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Abstract

Whole-brain network analyses remain the vanguard in neuroimaging research, coming to 

prominence within the last decade. Network science approaches have facilitated these analyses 

and allowed examining the brain as an integrated system. However, statistical methods for 

modeling and comparing groups of networks have lagged behind. Fusing multivariate statistical 

approaches with network science presents the best path to develop these methods. Toward this 

end, we propose a two-part mixed-effects modeling framework that allows modeling both the 

probability of a connection (presence/absence of an edge) and the strength of a connection if it 

exists. Models within this framework enable quantifying the relationship between an outcome 

(e.g., disease status) and connectivity patterns in the brain while reducing spurious correlations 

through inclusion of confounding covariates. They also enable prediction about an outcome based 

on connectivity structure and vice versa, simulating networks to gain a better understanding of 

normal ranges of topological variability, and thresholding networks leveraging group information. 

Thus, they provide a comprehensive approach to studying system level brain properties to further 

our understanding of normal and abnormal brain function.
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Introduction

Whole-brain functional magnetic resonance imaging (fMRI) network analyses have moved 

to the forefront of neuroimaging research over the last decade. fMRI measures localized 

brain activity by capturing changes in blood flow and oxygenation via the blood oxygen 

level-dependent (BOLD) contrast (Ogawa et al., 1990). These measurements are recorded 

from cubic subdivisions of the brain roughly a few millimeters in size called voxels. 

Averaging the BOLD signal time series across voxels within specified regions provides 

coarser representations. Functional connectivity analysis (FC) examines functional 

similarities between time series pairs in specified voxels or regions (Sporns, 2010; Biswal et 

al., 1995; Friston, 1994). Functional brain network analysis serves as a distinct subfield of 

connectivity analysis in which functional associations are quantified for all n time series 

pairs to create an interconnected representation of the brain (a brain network). The resulting 

n × n connection matrix is generally thresholded to create a binary adjacency matrix that 

retains “significant” connections while removing weaker ones. Weighted (continuous) 

network analyses, which we focus on here, have gained traction but still lag behind due to 

computational and methodological challenges they pose (Telesford et al., 2011; Rubinov and 

Sporns, 2011; Ginestet et al., 2011). The connection matrix is still often thresholded to 

remove negative connections (for reasons noted in Telesford et al., 2011; Cao et al., 2014; 

and others) and/or weak connections in the continuous case. A schematic exhibiting this 

network generation process is presented in Figure 1.

This emerging area of fMRI brain network analysis allows studying the brain as a system, 

providing profound clinical insight into the link between system level properties and 

behavioral and health outcomes (Biswal et al., 2010; Sporns, 2010; Bullmore and Sporns, 

2009; Bassett and Bullmore, 2009). The application of network science (an interdisciplinary 

offshoot of graph theory) has facilitated these analyses and our understanding of how the 

brain is structurally and functionally organized. Both binary and weighted versions of graph 

metrics such as degree, clustering coefficient, path length, efficiency, centrality, and 

modularity serve as common descriptive topological properties of interest. While network 

science has catalyzed a paradigmatic shift in neuroscience, methods for statistically 

modeling and comparing groups of networks have lagged behind (Simpson et al., 2013a). 

These comparisons have great appeal for researchers interested in gaining further insight 

into complex brain function and how it changes across different mental states and disease 

conditions. Most current approaches to modeling and comparing brain networks either rely 

on a specific extracted summary metric (e.g., clustering coefficient) which may lack clinical 

use due to low sensitivity and specificity, or on mass-univariate nodal or edge-based 

comparisons that ignore the inherent topological properties of the network while also 

yielding little power to determine significance (Zalesky et al., 2010; Ginestet et al., 2014). 

While some univariate approaches like the network-based statistic (NBS) (Zalesky et al., 

2010) have proven useful, gleaning deeper insights into normal and abnormal changes in 

complex functional organization demands methods that leverage the wealth of data present 

in an entire brain network. This systemic organization confers much of our brains’ 

functional abilities as functional connections may be lost due to an adverse health condition 

but compensatory connections may develop as a result in order to maintain organizational 
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consistency and functional performance. Consequently, brain network analysis necessitate a 

multivariate modeling framework that allows assessing the effects of multiple variables of 

interest and topological network features (e.g., demographics, disease status, nodal 

clustering, nodal centrality, etc.) on the overall network structure. That is, if we have

we want the ability to model the probability density function of the network given the 

covariates P (Yi|Xi, θi), where θi are the parameters that relate the covariates to the network 

structure.

More recent brain network comparison methods that attempt to better exploit the topological 

features of network data include the exponential random graph modeling framework 

(ERGM) (Simpson et al., 2011, 2012), the permutation network framework (PNF) (Simpson 

et al., 2013b), and the multivariate distance matrix regression (MDMR) framework 

(Shehzad et al., 2014). While all show promise, they lack the flexibility of the modeling and 

inferential tools developed for fMRI activation data. The ERGM framework allows 

efficiently representing complex network data and inherently accounts for higher order 

dependence/topological properties, but multiple-subject comparisons can pose problems 

given that these models were originally developed for the modeling of one network at a time 

(Simpson et al., 2011). Moreover, the amount of programming work increases linearly with 

the number of subjects since ERGMs must be fitted and assessed for each subject 

individually (Simpson et al., 2012). Incorporating novel metrics (perhaps more rooted in 

brain biology) may be difficult due to degeneracy issues that may arise (Handcock, 2002; 

Rinaldo et al., 2009; O'Malley, 2013). While well-suited for substructural assessments, 

edge-level examinations remain difficult with these models. Additionally, most ERGM 

developments have been for binary networks; approaches for weighted networks have been 

proposed but remain in their infancy (Krivitsky, 2012; Desmarais and Cranmer, 2012). The 

PNF approach enables comparing groups of brain networks by assessing the topological 

consistency of key node sets within and between groups. However, it is a strictly inferential 

(and not modeling) approach, and thus precludes quantifying and predicting relationships 

between disease outcomes and network structure, and simulating network structure. Unlike 

the PNF, the MDMR framework allows controlling for confounding covariates in group 

comparisons via a “psuedo-F” statistic; however, it too lacks the ability to simulate networks 

or make predictions. It also fails to account for the dependence in connectivity patterns 

across voxels.

