate of oxygen 

consumption in the tissue and the rate of oxygen extraction from the blood to the tissue.  This 

ensures that the model estimates of CMRO2 are not unduly influenced by the rapid changes in 

oxygen extraction which can be driven by either haemodynamic or metabolic changes.  In 

addition, including the tissue compartment makes it possible for the model to describe the 

increases in tissue PO2 that occur during neural activation (Masamoto et al., 2008; Thompson 

et al., 2003; Vazquez et al., 2010).  The fact that the commonly-used calculation method does 

not account for this tissue PO2 ‘buffer’ is likely to be a major factor in the transient 

discrepancy between the calculated CMRO2 and that imposed on the model, but is not likely 

to have a significant impact on the steady state results. 

Secondly, on the basis of recent in vivo evidence (Kasischke et al., 2011; Yaseen et 

al., 2011), the model does not assume that the arteries and arterioles supplying regions of 

cortical tissue are completely saturated, and also allows oxygen flux from arteries to tissue.  

This ensures that all compartments relevant to blood flow and oxygen exchange are involved 

in estimating CMRO2.  To examine the effect of the assumption of complete saturation in 
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arteries further, the simulations in Figure 1 were repeated with the femoral artery PO2 

increased from the reference value (85.6 mmHg, Vovenko, 1999), to a value close to 100% 

saturation (180 mmHg).  This change brought the steady-state calculated CMRO2 

approximately 50% closer to the imposed CMRO2 compared with the simulations in Figure 1 

(data not shown).  Therefore, the assumption that arterial blood is completely saturated is 

likely to be a major factor in the steady-state discrepancy between the CMRO2 imposed on 

the model and that calculated from the commonly-used approach.  However, the remaining 

difference between calculated and imposed CMRO2, resulting from venous volume changes 

(see next paragraph), is still significant.  Therefore, even in situations where it is valid to 

assume that arterial blood is 100% saturated, such as fMRI data pooled over relatively large 

regions of interest, there is likely to be a substantial difference between the calculated 

CMRO2 and that imposed on the model. 

Thirdly, as described mathematically in Equation (15), the commonly-used 

calculation method also implicitly assumes that there are no changes in venous volume.  

While this assumption is likely to be valid for brief stimulation periods, recent in vivo 

evidence and previous modelling from our group suggests that significant venous volume 

changes occur in response to longer stimulation periods (Barrett et al., 2012; Chen and Pike, 

2009; Chen and Pike, 2010; Drew and Kleinfeld, 2011).  Therefore, ignoring these volume 

changes is likely to introduce a significant discrepancy into the steady-state calculated 

CMRO2.  This effect may also be important when pooling data from relatively large regions 

of interest, as is common in fMRI. 

Finally, even ignoring any limitations in the derivation of the existing calculation 

methods, the practical implementations of these approaches are complicated by the need to 

assume or estimate venous deoxyhaemoglobin changes based on a signal made up of the 
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combined contributions of all vascular and tissue compartments (Dunn et al., 2005; Jones et 

al., 2001).  This requirement introduces an additional layer of uncertainty into the approach, 

and has the potential to misattribute effects caused by the measurement modality to the 

underlying physiology.  In contrast, the model explicitly describes the biophysical 

interactions between the arterial, capillary, venous, and tissue compartments, and the 

estimates of CMRO2 are therefore based on the aggregated contributions of all compartments.  

In addition, it is possible to superimpose an ‘observation model’ (Huppert et al., 2007), which 

characterises the behaviour of a particular measurement modality, onto the biophysical 

model. 

