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Abstract

Coordinated variations in brain morphology (e.g., cortical thickness) across individuals have been 

widely used to infer large-scale population brain networks. These structural correlation networks 

(SCNs) have been shown to reflect synchronized maturational changes in connected brain regions. 

Further, evidence suggests that SCNs, to some extent, reflect both anatomical and functional 

connectivity and hence provide a complementary measure of brain connectivity in addition to 

diffusion weighted networks and resting-state functional networks. Although widely used to study 

between-group differences in network properties, SCNs are inferred only at the group-level using 

brain morphology data from a set of participants, thereby not providing any knowledge regarding 

how the observed differences in SCNs are associated with individual behavioral, cognitive and 

disorder states. In the present study, we introduce two novel distance-based approaches to extract 

information regarding individual differences from the group-level SCNs. We applied the proposed 

approaches to a moderately large dataset (n=100) consisting of individuals with fragile X 

syndrome (FXS; n=50) and age-matched typically developing individuals (TD; n=50). 

Additionally, we tested the stability of proposed approaches using permutation analysis. Lastly, to 

test the efficacy of our method, individual contributions extracted from the group-level SCNs were 

examined for associations with intelligence scores and genetic data. The extracted individual 

contributions were stable and were significantly related to both genetic and intelligence estimates, 

in both typically developing individuals and participants with FXS. We anticipate that the 

approaches developed in this work could be used as a putative biomarker for altered connectivity 

in individuals with neurodevelopmental disorders.
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1. INTRODUCTION

Large-scale population brain networks can be constructed by examining coordinated 

variations in the brain morphometric data (Bassett et al., 2008; Bernhardt et al., 2011; Chen 

et al., 2011; Fan et al., 2011; Guye et al., 2010; He and Evans, 2010; Junfeng Sun, 2012; 

Lerch et al., 2006; Lv et al., 2010; Raj et al., 2010; Sanabria-Diaz et al., 2010; Wu et al., 

2012; Zhou et al., 2011). These structural correlation networks (SCNs) have been shown to 

reflect synchronized maturational changes in brain regions (Alexander-Bloch et al., 2013a; 

2013b). Further, evidence suggests that SCNs may reflect both anatomical and functional 

connectivity (Alexander-Bloch et al., 2013a), thereby providing a complementary measure 

of connectivity in addition to diffusion-weighted and resting-state functional networks. 

Previous studies have shown that alterations in SCNs were associated with aging (Wu et al., 

2012), multiple sclerosis (He et al., 2009), Alzheimer’s disease (He et al., 2008), 

schizophrenia (Bassett et al., 2008), adult/pediatric cancers (Hosseini et al., 2012a; 2012b), 

reading difficulties (Hosseini et al., 2013), and epilepsy (Bernhardt et al., 2011).

While previous work has related individual functional connectivity with behavioral 

performance (van den Heuvel et al., 2009), very few studies have attempted to estimate 

individual differences in anatomical connectivity directly from the T1-weighted MR images. 

Recently, a series of innovative methods have been developed to derive information about 

single-subject anatomical connectivity from the respective subject’s T1-weighted MR 

images (Batalle et al., 2013; Raj et al., 2010; Tijms et al., 2012; Zhou et al., 2011). For 

example, Tijms et al (2012) have proposed a cube-based correlation approach to extract 

single-subject anatomical connectivity from the respective subject’s T1-weightet MR 

images. In this cube-based approach, the graph nodes were represented as small 3D cubes in 

the gray matter and the strength between nodes was computed by estimating intra-cortical 

similarities in the gray matter morphology (e.g., thickness measure). Similarly, in another 

study, individual anatomical connectivity was estimated from T1-weighted MR images 

using Gibbs probability models (Raj et al., 2010). These previous studies have demonstrated 

that the extracted individual networks from T1-weighted images show “small world” 

properties (Tijms et al., 2012) and can be used to improve classification between patient 

populations and healthy controls (Raj et al., 2010; Zhou et al., 2011). More recently, Batalle 

et al. (2013) applied the normalized cube-based correlation approach to extract individual 

networks in a pediatric population and demonstrated that the extracted gray matter 

connectivity at the individual level can be related to individual differences in behavioral 

functioning (Batalle et al., 2013).

