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Abstract

The “ten ironic rules for statistical reviewers” presented by Friston (2012) prompted a rebuttal by 

Lindquist et al. (2013), which was followed by a rejoinder by Friston (2013). A key issue left 

unresolved in this discussion is the use of cross-validation to test the significance of predictive 

analyses. This note discusses the role that cross-validation-based and related hypothesis tests have 

come to play in modern data analyses, in neuroimaging and other fields. It is shown that such tests 

need not be suboptimal and can fill otherwise-unmet inferential needs.
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Introduction

Friston (2012) lampoons hostile statistical reviews in neuroimaging by setting forth ten 

“ironic rules” that an imagined reviewer can follow to ensure a paper’s rejection. The 

seventh of these is to question the validity of the analyses. A suggested example paragraph, 

by which a reviewer can implement this “rule,” reads in part:

… the validity of the inference seems to rest upon many strong assumptions. It is 

imperative that the authors revisit their inference using cross validation and 

perhaps some form of multivariate pattern analysis.

Friston notes, however, that the authors can counter with the following response, which he 

regards as “correct”:1

*Mailing address: Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Ave., 7th floor, 
New York, NY 10016, USA. Phone: 646-754-5138. phil.reiss@nyumc.org. 
1Appendix 1 of Friston et al. (2007) elaborates on the first sentence of this response. The present note will focus more on the second 
sentence.
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… the inference made using cross validation accuracy pertains to exactly the same 

thing as our classical inference; namely, the statistical dependence (mutual 

information) between our explanatory variables and neuroimaging data. In fact, it 

is easy to prove (with the Neyman-Pearson lemma) that classical inference is more 

efficient than cross validation.

Lindquist et al. (2013) offer a thorough critique of the ten rules, and in a rejoinder, Friston 

(2013) graciously concedes many of the points raised in their paper and in a more narrowly 

focused comment by Ingre (2013). He does, however, expand on several points that remain 

in dispute, and prominent among these is the role of cross-validation as highlighted by rule 

7.

This note aims (i) to clarify why cross-validation scores, and other measures of prediction 

accuracy, have come to play a role in hypothesis testing for predictive models in 

neuroimaging and other fields; and (ii) to show that tests constructed in this way need not be 

suboptimal as asserted by Friston, and indeed can fulfill inferential needs that are not met by 

classical methods. Friston has raised some concerns that are well worth discussing; even so, 

I hope to demonstrate that the more cogent argument in the above hypothetical exchange is 

that of the reviewer.

Whereas Prof. Friston’s initial paper adopted the unusual device of an ironic presentation, I 

have aimed here for a discussion that is irenic, i.e., seeking to reconcile differing viewpoints

—an important desideratum in a multidisciplinary field such as neuroimaging. A clear 

understanding of the issues at hand requires not only that we bring together the viewpoints 

of statisticians and of neuroimagers who make heavy use of statistics; but also that we bring 

together classical, likelihood-oriented statistical theory and newer, prediction-oriented 

machine learning approaches.

A class of tests, and a simple example

While Friston’s critique focused on cross-validation (CV), it seems reasonable to broaden 

the discussion somewhat. The class of tests in question seek to assess whether a predictive 

model achieves better-than-chance performance (see Golub et al., 1999, for an early 

example). To do this, one needs (i) a measure of performance, and (ii) an estimate of the 

chance (null) distribution of this measure. The performance measure (i) is usually an 

estimate of prediction error, which is most often provided by a CV score, such as 

misclassification rate or area under the ROC curve for left-out data. But in some cases 

another score, such as the Akaike (1973) information criterion, might serve as the prediction 

error metric. For (ii), a binomial distribution is sometimes used as a null distribution for 

number of misclassifications. This, however, may entail serious bias due to ignoring the 

dependence structure of the data (Noirhomme et al., 2014). This pitfall can be avoided by 

the more generally applicable approach of using permuted data sets to simulate the null 

distribution of the performance measure (see Nichols and Holmes, 2001, for an introduction 

to permutation testing in neuroimaging). In what follows, then, I will sometimes refer to a 

broader category of predictive performance permutation tests, or “P3 tests,” which may or 

may not adopt a CV score as the performance measure.
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While classification problems seem to be the most popular class of predictive or “decoding” 

analyses in neuroimaging, analyses with continuous out-comes have become increasingly 

popular (Cohen et al., 2011) and will serve here as a running example. Consider n 