To address the limitations of the current methods, we propose a two-part mixed-effects 

modeling framework that allows modeling both the probability of a connection (presence/

absence of an edge) and the strength of a connection if it exists. Models within this 

framework enable quantifying the relationship between an outcome (e.g., disease status) and 

connectivity patterns in the brain while reducing spurious correlations through inclusion of 

confounding covariates. The models provide a means to test for overall group differences in 

the strength and probability of network connections, group differences in network topology, 
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and individual edge differences (edge covariates can be easily implemented in the model) 

while accounting for the complex dependence structures of the networks. They also enable 

prediction about an outcome based on connectivity structure and vice versa, simulating 

networks to gain a better understanding of normal ranges of topological variability, and 

thresholding networks leveraging group information. In short, this multivariate statistical 

and network scientific fusion approach allows going beyond just reporting an omnibus 

group comparison p-value and enables a more thorough examination of system level 

properties.

Moreover, our framework provides the first baseline multivariate brain network modeling 

approach, from which incremental modifications can be made going forward. As noted, 

current statistical methods in brain network analysis focus on direct inference, comparing 

some characteristic of two groups of networks. However, to our knowledge, there is no 

framework that allows multivariately modeling the probability distribution of (weighted) 

networks as a function of endogenous (network metrics) and exogenous (demographics, etc.) 

covariates (i.e., a multivariate multiple regression approach). Thus, no comparable 

alternatives currently exist. This lack of a baseline modeling framework served as the 

impetus for our work. In addition to providing more appropriate group comparisons by 

accounting for the dependence structure of the network and allowing the inclusion of 

confounding covariates, the power of our approach is that in modeling network distributions, 

it is the only approach that allows exploring the relationship between covariates and all 

network connections simultaneously, predicting networks based on participant 

characteristics, and simulating networks from the modeled distributions. Thus our approach 

can be seen as providing a needed analytic foundation and a complementary statistical tool 

to those that have been developed thus far.

For the following discussion of the two-part mixed-effects modeling framework, we 

describe the motivating data concerning age-related cognitive decline in the next section. 

We then detail our modeling approach and its utility and use the aging data to illustrate the 

use of the proposed framework. We conclude with a summary discussion including planned 

future research.

Materials and methods

Motivating example

Our data come from a prior study that aimed to assess the neurological underpinnings of 

age-related cognitive decline by examining the effects of aging on the integration of sensory 

information (Hugenschmidt et al. 2009). The study has two age groups, healthy young adults 

aged 27 + 5.8 years old (n=20) and healthy older adults aged 73 + 6.6 years old (n=19). 

Three separate conditions of fMRI scans were used, resting, visual (viewing of a silent 

movie), and multisensory (MS) (visual and auditory - movie with sound), each lasting 5.6 

minutes. Further details about these conditions along with additional network analyses can 

be found in a previous publication (Moussa et al., 2011). For each fMRI scan, blood-

oxygen-level dependence (BOLD) contrast was measured using a 1.5T MRI scanner and a 

whole-brain gradient echo- planar imaging (EPI) sequence with the following parameters: 
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200 volumes with 24 contiguous slices per volume; slice thickness = 5.0 mm; in-plane 

resolution of 3.75 mm × 3.75 mm; TR = 1700ms.

To process the data, functional scans were normalized to standard brain space with a 4 × 4 × 

5 mm voxel size. Data were band pass filtered (0.00765-0.068 Hz), and motion parameters, 

global signal, and mean white matter (WM) and cerebral spinal fluid (CSF) signals were 

regressed from the imaging data. Brain networks for each participant were then constructed 

by calculating Pearson correlation coefficients between the time courses of all node pairs 

adjusted for motion and physiological noises (see Hayasaka and Laurienti, 2010 for further 

details). These node time courses were obtained by averaging the voxel time courses in the 

90 distinct anatomical regions (90 ROIs-Regions of Interest) defined by the Automated 

Anatomical Labeling atlas (AAL; Tzourio-Mazoyer et al., 2002). Refer to the Introduction 

and Figure 1 for further discussion on brain network generation.

It is important to note that our modeling framework is independent of the method used to 

generate (estimate) the network (e.g., full correlation, partial correlation, mutual 

information, generalized synchronization, etc.). We use full correlation here as has been 

standard in network analyses. Partial correlation better distinguishes direct from indirect 

connections, and improving and employing partial correlation methodology may ultimately 

be the best approach. However, when calculating connectivity for a large number of region 

pairs, partial correlation may underperform full correlation due to the small fraction of 

indirect connections and the overremoval of signal resulting from the large number of 

regressors (Smith et al., 2011). Moreover, the estimation of partial correlation via 

computation of the inverse of the covariance matrix becomes unstable as the number of 

regions approaches the number of time points, and the covariance matrix becomes 

noninvertible when the number of regions surpasses the number of time points. 

Regularization and other methods have been proposed to attempt to address this 

computational issue, but have still been limited to fairly coarse networks (Ryali et al., 2012, 

Chen et al., 2013 , Seghouane and Khalid 2012). We speculate that the quantitative results 

(magnitude of parameter estimates) of our modeling approach would vary some as a 

function of the network estimation method used, but that the qualitative findings (inferential 

conclusions) would remain the same. Future work will examine this speculation.

Two-part mixed modeling framework for weighted brain networks

Definition—Given that we have positively weighted networks, with negative weights set to 

0/no connection (for reasons noted in Telesford et al., 2011; Cao et al., 2014; and others), a 

two-part mixed-effects model will be employed in order to be able to model both the 

probability of a connection (presence/absence) and the strength of a connection if it exists. 

Several two-part models have been proposed in the literature for a variety of applications 

(Liu et al., 2008; Albert and Shen, 2005; Tooze et al., 2002). However, they have yet to be 

developed for networks in general or, more specifically, for brain networks.

