
UC San Diego
UC San Diego Previously Published Works

Title
EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while 
producing or observing social actions

Permalink
https://escholarship.org/uc/item/2tq8t3rw

Journal
NeuroImage, 112

ISSN
10538119

Authors
Liao, Yu
Acar, Zeynep Akalin
Makeig, Scott
et al.

Publication Date
2015-05-01

DOI
10.1016/j.neuroimage.2015.02.055
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2tq8t3rw
https://escholarship.org/uc/item/2tq8t3rw#author
https://escholarship.org
http://www.cdlib.org/


NeuroImage 112 (2015) 52–60

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Full Length Articles
EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm
modulation while producing or observing social actions
Yu Liao a,b,c,⁎, Zeynep Akalin Acar c, Scott Makeig c, Gedeon Deak b

a Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 215123, PR China
b Department of Cognitive Science, University of California San Diego, 9500 Gilman Dr. Univ. CA, San Diego, La Jolla, CA 92093-0515, USA
c Institute for Neural Computation, University of California San Diego, 9500 Gilman Dr. Univ. CA, San Diego, La Jolla, CA 92093-0559, USA
⁎ Corresponding author at: Department of Psychology
University; Suzhou, Jiangsu 215123, PR China.

E-mail address: yliao@suda.edu.cn (Y. Liao).

http://dx.doi.org/10.1016/j.neuroimage.2015.02.055
1053-8119/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 22 February 2015
Available online 27 February 2015
Contemporary active-EEG and EEG-imaging methods show particular promise for studying the development of
action planning and social-action representation in infancy and early childhood. Action-related mu suppression
was measured in eleven 3-year-old children and their mothers during a ‘live,’ largely unscripted social interac-
tion. High-density EEGwas recorded from children and synchronizedwithmotion-captured records of children's
andmothers' hand actions, and with video recordings. Independent Component Analysis (ICA) was used to sep-
arate brain and non-brain source signals in toddlers' EEG records. EEG source dynamics were compared across
three kinds of epochs: toddlers' own actions (execution), mothers' actions (observation), and between-turn in-
tervals (no action). Mu (6–9 Hz) power was suppressed in left and right somatomotor cortex during both action
execution and observation, as reflected by independent components of individual children's EEG data. These mu
rhythm componentswere accompanied by beta-harmonic (~16 Hz) suppression, similar to findings from adults.
The toddlers' power spectrum and scalp density projections provide converging evidence of adult-like mu-
suppression features. Mu-suppression components' source locations were modeled using an age-specific 4-
layer forward head model. Putative sources clustered around somatosensory cortex, near the hand/arm region.
The results demonstrate that action-locked, event-related EEG dynamics can be measured, and source-
resolved, from toddlers during social interactions with relatively unrestricted social behaviors.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Action interpretation is central to many social-cognitive skills that
develop within the first 2–3 years of life. Perspective taking, imitation,
joint attention and cooperation all require some awareness and knowl-
edge of other people's actions. Single neuron recordings from monkey
cortex indicate that action observation activates a subset of neurons
that also fire during action execution. These are sometimes called ‘mirror
neurons’ (Di Pellegrino et al., 1992; Rizzolatti and Craighero, 2004).
Mirror neuron activity also has been found in human brains using imag-
ing methods (Rizzolatti, 2005). Notably, electroencephalographic
(EEG) studies of human adults have found suppression of 8–13 Hz oscil-
latory power, and concurrent suppression of the beta-range harmonic
(18–26 Hz), during action execution and action observation (e.g., Hari
and Salmelin, 1997). This desynchronization, called mu-suppression, is
related to sources around central sulcus encompassing primary somato-
sensory and motor cortices (Babiloni et al., 2002; Forss and Silén, 2001;
Kilner and Frith, 2008; Makeig et al., 2004; Ritter et al., 2009). Because
it is elicited by action observation as well as execution, it is considered
, School of Education, Soochow
an EEG signature of the ‘mirror-neuron’ systems (Pineda et al., 2000;
Iacoboni et al., 2005).