observations (x1, y1), …, (xn, yn), with the responses yi generated from

(1)

where the εi’s are independent and identically distributed (IID) with zero mean and finite 

variance. Alternatively we can write  where xi = (1, xi1, …, xi,p−1)T and β = 

(β0, β1, …, βp−1)T. For example, y may denote a pain score. In a classical, low-dimensional 

setting, the predictors x may be demographic factors such as age and sex. In a high-

dimensional scenario of a sort that is increasingly popular in neuroimaging, the predictor 

vector refers to a quantity, measured by an imaging modality at each of a set of regions of 

interest, which may predict or “encode” the response (pain). Either way, we wish to test the 

null hypothesis

(2)

versus the alternative H1 : βk ≠ 0 for some k ∈ {1, …, p − 1}.

A CV-based P3 test might proceed as follows. Intuitively, if we have a good procedure for 

estimating β, then if we apply this procedure to the entire data set except for one 

observation, then the resulting estimate will do a good job of predicting the left-out 

response. Let β̂
−i be the estimate obtained with the ith observation (xi, yi) excluded; the 

ensuing predicted value for the ith response is . The overall quality of such 

predictions can be gauged by the cross-validated sum of squared residuals

(3)

If the observed value of the CV score (3) is smaller than we would expect under H0—in 

other words, if it lies in the left tail of the null distribution of (3)—then this constitutes 

evidence against H0.2

To simulate the null distribution, we can choose a large number of permutations, say π1, …, 

πM, of {1, …, n}, and create artificial data sets by applying these permutations to the 

responses: the mth such data set is

(4)

Let  be the estimate obtained from the mth transformed data set with its ith observation 

left out. The observed distribution of the permuted-data CV score 

2In practice, rather than leave-one-out CV as described here and in Appendix C, K-fold CV is typically used—resulting in 
computational savings that are particularly helpful when CV is combined with permutation. Hastie et al. (2009) recommend K = 5 or 
10, which offer a favorable bias-variance tradeoff.
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 (m = 1, …, M) serves as a simulated null distribution of (3), 

and the p-value is given by

Adding 1 to the numerator and denominator is equivalent to including the original statistic 

value in the permutation distribution, as required to obtain a valid test (see Phipson and 

Smyth, 2010).

To see why the empirical distribution of sπ1, …, sπM mirrors the null distribution, observe 

that if H0 is true, then y1, …, yn are simply IID with mean β0 and variance σ2. Thus under 

H0, the permuted data (4) arise from the same distribution as the original data, and hence 

sπ1, …, sπM arise from the same distribution as s.

The above is just one simple example of a very general technique. In other P3 tests, linear 

regression might be replaced by support vector machines or other predictive algorithms; and 

the squared error loss could be replaced by other loss functions, or more general measures of 

performance on left-out data. More general treatments can be found in Golland and Fischl 

(2003) and Ojala and Garriga (2010).

Why not just use a likelihood ratio test?

As we saw in the introduction, Friston (2012) appeals to the fundamental lemma of Neyman 

and Pearson (1933) (herafter, the NP Lemma) to argue against CV-based tests. Prof. Friston 

has provided two explanations of how the NP Lemma applies. In a footnote to the above-

cited remark on rule 7 (Friston, 2012), he writes: “Inferences based upon cross validation 

tests (e.g., accuracy or classification performance) are not likelihood ratio tests because, by 

definition, they are not functions of the complete data whose likelihood is assessed. 

Therefore, by the Neyman-Pearson lemma, they are less powerful.”3

In his rejoinder, Friston (2013) elaborates on how CV is used for hypothesis testing in 

neuroimaging, and then offers a somewhat different explanation of how the NP Lemma 

applies: “For example, do the voxels in my hippocampal volume of interest encode the 

novelty of a particular stimulus? To answer this question one has to convert the cross 

validation scheme into a hypothesis testing scheme—generally by testing the point null 

hypothesis that the classification accuracy is at chance levels. It is this particular application 

that is suboptimal. The proof is straightforward: if a test of classification accuracy gives a 

different p-value from the standard log likelihood ratio test then it is—by the Neyman-

Pearson Lemma—suboptimal. In short, a significant classification accuracy based upon 

cross validation is not an appropriate proxy for hypothesis testing. It is in this (restricted) 

sense that the Neyman-Pearson Lemma comes into play.”