To our knowledge, this is the first study which directly compares estimates of CMRO2 

calculated from measurements of CBF and haemoglobin to those predicted by a validated 

biophysical model.  Huppert and colleagues (Huppert et al., 2007; Huppert et al., 2009) 

developed a similar model which estimated dynamic changes in CMRO2 using data from a 

range of imaging modalities; however, the study considered only brief (<2 s) neural 

activation tasks, and did not compare the model predictions of CMRO2 to those that would be 

calculated from the data with the commonly-used approach.  Another compelling report from 

the same group (Boas et al., 2008) introduced a spatial component to explore the dynamics in 

both locally activated and surrounding regions; however, the activation task was also brief, 

and the report did not compare model-predicted CMRO2 with calculated.  In an earlier model, 

Zheng and colleagues (Zheng et al., 2005) did consider data from more extended stimulation 

(20 s), but did not report the dynamic CMRO2 increases imposed on the model to produce fits 

to the data. 

The model is a powerful tool to investigate neurovascular physiology, but it has 

certain limitations.  Some of these limitations, such as the assumption of well-mixed 
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compartments, and assuming there is no delay in transport between compartments, have been 

discussed in more detail previously (Barrett and Suresh, 2013; Barrett et al., 2012).  In 

addition, although there are a number of noteworthy spatial models that are developing the 

capability to explore the more complex interactions between structure and function (Fang et 

al., 2008; Lorthois et al., 2011; Reichold et al., 2009), reducing the complex cerebrovascular 

network to four dimensionless compartments is an approach which makes the model 

sufficiently tractable to consider the dynamics of bulk mechanisms in detail. 

 In this study, we assumed that the model predictions accurately represented 

physiological variables that were not directly measured, such as venous deoxyhaemoglobin 

levels.  While it is not possible to prove the validity of the predictions in the case of this 

particular set of data, both the blood flow (Barrett et al., 2012) and oxygen transport (Barrett 

and Suresh, 2013) models have previously been successfully validated by comparing model 

predictions to independent data sources that were not used in any fitting.  In particular, we 

previously reported model predictions consistent with in vivo measurements of arterial and 

venous PO2 in response to forepaw stimulation (Barrett and Suresh, 2013).  Given the strong 

similarities between the experimental conditions considered here and previously, this 

validation suggests that the model is likely to provide reasonable estimates of the underlying 

physiology here. 

 Finally, since not all of the parameters required for the model were directly measured 

during the experiment, it was necessary to use values from the literature in some cases.  

However, to ensure that the model predictions were not unduly sensitive to the choice of 

parameters, we conducted a sensitivity analysis whereby we modified the values of key 

parameters and repeated the simulations (see Supplementary Table 2).  The results 

demonstrated that the substantial differences between the calculated and imposed CMRO2 
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were not influenced by a reasonable degree of variation in the parameters.  This also suggests 

that the findings here should remain valid even if there was some error in the measurement or 

selection of parameters. 

4.2 Implications for CMRO2 calculations from BOLD-fMRI 

This study investigated a widely used method to calculate CMRO2 from optical 

measurements, but it also has implications for related techniques, such as calibrated BOLD-

fMRI.  There are many similarities between the optical and MRI approach, since both signals 

depend on deoxygenated haemoglobin, and both CMRO2 calculation methods rely on similar 

biophysical assumptions (Davis et al., 1998; Dunn et al., 2005; Hoge et al., 1999; Jones et al., 

2001; Mandeville et al., 1999; Mayhew et al., 2000).  However, partly because of the more 

complex nature of the BOLD signal and imaging process, MRI experiments often include an 

additional calibration experiment that is not normally performed in optical studies.  The most 

common approach uses mild hypercapnia to induce an increase in CBF.  On the assumption 

that there is no change in CMRO2, this makes it possible to calibrate the magnitude of the 

observed BOLD signal change for a given change in CBF using a relatively simple 

biophysical model that combines a number of image acquisition and baseline physiological 

values into a single scaling parameter, normally M (Davis et al., 1998; Hoge et al., 1999). 

