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Using within-subject pattern classification to understand lifespan age
differences in oscillatory mechanisms of working memory selection and
maintenance
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Werkle-Bergner®!*

@Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
b Department of Psychology, University of Virginia, Charlottesville, USA

Abstract

In lifespan studies, large within-group heterogeneity with regard to behavioral and neuronal data is observed.
This casts doubt on the validity of group-statistics-based approaches to understand age-related changes on
cognitive and neural levels. Recent progress in brain—computer interface research demonstrates the potential of
machine learning techniques to derive reliable person-specific models, representing brain behavior mappings.
The present study now proposes a supervised learning approach to derive person-specific models for the
identification and quantification of interindividual differences in oscillatory EEG responses related to working
memory selection and maintenance mechanisms in a heterogeneous lifespan sample. EEG data were used to
discriminate different levels of working memory load and the focus of visual attention. We demonstrate that
our approach leads to person-specific models with better discrimination performance compared to classical
person-nonspecific models. We show how these models can be interpreted both on an individual as well as on
a group level. One of the key findings is that, with regard to the time dimension, the between-person variance
of the obtained person-specific models is smaller in older than in younger adults. This is contrary to what we
expected because of increased behavioral and neuronal heterogeneity in older adults.
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1. Introduction

Across the lifespan, working memory (WM) performance and the underlying mechanisms of selection and
maintenance undergo a tremendous change (Sander et al., 2012a). On the behavioral level, an increase in
performance across childhood with a peak in young adulthood is followed by decline with advancing age.
On the neural level, WM performance depends, among others, on rhythmic neural activity in the alpha
band (8-12 Hz) (e.g., Freunberger et al., 2011). In particular, posterior alpha (8-12 Hz) power changes have
been related to attentional shifts and WM load during retention (e.g., Obleser et al., 2012; Sander et al.,
2012b; Sauseng et al., 2009). Given low WM performance in children and older adults, altered mechanisms of
rhythmic neural processing are to be expected in these age groups. However, evidence on age-related changes
in rhythmic neural activity related to WM maintenance and selection is scarce, and results are mixed. Some
studies have found evidence for age-differential attentional effects on the modulation of alpha power (Sander
et al., 2012b), whereas others did not observe any attention-related modulation in older adults (Vaden et al.,
2012).

One possible explanation for the mixed results may be increased heterogeneity in children and older
adults. Implicit to inferring cognitive and neural processes from group data is the strong and necessary (but
not sufficient) assumption that the process under investigation is equivalent for every group member. Hence,
group homogeneity is crucial for making links between cognitive and neural data. Consequently, conclusions
about processes from the sample-specific level to the person-specific level are valid only under the ergodic
assumption (Molenaar, 2004). Ergodicity assumptions are typically violated for developmental processes, and,
in these cases, it is necessary to base analyses on intraindividual variability rather than on interindividual
change. As a result, inferences on the individual level may be diluted if not meaningless (e.g., Hayes, 1953;
Molenaar and Campbell, 2009; Nesselroade et al., 2007; Siegler, 1987; Voelkle et al., 2014).

Thus, increased interindividual variability in developmental populations may cast doubt on the validity of
group statistics, and calls for the development of analyses based on intraindividual instead of interindividual
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models (e.g., Nesselroade et al., 2007). The high reliability and reproducibility of behavioral, as well as
structural and functional brain measures in younger adults suggests reasonable homogeneity of this group.
However, widespread changes in brain chemistry, anatomy, and functionality are documented, especially for
child development and aging (e.g., Bickman et al., 2006; Raz et al., 2005). These changes are typically
accompanied by increased heterogeneity of functioning in behavioral tasks (e.g., Astle and Scerif, 2011; Nagel
et al., 2009; Werkle-Bergner et al., 2012). Hence, especially for cross-sectional comparative studies, one
may question whether meaningful between-group comparisons are feasible knowing that the within-group
heterogeneity is not equal across lifespan samples.

Here, we suggest using within-subject pattern classification to better understand lifespan age differences
in oscillatory mechanisms of WM selection and maintenance. More precisely, we propose a two-step approach:
First, person-specific models that explore the expected relationship between brain responses and experimental
conditions on the individual level are estimated. For example, in the context of multivariate time-series
analyses, this can be achieved by estimating person-specific parameter estimates for a given model of interest
(Nesselroade et al., 2007). In a second step, invariance of the parameter estimates can be tested within and
across groups (Boker et al., 2009). Inspired by those considerations, we propose a formal approach to derive
person-specific models for the identification of differential brain—behavior links in lifespan samples.

In multi-channel electroencephalographic (EEG) recordings of brain signals over time, a person-specific
model that carries maximal information about the discrimination of experimental conditions can vary across
several parameters: first and foremost, across time, duration, channel, and frequency. The model space
spanned by these parameters is necessarily large and finding the most informative model is far from trivial.
Therefore, we formalize the problem as a classification task and employ multivariate pattern classification
algorithms (also know as multivariate pattern analysis (MVPA) in the (f)MRI literature (Norman et al.,
2006)) in combination with a precisely tailored preprocessing chain to obtain a solution. Similar approaches
have been dominating brain—computer interface (BCI) research. However, in many of these applications, the
predictive accuracy is the primary target of the procedure rather than the inference about the underlying
processes. Our framework can be regarded as a supporting tool in the recursive interplay of theory-guided
and exploratory analysis of neuroimaging data that assists researchers in hypothesis generation and theory
building by extracting stable patterns from data (cf. Brandmaier et al., 2013). In our work, we place a
particular emphasis on interindividual differences as typically encountered in lifespan and aging research.

To test the applicability of our approach, we re-analyze data from a lifespan study that targeted brain
oscillatory mechanisms for WM selection and WM maintenance in a lifespan sample including children,
younger, and older adults (Sander et al., 2012b). The study used a color change—detection task (Vogel and
Machizawa, 2004), in which participants were cued to attend to either the left or the right hemifield and asked
to remember the colors of varying numbers of items. Hence, by design, it is possible to identify modulations
of rhythmic neural responses that (a) relate to the attentional focus and (b) reflect the varying levels of WM
load. We operationalized (a) attentional focus as the hemifield to which spatial attention should be shifted
and (b) WM load as the amount of items to be remembered in a change-detection task. Hence, in a first step,
we set out to predict the focus of visuospatial attention based on changes in (posterior) alpha power. We



will refer to this as attentional focus prediction in the following. Given the robust relation of posterior alpha
power modulations and attention shifts (e.g., Kelly et al., 2006; Sander et al., 2012b; Worden et al., 2000),
this analysis was intended as a validation step of our classification approach (e.g., Bahramisharif et al., 2010;
van Gerven and Jensen, 2009; Kelly et al., 2005, for previous BCI approaches). This part of the study aimed
to demonstrate the feasibility of deriving person-specific models with varying spatio-temporal information in
groups of children, younger, and older adults. In a second step, we aimed to predict information maintained in
WM based on single-trial modulations of neural activity in the alpha range. We will refer to this as WM load
prediction in the following. Previous studies have successfully demonstrated load modulations of lateralized
alpha power activity (Sauseng et al., 2009). However, given that studies demonstrating the possibility of WM
load prediction from scalp EEG recordings are scarce (but see Roux et al., 2012, for an analysis of source
activity in pre-identified regions), this part represents an extension of the applicability of our classification
approach.

2. Material and methods

2.1. Identifying person-specific models: The classification approach

The core idea of our framework is the derivation of person-specific models that optimally discriminate
between behavioral conditions and, thus, allow evaluation of the neural underpinnings of interindividual
differences in behavioral responses. Here, the term model is used to refer to both a class of models (representing
a particular functional form with unknown parameters) and a particular instance of a model with parameters
estimated from data. Whenever the distinction is not clear from the context, we refer to the latter as an
estimated model. Person-specific models are estimated models selected from a set of candidate models that
vary across multiple dimensions of the observed data space. In electroencephalography (EEG), this space
typically entails electrode channels, time points, and/or frequencies; but our considerations generally apply
to any spatio-temporal method of brain imaging. Candidate models can be derived from a template model
class and vary parametrically according to multiple dimensions, first and foremost, to the spatio-temporal
segments of the original data they are exposed to. In particular, models operate on different time windows
and on subsets of channels or their geometric projections. In the remainder of this subsection we will describe
the proposed framework to estimate person-specific models.