3Note that the CV-based test developed above does use all the data for model fitting (although each training set fit does not). This 
advantage of CV over reserving part of the data solely for validation was noted by Simon et al. (2003).
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There are two fundamental problems with these appeals to the NP Lemma. The first problem 

was pointed out by Lindquist et al. (2013) and acknowledged by Friston (2013), but calls for 

further elaboration. In rule 6, the hypothetical reviewer questions the parametric 

assumptions underlying the analysis, and requires the authors to “repeat their analysis using 

nonparametric tests.” Friston (2012) “praises” this suggestion (i.e., attacks it, in an ironic 

way) by noting that “the nonparametric tests will, by the Neyman-Pearson lemma, be less 

sensitive than the original likelihood ratio tests.” Lindquist et al. (2013) retort that this “is 

only true if the exact parametric assumptions of the likelihood ratio test are valid, precisely 

the point the hypothetical reviewer sought to make.” While this exchange arose in 

connection with rule 6, the point raised by Lindquist et al. (2013) is equally relevant to the 

present discussion of CV-based tests (rule 7), which are often applied in complex situations 

where it is difficult or unrealistic to specify a parametric model. Indeed, Golland and Fischl 

(2003), in an early formulation of a P3 test for neuroimaging data, say explicitly that their 

test “does not assume a generative model for the data,” and indeed view this as an advantage 

since it makes the test widely applicable.

But even if we do agree on a generative model for the data, there is a second fundamental 

problem: the NP Lemma does not, in most cases, provide that a likelihood ratio test (LRT) is 

the most powerful test—in either the “classical” (low-dimensional, or p ≪ n) or the 

“modern” (high-dimensional, or p > n) setting.

The low-dimensional case

As already noted by Lindquist et al. (2013), the NP Lemma applies only when the null and 

alternative hypotheses are simple, i.e., each specifies a unique set of values for the 

parameters. Consider the above example, and suppose the error terms ε have the N(0, σ2) 

distribution (such a full specification of the error distribution is needed if we are to speak of 

likelihood). Letting β = (β0, …, βp−1), the parameters are θ = (β, σ), and the space of possible 

parameter values is Θ = {(β, σ) : β ∈ ℝp, σ > 0}. If the null and alternative hypotheses were 

H0 : β = β0, σ = σ0 and H1 : β = β1, σ = σ1 for specific values β0, σ0, β1, σ1, the NP Lemma 

would tell us that the most powerful test of a given size α would reject H0 for the highest 

values of the likelihood ratio L(β1, σ1)/L(β0, σ0). Here L(β, σ) denotes the likelihood of the 

observed data, which is

(5)

In the problem stated above at (2), both H0 and H1 are not simple but composite: under H0, θ 

may take any value in

while under H1, θ may take any value in Θ\Θ0. In general, with composite hypotheses, if the 

most powerful level-α test defined by the NP Lemma is the same for all θ0 ∈ Θ0 and θ1 ∈ Θ
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\Θ0 (it usually is not), we call this test uniformly most powerful (UMP). For composite 

hypotheses, an LRT rejects for large values of

(6)

In general this test need not be UMP, although under certain regularity conditions it is 

asymptotically the most powerful test (Lehmann and Romano, 2005). For testing (2) with p 

< n, the F-test is traditionally viewed as optimal, and the LRT can be viewed as an 

approximation to the F-test (in a sense that is explained in Appendix A).

We note that (6) may be interpreted as the ratio of the maximized probabilities of the data 

under the alternative and null hypotheses. By contrast, the Bayes factor (Kass and Raftery, 

1995), which has been widely used in neuroimaging (e.g. Penny, 2012), is the ratio of 

integrals of the data probability, with respect to the prior distributions for two models.

The high-dimensional case

Modern predictive analyses, in neuroimaging as in other fields, often involve data sets for 

which p > n. In this case, the likelihood ratio (6) not only does not converge in distribution 

to , but indeed does not exist. To see this, take β̂ = X+y where X+ is a generalized 

inverse of X; then the residuals y − Xβ̂ are all zero and the likelihood L(β̂, σ) (see (5)) goes to 

infinity as σ → 0.

If we cannot fit the model by maximizing the likelihood, what can we do? Since (assuming 

IID normal errors) the maximum likelihood estimate of β is also the least-squares estimate, a 

natural solution is to modify the sum of squared errors criterion, by adding a penalty. The 

popular Lasso method (Tibshirani, 1996) adds an ℓ1 penalty, so that the estimate of β is the 

minimizer of

(7)

for some λ > 0. Minimizing this criterion yields a sparse estimate of β, i.e., the estimates for 

some of the βk’s are zero, with higher λ implying more zero coefficients. (See Appendix B 

for a brief discussion of the Bayesian perspective, which views the penalty term as imposing 

a prior on β.)