EEG power suppression in the 5–9 Hz range also has been found in
older infants and children while watching a hand produce an action
(Lepage and Théoret, 2006; Nyström et al., 2011). This suggests that
by one year of age, cortical networks might have learned to represent
patterns of biological motion related to human action. A next step is to
determinewhether and how these representations are activated during
everyday social interactions. A recent study found 6–9 Hz power sup-
pression in 14-month-olds during action observation in a social context
(Marshall et al., 2011). Unlike previous studies that examined only elec-
trode sites over sensorimotor cortex, 6–9Hzpowerwas analyzed across
several distant scalp regions. Unlike typical mu suppression, however,
the authors found a much broader distribution of suppression over all
scalp regions. The results might therefore reflect a general effect of at-
tention and arousal (Coull, 1998), rather than action-related mu-
suppression. Moreover, because the specific frequency range was
predefined as 5–9 Hz and other ranges were not analyzed, it is unclear
whether suppression was specific to the mu spectrum. These ambigui-
ties are largely unresolved by more recent reports (Marshall et al.,
2013; Saby et al., 2013). Consequently, the nature of action-based mu-
suppression in young children during real social interactions remains
largely unexplored.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.02.055&domain=pdf
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Other EEG indices of social-action processing have not yet been ex-
plored in young children. For example, a beta-range harmonic of mu-
suppression is consistently observed in adults during action processing
(Hari and Salmelin, 1997). However, beta-band modulation has been
described in only a single report of infant/child action processing (Van
Elk et al., 2008). One possible explanation is that beta modulation un-
dergoes later development, because the EEG power distribution shifts
towards higher frequencies (beta and gamma) throughout childhood
(e.g., Benninger et al., 1984; Gasser et al., 1988), especially during
early childhood when social-cognitive skills show profound develop-
ment. However, because only one study has reported beta-modulation
in toddlers, in response to videos of other infants, we cannot yet make
inferences about how beta modulation develops in response to action
processing.

Finally, previous studies of infants and children have not used con-
temporary EEG methods to model the cortical sources of mu-
suppression. Although we might presume that action-related mu-
suppression in children originates in somatomotor cortex, as it does in
adults, this has not been demonstrated. More generally, there have
been few efforts to extend contemporary EEG source imaging methods
to young children, despite considerable advances in modeling methods
(e.g., Michel and Murray, 2012) and application of these methods to
data from infants and children (e.g. Sperli et al., 2006; Bathelt et al.,
2013). Current optimal methods include boundary-element and finite-
element models, constrained by conductivity estimates of interposed
tissues (Acar and Makeig, 2010). Using an age-appropriate anatomical
model, it should be possible to estimate the source locations of coherent
EEG activity in toddlers. This would represent an advance in
documenting the early cortical substrate of social action processing.

Optimal methods for processing EEG data, including source localiza-
tion, include a biologically plausible approach to un-mixing cortical
sources (Makeig et al., 2002). Channel-level analyses are inappropriate
because each channel represents an unknown mixture of cortical and
non-cortical electrical sources. Also, because cortical sources project
Fig. 1. Top: Experiment game paradigm and event time line for a single action observation trial
current report focuses only on toddlers' EEG records.
tangentially from both gyral and sulcal surfaces, it is difficult to infer a
specific vector from scalp to cortex based on channel-level activity. A
preferable approach is to utilize all information (frequency, amplitude,
and phase) to mathematically separatemaximally independent sources
of coherent activity in an EEG record (Onton et al., 2006; Delorme et al.,
2012). Nyström et al. (2011) used this ‘un-mixing’ approach to increase
signal-to-noise ratio in infant mu-suppression data, but the authors did
not conduct source localization.

To investigate modulation of mu power and its cortical sources in
toddlers during live social interactions, synchronized high-density EEG
and body motion were recorded while toddlers played a turn-taking
“bubble popping” game with their mothers (Fig. 1). This allowed us to
lock toddlers' EEG to their own and their parents' game-related move-
ments. This is therefore thefirst study to usemobile brain-and-body im-
aging (MoBi; Makeig et al., 2009) to investigate toddlers' social
cognition. TheMoBi approach capitalizes on methodologies that permit
a relatively natural range of behavior, in relatively naturalistic task con-
texts (compared to typical neurodevelopmental studies), while captur-
ing high-density, action-locked physiological data. MoBi studies
typically use EEG, which is the only brain imaging method that allows
both freedom of head and body movement, and time-locking physiolo-
gy with behaviors.

We predicted that high-density EEG could separate ICs in toddlers
related to mu suppression and localize them to somatomotor cortex.
We also predicted that toddlerswould show somatomotormu suppres-
sion both while taking turns and while watching their mother take
turns. Finally, we predicted parallel results for beta desynchronization.
We also tested whether mu and beta suppression would be greater for
execution than for observation. Finally, we testedwhether mu suppres-
sionwas sensitive to ‘local’ turn-taking dynamics; that is, whether there
is more suppression when the current actor ‘matches’ their partner's
last action (i.e., touches the same bubble), than when the actor makes
a non-matching action (i.e., touches the other bubble). If mirroring ef-
fects are sensitive to the recent context of a partner's actions, this
(i.e., mother's turn) in the game. Bottom: Camera views for video recordings. Note that the
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variable might modulate mu suppression. This possibility has not been
tested in children.

Methods

Participants

Twenty-onemother–toddler dyads participated in testing. One dyad
was dropped from dyadic behavioral analysis because they finished
only one block of the game. The final sample for EEG analysis included
11 toddlers (mean age 41 ± 4 months, 7 females) who received the
final protocol and provided sufficient EEG data for effective ICA decom-
position. Participants were recruited through local playgroups, parent-
ing classes, and word-of-mouth. All had previously participated in a
longitudinal study beginning at 3 months of age. Mothers averaged
35.5 years of age (range: 26 to 43 years) with an average of 16.7 years
of formal education (range: 14 to 19 years). All procedures were ap-
proved by the University's IRB.