Although innovative methods have already been proposed to derive information about 

single-subject anatomical connectivity from their T1-weighted images, it is unclear whether 

individual differences in anatomical connectivity can be directly extracted from the group-

level SCN itself. Such extraction would allow for relating individual differences in behavior 

(and/or genetic measures) to the observed group-level differences in the SCN. Thus, to 

directly extract individual contribution towards anatomical connectivity from group-level 

SCNs, we introduce two distance-based approaches that can be used as putative biomarkers 

for altered connectivity in individuals with neurodevelopmental disorders. The first 

approach is based on the leave-one-out (LOO) strategy, where an individual’s contribution is 
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estimated by leaving that individual out and re-estimating group-level SCN. Similar 

approaches have been used previously for cross-validation in machine-learning literature 

(Bishop, 2006). The second metric is designed for clinical populations, where the 

contribution of an individual with a disorder is extracted by adding his/her morphometric 

data to a set of control participants and by re-estimating changes in SCN due to such 

addition (henceforth referred to as Add-One-Patient (AOP) approach). The proposed 

approaches were applied to both global structural correlation matrices as well as to 

topological (or network) properties extracted from the SCNs.

We applied the proposed approaches to morphometric data from a moderately large group of 

participants with fragile X syndrome (FXS) and an age-matched group of typically 

developing participants (TD). Fragile X syndrome results from a trinucleotide CGG repeat 

expansion (locus Xq27.3), leading to hypermethylation of the fragile X mental retardation 1 

gene (FMR1) promoter region and reduced levels of FMR1 protein (FMRP) (Verkerk et al., 

1991). The percentage of FMRP is critical during neurodevelopment, as it is involved in 

regulating synaptic plasticity and dendritic pruning (Harlow et al., 2010). Reduced levels (or 

percentage) of FMRP has been associated with intellectual disability (Reiss and Dant, 2003), 

cognitive and behavioral impairments (Van der Molen et al., 2012), and high prevalence of 

autism symptomatology (Gabis et al., 2011). Further, FXS is linked with altered structural 

and functional brain connectivity (Haas et al., 2009; Hall et al., 2013; Wang et al., 2012).

Stability analysis was performed to examine the robustness of proposed approaches with 

increasing group size. Further, to assess the efficacy of these approaches, extracted 

individual contributions were tested for their association with intelligence scores in both 

FXS and TD groups and with percentage of FMRP in individuals with FXS. Additionally, 

we estimated how the morphometric properties of each cortical and subcortical region 

influences the extracted individual contributions towards group-level SCN. Estimating such 

regional influences, especially in patient populations, could provide confirmatory validity to 

our proposed approaches because FXS is widely associated with significant differences in 

regional morphometric properties (e.g., larger and abnormal shape of caudate nuclei 

volume) (Lightbody and Reiss, 2009; Peng et al., 2014).

2. MATERIALS AND METHODS

2.1 Participants

Fifty participants with a confirmed genetic diagnosis of FXS (30 females; mean age=17.61 

years, S.D.=2.76) and an age-matched group of 50 typically developing (TD) participants 

(30 females; mean age=17.66 years, S.D.=2.65), all between the ages of 12 and 23 years 

were recruited. Diagnosis for individuals with FXS was confirmed using the Southern Blot 

DNA analysis (Kimball Genetics, Denver, CO). The two groups were matched for age 

(t(97)= 0.11, p=0.913), but the full scale IQ (Table 1; see section 2.2 for administration 

details) was significantly different between the two groups (t(96)= 13.55, p<0.0001). 

Typically developing participants were excluded for a history of any known genetic 

condition, premature birth, low birth weight, or any learning, developmental, psychiatric, 

neurological or medical disorder. All participants were free from MRI contraindications. 

Participants were recruited across the United States and Canada through advertisements, 
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referrals, and word of mouth. Participants and/or their parents gave written informed consent 

and assent to participate in the study. The Stanford University’s Institutional Review Board 

approved all protocols.

2.2 Intellectual functioning

General intellectual functioning (IQ) was assessed via the Wechsler Adult Intelligence Scale 

(WAIS-III) (Wechsler, 1997) or Wechsler Abbreviated Scale for Intelligence (WASI) 

(Wechsler, 1999) was used for participants 17 years and older and the Wechsler Intelligence 

Scale for Children (WISC-III) for participants younger than 17 years (Wechsler, 1991). For 

participants with FXS all IQ assessments were completed within 6 months of MRI imaging 

and for the TD group all IQs were assessed within 21 months of scanning. We used the full-

scale intelligence quotient (FSIQ) as a measure of intellectual functioning for all 

participants. The mean FSIQ for participants with FXS was 72.63 (S.D.=19.93; Range=44–

124) and for TD participants 119.56 (S.D.=13.96; Range=85–147).