In the following, the number of measured variables per sample will be denoted by M and the number of
samples per individual will be denoted by T', as those typically refer to samples ordered in time. For each
person, a data set (x4, v;) € D with ¢ € {1,...,T} is measured, which is a set of tuples of observed brain
responses x; € RM and a corresponding dichotomous target variable y; € {0, 1} that typically corresponds to a
given external condition, task, or state. A candidate model, mapping brain responses to the target variables,
can then be conceived as a @-parameterized function fy(x) = y, linking the observed neural responses x;
and behavioral states y;. The specific parameters # can be estimated by minimizing a loss function on data
(usually called the training set). Fach estimated model can then be evaluated with respect to its accuracy
in predicting a behavioral condition from brain responses, whereby selection of the best model is carried out
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Figure 1: Nested cross-validation. Schematic representation of the nested cross-validation procedure for
model selection and evaluation. The schema shows a three-fold nested cross-validation procedure instead of
the 10-fold procedure we employed. The model selection takes place in the inner loop (light blue and light
red), while model evaluation of the best inner model is performed in the outer loop (dark blue and dark red).
The evaluation metric is the balanced accuracy (BAC).



for each person separately. We propose to use the balanced accuracy (BAC), a loss function accounting for
unbalanced target variables that are often encountered in EEG data sets, as the performance measure for each
candidate model. The BAC is the average of the accuracies obtained for each target variable state (condition)
(Brodersen et al., 2010). This metric allows us to select the best of all competing models and interpret the
idiosyncratic brain—space information of that model as person-specific information.

To avoid an overoptimistic bias by confounding parameter estimation and model evaluation (Kriegeskorte
et al., 2009; Stone, 1974), we estimate the BAC for a given candidate model using 10-fold stratified cross-
validation (Kohavi et al., 1995). The resulting person-specific models can be interpreted as both a measure
of interindividual heterogeneity in the sample and as a parsimonious indicator of the location and magnitude
of these interindividual differences in brain space. In the remainder of this subsection we will describe the
procedure of choosing the best person-specific model in more detail (see also Fig.1).

Selection of an optimal model for each person from a set of candidate models entails a cherry picking
problem. This cherry picking causes an overoptimistic accuracy estimate if the best accuracy of the model
selection phase is reused as the estimate for the overall inner performance of the selected model (Stone,
1974; Varma and Simon, 2006). To obtain an unbiased BAC estimate, we separately use 10-fold stratified
cross-validation for model selection and model evaluation, which leads to a nested cross-validation procedure
with an inner and an outer loop. Nested cross-validation is the de-facto standard procedure for performance
evaluation in BCI research (Lemm et al., 2011). The cross-validated model selection takes place in the inner
loop, while cross-validated model evaluation is performed in the outer loop. To this end, we randomly partition
a data set into ten exhaustive and mutually exclusive subsets. For each of the ten outer cross-validation runs,
a temporary training set is formed by leaving out one of the ten folds whereas a temporary test set is formed
by the remaining folds. The temporary outer training set forms the basis for the inner cross-validation runs
aiming to determine the temporary best model (see below). The performance of the latter is evaluated on
the current outer test set. To identify the best model in each run of the outer loop, an inner cross-validation
procedure is used. Here again, the available data (i.e., the current outer training set) are split into ten
exhaustive and mutually exclusive subsets (i.e, the inner training and test sets for model selection). In each
run of the inner loop, the parameters for the candidate models are estimated on the temporary inner training
set and their performance is evaluated on the current inner test set. The overall performance estimate for
a given candidate model is obtained by aggregating the test set performance across all 10 iterations of the
inner loop. The candidate model with the highest average BAC is selected as the current best model and its
performance is evaluated on the remaining outer test set.

Technically, the outer cross-validation does not estimate the BAC of the best candidate model but rather
the BAC of the model selection procedure as a whole. Particularly, in each fold of the outer cross-validation, a
different model may be selected as the best one. In other words, nested cross-validation provides an unbiased
estimate of the expected BAC when applying the model selection of the inner cross-validation to the whole
data set of one person. Put differently, we estimate the expected accuracy of picking a model from our
candidate set based on cross-validated predicted accuracy. Consequently, after the nested cross-validation
evaluation, the model selection phase (i.e., only the logic of the inner loop) is applied to the complete sample



to obtain the best person-specific model. As a final step, the parameters 6 of the best model are estimated
using the complete data set. The BAC estimate obtained by nested cross-validation is a conservative estimate
for the performance of the model using parameters derived from the whole data set.

2.2. Candidate models

In the following, we describe the set of candidate models from which the model selection framework
determines the best model for each person. Foremost, our goal is to predict the attentional focus as well as
WM load based on differences in the power of neural activity in the alpha range (e.g., Jensen et al., 2002;
Sander et al., 2012b; Sauseng et al., 2009). A further challenge is the identification of the most discriminative
time window per person. To achieve the latter, only data from within a single time window are considered for
each candidate model. Hence, the models differ with regard to the onset and the duration of the employed
time window.

To capture differences in signal power we chose the CSP method (Miiller-Gerking et al., 1999; Ramoser
et al., 2000). CSP finds a transformation matrix C, mapping the EEG channels onto a set of component
projections such that the variances of the resulting time series discriminate optimally between conditions
(Ramoser et al., 2000). In order to find the respective transformation matrix C, the eigenvalue decomposition
of the mean between-channel covariance matrix is computed. Thus, CSP requires an invertible mean between-
channel covariance matrix. If the goal is to diseriminate conditions 0 and 1, the projected CSP components
are ordered such that the variance of the first component is maximal for condition 0 while being minimal
for 1. Vice versa, the last projected component has maximal variance for condition 1 while it is minimal
for 0. Hence, the respective components from both ends form complementary pairs with regard to condition
prediction. Like other dimensionality reduction approaches such as principal component analysis (PCA), a
subset of components can be selected. Due to their complementarity, CSP components are typically picked
in pairs, with each subsequent pair adding less predictive information to the overall task. In the following,
we refer to the number of these CSP filter pairs as k. To reiterate, a classifier relying on a single filter pair
(k = 1) bases its prediction on two projected components, for each of which the variance is most informative
about the respective target outcome. Consequently, the variances of the EEG projected onto the CSP filters
are used as features, that is, as classifier input.

Classification is done by Linear Discriminant Analysis (LDA). LDA is a linear classifier, meaning that,
its decision function is of the form sign(w'x + ¢), where x are the features, w is called weight vector, and ¢
bias. For the training of LDA, the feature means and covariance matrices for each class have to be estimated.
If the number of samples is large in comparison to the number of features, the sample covariance matrix
is a sufficiently precise estimate of the population covariance matrix. For the typical EEG classification
problem,; the number of samples is roughly equal to or smaller, than the number of features. Hence, the
sample covariance matrix is systematically biased (Friedman, 1989). To correct for this bias, regularization is
commonly used (Friedman, 1989). The regularization hyper-parameter was set by the analytical solution of
Ledoit and Wolf (2004). We refer to the resulting classifier as Ledoit’s Linear Discriminant Analysis (LLDA).
The combination of CSP and LDA is commonly used to realize BCIs based on rhythmic neural activity (e.g.
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by only considering the signals within a selected time window. After that, the 2k selected components of the
projection matrix C, as learnt by CSP, are applied to the remaining signals. This yields 2k component time
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by the linear decision function as learnt by Ledoit’s Linear Discriminant Analysis (LLDA).