Experimental procedure

Each toddler–mother dyad sat facing each other across a table-
mounted 66-cm capacitive touch screen monitor (Elo, California,
USA). Both participants wore 64-channel EEG caps with active Ag/
AgCl electrodes (Biosemi, The Netherlands), and motion-capture
markers (NaturalPoint, Oregon, USA) on their heads and right wrists.
EEG data were sampled at 256 Hz (24-bit). Custom software processed
participants' head and right hand positions in real time by calculating
the distance and angle of the markers from two pre-defined left and
right target regions. When a participant-specific head or wrist marker
entered a target region, custom software recorded a ‘reach-to-target’
event programmed to cause a specific game event. Thus, the program
responded to each participant's specific reaching action in real time.

Mother–child dyads participated in a turn-taking ‘bubble popping’
game on the touch screen. As shown in Fig. 1, each trial began with
two background images (approximately 12 × 12 cm2 cartoon lawns)
appearing on the left and right sides of the touch screen, approximately
35 cm apart, for 500 ms. Subsequently, identical animations of an en-
larging bubble synchronously appeared on each background image for
340 ms.

Participants were instructed to take turns using their right hands to
touch one of the bubbles, causing it to ‘pop’. Touching a bubble triggered
different 400-ms feedback animation sequences, depending on who
touched a particular bubble. A mother's touch always triggered a pop-
ping animation accompanied by a popping sound. A toddlers' touch trig-
gered the same animation only when he or she touched the same
bubble (left or right) that the mother had touched in the previous
trial. This is a ‘matching’ response. However, if the toddler touched the
other (contralateral) bubble (a ‘mismatch’ response), a different 400-
ms animation was triggered in which the bubble distorted but did not
pop, accompanied by another sound effect. In each trial a small colored
bar, visible to the mother, reminded her whose turn was next.

Feedback animations were triggered when the appropriate
participant's wrist marker moved into a region containing one or the
other bubble. However, the program ignored multiple successive
touches by either participant. Thus, if a toddler failed to take turns, the
game did not advance.

Before data acquisition began, the participants practiced the game
until they were familiar with its rules. Mothers were asked to occasion-
ally switch their choice of bubble (left/right), so that touches would be
fairly evenly distributed between targets. However, mothers were not
given any other guidance or feedback about which bubble to press.

Each game block included 20 mother turns and 20 toddler turns.
Mothers' turns were designated as toddlers' action observation trials,
and toddlers' own turns were designated as action execution trials.
Dyads completed an average of 4.7 game blocks (range: 3 to 6) for an
average total of 182 valid trials (range: 120 to 240). Blocks of the
bubble-popping game were interspersed with blocks of another game
(to be reported elsewhere). Each session lasted 70 to 90 min, including
25 to 40 min of preparation and 30 to 50 min of data recording.

Data acquisition

Synchronous EEG and body motion capture
Customized software synchronized and recorded data from all

sources, including both participants' EEGs, locations of all motion-
tracked markers, motion-triggered events, touch-screen events and lo-
cations, and programmed game events. Toddlers' EEGs were recorded
from64 scalp channels plus four bipolarH/V EOGelectrodes and two ac-
tive reference electrodes on the mastoid bones.

Handmotionswere tracked using a 6-cameraNaturalPointOptitrack
system that registers the position of pre-calibrated rigid bodies in real
time (100 Hz sampling). Reflective three-marker rigid frames were
placed on participants' heads (affixed to the EEG cap) and on a soft
band on participants' right wrists.

EEG andmotion-tracking datawere resampled online to 256 Hz and
synchronized by DataRiver software (Delorme et al., 2011).

Video recording
Three video cameras captured HD videos (30 Hz) from three per-

spectives: a side view of both participants, and close-up views of each
participant's head and upper body (see Fig. 1). Videos were synchro-
nized to game events in post-processing.

EEG analysis

Data preprocessing and independent component analysis (ICA)
Toddlers' EEG data were analyzed using custom MATLAB scripts in

the EEGLAB toolbox (Delorme and Makeig, 2004). First, channels with
grossly abnormal patterns were removed, leaving an average of 49
channels (SD= 4) out of the 70 total EEG, EOG, and reference channels.
After re-referencing to the average of the remaining channels, the EEG
data were band-pass filtered from 1–35 Hz. Data intervals containing
(by visual inspection) extreme peak-to-peak deflections or large bursts
of high frequency EMG activity were identified by visual inspection and
removed. Intervals containing traces from eye blinks, eye movements,
or other muscle activity were not removed at this stage.

Artifact-rejected data for each subjectwere separately decomposedby
independent component analysis (ICA), specifically, Adaptive Mixture
ICA (AMICA) (Palmer et al., 2008). ICA decomposition of EEG data sepa-
rates the recorded activity into maximally independent (i.e., spatially
fixed; temporally distinct) activity sources, and increases the signal-to-
noise ratio of cortical sources. The final EEG dataset length used for ICA
decomposition ranged from 20 to 48 min (mean = 33.7 min), with a
mean of 518 k (SD= 122 k) data points for ICA decomposition. This pro-
vided ameanof over 300 timepoints perAMICA learned-matrixweight—
a favorable basis for ICA decomposition.