Let Yijk represent the strength of the connection (quantified as the correlation in our case) 

and Rijk indicate whether a connection is present (presence variable) between node j and 

node k for the ith subject. Thus, Rijk = 0 if Yijk = 0, and Rijk = 1 if Yijk > 0 with conditional 

probabilities
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(1)

where βr is a vector of population parameters (fixed effects) that relate the probability of a 

connection to a set of covariates (Xijk) for each subject and nodal pair (dyad), and bri is a 

vector of subject- and node-specific parameters (random effects) that capture how this 

relationship varies about the population average (βr) by subject and node (Zijk). Here Zijk is 

the design matrix for subject i that contains the covariate values corresponding to the 

respective random effects bri (i.e., it is analogous to Xijk for the fixed effects βr). Hence, 

pijk(βr; bri) is the probability of a connection between nodes j and k for subject i. We then 

have the following logistic mixed model (part I model) for the probability of this 

connection:

(2)

This transition from the assumptions in Equation 1 to Equation 2 is classical in statistics 

given that logistic regression models are used to predict binary responses from covariate 

information. That is, they model the probability of a binary outcome as a function of 

variables of interest. Thus, Equation 2 provides a standard framework for estimating the 

probabilities in Equation 1. For the part II model, which aims to model the strength of a 

connection given that there is one, we let Sijk = [Yijk|Rijk = 1]. In our case, the Sijk will be the 

values of the correlation coefficients between nodes j and k for subject i. We can then use 

Fisher's Z-transform, denoted as FZT, and assume normality (we have empirically observed 

normality in strength distributions and the modeling assumption of normality given the 

covariates was assessed and met for our data) for the following mixed model (part II model)

(3)

where βs is a vector of population parameters that relate the strength of a connection to the 

same set of covariates (Xijk) for each subject and nodal pair (dyad), bsi is a vector of subject- 

and node-specific parameters that capture how this relationship varies about the population 

average (βs) by subject and node (Zijk), and eijk accounts for the random noise in the 

connection strength of nodes j and k for subject i. Again Zijk is the design matrix for subject 

i that contains the covariate values corresponding to the respective random effects bsi.

The covariates (Xijk) used to explain and predict both the presence and strength of 

connection are 1) Net: the average of the following network measures (categorized in Table 

1 and further detailed in Simpson et al., 2013a and Rubinov and Sporns, 2010) in each dyad: 

Clustering (C), Global Efficiency (Eglob), Degree (k) (difference instead of average to 

capture “assortativity”), Modularity (Q), and Leverage Centrality (l); 2) COI: Covariate of 

Interest (Age Group in our case); 3) Int: Interactions of the Covariate of Interest with the 

metrics in 1) and Sex; and 4) Con: Confounders (Sex, Years of Education, Spatial Distance 

(between nodes) [importance of geometric distance noted by Friedman et al., 2014], and the 

square of Spatial Distance in our case). Thus, we can decompose βr and βs into βr = [βr,0 

βr,net βr,coi βr,int βr,con]′ and βs = [βs,0 βs,net βs,coi βs,int βs,con]′ to correspond with the 
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population intercepts and these covariates. For the random-effects vectors we have that bri = 

[bri,0 bri,net bri,dist δri,j δri,k]′ and bsi = [bsi,0 bsi,net bsi,dist δsi,j δsi,k]′, where bri,0 and bsi,0 

quantify the deviation of subject-specific intercepts from the population intercepts (βr,0 and 

βs,0), bri,net and bsi,net contain the subject-specific parameters that capture how much the 

relationships between the network measures in 1) and the presence and strength of a 

connection vary about the population relationships (βr,net and βs,net respectively, bri,dist and 

bsi,net contain the subject-specific parameters that capture how much the relationship 

between spatial distance and the presence and strength of a connection vary about the 

population relationships respectively, δri,j and δsi,j contain nodal-specific parameters that 

represent the propensity for node j (of the given dyad) to be connected and the magnitude of 

its connections respectively, and δri,k and δsi,k contain nodal-specific parameters that 

represent the propensity for node k (of the given dyad) to be connected and the magnitude of 

its connections respectively. In general, additional covariates can also be incorporated as 

guided by the biological context. For example, if interested in which individual connections 

are responsible for a found topological difference between groups, and if the connections 

responsible are consistent across subjects within a group, indicator variables for those dyads 

along with the relevant interactions of those dyadic indicator variables with network metric 

covariates and grouping variable of interest can be added to the model. To illustrate, 

consider the result we found (see Results section) that dyads with higher clustering (C) tend 

to have stronger connections in older adults than young adults. The parameter estimate for 

an interaction between a specific dyad, age group, and C would indicate whether that 

specific pair of brain areas is consistent with (responsible for) higher strength in older adults 

when C is higher. A zero or positive estimate would indicate that the brain areas play a role 

in the noted difference. A negative estimate would indicate that the brain areas play less of a 

role or may even counter the noted difference depending on its magnitude. However, since 

system level topological differences may differ greatly in their locations across subjects 

within groups, it is possible that no unique brain region pairs are responsible for the 

differences. These differences point to organizational but not necessarily location 

differences between groups. A step-down inspection of which brain area pairs in a given 

individual within a group contribute to the results could be conducted by examining the 

average C of the brain region pairs, for instance, and the strength of the given connections.

We assume that bri, bsi, and ei = {eijk} are normally distributed and mutually independent, 

with variance component covariance structures for bri and bsi, and the standard conditional 

independence structure for ei. That is,  where 

 and 

 where 

 are the q( = 98)×1 vectors of 

variances for each element of the random effects vectors, and . Thus, 

each nodal variance component contributes equally to the connections of the given node. We 

believe that this is a reasonable assumption as the variance component serves as the average 

(latent) propensity of a node to be connected (and the magnitude of its connections) above 

and beyond other factors in the model that contribute to its connectivity. Having one 
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component per node allows capturing this additional variability while maintaining 

parsimony so as not to overfit the model or make it computationally infeasible. We 

considered more parameterized models (e.g., a variance component for all 4005 nodal pairs), 

but they failed to converge regardless of the optimization approaches employed. Here 

parameter estimation is conducted via restricted pseudo-likelihood (Wolfinger and 

O'Connell, 1993) with the residual approximation of the F-test for a Wald statistic employed 

for inference. However, the model can also be imbedded within other appropriate estimation 

and inferential approaches.