Blankertz et al., 2010; Fazli et al., 2009).

The different candidate models were derived from the following settings: Duration of the time windows:
{100, 150, 200, ..., 700} ms, onset of the time window: {0,33,66,99,..., L} ms relative to the onset of the
memory array (see Section 3 for a detailed description of the trial design). The limit L for the onset depended
on the duration of the time window. It was chosen such that the latest time windows did not contain signals
later than 1000 ms after the onset of the memory array. This was done in order to prevent inclusion of EEG
activity evoked by the onset of the test stimulus. As candidates for the number k of the CSP filter pairs we
employed {2,3,4,5,6}. These candidates were motivated by the rationale of exploring the values around the
recommendation to use k = 3 by Blankertz et al. (2008). The full grid of all possible combinations of settings
was explored, leading to 5 (filter pairs) x 244 (time windows) = 1220 different candidate models.

2.3. Spatial interpretation of the best estimated model

In oder to interpret the spatial information we obtained filters and patterns (Biefmann et al., 2012; Parra
et al., 2005) corresponding to our estimated predictive model. Filters and patterns assume that the observed
data obey a linear measurement model. That is, we assume a set of sources mapped to the observed values
by a linear transformation. For raw EEG potentials it is generally assumed that a linear measurement model
holds true. A pattern describes the contribution of one source to all electrodes (forward model). A filter
describes the linear reconstruction of one source given the observed data (backward model). For a linear
classifier the filter simply corresponds to the weight vector w. For more details about filters and patterns,
and their relationship, see AppendixA.l. In contrast to previous work that employed classifiers to obtain
person-specific filter and patterns (Parra et al., 2005; Philiastides and Sajda, 2006), we did not use raw EEG
potentials as features for our classifier. Instead, the model class that we proposed in Subsection 2.2 yields
a linear classifier with the variances of the component time series as features. This is equivalent to a linear
classifier with all entries of the covariance matrix between all channels as features (see AppendixA.2), and

M+1)M . .
MALM entries, where M is the number of channels.

thus produces a filter with ( 7

It follows directly from the linear model assumption for EEG data that the observed covariance data
does not comply with a linear model (see AppendixA.4). The resulting filter still corresponds to the classifier
weights w and the patterns can also still be computed (see AppendixA.3). But their interpretation as forward
and backward models is no longer valid. However, there is still a meaningful interpretation for both filter
and pattern. The weight w, of the filter corresponding to the p-th feature expresses that an increase of the
p-th feature by one increases the classification score w'x + ¢ by w,. Thus, for positive/negative weights,
higher values increase/decrease the classification score and hence, the support for the positive/negative class.
Positive class refers to the class that is predicted if sign(w'x + ¢) > 0. For our prediction tasks “Attention
left” and “Low WM load” are the positive classes and “Attention right” and “High WM load” are the negative
classes (see Subsection 2.4.2).

For the pattern the opposite logic applies. If the classification score increases by one, the expected observed
value of the p-th feature changes by a,. As pattern and filter are not invariant to the scaling of the features
we normalized both. For illustration purposes we show only the weights corresponding to the variances.
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Figure 3: Experimental paradigm. Each trials starts with the presentation of a cue, indicating the relevant
hemifield. The memory set is presented for 100 ms and followed by a fixed retention interval of 1000 ms. The
probe display is shown until a response is given. Different patterns of the squares represent different colors.
Adapted with permission from Sander et al. (2012b)

Note, however, that for classification and for calculation of the pattern we included all terms, omitting the
covariances proved considerably worse (see Section 3.4).

2.4. Study design

We used the approach proposed above for the analysis of two data sets from a study that investigated
lifespan age differences in WM in groups of children, younger adults, and older adults (Sander et al., 2012b).
Details on procedures, task design, and EEG data recording can be found there. For convenience, we outline
the study design as it is important for the understanding of our analysis approach as well as the results.

2.4.1. Participants

For the present study, we used data from 22 children (M,g = 11.9 years, range 10-13 years), 12 younger
adults (Mg = 24.2 years, range 20-25 years), and 22 older adults (M4 = 73.3 years, range 70-75 years).
Given that groups of children and older adults are typically more heterogeneous in comparison to younger
adults, sample sizes for these two age groups were larger in the initial report. The initial sample included 31
children, 19 younger adults, and 31 older adults. Details about exclusion criteria and descriptive marker tests
documenting the age typicality of the sample can be found in Sander et al. (2012b). The ethics committee of
the Max Planck Institute for Human Development, Berlin, approved the study.

2.4.2. Experimental paradigm

The exact procedures are described in Sander et al. (2012b). In short, a hemifield version of the change-
detection task (Vogel and Machizawa, 2004) was used to probe age differences in visual WM capacity (see
Fig. 3). Memory arrays of colored squares were presented to the participants for 100 ms or 500 ms. Targets
were defined as the squares presented in the hemifield indicated by a centrally placed cue before each trial. To
keep the difficulty of the task comparable for the different age groups, memory arrays of 2, 4, or 5 targets were
presented to younger adults while they involved 2, 3, or 4 targets for the older adults and children. Besides
the number of targets, the experimental procedure was identical for all age groups. For the present report,
we only analyzed the common set sizes 2 and 4. In the following, they will be referred to as low (2) and high
(4) levels of WM load. Trials were presented in four blocks. The first two and the last two blocks were always
presented at the same presentation time, and the order of the presentation time was counterbalanced across

10



participants. Set sizes were randomized within blocks. After a retention interval of 1000 ms, a probe array of
colored squares was shown and participants had to indicate whether all the colors of the probe array’s targets
were identical to the memory array or whether one of the squares had changed in color. We only considered
subsegments of the time segment starting with the presentation of the memory array and ending 1000 ms
after that for our analysis (see Subsection 2.2). The presentation of each block started with 12 practice trials.
Then, each participant completed 360 trials of varying set size. Set sizes were randomized within blocks. After
each block, participants got feedback about the accuracy of their responses. Given that we assumed older
adults and children would have additional difficulties with a cued hemifield presentation, we always presented
the cue for 500 ms and showed it until the memory array was presented to minimize cue-related memory load.
We also blocked the cue direction for 30 consecutive trials to prevent a task-switching situation that could
differentially affect the age groups (e.g., Kray and Lindenberger, 2000).

2.5. Preprocessing

For preprocessing, the EEG was re-referenced to the two mastoid channels. Afterwards, an independent
component analysis (ICA) was used to correct for remaining eye blink, noise, and muscle activity (Jung et al.,
2000). Independent components representing artifactual sources were visually identified and removed from
the data. Thereafter, trials with an incorrect response were removed. As the last preprocessing step PCA was
used to project the EEG onto the principal components that explained 99% of the variance. This was done to
restore the invertibility of the mean between-channel covariance matrix, which was violated by the removal
of independent components in the previous preprocessing step. As explained above, the CSP method that
we chose as part of our candidate models (see Subsection 2.2) requires an invertible mean between-channel
covariance matrix. An almost identical but more elegant way to restore invertibility would have been to
simply project the EEG onto the retained independent components. We chose the ICA, PCA combination
for practical reasons. As the exact location of individual frequency bands may change across the lifespan
(Klimesch, 1999), the individual alpha peak frequency was estimated for each individual participant based on
independently assessed resting state data. To determine the individual alpha peak frequency we computed
power spectra for eyes-closed resting state data and averaged them across all occipito-parietal electrodes.
The individual alpha peak frequency was then defined as the maximum peak of the averaged power spectra
between 7 and 13 Hz (see Sander et al., 2012b, for more details). The cut-off frequencies for band-pass
filtering into the alpha frequency ranges were determined in relation to individual alpha frequency based on
suggestions by Doppelmayr et al. (1998).