To illustrate how we might test the null hypothesis (2) for a high-dimensional model, we 

apply the Lasso to a portion of the data previously analyzed by Lindquist (2012). The 

original study examined fMRI measures of response to warm and hot stimuli applied to the 

left volar forearm in 20 volunteers. Here we consider only the hot (painful) stimulus trials, 

of which there were 11–24 per subject, with n = 433 trials in total. Each trial consisted of 

thermal stimulation for 18 seconds; then a 14-second interval, at the end of which the words 

“How painful?” appeared on a screen; then another 14-second interval after which the 

participant rated the overall pain intensity between 100 and 550 (with higher values 
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indicating more pain). The BOLD signal was recorded in 21 pain-relevant regions at 23 2-

second intervals. If we fit the pain prediction model (1), with y denoting log pain score and x 
denoting the fMRI measurements for the 21 regions × 23 time points along with a 1 for the 

intercept, we have p = 1+21·23 = 484. For simplicity, I did not attempt to take within-subject 

correlation into account in the model.

Figure 1(a) and (b) show the estimates of β1, …, β483, the “effects” on pain4 of BOLD signal 

at each region and time point, based on Lasso fits with two values of λ. For a given data set, 

lower values of λ always imply a higher likelihood. From that perspective, the estimate 

shown in Figure 1(a) is “better.” But when overfitting is a concern—as it is here—the 

measure of a good model is not its likelihood, or ability to predict the sample responses, but 

rather its ability to predict future responses, which is captured by CV. Figure 1(c), produced 

with the glmnet package (Friedman et al., 2010) for R (R Core Team, 2014), shows that the 

expected mean squared error of prediction (based on 10-fold CV, the default in glmnet) is 

almost five times higher for log(λ) = −6, the leftmost point, as for log(λ) = −1.84, the CV-

minimizing value. Unlike the overfitted estimate displayed in (a), the CV-optimal model fit 

shown in (b) is quite interpretable; its 55 nonzero coefficients are most highly concentrated 

between the end of the hot stimulus and the appearance of the question on the screen, 

suggesting that BOLD signal level in this time interval is most predictive of pain intensity. 

More specifically, the two coefficients of greatest magnitude are both at the 24-second 

point: higher BOLD signal at that time, in the lateral cerebellum (LCB) and right superior 

frontal gyrus, are associated with higher reported pain.

The key point that this example illustrates is that (out-of-sample) prediction error, rather 

than (in-sample) likelihood, is what ultimately governs the model fit in penalized regression, 

as in other predictive models for high-dimensional data. As observed above, a classical test 

such as LRT is unavailable here (and the recently proposed test of Lockhart et al., 2014, 

refers to individual coefficients rather than the global null hypothesis (2)). It seems natural, 

then, to turn to lower-than-chance prediction error, as opposed to higher-than-chance 

likelihood, as a guiding principle for testing (2); and this is what CV-based tests aim to do 

(cf. van de Wiel et al., 2009).

I calculated the minimum CV using 999 data sets in which the pain scores were permuted 

within subject. The real-data value is well to the left of the histogram shown in Figure 1(d), 

implying a p-value of .001—strong evidence that we can reject (2), i.e., that variations in the 

BOLD signal in certain regions at certain times are associated with reported pain in this task. 

Such a conclusion would not be attainable by a standard LRT (but see Appendix B).

Are CV-based tests really suboptimal?

We have seen that the NP Lemma does not establish the LRT’s supremacy for testing (2) in 

the low-dimensional case, and certainly not in the high-dimensional case. But this in itself 

does not disprove that CV-based tests are “suboptimal.” Is it possible to do so?