The calibration experiment improves the accuracy of steady state CMRO2 estimates from this 

type of data, since many of the sources of uncertainty are captured in the parameter M , 

which can be measured for each subject and/or imaging session.  However, the accuracy of 

the results is nonetheless limited by the validity of the assumptions underlying the 

biophysical model.  For example, there is evidence that hypercapnia at the level normally 

used in calibration experiments can cause a decrease in CMRO2 (Kliefoth et al., 1979; Xu et 

al., 2011; Zappe et al., 2008), which would lead to systematic errors in the predictions of 
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activation-induced CMRO2 (Griffeth and Buxton, 2011).  In addition, incorrect estimates of 

the baseline distribution of or changes in blood volume have a similar effect (Griffeth and 

Buxton, 2011).  Finally, since the widely-used biophysical models also implicitly assume that 

CMRO2 is equal to oxygen extraction (Davis et al., 1998; Hoge et al., 1999), our results 

suggest that it may not be valid to use these models to predict dynamic changes in CMRO2.  

Therefore, the modelling approach from this study will be applied to investigate the 

calculation of dynamic CMRO2 from BOLD-fMRI data in future work. 

4.3 Physiological implications of the improved CMRO2 estimates 

Although a detailed investigation of the coupling between blood flow and metabolism was 

not the focus of this study, the estimates of CMRO2 predicted by our model may have 

relevant physiological implications.  In particular, the fact that the coupling ratios predicted 

here varied by nearly an order of magnitude across the four stimulus intensities is somewhat 

unexpected, given that coupling ratios reported from fMRI and PET data appear more 

consistent (c.f. Figure 5 in this study with Figure 3 in Buxton, 2010). 

 There are plausible physiological hypotheses which could contribute to the actual or 

apparent variation in coupling ratios.  First, as recently proposed by Buxton et al. (2014), the 

CBF and CMRO2 response may be affected in different ways by excitatory and inhibitory 

neural activity.  For example, increasing stimulus intensity is likely to increase both 

excitatory and inhibitory activity; however, if inhibitory activity has a stronger effect on 

increasing the CBF response than the CMRO2 response, then increases in stimulus intensity 

would lead to increases in the coupling ratio.  This hypothesis is consistent with a recent 

calibrated BOLD study in the visual cortex (Liang et al., 2013).  In the case of an extremely 

strong stimulus, the high level of inhibitory activity could even start to decrease the 

magnitude of the CMRO2 response while simultaneously increasing the CBF response. 
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Second, as discussed in more detail by Buxton (2010), the coupling ratio may vary between 

different cortical (and subcortical) regions.  Third, the CBF and CMRO2 responses may have 

different spatial extents or profiles, which could make the calculation of the coupling ratio 

dependent on the selection of the region of interest.  This hypothesis is consistent with 

observations of the spatial variation in haemoglobin and arterial diameter response (Devor et 

al., 2007); however, we are not aware of any corresponding spatial measurements of CMRO2, 

although the same study did observe spatial variation in cellular electrical activity using 

voltage sensitive dye and electrode arrays (Devor et al., 2007). 

Finally, the coupling between the CBF and CMRO2 response may vary through 

different cortical layers.  Such a mechanism is plausible given that the responses of arterial 

diameter (Tian et al., 2010), BOLD-fMRI (Goense et al., 2012; Tian et al., 2010), 

electrophysiological signals (Devor et al., 2007; Li et al., 2011), and tissue PO2 (Li et al., 

2011) vary with cortical depth, as does the baseline activity of the oxidative metabolic 

enzyme cytochrome oxidase (Weber et al., 2008).  Any physiological variation through 

cortical layers is particularly relevant for results obtained from optical imaging techniques, 

since their sensitivity typically decreases with cortical depth (Tian et al., 2011). 

There are also a number of sources of variation between studies that estimate CMRO2, 

a fact which may confound meaningful comparison of the coupling ratio.  For example, there 

are differences in: the measurement modality (e.g. PET, BOLD-fMRI, optical techniques); 

stimulus nature (e.g. visual, electrical, air puff); stimulus intensity; species (e.g. animal, 

human); surgical preparation (e.g. cranial window, thinned skull, intact); ventilation (e.g. 

artificial ventilation, free breathing); and anaesthesia (e.g. urethane, alpha-chloralose, awake).  