Equivalent dipole model fitting of IC scalp maps
To fit cortical ICs to an equivalent neuroanatomical source dipole

model, we used a database (Sanchez et al., 2012a,b) of tissue-
segmented structural MRI scans of 3- and 4-year-old children (Ns = 22
and 19 respectively) to generate age-specific headmodels. Three-layer fi-
nite element method (FEM) head meshes using tetrahedral elements
(Acar and Makeig, 2010) were used to generate 3-year-old and 4-year-
old template head models. A 64-channel Biosemi EEG electrode location
template with six EXG ocular reference channels was used to co-register
electrode locations to the scalp mesh of the head models. Assumed
scalp conductivitywas 0.33 s/m (Geddes andBaker, 1967). Because errors
in assumed skull conductivity can significantly affect EEG source location
estimates (AkalinAcar andMakeig, 2013), skull conductivitywas estimat-
ed using an age-based sc function adopted from BESA (Besa GmbH,



55Y. Liao et al. / NeuroImage 112 (2015) 52–60
Graefelfing, Germany, www.besa.de): sc = 0.064 ∗ exp(−0.195 × [years
of age]). This yielded an sc estimate of 0.0357 s/m and brain-to-skull con-
ductivity ratio of 9.2 for 3-year-olds, and 11.3 for 4-year-olds. Dipoles for
each participant were fitted to either the 3-year-old or 4-year-old head
model, depending on which was closer to the participant's age.

Brain component selection
IC activity time series for each subjectwere categorized by two of the

authors (YL and SM) as reflecting brain or non-brain source activity,
based on two objective criteria: (1) only the first 35 ICs were consid-
ered; on average these accounted for 94.6% (SD = 4.2%) of variance in
total channel power; (2) only ICs with diploes within the brain (based
on scalp distribution and dipole fit) were considered. The remaining
(dipolar within-brain) ICs were further restricted to those with less
than 12% residual variance (RV) between the scalp map and best-
fitting projection of a single model equivalent dipole within the tem-
plate brain volume. The number of these ICs retained for group level
analyses averaged 16 per subject (SD = 6; range = 9 to 31). The
mean RV of the selected ICs across subjects was 5.6% (SD = 0.6%).

Eliminating movement artifact
Because toddlers' ability to inhibit movement impulses is immature,

it is critical to rule out deliberate actions (e.g., reaches) during both ‘no-
action’ epochs (i.e.,−200 ms to 1000ms from the background onset in
execution trials, while neither participant was reaching) and during
action-observation epochs (i.e.,−1000ms to 200ms from themother's
screen touch). Two methods were used to eliminate action artifacts
from these epochs:

1. Frame-by-frame video coding: Synchronized videos were coded using
Interact software (Mangold International, Arnstorf, Germany). Two ex-
perienced coders recorded, frame-by-frame, any deliberate hand or
body movements, or speech. All no-action or action-observation
epochs with deliberate toddler actions were excluded from final anal-
ysis. Two researchers independently coded all videos. Inter-coder reli-
ability (Cohen's Kappa) averaged κ= .79.

2. Motion records of toddler's right hand were analyzed using EEGLAB's
MoBILAB toolbox (Ojeda et al., 2014). All no-action or action–observa-
tion epochs in which hand velocity exceeded 0.45 mm/s were exclud-
ed from final analysis.

After applying these criteria, an average of 32.5 (SD = 14.7) no-
action epochs, 45.6 (SD = 22.5) action–execution epochs, and 28.1
(SD = 16.7) observation epochs remained per participant. Execution
epochs included an average of 24.3 (SD=16.1) trials in which toddlers'
action (i.e., left or right bubble touch) matched their mother's last ac-
tion, and 21.1 (SD = 14.8) trials in which toddlers' action mismatched
the mother's last action (i.e., switched sides). Observation epochs in-
cluded means of 11.2 (SD = 10.1) trials in which the mother matched
the toddler's last action, and 17.4 (SD=13.1) inwhich shemismatched
the toddler's last action.

Component power spectral density (PSD)
Mean PSDs from 3 to 35 Hz for the identified brain ICs in no-action,

observation, and execution epochs were calculated using fast Fourier
transforms.

Component event-related spectral perturbations (ERSPs)
For each IC included in the analysis, mean ERSPs (Makeig, 1993) for

each of the three epoch types were computed using three-cycle Morlet
wavelets in the 3 to 35 Hz range.