2.5.1. Data analysis

Previous studies have examined load modulations of lateralized alpha power activity at 100 ms presentation
times (Sauseng et al., 2009). Therefore, the analyses presented in this study are focused on this presentation
time condition, which is the standard condition used in change detection paradigms (e.g., Luck and Vogel, 1997;
Vogel and Machizawa, 2004). Analyses were conducted with custom-made MATLAB code (The MathWorks
Inc., Natick, MA, USA) based on the Fieldtrip software package (Oostenveld et al., 2010).

11
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Figure 4: Performance evaluation. Mean BAC and CIs for the person-specific (blue dots) and the nonspe-
cific model (red dots). Shown for the attentional focus (a) and WM load (b) classification for each of the three
age groups separately. Each dot describes the BAC of one person. The box plots denote the respective mean
values and 95% ClIs. The red dotted horizontal line describes the BAC as expected by the null hypothesis.
“CH” stands for children, “YA” for younger adults, and “OA” for older adults.

3. Results

First, we validate our model class by comparisons against chance and a theory-driven nonspecific model
class. After that, we present detailed person-specific results for selected participants, followed by group results.
Finally, the proposed model class is compared against simpler ones.

3.1. Performance evaluation against chance and the best nonspecific model

To validate our framework and the set of candidate models, we will demonstrate that our approach resulted
in a classification performance significantly different from chance in each age group. Moreover, we will show
that the accuracy is higher than for a conventional theory-driven model.

To test our approach against chance, we compared it against a model that guesses class membership on
each trial. Such a decision function guessing for each trial will, in the limit, achieve a BAC of 0.5. Therefore,
we concluded that the prediction accuracy of the person-specific models within an age group was reliably
different from chance if the respective 95% CI of the mean BAC did not include 0.5. We calculated Cls based
on the t-distribution, for each age group. To test for univariate normality of BACs within each group the
Shapiro-Wilk test (Royston, 1995) and quantile-quantile plots were used. For all Cls the p-values for the
Shapiro-Wilk test were larger than 0.05. Visual inspection of the quantile-quantile plots also suggested that
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the data were normally distributed. Furthermore, ceiling effects, typical for accuracy data, were not present.
We therefore believe that the Cls based on the t-distribution were a reasonable choice for quantifying the
reliability of our estimates. We conclude that the prediction accuracy of the person-specific models within an
age group is reliably different from chance if the p-value of the one-sided t-test lies below 0.05. As Fig. 4 shows
for all age group—task combinations the Cls of the person-specific models did not include 0.5. Consequently,
the p-value of the one-sided t-test was below 0.05 for all age groups. Hence, the person-specific models allowed
for a reliable classification of attentional foci and WM load based on neural activity in the alpha frequency
range. As effect size we report the difference between the mean BAC and 0.5. The effect sizes for children,
younger adults, older adults respectively were: attentional focus prediction: 0.0538, 0.1390, 0.1669; and WM
load prediction: 0.0276, 0.0701, 0.0565.

To compare our person-specific approach against conventional theory-driven, nonspecific analysis schemes
that assume the same model for each person, we needed an appropriate a-priori model. Previous studies have
observed effects of shifted attention in early time windows (e.g., Freunberger et al., 2008), whereas effects
of load were usually reported from the maintenance period of the change-detection task (Grimault et al.,
2009; Vogel and Machizawa, 2004). Thus, we used 0-400 ms as the theory-driven time window for attentional
focus prediction and 400-1000 ms for WM load prediction. In line with conventional analysis schemes (e.g.,
Pfurtscheller and Aranibar, 1977), the variances of the bandpass-filtered signals were used as features for
the prediction instead of CSP. Conventional analysis techniques are univariate in nature. Therefore, the
equivalent of a weight vector (or any other function that integrates evidence), as needed for linear prediction,
is not available. Therefore, we used LLDA to learn the weight vector and classify the power features. We again
used 10-fold cross-validation to evaluate its performance. To obtain the single best weight vector we applied
cross-validation to the data of all participants simultaneously, but separately for both tasks. That is, we
treated the data of all persons as a single person. As a result, we obtained an unbiased BAC estimate for the
best estimated nonspecific model, explicitly implementing the expectation that the same neural mechanisms
are present in all participants (Danziger, 1990; Molenaar and Campbell, 2009; Nesselroade et al., 2007).

First, to examine whether there is an effect across all age groups of using the nonspecific or the person-
specific model, we performed a repeated measures analysis of variance (ANOVA) with age group as the
between factor and model type (person-specific or nonspecific) as the within factor. For the attentional focus
prediction the main effect of model (F(1,53) = 61.44,p = 2 x 1071°) as well as the interaction effect of model
and age group were significant (F'(2,53) = 7.62, p = 0.0012). The interaction was ordinal, thus just revealing
differences in the strength of the main effect between age groups. The main effect of model was positive. Hence,
across all age groups, the person-specific model improved the BAC for the attentional focus prediction. For the
WM load prediction the main effect of model (F'(1,53) = 14.80, p = 0.0003) was significant. The interaction
effect of model and age missed the conventional significance level (F(2,53) = 3.01,p = 0.0577). Hence, the
positive main effect of model is interpretable. Thus, across all age groups, the person-specific model improved
the BAC for the WM load prediction.

Fig. 4 depicts the mean BAC for the nonspecific as well as the person-specific model. With regard to the
classification of the attentional focus, for all three age groups the person-specific model was more accurate
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Nonspecific Specific p-value  Mean Difference

Children  [0.5061,0.5412] [0.5332,0.5744]  0.0258 0.0302
Younger adults [0.5040, 0.5605] [0.5749,0.7031]  0.0018 0.1068
Older adults  [0.5298,0.5735] [0.6305,0.7033] 9 x 10°° 0.1152

(a) Attentional focus

Nonspecific Specific p-value Mean Difference
Children [0.4988,0.5400] [0.5117,0.5435]  0.2520 0.0082
Younger adults [0.4942,0.5390] [0.5166,0.6236] 0.0313 0.0535
Older adults  [0.4739,0.5119] [0.5220,0.5910]  0.0015 0.0636
(b) WM load

Table 1: Mean BAC and Cls for the person-specific and the nonspecific model. Corresponding p-values from
the paired one-sided t-test. These Cls are visualized in Fig. 4

than the nonspecific model. The respective 95% CIs, effect sizes (mean difference), and p-values obtained by
the paired one-sided t-test are shown in Table 1a. Similar results were obtained for the WM load prediction.
Here, with exception of the children, the person-specific model was more accurate than the nonspecific model.
The respective 95% Cls, effect sizes (mean difference), and p-values obtained by the paired one-sided ¢-test
are shown in Table 1b.

Cross-validation results are not necessarily well approximated by a normal distribution, and the variances
for two classification methods are different depending on the means of the two distributions. Hence, a t-test
is only an approximation of a valid test — in both cases, the test against chance and the comparison of the
models against each other. However, in our case the large effect sizes justify the t-test. To substantiate the
test further, we repeated the test with a permutation test (Nettleton and Doerge, 2000) for the case with the
smallest effect size (WM load prediction in children with person-specific model vs chance), confirming our
results that even this effect size is significant (p = 0.02).

Overall the previous comparison clearly demonstrates that on average person-specific models were more
accurate than the classical approach, which assumes that the same neural mechanisms operate similarly in
each person, a prediction captured in the nonspecific model. Moreover, for both tasks and all age groups,
performance was better than random guesses for each trial.

3.2. Person-specific results

Now that we have established that the person-specific models were more accurate than chance and the
nonspecific model, the question is how to interpret the resulting estimated models both on an individual and
on a group level. In the following we will describe how we interpreted the person-specific models and how we
summarized the individual results on the group level.