4The scare quotes here are meant to avoid asserting that the BOLD signal truly causes pain. For lack of a better term, “effect” serves 
as shorthand for the increment in expected pain associated with a unit change in the BOLD signal.
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To a degree, it is. In Appendix C we show that in the low-dimensional case, for a one-way 

ANOVA model, the leave-one-out CV test is exactly equivalent to a permutation F-test. As 

shown by Hoeffding (1952) and Robinson (1973), the latter is asymptotically as powerful as 

an ordinary F-test (i.e., one that rejects when the F-statistic is in the right tail of the F-

distribution) under the assumption of normal IID errors, but more robust to departures from 

those assumptions. The ordinary F-test, in turn, is optimal in the sense described in 

Appendix A. Thus our CV test is optimal in this simple case, a result illustrated by the 

power curves in Figure 2. The top row shows estimates and 95% confidence intervals for the 

CV test’s power to detect the difference between two groups at the 5% level, based on 1000 

replications for each of six equally spaced R2 values. For combined sample size n = 50, and 

even more so for n = 400, the power is virtually indistinguishable from the benchmark F-test 

power (shown in green) given by Cohen (1988) for corresponding effect sizes f2 = R2/(1 − 

R2). For detecting the effect of a normally distributed covariate at the 5% level, the CV test 

is noticeably less powerful than the F-test for intermediate R2 values with n = 50, but this 

difference essentially disappears for n = 400.

In practice, for testing (2) in the low-dimensional case, it seems best to use an ordinary or 

permutation F-test.5 But the equivalence of the CV statistic and the F-statistic for 

(permutation tests of) (2) in the low-dimensional case suggests that for the high-dimensional 

case, in which classical tests are unavailable, a CV-based test is worth considering.

What is the null hypothesis?

Friston (2013) concludes his discussion of CV as follows: “I have mixed feelings about 

cross validation, particularly in the setting of multivariate pattern classification procedures. 

On the one hand, these procedures speak to the important issue of multivariate 

characterisation of functional brain architectures. On the other hand, their application to 

hypothesis testing and model selection could be viewed as a non-rigorous and slightly 

lamentable development.”6

One aspect of CV-based testing that does seem quite vulnerable to lack of rigor is the 

specification of the null hypothesis. In some papers describing P3 tests, the null hypothesis 

has been formulated along the lines of “there is no information in the data” or “we cannot 

predict the outcome from the data.” Such formulations deviate from the classical notion of a 

statistical hypothesis. Traditionally, a statistical hypothesis is an assertion about the 

probability distribution generating the given data—e.g., for parametric distributions, an 

assertion about the values of the parameters—as opposed to a statement about our ability to 

learn something from the data. This point matters, because without a clear and objective 

formulation of the null hypothesis we are testing, we may have a hard time specifying or 

simulating the null distribution.

5Cf. Pepe et al. (2013), who shows that for risk models, a classical test for zero effect of a predictor is preferable to testing that it 
improves predictive performance.
6While my focus here is on hypothesis testing, I wish to note that Prof. Friston’s suggestion that CV is also unsuited to model 
selection is rather surprising. CV is very widely used for tuning parameter selection and more generally for model selection, as 
surveyed by Arlot and Celisse (2010).
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For permutation tests in general, the null hypothesis is an instance of the generic 

“randomization hypothesis” (Hoeffding, 1952): there is a group  of transformations of the 

data Z such that for each g ∈ , gZ has the same distribution as Z. This idea encompasses 

not only permutations but other transformations such as sign flipping (Winkler et al., 2014).

Often a randomization hypothesis is natural in a nonparametric setting, where we do not 

specify a parametric model but wish to test the null hypothesis that, say, some group of 

permutations of the responses leaves the data distribution unchanged. But sometimes a 

parametric null hypothesis implies a randomization hypothesis. For instance, for linear 

regression with IID errors, we justified using sπ1, …, sπM to simulate the null distribution by 

arguing that under null hypothesis (2), transformations of the form (4) do not change the 

data distribution. For the pain data example, the null hypothesis is again (2); but we 

permuted observations only within participants, since observations for different participants 

are not exchangeable.

In practice, it is common to test the effect of, say, imaging-based variables while adjusting 

for nuisance variables such as age and sex. The null hypothesis then posits exchangeability 

not for the errors, but (approximately) for the residuals (see Winkler et al., 2014, for a 

detailed discussion).

Is statistical significance the appropriate aim?

Many researchers, including Prof. Friston, have grave concerns about the entire statistical 

paradigm of hypothesis testing. But even those of us who are less troubled by such 

fundamental concerns should acknowledge that P3 tests will be quite useless in some 

contexts.

Here is analogy from a more classical setting. A standard test statistic can be used to assess 

whether an intraclass correlation coefficient (ICC) equals a given number, such as zero. But 

publications that use the ICC to describe the test-retest reliability of a psychometric measure 

do not usually report a p-value for rejecting the null hypothesis ICC=0. Why not? Because it 

would be superuous. Any psychometric measure worth its salt has an ICC well above 0; the 

question is how high the ICC is, and this is answered by a point estimate and confidence 

interval.