2.3 Genetic assessments (quantification of FMR1 protein)

A mutation of the fragile X mental retardation 1 (FMR1) gene, associated with trinucleotide 

CGG repeat expansion, is considered to be the cause of FXS (Lightbody and Reiss, 2009). 

Typically developing individuals have around 29–30 CGG repeats in the FMR1 gene. When 

the size of repeat expands beyond 55, but is under 200, then the individual is considered to 

be a carrier of the fragile X pre-mutation. However, when the size of CGG repeats crosses 

the 200 mark, hypermethylation of the promoter region of gene is very likely to occur and 

result in transcriptional silencing of the FMR1 gene, which in turn limits the production of 

FMR1 protein (FMRP) (Bhakar et al., 2012; Lightbody and Reiss, 2009). This is referred to 

as the “full mutation”. Reduced levels of FMRP negatively impact brain development and 

function (Fung et al., 2012). Thus, the percentage of FMRP available in individuals with 

FXS provides a potential genetic biomarker of disease severity. We estimated FMRP 

percentage for each individual in the FXS group based on the percentage of peripheral 

lymphocytes containing FMRP as assessed by immunostaining techniques (Willemsen et al., 

1997). The mean FMRP percentage for the FXS group was 40.89 (S.D.=26.79). In case of 

typically developing participants the FMRP percentage is assumed to be 100 and hence we 

did not assess FMRP percentage in this group.

2.4 Image acquisition and FreeSurfer data analysis

Anatomical T1-weighted images were acquired on General Electric 1.5 Tesla (Stanford 

University), in the coronal direction (repetition time = 35 milliseconds, echo time = 6 

milliseconds, flip angle = 45°, slice thickness: 1.5 to 1.7 mm, in-plane resolution .9375 × .

9375 mm, and acquisition matrix = 256 × 192 mm, 124 contiguous slices). We adjusted the 

slice thickness (range 1.5mm–1.7mm) across participants to insure coverage of the entire 

brain without increasing the number of slices. This approach was utilized as an increase in 

number of slices would have increased the scan time by an undesirable amount and could 

have resulted in “wraparound” and other unwanted image artifacts. Table 2 below provides 

information regarding the variation in slice thickness across participants in each group. As 

evident, a large proportion of the participants were scanned at 1.5mm slice thickness. A Chi-

Saggar et al. Page 4

Neuroimage. Author manuscript; available in PMC 2016 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



square test was used to assess if there was a systematic difference in slice thickness variation 

between groups. No significant differences were found between the groups (p=0.58).

It is important to note that the data presented in this study were drawn from a larger 

longitudinal study (Bray et al., 2011). We selected scans from the longitudinal study using 

the following criterion – (a) appropriate age range, (b) met strict image quality requirements 

and (c) were free from artifacts induced by subject motion, blood flow or wraparound. 

Approximately 19% of scans in the larger study were unusable due to such artifacts.

The FreeSurfer toolkit (http://surfer.nmr.mgh.harvard.edu/) was used to parcellate the brain 

into 86 gray matter regions (68 cortical, 16 subcortical and 2 cerebellar regions). In this 

work, we used morphological measurement of thickness for cortical regions and of volume 

for subcortical regions and cerebellum. The technical details of these procedures are 

described previously (Dale et al., 1999; Fischl et al., 1999; Hosseini et al., 2013). Briefly, 

this processing analysis pipeline includes: (a) removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure (Ségonne et al., 2004) ; (b) automated Talairach 

transformation; (c) segmentation of the subcortical white matter and deep gray matter 

volumetric structures (Fischl et al., 2004); (d) intensity normalization (Sled et al., 1998); (e) 

tessellation of the gray matter white matter boundary; (f) automated topology correction 

(Ségonne et al., 2007); and (g) surface deformation following intensity gradients to 

optimally place the gray/white (main) and gray/cerebrospinal fluid (pial) borders at the 

location where the greatest shift in intensity defines the transition to the other tissue class 

(Fischl and Dale, 2000).

Once the cortical models were complete, regional volumes were extracted by surface 

inflation (Fischl et al., 1999), registration to a spherical atlas which utilizes individual 

cortical folding patterns to match cortical geometry across participants (Fischl et al., 1999), 

and parcellation of the cerebral cortex into units based on gyral and sulcal structure (Desikan 

et al., 2006). The main and pial surfaces were visually inspected, and where needed, 

appropriate manual corrections were performed as per the Freesurfer Tutorial (http://

surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial). All raters who performed manual editing of 

FreeSurfer derived data were trained to achieve inter-rater reliability of ≥0.95 (intraclass 

correlation coefficient) with gold-standard datasets for all regions of interest. A similar 

approach has been used previously (Hosseini et al., 2013).