It is important to note that the explanatory network metric covariates (Table 1) are computed 

on (functions of) the networks for each individual. In the network literature these are 

referred to as endogenous covariates because they are inherent features of the outcome 

variable (observed networks), as opposed to the other exogenous variables (demographics, 

etc.) which are not. There is a long history of modeling a network as a function of 

endogenous network metrics to identify how nodal properties are related to the probability 

(and strength) of connections (O'Malley, 2013; Simpson et al., 2011, 2012; Robins et al., 

2007). Part of the motivation for our modeling framework was the desire to port this 

approach into the multiple-network context and blend it with the more standard exogenous 

covariate approach to create a hybrid method that allows examining and accounting for both 

an individual's endogenous network structure and exogenous phenotypic characteristics in a 

manner suitable for brain network analyses. The network metric covariates allow examining 

how nodal properties influence the connection between two brain areas. More specifically, 

the parameter estimates associated with the metrics indicate the expected change in the log 

odds of an edge existing and change in the strength of an existing edge for each unit increase 

in the corresponding network metric (see Appendix for further details).

In general, two-part models allow the modeling of semicontinuous outcomes in which a 

large portion of responses equal 0 (non-connections in our case) and the remaining 

responses come from a continuous distribution (strength values in our case). Distributional 

assumptions preclude modeling the data in a standard single-model fashion (Albert and 

Shen, 2005; Liu et al., 2008). The two model parts can be estimated separately or jointly. 

Current joint modeling approaches have been computationally limited to estimating an 

additional parametric function representing the correlation between one random effect in the 

part I model and one in the part II model. Given that we have 98 random effects in each part 

of our model, and that preliminary analyses found no correlation between subject-specific 

random intercepts in the two parts, we estimated the two parts separately via the approach 

noted in the previous paragraph. One could just employ the part I model by binarizing all 

values if only interested in edge presence, but that would provide a much less powerful and 

informative analysis given that the information on strength is ignored. Similarly, one could 

just model the positive values using the part II model, but that omits around half of the data 

(that are equal to 0) and ignores the fact the relationship between covariates and edge 

presence is different than the relationship between those covariates and edge strength (as 

evidenced by the different parameter estimates for the two model parts in our Results 

section). Thus, the two model parts provide different, but complementary information.
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As alluded to in the Introduction, and detailed in the next section, our modeling framework 

allows explaining the relationship between covariates and network connectivity, comparing 

network connectivity among groups, predicting network connectivity based on participant 

and nodal characteristics, simulating networks as a means of assessing goodness-of-fit 

(GOF) and gaining a better understanding of network topological variability, and 

thresholding networks leveraging group information. For explaining, comparing, and 

thresholding, we remove random effects with estimated variance components equal to zero 

from the model detailed above in order to preserve power and control test size (Littell, 

2006). For predicting and simulating networks we employ the full model as our GOF 

assessments have shown that it better captures network topology.

Framework Utility

1. Explain: Our framework allows explaining (quantifying) the relationship between 

endogenous network features and the probability and strength of a connection between 

nodes (brain areas) via estimation of βr,net and βs,net, the relationship between exogenous 

covariate(s) of interest and confounders and the probability and strength of connections via 

estimation of βr,coi, βr,con, βs,coi and βs,con, and if (and how) the relationships between 

network features and the probability and strength of connections varies for different values 

of the covariate(s) of interest (between young and older adults in our case) via estimation of 

βr,int and βs,int. Specific interpretations of fixed effect parameters (after centering continuous 

covariates) for our data context are given in the Appendix.

2. Compare: In addition to simply quantifying the relationship between covariates and the 

presence and strength of connections while reducing spurious correlations through inclusion 

of confounding covariates, this framework also allows making formal statistical 

comparisons about connectivity, network structure, and edge properties between groups 

(e.g., young vs. old, healthy vs. diseased, etc.). The Appendix contains illustrative 

interpretations of possible combinations of significant and non-significant parameters for 

our comparison of young and older adults.

3. Predict: Our approach enables making predictions about brain function in several ways:

1) Predictions about the presence and strength of connections between brain 

regions based on a disease or behavioral outcome of a participant can be made 

by “learning” the model parameters (estimating the βs) and then using this 

estimated model for predictions based on new data, thus providing a quantitative 

means to improve diagnoses, prognoses, and treatment planning;

2) Predictions about the topological relationships between network metrics and the 

presence and strength of connections based on participant characteristics;

3) Predictions about network structure and its variability via simulations of 

networks based on model fits (see next subsection).

Given our research interest for the aging data, we focus on the latter two. In the Results/

Predict subsection we focus on 2) for the example data, with a discussion of making 
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predictions about network structure and its variability reserved for the following subsection 

and Results/Simulate subsection.

4. Simulate: The two-part mixed modeling framework can also be used to simulate random 

realizations of networks that retain constitutive characteristics of the original networks. The 

fitted model yields both a probability mass function for the likelihood of network 

connections (Equation 2) and probability density function for the strength distribution of 

network connections (Equation 3) given the covariates. Consequently, group- and 

individual-level networks can be simulated from this joint distribution, by following the 

approach of Song et al. (2013) for example, providing a number of benefits delineated 

below.

1) Model goodness-of-fit (GOF) assessment(s) aligned with the research 

question(s) of interest: Simulations allow assessing many facets of model fit by 

comparing a set of descriptive metrics (means, medians, distributions, etc.) from 

the simulated networks with those of the observed networks. For good fitting 

models, the metrics of interest should closely match (Simpson et al., 2011).