IC clustering across participants
To identify categories of functionally equivalent ICs across partici-

pants, retained ICs from all subjects were submitted to a clustering algo-
rithm. Features of each IC, including scalp topography, equivalent dipole
position, logmean power spectral density, average ERSP, and Inter-Trial
Coherence (ITC, which indexes phase locking at each frequency relative
to time-locking events; Delorme and Makeig, 2004), were entered as
variables for clustering classification. All parameters excepting dipole
locations were first compressed by principal component analysis
(PCA) into a 10-dimensional vector. The dipole location measures
were inherently three-dimensional, but for scaling purposes they
were weighted by a factor of 10. The PCA-reduced information was
combined into a single matrix and further reduced by PCA to 10 princi-
pal dimensions. ICs were classified based on pairwise distances in this
10-dimensional space, using a K-means algorithm (Delorme and
Makeig, 2004). This yielded 15 clusters. Two of these were left- and
right-hemisphere somatomotor mu IC clusters, identified as such
based on: characteristic mean power spectra, scalp maps, and equiva-
lent dipole locations. In addition, three more clusters that seemed to
capture central, parietal and occipital sources, respectively, were identi-
fied for further analysis.

Cluster PSDs and ERSPs
After IC clustering, separate cluster-average PSDs and ERSPs were

calculated for the left somatomotor mu and right somatomotor mu-
related IC clusters. Mu power (6–9 Hz) was compared across the three
epoch types by repeated-measure ANOVAs. The 6–9 Hz range was cho-
sen based on the peak range of mu clusters reflected in our spectrum
analysis, but is consistent with numerous previous studies of mu-
rhythms in children (e.g., Saby et al., 2013). Analogous ANOVAs for
each cluster were performed to compare integrated power differences
among epoch-types in the beta range (i.e. 15–18 Hz). Separate compar-
isons were run for the left and right IC clusters.

Results

Behavioral results

None of the 20 mothers in the analyses showed a side preference:
their mean proportion of left (in reference to toddler's position) bubble
toucheswas 55% (SD=5%). However, toddlers showed a right side bias
(mean right touches= 59%, SD=15%; range: 14% to 68%; p b .01), pos-
sibly because participants used their right hands. However, the total
number of trials was large enough that this bias is not problematic for
further analyses.

Mothersmatched their child's previous action (i.e., popped the same
bubble) on an average of 57% of turns (SD = 10%), significantly more
than expected by chance (50%): t(19)= 3.39, p b .01. Mothersmatched
more often after the child mismatched her previous action (51%, SD =
16%) than after the child matched her action (32%, SD = 13%),
t(19) = 3.79, p b .01. Thus, mothers' decisions were not independent
of the child's last action. Toddlers, by contrast, matched their mother's
last turn more often if she had just matched their action (63%, SD =
23%) than if she did not (32%, SD = 22%), t(19) = 5.15, p b .001. Thus,
toddlers' decisions also were dependent on the mother's last action.
These patterns indicate that the game elicited reciprocity and mutual
influence.

EEG results

Mu-rhythm clusters and their sources
As shown in Fig. 2A, the left somatomotor mu cluster included 11

IC's, one from each child. Each IC showed a similar scalp maps with a
characteristic polarity reversal over left somatomotor cortex and a cor-
responding tangential equivalent dipole consistent with an origin near
central sulcus, generally at a dorsoventral position consistent with the
hand/arm receptive field (Forss and Silén, 2001; Makeig et al., 2004).
The location of the average equivalent dipole centroid for ICs in the clus-
ter, projected onto the age-based headmodels, was x= 50, y= 84, and
z = 85. This is consistent with somatomotor mu source locations re-
ported from adult brains (Ritter et al., 2009; Mizuhara, 2012).

http://www.besa.de
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The right somatomotor mu cluster (Fig. 3A) included 10 ICs from 9
toddlers. IC scalp maps showed a characteristic polarity reversal over
right somatomotor cortex. The average centroid of the dipoles was in
right somatomotor cortex (x = 110, y = 94, z = 102) (Fig. 3B).

The PSDs of both left and right clusters conformed to those expected
for somatomotor mu, with peaks in the 7–9 Hz range (Hari and
Salmelin, 1997; Berchicci et al., 2011), and smaller beta (16–18 Hz) har-
monic peaks. See Table 1.

Event-related mu suppression
As shown in Fig. 4A, mu suppression for the left cluster was time-

locked to screen touches during both execution and observation epochs,
compared to a mean baseline (i.e., 500 ms before movement began in
execution trials). Notably, although mu and beta suppression were in-
duced in both conditions as the hand approached the target, they
persisted after the touch only in the execution condition, presumably
while the child was withdrawing his/her hand.
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Power differences for the left somatomotor mu cluster across the
three epoch types are shown in Fig. 4B (also see Table 1). Mu power dif-
fered significantly across epoch types, F(2, 20) = 10.92, p b 0.01, η2 =
0.52. Pairwise comparisons revealed significant mu suppression in exe-
cution epochs (p b .01) and in observation epochs (p b .01) compared to
no-action epochs. There was also significantly more suppression in exe-
cution than observation epochs, p b .05. Also, beta power differed signif-
icantly between epoch types, F(2, 20)= 4.532, p= .045, and η2 =0.31.
Pairwise comparisons revealed significantly lower power in execution
epochs (p b .05) and marginally lower power in observation epochs
(p = .07), than in no-action epochs. Beta power did not differ reliably
between execution and observation epochs (p = .13).