In the supplement we show the person-specific results for all persons in both tasks. In Fig. 5 we show the
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Figure 5: Person-specific results. Examples of results for a) attentional focus and b) WM load prediction
for single individuals, one from each age group. Column (a) shows the estimated BAC for the different
candidate models. The z-axis describes the onset and the y-axis the duration of the corresponding time
window. Colors refer to the estimated BAC of the respective candidate model, with hot colors indicating
higher BAC and cold colors lower BAC. The crosshair depicts the location of the selected model. Column (b)
shows the estimated source component for each trial as reconstructed by the best estimated model, including
the BAC of the best model. The trials are sorted by their true class. The vertical line separates the classes.
The horizontal line marks 0. For a perfect classifier the estimated source must be positive for all trials to the
left and negative for all trials to the right of the vertical line. Column (c) shows the entries of the normalized
filters. Column (d) shows the normalized pattern. Column (e) shows the mean time series for the first CSP
filter for both classes. Column (f) shows the mean time series for the last CSP filter for both classes. The
x-axis describes the time elapsed since the onset of the memory array. The vertical dotted lines indicate the
selected time window. The horizontal line in columns e and f) marks 0.

results for the person with the most accurate estimated model in each age group and task. The properties of
the selected person-specific models quantify different aspects of the observed data. Each candidate model was
derived from the same basic class, but they vary with regard to exposure to certain spatio-temporal features
of the observed brain responses. The onset and duration of time windows each model is exposed to precisely
describe the temporal information used by a given model. Within the spatial domain, the resulting spatial
filter and pattern coefficients reflect the topographical information exploited by the chosen model.

The BACs estimated for the different candidate models (column a in Fig. 5) map out a space of information
content across different choices of time windows. They also quantify the uncertainty of the model selection
procedure. If there is only one model with a high BAC, one can be relatively certain that the truly best
model was selected. If there is almost no difference between the model with the highest BAC and several
other models, however, model selection is mostly determined by random variation. We only report the BACs
of the candidate models that have the same number of CSP filter pairs as the most accurate candidate model.
This is motivated by the fact that we are mostly interested in the location of the time window. In addition, the
number of CSP filter pairs was the least critical setting by which the candidate models differed (see Section
3.4). Furthermore, we report the following properties of the person-specific models: the BAC estimate as
obtained by nested cross-validation, the classifier output (= reconstructed source) w'x; + ¢ for each trial
t sorted by true class membership as a visualization of the predictive behavior (both column [b]), the filter
(column [c|) and the pattern (column [d]) to describe the spatial information that was employed by the model,
the selected time window to quantify which time segment was employed for prediction, and the mean (over
trials) time series of the first (column [e]) and last (column [f]) CSP component for each class as a visualization
of the time course of the most discriminative projected components.

We will exemplarily describe the results for the younger adult in the attention task (second row in Fig.
5). The grid of candidate model BACs shows that candidate models employing time windows starting early
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have a high BAC (column [a]), while none starting later than 200 ms achieves a comparable BAC. The
reconstructed source shows the nice separability of the two conditions for this person, which is also reflected
in a BAC of 0.8464 (column [b]). The filter has a high negative value at Pz, indicating that higher power at
this electrode is evidence for the “Attention right” condition (column [c]).” The pattern has very high positive
values in parieto-occipital areas, indicating that if the decision function predicts “Attention Left”, these areas
show higher power (column [d]). The longest possible time window was selected (700 ms) and starts directly
after stimulus onset. The CSP components both show the desired effect within the chosen time window:
increased variance for one class and decreased variance for the other class. This effect is not present outside
the selected time window (columns [e] and |[f]).

3.3. Group results

Figs. 6 and 7 show the group results. The scatter plot of onsets and durations of the selected time windows
(Figs. 6a and 7a) illustrate their between-persons variability. The mean (across persons) BAC for the different
candidate models is shown in Figs. 6b and 7b. As for the person-level results, we are most interested in the
location of the time window, so we only report the mean by onset and duration of the employed time window.
To achieve this we averaged across the different numbers of CSP filter pairs within a person prior to averaging
across all persons. The mean BAC for the different candidate models map out a space of mean information
content across different choices of time windows.

Figs. 6c-e and Figs. 7c—e show three time series. The first expresses how often each time point was
part of the selected model (Figs. 6¢ and 7¢ respectively). For each time point, we counted the number of
persons for whom this time point was included in the person-specific model and then divided this by the total
number of persons in this group. This is a way of visualizing the information per time point. However, as it
only relies on the best estimated model it ignores the useful information of the candidate models that were
not selected. Therefore, for a second time series we compressed the mean BAC of the candidate models in a
similar fashion by calculating the mean BAC for every time point (Figs. 6d and 7d). We did this by averaging
the mean BACs of all estimated models that contain the respective time point. For models that employ a
very long-lasting time window, however, this could be misleading as the high performance may be driven by
a very localized part. To remedy this, we also report the mean BAC for every time point but limited to the
candidate models based on the shortest time window (100 ms) (Figs. 6e and 7e). We will refer to these results
as coarse (Figs. 6d and 7d) and fine mean (Figs. 6e and 7e) BAC by time.

We do not report any averages of the person-specific filters and pattern, as they originate from different
time windows and thus, their interpretation is difficult.

3.8.1. Attentional focus

Fig. 4a showed that mean BAC was highest for the older adults (0.6669), followed by the younger adults
(0.6390), and lowest for the children (0.5538) for attentional focus. Fig. 6 shows the group results.

For the children, the employed time window of the best estimated model varied across the whole range of
durations and onsets (Fig. 6a). This finding may indicate larger variability in the group of children compared
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to the other age groups. However, given that the mean BAC was only slightly higher than chance level, this
must be interpreted with caution.

For the majority of younger adults, models that start earlier than 250 ms after memory array onset were
selected (Fig. 6a). For the remaining three younger adults, models starting later than 400 ms were picked. No
model beginning later than 600 ms was selected. However, some of the early models contain data for almost
the complete trial because of their duration (see supplement). The fine mean BAC by time plot (Fig. 6e)
shows two distinctive peaks around 200 ms and around 700 ms for the younger adults. This is a consequence
of the fact that in our group of younger adults, we observed two clusters: For one cluster, an early time
window provided good discriminability, and for the other, a later time window discriminated well. This is
reflected by the fact that the BAC for the candidate models peaked around the best model and was relatively
low for the remaining candidate models for every younger adult (see supplement).

The distribution of time windows in the older adults is strongly shifted to the stimulus onset. For only
one older adult a model starting later than 200 ms post-stimulus was selected, with a relatively low BAC of
0.5417 (Fig. 6a). The best estimated model contains data after 700 ms post-stimulus for only one person,
while almost all person-specific models contain data around 200 ms post-stimulus. The coarse (Fig. 6d) and
fine (Fig. 6e) mean BAC by time plots clearly show an early peak (at roughly 200 ms) followed by a sudden
decline. This indicates that for almost all older adults, discriminability was best if very early time windows
were employed. It is noteworthy that the accuracy of these models was superior to those of the younger adults
(see Fig. 4a).

3.3.2. Working memory load

The mean BAC for WM load was highest for the the younger adults (0.5701), followed by the older adults
(0.5565), and lowest for the children (0.5276) (see Fig. 4b). Fig. 7 shows the group results for the WM load
prediction.

For the children, the employed time window of the best estimated model varied across the whole range
of duration and onset (Fig. 7a). Again, this finding may indicate larger variability in the group of children
compared to the other age groups. However, given that the mean BAC was only slightly higher than chance
level, this finding must be treated with caution. For many of the younger adults and the older adults (6 of
12 younger adults and 18 of 22 older adults), models that started earlier than 250 ms after memory array
onset were chosen (Fig. 7a). After a gap, there is another group of people with models that start after 450
ms (6 younger adults and 4 older adults). Note that the group of persons for whom early models were picked
is much larger in the older than in the younger adults. Some of the early models contain data for almost the
complete trial because of their duration.