Cortical thicknesses, and cerebellar and subcortical volumes were corrected for mean 

cortical thickness, total cortical gray matter volume, and total subcortical gray matter 

volume, respectively, in addition to age, using linear regression (Hosseini et al., 2013). The 

residuals of these analyses were subsequently used for constructing structural correlation 

matrices. Normalizations by correcting global measures in this manner remove the 

individual differences in morphometric measures affected by overall brain size and are a 

prerequisite for construction of structural correlation networks (Bernhardt et al., 2011; Fan 

et al., 2011; Hosseini et al., 2012a).
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2.5 Structural correlation matrix

Data from all the brain regions from a set of participants were used to construct 

morphology-based structural correlation networks. For each group, an <number of regions> 

x <number of regions> correlation matrix R was generated with each entry Rij defined as the 

Pearson correlation coefficient between the extracted residuals of regions i and j. For later 

analyses, we used the structural correlation matrix R to represent weighted connectivity 

between regions.

2.6 Graph theory metrics

The network properties of structural correlation matrix were estimated using standard graph 

theory procedures, as implemented in the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net). Positive weighted structural correlation matrices were used to 

extract various graph theoretical properties. We restricted the analysis in this paper to two 

main network properties, i.e., integration and segregation (Rubinov and Sporns, 2010). For 

network integration, we estimated characteristic path length (L) of each network, which is 

defined as the average shortest path length between all pairs of nodes in the network. Given 

that our participant sample was in the developmental age range of late childhood to early 

adulthood, to assess the developmental changes in anatomical connectivity (especially, 

synaptic pruning (Gogtay et al., 2004)) we also included a measure of graph diameter (D). A 

graph’s diameter is usually defined in terms of maximal eccentricity of the graph, where 

eccentricity of each node is the maximal shortest path length between a node and any other 

node and the diameter is the maximum eccentricity of the whole graph/network (Hage and 

Harary, 1995). For network segregation, we estimated clustering coefficient (C) of each 

network, which is defined as the proportion of nearest neighbors of a node that are 

connected (Rubinov and Sporns, 2010).

2.7 Measures for individual contribution

Two novel distance-based approaches were proposed to extract individual contribution from 

the group-level SCNs. The proposed approaches were run separately on the global structural 

correlation matrices and the three graph theory based network properties. By extracting 

individual contribution from the overall structural correlation matrix itself, we were able to 

measure the impact of each individual on the overall configuration of the network, while by 

extracting individual contribution on graph theoretical properties we were able to measure 

the impact of each individual on specific network properties.

The first metric was based on the leave-one-out (LOO) approach, where within each of the 

groups (FXS and TD), each participant Pj was left out to estimate his/her individual 

contribution (Figure 1A). The contribution was estimated by finding similarity between the 

global structural correlation matrices before and after each participant was left out using the 

Mantel’s test statistic. Mantel’s test (Mantel, 1967) was designed to evaluate similarity 

between correlation matrices. Like the Pearson correlation (r) value, Mantel’s test statistic 

value also ranges from −1 (negative related) to 1 (positive related), where a value closer to 0 

indicates null or no relationship. Mantel’s test statistic is based on a cross-product term:
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(1)

and is normalized as,

(2)

where x and y are variables from X and Y correlation matrices, n is the number of elements 

in each matrix, and the sx and sy are standard deviations for X and Y correlation matrices. 

Thus, using the LOO approach, the contribution of participant Pj to the global structural 

correlation matrix (R) was quantified as,

(3)

where N represents total number of participants in each group. It is noteworthy that a 

Mantel’s test value closer to 1 indicates high similarity between the two matrices and hence 

depicts low contribution from the participant Pj and vice versa. Thus, the individual 

contribution is defined as one minus the Mantel’s test statistic. Lastly, to determine the 

position of a participant’s individual contribution within group, we also report the mean 

group contribution in each plot (using the symbol μ and a bold line on the y-axis; Figure 2). 

This information can help estimate whether a given participant is contributing more or less 

towards structural correlations than the other participants in his/her group. Further, by 

comparing with average group contribution, we can also infer whether contributing more 

than group average leads to better (or worse) intellectual functioning and/or genetic scores.