These differences are all the more important since baseline conditions are thought to 

influence the magnitude of the vascular and metabolic response to activation (Buxton, 2010). 
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In order to test the ability of these hypotheses to explain the substantial variation in 

coupling ratio within and between experiments, a wider range of in vivo data involving 

different cortical regions and different types of neural activation are needed.  Our results 

suggest that techniques more sophisticated than the existing calculation methods, like the 

model-based approach we use in this study, or other similar models (Dubeau et al., 2011; 

Huppert et al., 2007; Zheng et al., 2005), will be necessary to estimate increases in CMRO2 

from optical measurements, and dynamic increases in CMRO2 from other oxygenation 

measurements. 
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Appendix A: CMRO2 Stimulus 

The CMRO2 imposed on the model, 
2
( )Ocmr t , is a simplified form of that presented in Barrett 

and Suresh (2013), such that 
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where: 
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0t  is the stimulus onset time; upτ  and downτ  are time constants; stimt  is the duration of 

stimulation (where stim upt τ≥ ); *s  is the steady state value of the stimulus; and erf is the 

Gauss error function: 

 ( )2

0

2erf( ) exp
x

x t dt
π

= −∫ . (A.5)  

For each of the stimulus intensities, the parameters defining the optimal imposed CMRO2 

increase ( upτ , *s , and downτ ) are listed in Supplementary Table 3. 



 

 

Tables 

Table 1: List of dynamic variables. 

Symbol Description 
( )ic t  Vascular compliance 

2 , ( )O i jc t,  O2 concentration of ( )i jf t,  

( )HbOc t∆ å ; ( )dHbc t∆ å

 
Adjusted haemoglobin concentration changes 

2
( )Ocmr t  Cerebral metabolic rate of O2 

( )i jf t, ; ( )f t  Blood flow from i to j; average flow 

2
( )O ij t, ; 

2
( )O sj t,  O2 flux to tissue; flux through shunt 

( )X in t,  Amount of X , where { }2 , ,  X O HbO∈   
( )ip t ; ( )ip t∆  Entrance fluid pressure; fluid pressure drop 

2
( )O i jp t, , ; 

2 , ( )O ip t  O2 partial pressure of ( )i jf t, ; average PO2 
( )ir t

 
Viscous resistance 

2
( )O is t,

 
O2 saturation 

( )iv t  Blood volume 
 
 



 

 

Figures 

 

Figure 1: Comparison of the cerebral metabolic rate of oxygen (CMRO2) directly imposed 

on the model and CMRO2 calculated from haemoglobin predictions.  Model predictions 

of (A) cerebral blood flow (CBF); (B) CMRO2;  (C) oxy (HbO), deoxy (dHb) and total 

(HbT) haemoglobin; and (D) tissue oxygen partial pressure (PO2) in response to 20 

second stimulation (scale bars on bottom row).  Predictions are shown under three 

conditions: CBF increase only (left column); CMRO2 increase only (middle column); 

and increases in both CBF and CMRO2 (right column).  Imposed, calculated and 

extracted CMRO2 increases are calculated as per Equation (16) in the main text. 

 



 

 

 

Figure 2: Model predictions fit to in vivo data from Jones et al. (2002).  Optimal predictions 

of (A) cerebral blood flow (CBF); (B) oxy (HbO), (C) total (HbT) and (D) 

deoxyhaemoglobin (dHb); and (E) tissue oxygen partial pressure (PO2) in response to 20 

second stimulation (scale bars below bottom row ).  Stimulus intensities are graded from 

0.4 (far left column) to 1.6 (far right column) milliamps (mA).  Model predictions of oxy 

and deoxyhaemoglobin are adjusted to match the assumed baseline values (see main text 

and Supplementary Figures 1 and 2).  