Accordingly, the mean BAC for the candidate models shows two peaks for the younger and the older adults
(Fig. 7b). One represents early models and the other late models. For the younger adults, both peaks are
equally strong. For them, the coarse BAC by time plot (Fig. 7d) is therefore almost constant. Consequently,
their fine BAC by time plot (Fig. 7e) shows an early and a late peak.

Despite the fact that there is a peak for late models, the coarse BAC by time plot (Fig. 7d) for the older
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adults is qualitatively the same as for the attentional focus prediction: An early peak around 200 ms and
then a sudden drop. The fine mean BAC by time reveals both peaks.

For both age groups, the reasons for the late and the early peak are less clear than for the attentional
focus prediction. There are persons for whom only early models were accurate, persons for whom only late
models were accurate, and persons for whom early and late models were accurate (see supplement).

3.4. Performance comparison against simpler person-specific models

The set of candidate models that we proposed in order to obtain person-specific models is comparatively
flexible (i.e., it adapts many parameters to the data) and uses sophisticated algorithms: model estimation
entails parameter selection over time windows, a spatial projection, and a subsequent estimation of regularized
regression weights. As a consequence results are hard to interpret. In the following, we report the results
of an evaluation of the impact of reducing parameters to arrive at potentially simpler models. To this end,
we gradually reduced the complexity of the candidate models. All the p-values that we report in this section
were calculated using a two-sided paired t-test, as we hypothesized that the simpler model classes would be
either better or worse then our original model class. At first sight it might seem unreasonable to hypothesize
that a simpler model class leads to better predictive performance, as more complex model classes always lead
to a better model fit. However, a better model fit does not necessarily lead to better predictive performance.
This is due to the fact that a more flexible model class is more vulnerable to noise in the data. This is called
overfitting in the literature (Bishop, 2007; Duda et al., 2001; Hastie et al., 2001).

In a first step, we abandoned the optimization across the time window by fixing it to a theory-driven
estimate for each task (0-400 ms for attentional focus, 400-1000 ms for WM load). We call this model class
the fixed time model in the following. By fixing the time windows we reduced the number of candidate models
from 1220 (244 time windows by up to 5 components) to 5. For the attentional focus prediction, the mean
BAC of the fixed time model was not significantly different from the mean BAC of the full model class for
both the children (p = 0.9605) and the older adults (p = 0.9265). The mean BAC of the full model was
slightly higher for the younger adults (p = 0.1455). The results for the older and younger adults are not
surprising considering our previous analysis: For almost every older adult, a model with an early component
was accurate. For the younger adults, time window optimization improved the results as there were two
clusters: one for which an early, and one for which a late component is most predictive of the behavioral
difference. For the children this again suggests that the observation of large variability might in fact be due
to noise.

Regarding the WM load prediction, the mean BAC of the fixed time model was not significantly different
from the mean BAC of the full model class for both the children (p = 0.3465) and the younger adults
(p = 0.5731). For the older adults, the mean BAC of the fixed time model was higher than the mean BAC of
the full model (p = 0.0013).

As a further step of model simplification, we abandoned the optimization of the number of CSP filter pairs.
Instead, we picked the first three filter pairs. This was previously found to yield good predictive performance
(Blankertz et al., 2008). We refer to this model as the fized time fized CSP model. Across all age groups and
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tasks, the additional restriction of the model space did not significantly influence the accuracy in comparison
to the fixed time model (attentional focus: children: p = 0.6075, younger adults: p = 0.4311, and older adults:
p = 0.5450; WM load: children: p = 0.5600, younger adults: p = 0.4184, and older adults: p = 0.6980). This
is further evidence that three filters represent a reasonable choice.

To judge if CSP is a reasonable feature extraction method for the present data, we introduced two more
model classes that do not rely on CSP features but directly operate on the variance of each channel. The
two classes differed from each other in the following: In one class, we optimized the time window as before.
We call this model class variance model in the following. We compared this class against the full model. For
the other class, we fixed the time window to our theory-driven estimates (0-400 ms for attention, 400-1000
ms for load). We call this model class fized time variance model. We compared this class against the fixed
time model. For the attentional focus prediction the variance model was less accurate than the full model
for both the younger and the older adults (p = 0.0256 and p = 0.0004). For the children there was no
significant difference (p = 0.7986). For the WM load prediction there was no significant difference between
the variance model and the full model for any age group (children: p = 0.9193, younger adults: p = 0.2728,
and older adults: p = 0.1355). The fixed time model was more accurate than the fixed time variance model
for both tasks and all age groups (attentional focus: children: p = 0.0902, younger adults: p = 0.0533, and
older adults: p < 0.0001; WM load: children: p = 0.0019, younger adults: p = 0.0382, and older adults:
p = 0.0007). Thus, for most comparisons, CSP features led to more accurate models. However, especially
for WM load prediction for the older adults the combination of CSP and time selection seems to lead to
overfitting.

4. Discussion

The aim of the current study was to test and evaluate a multivariate pattern classification approach on EEG
data from a lifespan sample. The study was motivated by the observation of increased behavioral and neuronal
heterogeneity in both children and older adults (Lindenberger et al., 2013; Nagel et al., 2009; Werkle-Bergner
et al., 2012), challenging the validity of group-based analyses as well as between-group comparisons. The
results of the present study demonstrate the potential of multivariate pattern classification approaches (e.g.,
Bishop, 2007; Blankertz et al., 2011; Parra et al., 2005) for the derivation of idiographic models (Nesselroade
et al., 2007) in age-comparative EEG studies. WM load as well as the focus of spatial attention could
be discriminated reliably in all three age groups based on rhythmic neural activity in the alpha frequency
range. In all three age groups, the BAC of person-specific models provided a significantly above-chance
classification for the prediction of both the attentional focus and WM load. Also, across age groups and for
both prediction targets, the person-specific models were more accurate than a theory-driven nonspecific model
disregarding individual differences, with the exception of the children’s model for the prediction of WM load.
Hence, the present framework demonstrates the feasibility of deriving person-specific models that capture the
idiosyncratic signatures of neural mechanisms related to changing attentional foci and WM load as reflected
in varying spatio-temporal properties of the measured EEG signals.
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Usually, the spatio-temporal differences in the neural response between persons are assumed to reflect
noise (e.g., Luck, 2005). However, our approach shows that individually-tailored models do not just fit noise,
as exemplified by above-chance BAC derived from nested cross-validation. Rather, in terms of prediction
accuracy, they outperform conventional nonspecific models that assume operation of the same neurobehavioral
mechanisms in each participant (e.g., Danziger, 1990). This finding underscores the idiosyncrasy of neural
responses underlying similar overt behaviors, and calls for further studies to investigate how this is related
to interindividual differences both on the neural level (e.g., in terms of differences in brain structure; cf.
Breakspear et al., 2010; Deco et al., 2012; Valdes-Hernandez et al.; 2010) and on the behavioral level (e.g., in
terms of differences in strategy use; cf. Corbin and Marquer, 2009).

One of the major challenges when dealing with person-specific models is how to extract and aggregate
the person-specific information across individuals in order to allow for group comparisons. Here, we suggest
summarizing person-specific models with regard to their different properties. These properties refer to the
timing of the processes (here: time windows with a certain onset and duration), the reliability of classification
within the person (BAC), and the topographical distribution of classification information (i.e., filters and
patterns). Summarized in this way, the information can be taken to visualize the variability between persons
and to compare the distribution of model properties across groups. Some quantities might even be subject to
traditional statistical inference. For example, filters and patterns are described by a vector and could simply
be averaged. In this way, the data can be brought back into commonly reported topographical space and
compared across groups. However, one must be aware that filters and patterns originate from very different
time windows and thus the meaning of averages may be questioned. Summarizing person-specific models on
the group level poses a serious challenge both on a conceptual and on a methodological dimension. We see
our approach as a first step in this direction.