Using a similar LOO approach, the individual contribution to graph properties was estimated 

by leaving each participant Pj out; this was accomplished by subtracting the graph metrics 

calculated using all participants other than Pj from the graph metrics calculated using all 

participants including Pj (Figure 1A).

The second metric was specifically designed for clinical populations. In this metric, the 

contribution of patient Pj is derived by computing the distance between a correlation matrix 

derived from typically developing participants (RTD) and a correlation matrix derived from a 

new group that includes all typically developing participants and the patient, Pj, i.e., RTD+Pj 
(Figure 1B). Thus, using this add-one-patient (AOP) approach, the contribution of a 

participant with the disorder, Pj to the structural correlation matrix was quantified as,

(4)

From this perspective, a Mantel’s test value closer to 1 indicates high similarity between the 

two matrices and hence depicts low contribution from the participant Pj. As noted above, the 
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individual contribution is defined as one minus the Mantel’s test statistic. Lastly, to 

determine the position of participant’s individual contribution in their group, we also report 

the mean group contribution in each plot (using the symbol μ and a bold line on the y-axis; 

Figure 2).

Using a similar AOP approach, adding a participant with disorder Pj from the FXS group to 

the age-matched TD group, the contribution of Pj to the three network properties was 

estimated, i.e., by subtracting graph metrics calculated using all TD participants and Pj from 

the graph metrics calculated using all TD participants only (Figure 1B).

2.8 Regional contribution to individual differences in the structural correlation matrix

To find the regions that contributed most to the individual differences in the correlation 

matrix for each group, we calculated column-wise absolute sum of the difference matrix for 

each of the two proposed approaches. Thus, regional contribution for participant Pj using the 

LOO approach was defined as,

(5)

where RC represents a vector containing the regional contributions for each of the 86 

regions. Similarly, for the AOP approach the regional contribution for participant Pj was 

defined as follows,

(6)

2.9 Relations between individual contribution and behavioral/genetic assessments

Spearman’s correlation (rho values) was used to assess relations between extracted 

individual contribution and behavioral measurements of intellectual functioning as well as 

genetic assessment of FMRP percentage. Alpha value of p=0.05 was used to find significant 

correlations. As pointed out in previous research (Wilcox and Muska, 2001), the presence of 

heteroscedasticity (unequal variability in predicted values across the range of values of a 

predictor) can make a correlation significant even though the variables are not truly 

correlated. Thus, to test whether the correlations between individual-contribution and 

assessments is merely due to heteroscedasticity, we employed robust correlations based on 

percentile bootstrap confidence intervals (Cyril R Pernet, 2012).

2.10 Stability analysis

One potential concern regarding the proposed approaches is that as the number of 

participants in a given group increases, the overall contribution of an individual participant 

(either left out or added to a control group) might decrease and potentially approach zero 

with particularly large datasets (N≫100). Thus, it is clear that with the increase in size of 

the base group (i.e., a group to which either the individual was left out or added to), the 

magnitude of individual contribution drops. It is not clear, however, how such a drop in 
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individual contribution magnitude affects (if at all) the ability of individual contributions to 

relate with the behavioral and/or genetic assessments. To address this issue, several 

permutation analyses were run for both LOO and AOP approaches with different base group 

sizes (range: 3 to maximum group size). Thus, we extracted individual contributions of each 

participant (in both groups: FXS and TD) for different base group sizes, where base 

participants were selected using random selection with replacement from their respective 

groups. Further, this procedure was repeated 100 times to obtain stable estimates for each 

base group size. Altogether, this stability analysis was performed to examine variations in 

(a) individual contributions for a range of base group sizes and (b) correlation between 

individual contributions and behavioral/genetic measures for each base group size.

A second potential concern, specific to the AOP approach, is to examine how many TD 

participants are required to get stable estimates of individual contribution of participants 

with FXS. To perform such testing, we randomly selected M participants from the TD 

group, and calculated correlations between AOP-based individual contribution to the 

structural correlation matrix extracted from the original set (N=50) of TD participants and 

from different size subsets (M=2,3…50) of TD participants. To get stable estimates, the 

random selection and correlation procedure was repeated 1000 times for each subset size 

(M).

3. RESULTS

After extracting each participant’s contribution to overall connectivity (i.e., structural 

correlation matrix) and to individual network properties (i.e., using three graph theory 

metrics), we related these contributions with intelligence scores and genetic assessments (in 

FXS group only). We also examined the regional contribution to individual differences in 

both the LOO and AOP based approaches. Examining such relations and regional 

contributions provided us an opportunity to assess the criterion validity of the proposed 

approaches. Lastly, we present results from stability analyses that were performed to (a) 

examine robustness of proposed approaches as the number of participants increases (using 

FXS and TD data); and (b) estimate the number of control TD participants required to 

estimate stable AOP-based contribution for individuals with FXS.