 

 

 

Figure 3: Estimates of cerebral metabolic rate of oxygen (CMRO2) from the simulations of 

in vivo data shown in Figure 2.  (A) Solid lines: dynamic CMRO2 imposed on the model 

to achieve optimal fit to the data; dashed lines: CMRO2 calculated from haemoglobin 

predictions; dotted lines: rate of O2 extraction from blood to tissue.  CMRO2 estimates 

are calculated as per Equation (16) in the main text.  (B) Increases in CMRO2 during the 

plateau phase (see Figure 4) from all simulations in the sensitivity analysis (n = 36 

simulations for each stimulus intensity; shown as mean ± s.d.; *** where P < 0.001 vs 

imposed CMRO2).  Stimulus intensities are graded from 0.4 (far left column) to 1.6 (far 

right column) milliamps (mA).  The parameters defining the imposed CMRO2 increase 

are listed in Supplementary Table 3. 



 

 

 

Figure 4: Correlation between other state variables and cerebral metabolic rate of oxygen 

(CMRO2) calculated from blood flow and haemoglobin predictions.  (A) Representative 

simulation showing dynamic predictions of cerebral blood flow (CBF) and estimates of 

imposed, calculated, and extracted CMRO2 calculated as per Equation (16) in the main 

text.  Dashed vertical lines divide the stimulation into three phases.  (B)  Pearson 

correlation coefficients calculated between calculated CMRO2 and the other state 

variables.  Correlation coefficients are calculated separately for the three stimulus phases 

by pooling a sample of data points (n = 8) from all sensitivity analysis simulations (n = 

36) and all stimulus intensities (n = 4).  The raw data are plotted in Supplementary 

Figure 3, and correlation coefficients calculated separately for each stimulus intensity are 

shown in Supplementary Figure 4. 



 

 

 

Figure 5: ‘Coupling’ between increases in cerebral blood flow (CBF) and cerebral metabolic 

rate of oxygen (CMRO2) imposed on the model (as per Equation (16) in the main text).  

The data are pooled from all sensitivity analysis simulations (n = 36 for each stimulus 

intensity; shown as mean ± s.d.).  Dashed lines are contours of constant coupling ratio n 

= ΔCBF/ΔCMRO2. 

 



Supplementary Table 1: List of model parameters in the reference state. Parameters with 

three values represent x  = [
1x , 

2x , 
3x ], while parameters with four values represent x  = 

[
0,1x , 

1,2x , 
2,3x , 

3,4x ].  Parameters with lower case symbols are dimensionless, while 

parameters with upper case symbols are not and are given with appropriate units. 

Symbol Description Value Reference 

2 ,O lC  O2 conc. leakage 0.116 mM 1 

2 ,O maxC  Hill equation max. O2 conc. 9.26 mM 2 

prop( )sg
 

Proportion of shunt feasible range 50% 1 

h  Hill equation exponent 2.6 2 

50P  Hill equation O2 P50 36 mmHg 2 

2 ,0Op  Experimental femoral artery PO2 94.4 mmHg 3 

2

*

,0Op  Reference state femoral artery PO2 85.6 mmHg 4 

2

*

Op  Reference state baseline vascular PO2 [81.2, 59.7, 39.6, 41.3] mmHg 4 

2

*

,O tp  Reference state baseline tissue PO2 22.4 mmHg 4 

*r  Baseline vascular resistance fraction [0.74, 0.08, 0.18] 5 

 1 2,R R  Krogh cylinder radii [15, 135] μm 1 

*v  Baseline vascular volume fraction [0.29, 0.44, 0.27] 5 

tv  Tissue volume fraction 34.8 1 

bw  Vascular PO2 weight 0.133 1 

iw  Vascular compartment weight *v  1 

  Vascular stiffness coefficient [1.29, 1.51, ∞] 5 

  Vascular viscoelasticity coefficient [31, 163, 122] 5 

2O  Tissue O2 solubility coefficient 1.46 μm/mmHg 6 

 



 

 

Supplementary Table 2: List of parameters modified in the sensitivity analysis simulations 

and the amount of perturbation imposed. For parameters with multiple values (e.g. 
2

*

Op ), each 

value was perturbed individually. 