Similarly, with neuroimaging-based predictive analyses, testing what amounts to a null 

hypothesis of zero predictive value may or may not be appropriate, depending on the 

application. For a preliminary proof of concept or of relevance, such a test may make sense. 

But for applications in which the utility of image-based prediction has already been 

established, the principal question is not whether meaningful prediction is possible, but how 

well one can predict. A significant p-value should then go without saying, and a more 

meaningful measure might be, say, a cross-validated area under the ROC curve (see Hsing et 

al., 2003).

One class of applications in which hypothesis testing does seem to be needed has to do with 

showing that images provide predictive value beyond what is available from other variables, 

which are likely to be easier and less expensive to collect (see Boulesteix and Sauerbrei, 
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2011). For example, consider the recent ADHD-200 Global Competition in which teams 

developed diagnostic classifiers for attention deficit/hyperactivity disorder based on 

multimodal brain images, which they then applied to test data for which diagnoses were not 

provided. The approach of Eloyan et al. (2012) predicted the test data diagnoses most 

accurately—among teams who used the imaging data. Surprisingly, however, Brown et al. 

(2012) attained somewhat better predictive accuracy without using the images at all. My 

colleagues and I (Reiss et al., 2015) have shown how CV-based testing can be modified to 

assess whether image data adds predictive value beyond that offered by non-imaging 

predictors. In our analysis of a portion of the ADHD-200 data, images derived from 

subjects’ resting state fMRI scans appeared significantly predictive of diagnosis, but this 

result vanished upon adjusting for covariates such as age and sex.

Conclusion

While P3 testing may lack the elegance of classical optimal testing theory, it is becoming 

increasingly pervasive. Indeed, P3 tests are beginning to be employed clinically to detect 

awareness in vegetative states. The importance of getting the methodology right in such 

applications is clear (Goldfine et al., 2013). While not all examples will be this dramatic, I 

believe that, rather than trying to delegitimize such tests, we should devote more effort to 

understanding how they work and how they can be improved. There is plenty of work to do 

along these lines.

I completely agree with Prof. Friston that “the role of cross validation in neuroimaging 

deserves further discussion.” And his ironic contribution has done a valuable service by 

stimulating discussion of this and other statistical issues. I would submit, however, that in 

our collective quest for much-needed advances in statistics for neuroimaging data, we will 

generally be best served by less irony—and more irenics.
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Appendix A. The LRT as an approximation to the F-test for null hypothesis 

(2)

Here we show why for the linear model with IID normal errors,

even when p < n, the LRT is not (quite) optimal for testing H0 : β1 = … = βp−1 = 0 versus 

H1 : βk ≠ 0 for some k ∈ {1, …, p − 1}.
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Let y = (y1, …, yn)T, and define the “hat matrices” , H1 = X(XTX)−1XT where 

Xn×p has ith row (1, xi1, …, xi,p−1). The hat matrices are so named because they transform 

the response vector y to the vector ŷ of fitted values, under the null and alternative models 

respectively—i.e., ŷ = H0y under H0, ŷ = H1y under H1. The sum of squared residuals 

under the null and alternative models are yT (I − H0)y and yT (I − H1)y, respectively.

There is no UMP test here, but Lehmann and Romano (2005) list three forms of invariance, 

i.e., transformations of the data (e.g., rescaling) that in a technical sense have no bearing on 

the evidence against H0, and show that among tests that are invariant to such 

transformations, the F-test, which rejects if

(A.1)

exceeds the 1 − α quantile of the F-distribution with p − 1 and n − p df, is the most 

powerful; that is, the F-test is “UMP invariant.”