In terms of classification accuracy, differences between the age groups were observed. With regard to the
attentional focus prediction, the BAC was highest for older adults, followed by younger adults, and lowest
for children. Concerning the WM load classification, the highest BACs were obtained for the younger adults,
followed by the older adults, with the lowest values again for children. The reduced overall classification
performance in the group of children, which also holds true for the simpler alternative models, underlines
that single-trial classification failed for a considerable proportion of children and thus requires cautious in-
terpretation of the results. We tentatively suggest that the discrimination of cognitive states based on EEG
oscillations is more demanding in children due to fluctuations in sustained attention (cf., Fandakova et al.,
2014; Sander et al., 2011). Fluctuating attentional states are known to affect performance in change-detection
tasks considerably (Rouder et al., 2008). Interestingly, and in contrast to our expectations, classification per-
formance was not reduced in older adults, and was even higher, although not significantly, than in younger
adults with regard to the classification of the attentional focus. Comparing the most accurate model classes
for the WM load prediction between age groups (fixed time fixed CSP model for the children, fixed time
model for the younger adults and older adults) the older adults are again the ones with the highest BAC.
This observation is in line with the observation that it is not potential group heterogeneity per se that impairs
discrimination performance, but rather variability within a person that might negatively impact classification

24



(e.g., Krauledat et al., 2008).

One typical challenge that developmental researchers face is dealing with age differences in the timing of
(cognitive) processing (Kail and Salthouse, 1994; Salthouse, 1996). Here, such idiosyncrasies are considered
by deriving a set of candidate models that differ with regard to the temporal dimensions, (i.e., by varying the
onset and duration of observed time windows). The present results demonstrate that the most discriminative
neural responses can be observed at different onsets and with variable duration, suggesting interindividual
differences in processing speed and reliability (Li et al., 2004). Going beyond simple differences in processing
speed for the supposedly same cognitive process, the observed differences may also indicate differences in
cognitive processing strategies. In the group of children, time windows of the best models varied across the
whole range of possible onsets and durations for both prediction tasks. Together with the low BAC in this age
group, this pattern underlines our interpretation of unsustained task processing in the child group rendering
data interpretation challenging.

In the group of younger adults, both prediction tasks revealed interindividual differences in the onset and
duration of time windows that discriminated optimally between conditions. In most younger adults, a model
was selected that starts earlier than 250 ms after memory array onset. This observation is in line with early
effects of attention, closely following cue or stimulus onset (e.g., Broadbent, 1958; Hackley et al., 1990; Hillyard
et al., 1998). However, the fine mean BAC by time plot (see Fig. 6e) revealed two peaks in this group, one
early peak at around 200 ms and a later one at around 700 ms. The later peak indicates some individuals
that seem to shift their attentional focus rather late and thus, may rely on late selection processes (Deutsch
and Deutsch, 1963). In older adults, we found a strong shift of the time windows towards stimulus onset.
In all but one participant, the best model’s onset was found before 200 ms. It has been debated for decades
whether selective attention operates rather early (e.g., Broadbent, 1958) or late (Deutsch and Deutsch, 1963)
within the temporal sequence of information processing. Most likely, the reliance on early versus late selection
mechanisms differs individually. In addition, early versus late selection has been suggested to be a function
of cognitive load, with low load conditions leading to rather early, and high load conditions leading to rather
late selection processes (Lavie, 2005). Interestingly, current results in cognitive aging research underline that
cognitive load is dependent on' the individual processing capacity, which differs between age groups (e.g.,
Nagel et al., 2009; Werkle-Bergner et al., 2012; Schneider-Garces et al., 2010). Accordingly, younger adults’
low load conditions may equate high load conditions for older adults, leading in turn to a shift to early
selection mechanisms in conditions in which younger adults can still recruit late selection processes (but see
Velanova et al., 2007, for an alternative view). In line with this interpretation, we also observed a strong
peak of the classification accuracy in an early time window for the older adults in the WM load prediction
task, but an early and a late peak in the group of younger adults. These results reveal that interindividual
differences in timing are relevant for the interpretation of neural responses in the context of current theories
of selective attention.

The discussion of the results so far was solely based on the full model. However, from a classification
perspective, the full model was only as accurate as a simpler model class using fixed time windows (fixed
time model) in conjunction with CSP and LDA. These time windows were derived from the literature and
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were constrained to an early time window for the classification of the attentional focus and to a later time
window for the classification of the WM load. Using these fixed windows, with exception of the WM load
prediction in the older adults, we almost achieved the same BACs as with time window optimization. Hence,
two models, the full model and the fixed time model, do not differ significantly in predictive accuracy. In
other words, the hypothesis that their performance on a new observation is equal can not be rejected. It
is generally taken for granted that more parsimonious explanations for a set of observations are preferable
under comparable goodness-of-fit (Akaike, 1998). In our case the more parsimonious explanation corresponds
to the fixed time model, as it is a special case of the full model. But, since we relied on cross-validation to
estimate the predictive accuracy, we implicitly accounted for the unequal complexity between the models in
terms of numbers of free parameters. In fact, one can show for likelihood-based models that cross-validation
is asymptotically equivalent to the Akaike information criterion that penalizes model fit for the number of
parameters (Stone, 1977). Hence, unless model fit was evaluated directly for new observations, choosing the
simpler model may be a good heuristic — or it may not. Insofar, we allow ourselves to draw conclusions
from the two hypotheses in head-to-head competition. In other words, the full model provides evidence for
interindividual variability in brain responses, which would have remained covered by the fixed time model
analysis alone. Hence, the person-specific models, although not superior with regard to prediction accuracy,
provide additional insights about reliable idiosyncrasies in brain—behavior mappings useful for further theory-
building. Interestingly, for older adults the BAC achieved by our time-optimizing model was even worse
than that of the fixed time model. One possible explanation may be that for the WM load prediction, the
discriminating signal is too weak so that our complex model class, containing many candidate models, resulted
in overfitting of the data. That is, the model selection process is disturbed by the noise in the data such that
a theory-driven model selection leads to more accurate predictions. From a theoretical perspective one could
argue that the discrimination between two load conditions is particularly challenging in the group of older
adults. The reason being that the different load conditions may indeed be less distinct due to lower capacity
limits.

While standard EEG analysis approaches assume the same model for every person, we made the assump-
tion that a different model is required for every person. The two approaches represent the extremes of a
continuum. It would be very interesting to systematically explore this continuum. That is, to examine how
much individualization of the models is necessary. We envision two different approaches to reach this goal.
The first would start with one model for all participants and recursively split the participants into groups
with the same model. The participants are only split further if a significant gain in prediction accuracy can
be obtained. Brandmaier et al. (2013) already developed this framework for Structural Equation Models. An
alternative approach would be a hierarchical model that penalizes the person-specific models for a derivation
from the group model. The best amount of penalty could be estimated and would be informative regarding
the amount of individualization necessary for a given task. Both approaches are accompanied by their own
methodological and computational challenges.

To derive the person-specific models we employed the combination of CSP, LDA, and nested cross-
validation. This setup is very popular for building BCIs based on rhythmic neural activity (e.g., Blankertz
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et al., 2008, 2011; Ramoser et al., 2000). Our work is distinct from typical BCI studies as we did not aim
to construct a real-time classification system but rather used the same methods for post-hoc data analysis.
Therefore, in contrast to typical BCI studies, we were able to improve the data quality prior to applying
our classification system. This included estimating the individual alpha peak frequency for every person and
using ICA-based artifact correction. We overcame the technical challenge that data corrected by ICA are
not of full rank, which is necessary for CSP, by applying PCA (Blankertz et al., 2008). We believe that this
preprocessing was crucial for the success of this study because of the commonly reduced amount of data in
developmental studies. EEG data quality in children and older adult groups is often reduced due to more
oculo-motor, muscle, or movement artifacts (Picton et al., 2000), leaving fewer trials per condition. In addi-
tion, reduced attentional capacities of these groups (McAvinue et al., 2012) call for shorter testing sessions
than in younger adults. Overall, the use of analysis techniques derived from pattern classification and BCI
research is a valuable tool to overcome some of the limitations in terms of data quality typically encountered
in age-comparative neuroimaging studies.