2) Representative group-based network creation with anatomical (dyadic) 

information incorporated: This simulation framework fits all networks 

simultaneously and thus it does not become more labor intensive to create 

representative networks with an increasing sample size as is the case with the 

ERGM based approach (Simpson et al., 2012). Also unlike the ERGM approach, 

it enables refining the process through the inclusion of additional biologically 

relevant variables and anatomical information.

3) Network variability assessment: Insight into biological variability can be 

gleaned via the distribution of possible brain networks produced from the 

simulations. These analyses can aid in elucidating network level features that 

play a role in various brain disorders. For instance, our aging study analyses 

showed that young subjects have more degree assortative networks during the 

visual and multisensory tasks. We can empirically examine how this difference 

affects the variability of simulated networks, thus helping to illuminate 

neurological mechanisms that lead to age-related cognitive decline (e.g., lack of 

interconnectivity among high degree brain areas leads to less stability in 

neuronal communication in the brains of older adults).

The validity of the results from 2) and 3) (as well as most other subsequent analyses) require 

a good fitting model, thus we focus on 1) here.

5. Threshold: As noted in previously, additional covariates can be included as guided by the 

questions of interest. As a consequence, this framework provides a powerful approach to 

network thresholding via inclusion of dyadic indicator variables. Given the sensitivity of 

network topology (and subsequent network analyses) to the thresholding process, 

approaches that refine this process are paramount (Simpson et al., 2013a; van Wijk et al., 

2010). As opposed to most approaches which just use individual participant-level data to 

threshold a network (Telesford et al., 2011), our framework allows leveraging group-level 

Simpson and Laurienti Page 10

Neuroimage. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data for this purpose. Better distinguishing between “true” weak connections and those 

resulting from noise may mitigate some of the challenges associated with weighted network 

analysis and provide more confidence in resulting conclusions (Simpson et al., 2013a).

Results

We analyzed the aging study data with the two-part mixed-effects modeling framework. All 

standard modeling assumptions and diagnostics were checked (Muller and Fetterman, 2002; 

Cheng et al., 2009). With the appropriate choice of estimation and inferential algorithms, 

model fitting is quite fast. On a Windows computer with 16GB of RAM and 3.40GHz 

processor, the fit (with the estimation and inferential algorithms noted in the model 

definition section) for each condition took approximately four minutes (not counting the 

time it takes to calculate the network metric covariates that go into the model) in SAS v9.3. 

Contrastingly, for example, fitting takes over four days when employing the Satterthwaite 

(as opposed to residual) approximation of the F-test for a Wald statistic for inference. In this 

case, the two approximations yielded virtually identical results. Here we illustrate the 

framework's ability to explain, compare, predict, and simulate. We provide the essential 

SAS macros employed in these illustrations in Supplementary Appendices S1-S3 (portions 

of the code were modified from Song et al., 2013). Future work will provide a thorough 

examination of its thresholding capabilities as this will require a paper in itself.

1. Explain

The resulting parameter estimates, along with the standard errors and p-values (based on the 

residual approximation of the F -test for a Wald statistic), associated with each of the fixed 

effect covariates for each scan condition are presented in Table 2. These estimates quantify 

(explain) the relationship between the endogenous network features and the probability and 

strength of a connection between nodes (brain areas), the relationship between age and the 

confounders (sex, years of education, spatial distance between regions, and the square of 

spatial distance) and the probability and strength of connections, and if (and how) the 

relationships between network features and the probability and strength of connections 

varies between young and older adults (see the Appendix for detailed interpretations of each 

parameter).

As evidenced by the magnitude of the estimates in the table relative to their standard errors, 

global efficiency (Functional Integration) and leverage centrality (Information Flow) play an 

important role in explaining the presence of connections between two brain regions across 

task conditions, while clustering (Functional Segregation) serves as a relatively important 

factor in the strength of these connections. Clustering also proves important in brain 

connectivity for young adults, but not older adults, during the visual and multisensory tasks. 

Spatial distance well predicts connection probability and strength across task conditions.

2. Compare

Below is a summary of the important inferential results from the analysis of the aging data 

gleaned from Table 2 (bolded p-values).
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Rest: Presence – No Age Differences

Strength – Old: - Same as Young when C, Eglob, l, and Q are equal to their averages

                        - Increases and higher than Young when C, Eglob, and l increase

                        - Decreases and lower than Young when Q increases

Conclusion: There are no age-related differences in the overall number of connections. The age-related 
differences in the overall strength of connections vary by dyadic clustering, global efficiency, and leverage 
centrality, and overall modularity. More specifically, older adults have stronger connections between nodes 
with higher clustering, global efficiency, and leverage centrality values, and weaker overall connection strength 
with higher overall modularity than young adults.

Visual: Presence – Old: - Same as Young when C, Eglob, l, and k difference are equal to their averages

                        - Increases and higher than Young when k difference increases

                        - Decreases and lower than Young when C, Eglob, and l increase

Strength — Old: - Same as Young when l is equal to its average

                        - Increases and higher than Young when l increases

Conclusion: The age-related differences in the overall number of connections vary by dyadic clustering, 
global efficiency, leverage centrality, and degree difference. More specifically, older adults are less likely to 
have connections between nodes with higher clustering, global efficiency, and leverage centrality values, and 
more likely to have connections between nodes with a greater degree difference (less assortative) than 
younger adults. The age-related differences in the overall strength of connections vary by dyadic leverage 
centrality. More specifically, older adults have stronger connections between nodes with higher leverage 
centrality values than young adults.

Multi: Presence – Old: - Same as Young when C and k difference are equal to their averages

                        - Increases and higher than Young when k difference increases

                        - Decreases and lower than Young when C increases

Strength – Old: - Lower for Old Males when Eglob and l are equal to their averages

                        - Same as Young for Old Females when Eglob and l are equal to their averages

                        - Increases faster for Old than Young when Eglob and l increase

Conclusion: The age related differences in the overall number of connections vary by dyadic clustering and 
degree difference. More specifically, older adults are less likely to have connections between nodes with 
higher clustering, and more likely to have connections between nodes with a greater degree difference (less 
assortative) than young adults. The age-related differences in the overall strength of connections vary by 
dyadic global efficiency and leverage centrality. More specifically, connection strengths increase faster for 
older adults between nodes as dyadic global efficiency and leverage centrality values increase. Additionally, 
older women have more overall connection strength than older men.