The right somatomotor mu cluster ERSP image also shows both mu
and beta suppression (Fig. 3C). Mu power differed significantly among
epoch types, F(2, 16)=10.02, p b 0.01, and η2=0.56. Pairwise compar-
ison revealed significantly lower power in execution and observation
epochs (both ps = .01) than in no-action epochs. Mu power did not
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Table 1
Mean and Standard Deviation (SD) forMu and Beta Frequency Power Spectral Density (in
uV2/Hz).

Somatomotor IC clusters Condition Mu (6–9 Hz)
Mean (SD)

Beta (15–18 Hz)
Mean (SD)

Left No action 1.67 (1.16) 0.20 (0.17)
Action observation 1.32 (0.94) 0.16 (0.11)
Action execution 1.01 (0.69) 0.13 (0.09)

Right No action 1.53 (0.86) 0.19 (0.11)
Action observation 1.12 (0.57) 0.16 (0.86)
Action execution 1.16 (0.63) 0.16 (0.77)
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significantly differ between execution and observation epochs, p= .56.
Beta power showed no significant differences across epoch types.

To test the specificity of mu/beta suppression, EEG power was also
compared across epoch types in three additional clusters, located at cen-
tral, parietal and occipital regions, respectively. We did not predict dif-
ferential power from ICs in these regions. The results therefore will
indicatewhether desynchronization during action execution and obser-
vation was specific to somatosmotor networks. As shown in Fig. 5, a
central cluster of 13 ICs contributed by 10 toddlers had a mean PSD
with an alpha range peak (7–9 Hz) and a small beta peak (16–18 Hz),
which suggests mu rhythm activity. However, unlike the somatomotor
mu clusters, power did not significantly differ across epoch types. A pa-
rietal cluster (12 ICs from 9 toddlers) and an occipital cluster (14 ICs
from 8 toddlers) each showed alpha range PSD peaks around 7–9 Hz
each, with no beta harmonic. Again, power difference between epoch
types were not significant. These results support the hypothesis that
mu suppression associated with manual action observation and execu-
tion originate selectively in left and right somatomotor cortex.

Further, a 2 (Match/Mismatch) × 2 (Observation/Execution) repeat-
ed ANOVA was performed to investigate if mu power in somatomotor
ICs was modulated by matching versus mismatching the partner's pre-
vious actions (see Supplementary Fig. 1 for plots of the four conditions).
For the left mu cluster, consistent with the results described above,
there was a main effect of observation/execution condition, F(1,
10) = 4.93, p b 0.05, and η2 =0.33. However, there was nomain effect
or interaction involving match/mismatch trials (ps N .67). The right mu
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cluster also showed no effect of match/mismatch. This suggests that mu
power suppression was not modulated by whether the actor matched
the last action (i.e., touched the same bubble) or mis-matched it
(i.e., touched the other bubble).

Verification by motion analysis
To verify that mu suppression during action–observation epochs

was not an artifact of incidental task-irrelevant motor activity, toddlers'
hand movement velocity profiles were compared across epochs (recall
that observation and no-action epochs with gross motor activity were
already excluded). As shown in Fig. 4C, toddlers'mean right hand veloc-
ity increased and then decreased during execution epochs, with lowest
average velocity of 66 ms after touching the screen. By comparison,
hand velocity was minimal (mean b0.075 m/s) during observation
and no-action epochs, with no significant changes during the epochs.
A repeated-measure ANOVA with Greenhouse–Geisser correction
shows that velocity differed significantly between epoch types, F(1,
318) = 1268.28, p b 0.0001, and η2 = 0.81. LSD post hoc tests revealed
significantly more hand movement during execution than observation
or no-action epochs (both p b .0001), but no difference between the lat-
ter (p = .63).

Discussion

This study investigated theneural generators and spectral properties
of mu rhythm perturbations related to action perception in young chil-
dren. High-density EEG was measured from toddlers during a ‘live,’ un-
scripted turn-taking game inwhich children alternately chose amanual
action and watched their mother choose an action. Our analyses identi-
fied bilateral Independent Components of cortical activity with spectral
power peaks at 7–9 Hz, and secondary (harmonic) peaks at 16–18 Hz.
The ICs showed all spectral and spatial properties of somatomotor
mu-suppression that have been reported in adults. Locations of the IC
sources were imputed from age-specific 3D head models. As predicted,
all ICs fell within a region centered near the sulcal walls of somatomotor
cortex. The ICs were not “cherry-picked” for these clusters, but were
machine-classified by an algorithm that did not select any particular a
priori features of mu-suppression. Rather, the algorithm incorporated
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unbiased PSD, ERSP, ITC, and spatial properties. Although there is cur-
rently no conventionally agreed-upon method for classifying EEG ICs,
and variables like the weighting of feature types in a clustering algo-
rithmwould likely affect the results, in this case the strong resemblance
of ICs in each cluster render it likely that a wide range of classification
methods would yield the same clusters.