For the attentional focus prediction, the experimental condition remained the same for blocks of 30 trails
each. If slowly varying background activity that could be exploited by the classification algorithm were
present in a blocked experimental design, using k-fold cross-validation might overestimate the performance
of the classifier. A general remedy would be to use leave-one-block-out cross-validation instead (Lemm et al.,
2011).

In sum, the present study evaluated a multivariate pattern classification approach for the analysis of
idiographic models in developmental cognitive neuroscience studies by demonstrating its general feasibility
in three age groups. In our view, an improved consideration of interindividual differences in brain—behavior
mappings is one of the upcoming challenges for cognitive neuroscience research in developmental samples
(cf., Molenaar, 2004; Molenaar and Campbell, 2009; Nesselroade et al., 2007; Voelkle et al., 2014). In this
context, developing analytic approaches that account for idiosyncrasies in the mappings between neural and
cognitive processes is necessary for further progress in lifespan cognitive neuroscience. The present study can
be conceived as a further step in this direction.
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AppendixA. Spatial interpretation

AppendizA.1. Filters and patterns

The EEG surface potentials x(t) € RY are believed to be a linear mixture of a set of sources s(t) € RV
plus noise (e.g. Blankertz et al. (2011); Biefmann et al. (2012); Parra et al. (2005))

x(t) = As(t) + n(t).

U denotes the number of channels and V' the number of sources. The matrix A € RYV*V is called the forward

model. Every given column (ag, as,...,ay) = A describes how each of the sources contributes to the surface
potentials. Therefore, the column a; of A is called the pattern of source s;(t). In the following, we will assume
that for a given measurement, the time courses of all sources are stored in S = [s(ty),s(tz2),...S(tT)] and
that the time series for all electrodes are stored in X = [x(t1),x(2), ..., x(t7)].

If the sources and the EEG surface potentials are known, a task of interest is to find the corresponding
backward model. That is, a matrix W € RV*U that recovers the original sources from the observed surface
potentials s(t) = Wx(t). An estimate W can be obtained by minimizing a distance measure between the
original sources s(t) and the reconstructed sources Wx(t). The simplest distance measure is the Euclidean
distance. The resulting estimate is called least squares estimate

W' = argminy, Z (s(t) — Wx(t))? = SXT (XX ")™!

The rows (W1, Wa,...,Ws) = W of W are referred to as filters, as they describe the contribution of each
electrode to a given source.

Typically the sources are not directly observable. Rather, a backward model W that optimizes certain
properties of the resulting sources is estimated. ICA (Bishop, 2007), for example, is a method to estimate a
backward model that optimizes the statistical independence of the recovered sources.

After a backward model W has been obtained, the least squares estimate of the corresponding forward
model A can be derived in analogy to the least squares estimator of the backward model and is hence,

A=XST(SST) ! =XX"WWXX'"WT")~? (A1)
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with § = WX. This estimator is not invariant to constant shifts of the signals or the sources. Constant shifts
in a signal originate from a constant source, which generally is not of interest in neuroscience (Parra et al.,
2005). Therefore, their mean is subtracted from all rows of X and S before the application of equation A.1.
This is equivalent to including a constant source in S and ignoring its parameter estimate.

A particularly easy form of a backward model is a filter w', that is, a backward model that only recon-
structs one source. Linear classifiers, i.e., parametric classifiers with a linear decision function of the form
f(x) = sign(w'x + ¢), can be regarded as a method to obtain a filter. The optimized property of the re-
constructed source is discriminability between two conditions. The filter is simply w' and the reconstructed
source w'x + c¢. The corresponding pattern can be obtained by applying equation A.1.

Neuroscientific interpretations are typically facilitated by the use of patterns instead of filters (Biefmann
et al., 2012; Parra et al., 2005), as patterns are not disturbed by correlated noise sources. Filters and patterns
are identical (up to scaling) if XX is a multiple of the identity matrix (see equation A.1). This is equivalent
to the EEG channels being uncorrelated and therefore almost never the case.

AppendizA.2. Candidate models learn a linear classifier

In this section we will show that the proposed candidate models learn a linear classifier with the entries
of the between-channel covariance matrix as features. Let X (i) € RV*T be the EEG within a selected time
window observed for trial ¢ and 2(2) € RY*U the corresponding estimate of the between-channel covariance
matrix. Furthermore, let M be the transformation matrix resulting from the composition of PCA and
CSP. So, R?*U 35 M := CP, where C is the transformation matrix learned by the CSP method, P the
transformation matrix learned by PCA, and k the number of filter pairs selected for CSP. Let w’ be the
weights as learned by LLDA. Additionally, let Var : RV*T — RY be the mapping from a matrix containing
U time series of length T to the vector containing the variance of each time series. In addition to that, let
diag : R" — R™" be the mapping of a vector to the corresponding diagonal matrix, diag : R™*"™ — R" the
mapping of a matrix to the vector containing the entries of its diagonal, tr:R™*"™ — R the trace of a matrix,
and vec : R"*? — R™ the mapping of a matrix to a vector containing the columns of the matrix stacked on
top of each other. Then the classification function fy(X(7)) for trial i is as follows. For notational clarity we
drop the dependence of X and X on i.

<

9(X)

fo(X) = sign(w'T Var(MX) + )
= fi = W' diagMEM") + ¢
— tr(diag(w)MEM") + ¢
= tr(M' diag(w')M3) + ¢
= vec((M" di;g(w’)l\/l))T vec(3) 4¢
N ~ N

w':= Ti=

—~ ~ —~
T = W N
S~— Nt N

=

—
D
SN~—
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which shows that all candidate models lead to a linear classifier with the entries of the between-channel
covariance matrix as features. Hence, w is the filter learnt by our candidate models.

For A.3, we made use of the fact that if the covariance matrix for a random variable Y is 3, the covariance
matrix for MY is MEM . For A.5, we employed the fact that the trace is invariant under cyclic permutations.
For A.6 tr(XY) = vec(X") " vec(Y) applies.

AppendizA.S3. Candidate model pattern

In order to obtain the pattern corresponding to the classification function learnt by the proposed candidate
models we employed equation A.1, with X = [Var(X(1)),..., Var(X(I))] and S = [f4(X(1)),..., f5(X(I))].
Prior to that, we subtracted their means from all rows of X and S as explained in AppendixA.l. The
statements in AppendixA.2 again apply. To reiterate, X(i) € RU*T is the EEG within the selected time
window observed for trial i, Var : RY*T — RY is the mapping from a matrix containing U time series of
length T' to the vector containing the variance of each time series, and f; the classification score as defined in
AppendixA.2.

AppendizA.4. Proof that measurement model is not linear

Here, we show that the between-channel covariance matrix can not be expressed as a linear mapping
of sources plus noise. Thus, it does not obey a linear measurement model. Let Cov : RV*T — RUXU he
the mapping from a matrix containing U time series of length T to the corresponding between-time series
covariance matrix. Let X (i) € RV*T be the EEG observed for trial i, S(i) € RV*T the activity of the sources
and N(i) € RV*T the noise. Dropping the dependence on i, the linear model for EEG can then be formulated
as X = AS + N. To simplify the proof, we assume that there is no noise. Then it follows that

Cov(X) = Cov(AS)
= ACov(S)AT
which shows that the relationship between the covariances of the sources and the covariances of the

electrodes is quadratic and therefore not linear. This also holds true if we drop the assumption that there is
no noise.
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*4. Highlights (for review)

e A method to derive person-specific models for EEG analysis is proposed.

e The approach is based on supervised learning.

e Person-specific models were more accurate than conventional nonspecific
models.

e The use of individualized models for the analysis of age-differences is
demonstrated.