These comparison results provide a fairly comprehensive appraisal of structural differences 

between young and older adults. While plausible biological interpretations would be quite 

speculative at this point, the less degree assortative network structure in older adults during 

the visual and multisensory tasks provides a more explicable finding. Degree assortativity 

implies the existence of a resilient core of interconnected high-degree hubs (highly 

connected brain regions). During the performance of a task, the high degree nodes are those 

that belong to task-relevant networks (Moussa et al., 2011; Rzucidlo et al., 2013; Ma et al., 

2012; Cao et al., 2014). The loss of assortativity in the older adults during the tasks suggests 

that there is reduced connectivity within the task-relevant networks and greater connectivity 
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to other network nodes. This finding is consistent with cognitive studies showing that older 

adults are more vulnerable to distraction when performing tasks (Alain and Woods, 1999; 

Darowski et al., 2008; Grady et al., 2006).

3. Predict

Here we illustrate the utility of the modeling framework for prediction with the aging study 

data by focusing on degree (k) difference. Predictions based on other network metrics can be 

done similarly. Figure 2 shows the 95% prediction intervals for connection probability and 

strength as a function of degree difference in young and older participants at rest, during the 

visual task, and during the multisensory task. The 95% prediction interval provides a model-

based definition of normal range for both groups. In contrast to confidence intervals which 

yield an (narrower) interval estimate for an average of participants, the prediction interval 

gives an interval estimate for a single participant. As can be seen from the figure, older 

adults have a higher predicted connection probability when two nodes have the same degree; 

however, this probability drops off at a slightly faster rate than for the young as the disparity 

between the degrees of two nodes increases at rest and during a visual task. That is, older 

adults are predicted to have brain networks that are more degree assortative than young 

adults at rest. Contrastingly, younger adults are predicted to have more degree assortative 

networks during visual and multisensory tasks given the faster decay of their connection 

probabilities. As noted in the previous section, this finding is consistent with the hypothesis 

that older adults tend to be more distractable, or be more cognitively vulnerable, while 

engaged in a task. Also as evidenced by Figure 2, older adults have a lower predicted 

connection strength that parallels the decay of the young adults as the disparity between the 

degrees of two nodes increases at rest, during a visual task, and during a multisensory task. 

That is, an older adult is likely to have weaker coupling between brain region pairs than a 

young adult regardless of the regional connectivity patterns.

4. Simulate

To assess the goodness-of-fit of our model to the aging study data, and to illustrate the utility 

of our framework for simulating realistic brain networks, we simulated 100 networks based 

on the fitted models to the data at rest, during the visual task, and during the multisensory 

task. We then calculated several (weighted) descriptive metrics commonly used in the 

neuroimaging literature for the observed and simulated networks. Table 3 displays the 

results for clustering coefficient (C), global efficiency (Eglob), characteristic path length (L), 

mean nodal degree (K), leverage centrality (l), and modularity (Q). As evidenced by the 

results, the simulated networks are very similar to the observed networks in terms of 

clustering, path length, and global efficiency, and relatively similar for leverage centrality 

and degree across task conditions. While the simulated networks are not as similar for 

modularity, our method provides a huge step forward methodologically given that, to our 

knowledge, it is the only approach that allows the simulation of weighted networks that 

capture several important topological properties simultaneously. Moreover, the framework 

serves as a foundation upon which future work can further refine network simulation 

accuracy.
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5. Threshold

Implementing the group-level thresholding approach requires adding indicator variables for 

the dyads of interest to the strength model defined in Equation 3 and then appropriately 

assessing the significance of the associated parameter. Adding interactions of the grouping 

variable (e.g., age group in our case) and the dyads of interest allows leveraging the data in a 

particular group, as opposed to all groups, in assessing the significance of a dyad. Non-

significant dyads can be considered candidates for removal from the networks of 

participants with weak connections in those areas. As noted earlier, future work will 

examine this thresholding capability and assess its performance in the brain network context 

as it necessitates a paper in itself.

Discussion

The recent explosion of brain network analyses has led to a paradigm shift in neuroscience; 

however, the statistical methods needed to draw deeper biological insights from these 

analyses have lagged behind. Our two-part mixed-effects modeling framework fills this void 

and provides a comprehensive approach to studying system level brain properties to further 

our understanding of normal and abnormal brain function as illustrated by our analysis of 

the aging study data. As detailed in Materials and methods, the approach allows explaining 

the relationship between covariates and network connectivity, comparing network 

connectivity among groups, predicting network connectivity based on participant and nodal 

characteristics, simulating networks as a means of assessing goodness-of-fit (GOF) and 

gaining a better understanding of network topological variability, and thresholding networks 

leveraging group information.

Future work within this framework will focus on further demonstrating its simulation 

capabilities and thoroughly assessing its utility as a network thresholding aid as previously 

discussed. Generating accurate and informative representative group-based networks via 

simulation provides one avenue for inquiry that has been underexplored in the literature 

(Simpson et al., 2012). Additionally, creating signature networks via individual and group-

level simulations and examining the subsequent distributions of these generated networks 

may prove useful in disease prediction. For example, we plan to apply our approach to data 

from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to determine if simulated 

networks and their distributions at baseline are predictive of cognitive decline at follow up.

Modifications and extensions to our framework also provide opportunities for future 

research. The movement of the field toward more resolved network atlases (hundreds or 

thousands of nodes) will likely necessitate the development of dimension reduction methods 

that can be appropriately overlaid on our approach. Even with 90 nodes there are 4005 

dependent variables (possible connections) per participant, requiring careful choice of the 

estimation and optimization algorithms, as well as the denominator degrees of freedom 

approximation (used for inference) for convergence (Kiernan et al., 2012). With 1000 nodes 

the number of dependent variables for each participant's network jumps to 499,500. 