In adults, somatomotor mu power and its beta harmonic are sup-
pressed by either making a deliberate action or watching another's ac-
tion (Pineda, 2005). Likewise, toddlers showed left somatomotor mu-
suppression bothwhen executing actions andwhenwatching their par-
ent act. Most toddlers showed a parallel source in right hemisphere.
These sources also showed beta-power suppression (in left hemi-
sphere) when executing actions, and a marginal trend when observing
actions. There are several possible reasons why the pattern was less
consistent in right hemisphere, but a likely factor is that participants
used their right hands to play the game. It is intriguing that even in
this unimodal task, mu suppression was found in the ipsilateral hemi-
sphere (i.e., serving the inactive hand). Hari et al. (1998), for example,
found desynchronization only in the left (contralateral) somatomotor
cortex of adults using their right hand or watching another person use
their right hand. However, there are many differences between that
study and ours, in task and measurement and in participants' age, so
the difference in results is hard to interpret. For example, some possibly
influential factors include the fact that stimuli in our paradigm appeared
approximately equally in both visual hemifields, that toddlers reached
to both ipsilateral and contralateral targets, and that lateralization of
handedness is not complete by 4 years of age (Sacrey et al., 2013). In
general, lateralization and regionalization of somatomotor mu-
suppression remains little studied in infants and toddlers (see Saby
et al., 2013).

Assessing social brain activity in toddlers

Testing brain-behavior correspondences in young children poses
particular challenges. Because toddlers enjoy moving around and
interacting with people and objects, rather than sitting still and
watching simple repetitive stimuli (eg., experimental stimuli), they tol-
erate only brief testing periods using traditional methods, and tend to
produce many task-irrelevant movements. It is therefore difficult to ac-
quire EEG data sets that permit powerful analyses. The same limitations
make other functional imaging techniques like MEG or MRI even less
feasible. For these reasons, it has not been considered possible to
study the brain activity of toddlers during social interactions. Our para-
digmdemonstrates, however, that contemporary EEG approachesmake
it feasible to study toddlers' brain activity during social interactions, and
even to lock specific brain responses to specific spontaneous social ac-
tions. Engaging toddlers in socially interactive tasks or games canmain-
tain their interest, allowing for longer data acquisition periods. The
bubble game, a controlled turn-taking paradigm, is suitable for partici-
pants as young as two years: toddlers in this sample completed 150–
250 trials after being capped for high-density EEG, and completed a sec-
ond social game (to be reported elsewhere) in the same session aswell.
As wireless and dry-electrode EEG technology improves (e.g., Fonseca
et al. 2007; Lin et al., 2008) and EEG capping becomes faster and more
pleasant, even more extensive and naturalistic data sets will be obtain-
able during social interactions.

ICA unmixing of cortical sources is an underutilized method in EEG
studies of infants and children, particularly for unmixing signal from ex-
traneous motion (i.e., ‘squirminess’). The current study demonstrates
that this approach can be enhanced and validated through converging
robust measures of movement: motion tracking, video, or (hypotheti-
cally) EMG. We detected, coded and quantified movement artifacts
using twomethods: frame-wise analysis of synchronized video, to iden-
tify periods of gross motor activity, and motion-capture of arm move-
ments, to measure continuous, fine-grained velocity changes. These
methods offer complementary benefits: video allows for rich qualitative
characterization of actions, including verbalizations, but does not per-
mit high temporal or spatial accuracy. Motion capture can detectmove-
ments with high spatial and temporal precision, but requires further
processing to integrate data into discrete action types or bounded
events. In any event, combination of methods allowed thorough detec-
tion and,when appropriate, removal ofmotion-related EEG activity. No-
tably, some previous studies that claimed to find observational mu
suppression in infants did not control for infants' own motor activity
during periods of putative action observation, so it is not actually
known whether mu-suppression was due to the infant's own actions
or to observation of another person's actions (e.g., Meyer et al., 2011;
Reid et al., 2011).