Parameter Perturbation 

  ±10% 

  ±10% 

2

*

Op
 

±10% 

 1 2,R R  ±10% 

prop( )sg  ±40% 

*v  ±10% 

tv  ±10% 

2 ,0Op  ±10% 

 

 

Supplementary Table 3: List of parameters defining the imposed CMRO2 increase for the 

simulations presented in Figure 3 in the main text. The parameters are described in more 

detail in Appendix A in the main text. 

Stimulus up  (s) *s  (a.u.) down  (s) 

0.4 mA 9.0 0.022 40.0 

0.8 mA 9.3 0.081 13.2 

1.2 mA 10.1 0.075 11.1 

1.6 mA 15.6 0.041 5.5 



 

Supplementary Figure 1: Comparison of dynamic raw model predictions and predictions adjusted to 

match the assumed baseline values, both fit to in vivo data from Jones et al. (2002).  Optimal predictions 

of: (A) cerebral metabolic rate of oxygen imposed on the model (Imp. CMRO2), as per Equation (16) in 

the main text; (B) oxy (HbO) and (C) deoxyhaemoglobin; and (D) tissue oxygen partial pressure (PO2) in 

response to 20 second stimulation (scale bars below bottom row).  Stimulus intensities are graded from 

0.4 (far left column) to 1.6 (far right column) milliamps (mA).  Adjusted HbO and dHb predictions are 

calculated from raw predictions using Equation (16) in the main text.  A summary of results from all 

simulations in the sensitivity analysis is shown in Supplementary Figure 2.   

 



 
Supplementary Figure 2: Summary of raw model predictions and predictions adjusted to match the 

assumed baseline values, both fit to in vivo data from Jones et al. (2002).  Increases of: (A) cerebral 

metabolic rate of oxygen (CMRO2) imposed on the model, as per Equation (16) in the main text; (B) oxy 

(HbO) and (C) deoxyhaemoglobin; (D) tissue oxygen partial pressure (PO2); and (E) root mean square 

(RMS) error from all simulations in the sensitivity analysis (n = 36 simulations for each stimulus 

intensity; shown as mean ± s.d.; *** where P < 0.01 vs adjusted metrics).  Stimulus intensities are graded 

from 0.4 (far left column) to 1.6 (far right column) milliamps (mA).  Adjusted HbO and dHb predictions 

are calculated from raw predictions using Equation (16) in the main text. 



 

 

Supplementary Figure 3: Raw data used to calculate correlation between other state variables and 

cerebral metabolic rate of oxygen (CMRO2) calculated from haemoglobin predictions as per Equation 

(16) in the main text.  Increases in calculated CMRO2 are plotted against: (A) CMRO2 increases imposed 

on the model; (B) rate of oxygen extraction from blood to tissue; and (C) cerebral blood flow (CBF).  

Each plot contains data points (n = 8) from each of the simulations in the sensitivity analysis (n = 36) at 

each of the stimulus intensities (n = 4).  The correlation coefficients calculated by pooling data from all 

stimulus intensities are shown in Figure 4, and coefficients calculated separately for each stimulus 

intensity level are shown in Supplementary Figure 4. 

 

 



 

 

Supplementary Figure 4: Correlation between cerebral metabolic rate of oxygen (CMRO2) calculated 

from haemoglobin predictions as per Equation (16) in the main text and: (A) CMRO2 imposed on the 

model; (B) CMRO2 extracted from blood to tissue; and (C) cerebral blood flow (CBF).  Correlation 

coefficients are calculated separately for the three stimulus phases and each of the four stimulus 

intensities by pooling a sample of data points (n = 8) from all sensitivity analysis simulations (n = 36).  

The raw data are plotted in Supplementary Figure 3 and correlation coefficients calculated by pooling 

data from all stimulus intensities are shown in Figure 4. 
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