Longitudinal (or multitask) brain network modeling remains an untapped area in need of 

development (Simpson et al., 2013a). Extending our static modeling approach to this domain 

via incorporation of time-dependent random effects or Kronecker product covariance 
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modeling (Galecki, 1994; Naik and Rao, 2001; Simpson, 2010; Simpson et al., 2014a; 

Simpson et al., 2014b) provides a potential solution. For the latter, following the notation in 

equations 2 and 3, we could assume that the random error is distributed 

, where σ2(task) is the variability of connections 

strengths across the network dyads and varies by task, Γ contains the correlations between 

tasks, and Ω contains the correlations between connection strengths of dyads which may be 

modeled explicitly or assumed to have the standard conditional independence structure (i.e., 

Ω = σ2I). Specification of the structure for ! should be informed by the study design and 

examination of observed correlations (Simpson et al., 2013a). Incorporating negative 

connections (i.e., negatively correlated nodes/brain regions) into static or longitudinal brain 

network analyses will also prove important. The lack of metrics for quantifying functional 

segregation and integration (e.g., C and Eglob) with negatively weighted edges remains the 

current limiting factor.

Our framework is situated at the interface of statistical, network, and brain science, 

providing a synergistic analytic foundation for whole-brain network data. As mentioned 

above, this flexible approach can be modified and extended to refine its utility. It provides a 

step toward filling the methodological needs of the emerging area of brain network analysis 

and will engender deeper insights into the complex neurobiological interactions and changes 

that occur in many brain diseases and disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Parameter interpretations

Specific interpretations of fixed effect parameters (after centering continuous covariates) for 

our data context are given below.

βr,0 and βs,0

The log odds of an edge existing and the average strength of that connection for dyads with 

average values for the network metrics and spatial distance from the network of a young 

male with the average educational attainment.
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βr,net and βs,net

The change in the log odds of an edge existing and the average strength of that connection 

for a dyad with each unit increase in the given network metric from the networks of young 

adults.

βr,age and βs,age

The change in the log odds of an edge existing and the average strength of that connection 

for dyads from the networks of older males with average values for the network metrics.

βr,sex and βs,sex

The change in the log odds of an edge existing and the average strength of that connection 

for dyads from the networks of younger females.

βr,educ and βs,educ

The change in the log odds of edges existing and the average strength of those connections 

with each year increase in educational attainment.

βr,dist/βr,dist2 and βs,dist/βs,dist2

The quadratic change in the log odds of an edge existing and the average strength of that 

connection with each mm (scaled to dm for model fit) increase in spatial distance between 

the two nodes of a given dyad.

βr,age×net and βs,age×net

The additional change (relative to βr,net and βs,net) in the log odds of an edge existing and the 

average strength of that connection for a dyad with each unit increase in the given network 

metric from the networks of older adults.

βr,age×sex and βs,age×sex

The additional change (relative to βr,sex and βs,sex) in the log odds of an edge existing and the 

average strength of that connection for dyads from the networks of older females.

For illustrative purposes, below are interpretations of possible combinations of significant 

and non-significant parameters for our comparison of young and older adults (NS-not 

significant, S-significant).

βr/s,age(NS), βr/s,age×sex(NS),βr/s,age×net(NS)

No overall connectivity differences (proportion and strength of edges) or topological 

differences (relationship between dyad characteristics and probability and strength of edges; 

i.e., connectivity differences that vary as a function of the value of the network metrics) 
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between young and older adults. May still have differences in specific edges that can be 

assessed by including edge (dyadic) indicator variables in the model as desired.

βr/s,age(NS), βr/s,age×sex(NS),βr/s,age×net(S)

Connectivity differences between young and older adults vary (potentially compensatorily) 

by the values of the network metrics (are functions of the network metrics).

βr/s,age(S), βr/s,age×sex(NS),βr/s,age×net(NS)

Overall connectivity differences, but no topological differences between young and older 

adults.

βr/s,age(S), βr/s,age×sex(NS),βr/s,age×net(S)

Connectivity differences between young and older adults vary (potentially compensatorily) 

by the values of the network metrics (are functions of the network metrics).
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Highlights

• We develop an analytical foundation for whole-brain network data analysis.

• Framework situated at the interface of statistical, network, and brain science.

• Allows modeling the probability and strength of network connections.

• Captures dependence structure & important topological properties of brain 

networks.

• Allows describing, comparing, predicting, simulating, and thresholding 

networks.
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Figure 1. 
Schematic for generating brain networks from fMRI time series data (partially recreated 

from Simpson et al., 2013a and Fornito et al., 2012). Functional connectivity between brain 

areas is estimated based on time series pairs to produce a connection matrix. A threshold is 

commonly applied to the matrix to remove negative and/or “weak” connections.
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Figure 2. 
Prediction intervals for connection probability and strength as a function of degree 

difference in young and older participants at rest, during a visual task, and during a 

multisensory task.
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Table 1

Explanatory network metrics by category

Category Metric(s)

1) Functional Segregation Clustering Coefficient

2) Functional Integration Global Efficiency

3) Resilience Degree Difference

4) Centrality and Information Flow Leverage Centrality

5) Community Structure Modularity
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Table 2

Aging Data: Estimates, Standard Errors (SE), and P-values

Rest Visual Multisensory

Parameter Estimate SE *
P-value Estimate SE *

P-value Estimate SE *
P-value

β r,0 −0.3141 0.0569 < 0.0001 −0.2905 0.0534 < 0.0001 −0.0585 0.0634 0.3556

β r,C 0.7807 0.3424 0.0355 6.7083 0.8969 < 0.0001 13.3638 1.6908 < 0.0001

β r,Eglob 32.6231 2.3322 < 0.0001 34.7897 2.3725 < 0.0001 32.8996 1.9054 < 0.0001