An LRT statistic for composite hypotheses is twice the log of (6), or

(A.2)

where ℓ1 and ℓ0 denote the numerator and denominator of (6), respectively. For these 

particular hypotheses, the LRT statistic (A.2) is a monotonically increasing function of the 

F-statistic, since the former equals

(A.3)

The two tests are not exactly equivalent, however, in that whereas the F-test is based on an 

exact distribution, the LRT is based on a large-sample approximation due to Wilks (1938): it 

rejects when (A.2) exceeds the 1 − α quantile of the  distribution, to which (A.3) 

converges in distribution as n → ∞. Interestingly, since the two tests are not equivalent and 

the NP Lemma is used indirectly to prove that the F-test is UMPI (Lehmann and Romano, 

2005), it could be said that in this case the NP Lemma shows the LRT not to be the optimal 

test—although for large n the two tests are virtually the same.7

Appendix B. Likelihood-based tuning parameter selection

In the main text we argued that prediction error, rather than likelihood, typically serves as 

the guiding principle for tuning parameter selection in high-dimensional penalized 

regression. This can be seen as part of the increased attention to prediction error in the 

7Here I have used the term “LRT” in its colloquial sense, to refer to the χ2 test of Wilks (1938). This usage seems appropriate for 
examining the claim (Friston, 2013) that the “standard” LRT is optimal. In the more precise nomenclature of Abramovich and Ritov 
(2013), (6) is a generalized likelihood ratio test statistic (since it generalizes the simple-vs.-simple LRT statistic to which the NP 
Lemma applies); and for nested linear models, the above argument shows that the F-test is the (exact) generalized LRT, whereas what 
I have called “the LRT” is the asymptotic generalized LRT.
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statistical literature since the work of Stone (1974) on CV and that of Akaike (1973) on 

information criteria—a shift that was championed by Breiman (2001).

There is, however, a way to reformulate the likelihood and thereby recover its central role: 

treating the coefficients as random effects and the tuning parameter (here λ) as a bona fide 

parameter, proportional to the random effects variance. One can then maximize the 

likelihood over λ and the other parameters. The same approach has a Bayesian formulation, 

in which the penalty term represents a prior distribution and the estimate maximizes the 

posterior. Likelihood or (empirical) Bayesian methods have been applied successfully to 

spline smoothing (Ruppert et al., 2003; Reiss and Ogden, 2009; Wood, 2011), and moreover 

can be used to derive an LRT for a null hypothesis such as (2) (Crainiceanu and Ruppert, 

2004). An analogous Laplace prior approach has been developed for Lasso estimation (Park 

and Casella, 2008) and could perhaps form the basis of an LRT for (2); but it cannot be 

asserted a priori that such an LRT would outperform CV-based tests. See also Goeman et al. 

(2006), who pursue an empirical Bayes approach to develop a score test, which is locally 

most powerful, for high-dimensional alternatives. Empirical Bayes estimation has been 

particularly influential in neuroimaging (Friston et al., 2002).

Appendix C. Asymptotic optimality of a CV permutation test for null 

hypothesis (2)

To relate our leave-one-out CV test statistic (3) to the F-statistic, we use the identity

where ŷi is the ith (full-data) fitted response and hii is the ith diagonal element of the hat 

matrix H1, to re-express (3) as

(C.1)

where . In the special case of a balanced one-way 

(fixed-effects) ANOVA design, hii = p/n for each i, so (C.1) reduces to

(C.2)

The yT (I − H0)y term in the numerator of the F-statistic (A.1) is invariant to permutation. 

Thus when y is replaced by a permuted version yπ, the resulting F-statistic is
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which is a strictly decreasing function of the permuted-data CV test statistic, i.e., of (C.2) 

with y replaced by yπ. Hence a permutation test that rejects when the CV criterion is in the 

left tail of the permutation distribution is equivalent to one that rejects when F-statistic (A.1) 

is in the right tail of the distribution of Fπ values—that is, a permutation F-test.
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Figure 1. 
(a) Estimate of β obtained by minimizing the Lasso criterion (7) with log(λ) = −6. The rows 

represent 21 pain-relevant regions, while the columns represents 23 time points. The first 

dashed line marks the end of the hot stimulus, while the second marks the time at which 

“How painful?” appeared on the screen. (b) Estimate based on log(λ) = −1.84. (c) Ten-fold 

cross-validated mean squared error, ± 1 standard error (SE), for a range of log(λ) values. 

The first dotted line indicates where CV is minimized (log(λ) = −1.84); the second indicates 

the largest log(λ) at which the CV score is within 1 SE of the minimum. The numbers along 

the top edge are counts of nonzero coefficient estimates, which decrease as λ increases. (d) 

Histogram of 999 permuted-data CV scores, with the real-data CV score indicated by the red 

line.
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Figure 2. 
Power of the CV permutation test (black) compared with that of the benchmark F-test 

(green), for two cases with p = 2: a one-way ANOVA comparing two groups (above) and a 

normally distributed covariate (below).
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