Mu desynchronization in children

The current findings are consistentwith findings from EEG andMEG
studies of mu suppression in adults (Cochin et al., 1998; Pineda et al.,
2000; Babiloni et al., 2002; Caetano et al., 2007; Kilner and Frith,
2008). Several prior studies (Southgate et al., 2009; Marshall et al.,
2011; Saby et al., 2013) also reported mu-suppression in toddlers dur-
ing action observation. The current study goes further not only by
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employing a socially interactive paradigm and by precisely quantifying
and controlling for toddlers' motor activity, but also by (1) locking tod-
dlers' EEG to the onset and offset of their own or their mother's actions;
(2) identifying mu suppression using multiple criteria including ERSP,
PSD, scalp maps and source locations; and (3) comparing EEG power
profiles across a wide range of frequencies and channel locations.
Some previous reports of mu suppression only examined power in the
6–9 Hz range (e.g., Lepage and Théoret, 2006), and/or examined only
1–2 channels. Yet without examining a broad frequency band and mul-
tiple channels, somatomotor mu suppression cannot be inferred — for
example, desynchronization might be broad-band or broadly distribut-
ed (as in Marshall et al., 2011), and this cannot be ruled out when anal-
ysis is limited to a narrow frequency range or channel selection.
Moreover, using channel-level analyses without unmixing non-
cortical and cortical sources, as in all previous studies, permits only al-
lows gross inferences about mu source locations. The current approach
allowed us to identify and characterize IC sources in various cortical re-
gions (e.g., parietal, occipital), and document differences between these
sources and the sources of somatomotor mu suppression. Important,
only the latter sources were selectively modulated by action execution
or observation. These comparisons lend credence to the results, and
should be standard practice in EEG studies of infants and children (see
Cuevas et al., 2014, for related arguments).

The results showed, like previous studies (Berchicci et al., 2011), mu
frequency peaks in toddlers of 7–9 Hz, slightly lower than in adults (8–
13 Hz). The results also showed a small beta peak, a distinct feature of
adult somatomotormu activity that has not been investigated in toddlers
(but see van Elk et al., 2008). Previous studies suggest that beta-
modulation might be more related to action production (e.g., probability
gating, or sensorimotor dynamics) than to observation of others' actions
(Jenkinson and Brown, 2011; Quandt et al., 2012). Our finding that left
somatomotor beta suppressionwas greater in execution than observation
epochs is consistent with this hypothesis; however, results from the right
cluster were equivocal. This therefore remains an open question.

These results are the first to localize mu-rhythm sources in toddlers
to somatomotor cortex, potentially near the hand/arm homunculus in
central sulcus. This reflects recent advances in signal analysis that allow
considerably improved EEG source localization (Buzsáki et al., 2012;
Grech et al., 2008). ICA decomposition can yield highly dipolar scalp
maps of brain sources, with localization error medians as low as
4.1 mm if accurate head models and skull conductivity estimates are
used (Acar and Makeig, 2013). By using age-specific head models and
conductivity values, we found somatomotormu-source locations consis-
tent with those predicted by simultaneous fMRI–EEG studies of adults
(Pfurtscheller and Neuper, 1997; Ritter et al., 2009; Mizuhara, 2012).

An unaddressed question is whether mu suppression in children is
modulated by the similarity of an executed or observed action to a pre-
viously seen or performed action. However, mu power suppressionwas
not affected by whether the current action matched (i.e., touched the
same bubble) or mis-matched the previous action. A possible explana-
tion is that matching and mismatching responses in the current task
were all fairly similar, and each bubble was touched many times, Per-
haps any effects of matching was ‘washed out’ by the repetition of this
paradigm. It remains unknown how repetition and predictability of ac-
tions might influence mu power changes, and how this might change
with age.

In sum, the results suggest that cortical sources that desynchronize
during deliberate action execution or observation are adult-like in all
known properties by 3 years of age. Of course, skilled control of action
is still far from mature: preschoolers' deliberate actions are more vari-
able, slower, less precise, and less inhibited than adults' (Adolph and
Berger, 2006). Toddlers' perception and knowledge of human action is
also immature (e.g., Liao and Deák, 2011). Thus, these results provide
a benchmark for further research on the neurological resources that
serve children's growing action control, and growing understanding of
other people's actions.
Behavioral and brain dynamics of social interactions

Decision analyses showed that mothers' and toddlers' bubble
choices formed a dynamically reciprocal system. The results therefore
suggest that mu suppression is a measurable signature of toddlers' ac-
tion processing during complex, reciprocal social interactions.

Most ‘social neuroscience’ studies use experimental paradigms with
no social interaction. Often, participants watch videos but do not inter-
act with real social partners (e.g., Cochin et al., 1998; Caetano et al.,
2007; Iacoboni, 2009). Recent studies have begun to examine real-
time brain activity during social interactions (Makeig et al., 2002;
Dumas et al., 2010, 2011; Konvalinka and Roepstorff, 2012). However,
observational mu suppression has been studied almost exclusively
using disembodied, non-social stimuli. The current results show that
mobile brain/body imaging (MoBI; Makeig et al., 2009) methods can
capture this phenomenon during social interactions. This has implica-
tions for future studies of social development. Infants and young chil-
dren spend most of their waking hours embedded in face-to-face
social interactions. Their experiences are structured by other people, es-
pecially caregivers, who act as ‘gatekeepers’ for infants' social activities,
and engage infants and toddlers in a widening variety of social interac-
tions. Through these interactions, the developing brain is trained for
several years in a daily immersive ‘social boot camp’. To understand
human social development, we must investigate how the developing
brain responds to these social experiences. By studying brain activity
in ‘live’ social interactions, we can learn how the capacity to participate
in everyday social experiences develops.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.02.055.
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