β r,k −1.4442 0.1522 < 0.0001 −1.7862 0.1410 < 0.0001 −2.0598 0.1361 < 0.0001

β r,Q −0.7345 1.1361 0.5179 −0.8004 1.2082 0.5077 −3.1672 1.5257 0.0379

β r,l 1.1598 0.0785 < 0.0001 1.4156 0.0792 < 0.0001 1.5381 0.0919 < 0.0001

β r,age −0.0438 0.07733 0.5709 0.0884 0.0733 0.2279 −0.0200 0.0866 0.8171

β r,sex −0.0085 0.0825 0.9178 0.0413 0.0725 0.5690 −0.0479 0.0984 0.6265

β r,educ 0.0027 0.0103 0.7954 −0.0007 0.0097 0.9467 0.0159 0.0130 0.2212

β r,dist −1.4266 0.0572 < 0.0001 −1.4593 0.0694 < 0.0001 −1.4419 0.0689 < 0.0001

β r,dist 2 2.6558 0.1417 < 0.0001 2.6648 0.1364 < 0.0001 3.0032 0.2079 < 0.0001

β r,age×C 1.1249 0.7986 0.1943 −6.3557 0.9239 < 0.0001 −10.2034 2.3529 < 0.0001

β r,age×Eglob −1.7255 3.3478 0.6063 −7.8023 3.3969 0.0216 −2.3070 2.7258 0.3974

β r,age×k 0.2455 0.2185 0.2873 0.5473 0.2013 0.0066 0.7766 0.1943 < 0.0001

β r,age×Q 1.5858 1.5753 0.3141 2.1234 1.7684 0.2298 3.1948 1.9126 0.0948

β r,age×l 0.0638 0.1154 0.5803 −0.3755 0.1086 0.0005 −0.2247 0.1324 0.0896

β r,age×sex 0.1914 0.1145 0.1301 −0.0544 0.1093 0.6187 0.1490 0.1353 0.2706

β s,0 0.2290 0.0091 < 0.0001 0.2173 0.0133 < 0.0001 0.2380 0.0130 < 0.0001

β s,C 2.2940 0.2428 < 0.0001 2.4104 0.3409 < 0.0001 2.1541 0.2161 < 0.0001

β s,Eglob 0.9534 0.1823 < 0.0001 1.3179 0.1841 < 0.0001 0.9801 0.2003 < 0.0001

β s,k −0.2524 0.0153 < 0.0001 −0.0016 0.0244 0.9468 −0.2523 0.0177 < 0.0001

β s,Q −0.0373 0.1723 0.8285 −0.4926 0.3018 0.1540 −0.6634 0.3120 0.0335

β s,l −0.0036 0.0109 0.7426 0.0032 0.0147 0.8274 −0.0164 0.0126 0.1948

β s,age −0.0106 0.0124 0.4262 −0.0012 0.0180 0.9448 −0.0429 0.0178 0.0157

β s,sex −0.0046 0.0132 0.7263 0.0209 0.0181 0.2995 −0.0341 0.0202 0.0903

β s,educ −0.0009 0.0017 0.5814 −0.0014 0.0024 0.5703 0.0028 0.0027 0.2922

β s,dist −0.1718 0.0054 < 0.0001 −0.1769 0.0055 < 0.0001 −0.1723 0.0054 < 0.0001

β s,dist 2 0.3910 0.0118 < 0.0001 0.3838 0.0141 < 0.0001 0.3902 0.0148 < 0.0001

β s,age×C 0.7214 0.3494 0.0467 0.4342 0.4808 0.3998 0.1812 0.3009 0.5470

β s,age×Eglob 0.7042 0.2623 0.0097 0.1866 0.2640 0.4797 0.6309 0.2864 0.0276

β s,age×k 0.0009 0.0220 0.9662 −0.0016 0.0244 0.9468 0.0024 0.0253 0.9234

β s,age×Q −0.6957 0.2464 0.0071 0.2925 0.3990 0.4635 −0.1478 0.3896 0.7044

β s,age×l 0.0556 0.0157 0.0007 0.0464 0.0209 0.0455 0.0349 0.0183 0.0560

β s,age×sex 0.0001 0.0184 0.9952 −0.0312 0.0269 0.2995 0.0513 0.0276 0.0632

Bold values indicate important age-related inferential results used to draw conclusions in next subsection.
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*
Adjusted using the adaptive FDR procedure detailed in Benjamini and Hochberg (2000).
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Table 3

Weighted network metrics of observed and simulated networks from the aging study data at rest.

Observed (N=39) Simulated (N=100)

Condition Metric Mean (SE) Mean (SE)

Rest Clustering coefficient (C) 0.149 (0.001) 0.155 (0.000)

Global Efficiency (Eglob) 0.231 (0.001) 0.214 (0.000)

Characteristic path length (L) 4.677 (0.109) 4.720 (0.004)

Mean Nodal Degree (K) 10.649 (0.055) 12.747 (0.016)

Leverage Centrality (l) 2.678 (0.015) 1.945 (0.003)

Modularity (Q) 0.342 (0.001) 0.136 (0.000)

Visual Clustering coefficient (C) 0.150 (0.001) 0.150 (0.000)

Global Efficiency (Eglob) 0.232 (0.001) 0.205 (0.000)

Characteristic path length (L) 4.553 (0.073) 4.992 (0.008)

Mean Nodal Degree (K) 10.656 (0.056) 12.379 (0.025)

Leverage Centrality (l) 2.671 (0.015) 2.155 (0.010)

Modularity (Q) 0.348 (0.001) 0.136 (0.000)

Multisensory Clustering coefficient (C) 0.140 (0.001) 0.165 (0.000)

Global Efficiency (Eglob) 0.230 (0.001) 0.218 (0.000)

Characteristic path length (L) 4.431 (0.011) 4.700 (0.008)

Mean Nodal Degree (K) 10.547 (0.052) 13.830 (0.027)

Leverage Centrality (l) 2.862 (0.014) 2.054 (0.006)

Modularity (Q) 0.327 (0.001) 0.123 (0.000)
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