3.1 Relations between individual contribution and intellectual functioning

For the FXS group, using both the LOO and AOP based approaches, we found significant 

correlations between intelligence scores and individual contribution to the structural 

correlation matrix as well as to the network properties. Specifically, using the LOO 

approach we found significant negative correlation between the individual contribution to 

the structural correlation matrix and intelligence scores (rho(48)=−0.4562, p=0.001; Figure 

2A). Similarly, using the AOP approach we found significant negative correlation between 

the individual contribution to the structural correlation matrix and intelligence scores 

(rho(48)=−0.5, p=0.00016; Figure 2B). Altogether, using the mean group contribution 

across all participants in the FXS group (as shown by the dashed line in Figure 2A/B), it is 

evident that participants who contributed more than the group average towards global 

connectivity had lower intellectual functioning and vice versa.
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Among the three network properties, individual contribution extracted using the AOP 

approach towards the graph diameter was also observed to positively relate with the 

intelligence scores (rho(48)=0.37, p=0.01; Figure 2E). Thus, suggesting that positive 

contribution towards graph diameter was associated with higher intellectual functioning in 

patients with FXS.

For the TD group, using the LOO approach, a significant positive relation was also observed 

between the individual contribution to the graph diameter and intelligence (rho(50)=0.30, 

p=0.036; Figure 2F). In line with the FXS group, positive contribution towards graph 

diameter was associated with higher intellectual functioning even in the TD group. No 

significant relation between contribution to the structural correlation matrix and intelligence 

scores was observed in the TD group.

3.2 Relations between individual contribution and genetic assessment

In addition to the intelligence scores, we also assessed the percentage of FMRP in the 

individuals with FXS. Using both the LOO and AOP based approaches, contribution to the 

structural correlation matrix negatively related to the FMRP percentage (rho(47)=−0.42, 

p=0.003 and rho(47)=−0.40, p=0.005, respectively for LOO and AOP approaches; Figure 

2C and 2D). Altogether, using the mean contribution across all participants in the FXS 

group (as shown by the dashed line in Figure 2C/D), it is evident that participants who 

contributed more than the group average towards global connectivity had lower percentage 

of FMRP and vice versa.

3.3 Regional contribution to the estimated individual differences

To find which brain regions contributed most to the observed individual differences in 

structural correlation matrix, we calculated regional contributions for each of the two 

proposed approaches (using equations 5 and 6). The regional contributions using the LOO 

approach, within each group, is shown in Figure 3A. No single brain region stood out in 

contributing towards the individual differences. Using the AOP approach, however, the 

regional contributions of both left and right caudate nuclei towards individual differences in 

the FXS group were three standard deviations above the mean regional contributions across 

all regions (Figure 3B). This finding suggests that individual differences contributing to 

structural correlation in individuals with FXS was largely driven by abnormal morphometric 

properties of the caudate nuclei.

3.4 Stability analysis

To examine the robustness of proposed approaches with increasing number of participants, 

permutation analysis was run with different group sizes. As expected, with increasing group 

size the individual contribution decreased for both approaches (Figure 4A and C). However, 

the correlation between intelligence/FMRP scores and individual contribution increased 

asymptotically with increase in group-size and stabilized around n=25–30 (Figure 4B and 

D). A similar pattern of reduction in magnitude of individual contribution and asymptotic 

increase in correlation between contribution and behavior was evident for both LOO and 

AOP based approaches for graph theoretical properties. In sum, for both patient and healthy 

Saggar et al. Page 10

Neuroimage. Author manuscript; available in PMC 2016 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



groups, individual contribution extracted using our proposed approaches is associated with 

behavioral measures in a stable and robust fashion.

In another set of stability analyses, we estimated the required size of TD group for stable 

estimates of individual contribution extracted using the AOP approach. Using permutation 

analysis, we found that a group of twenty-five TD participants provide sufficiently stable 

estimates of AOP-based individual contribution (Figure 5).

To test the stability of our proposed approaches with much larger datasets, we applied our 

methods to freely available data from the Human Connectome Project (HCP; site: http://

www.humanconnectome.org). We used the HCP Q3 data release (N=226), which was 

processed using FreeSurfer version 5.2. Similar to our FXS and TD data, we used 

volumetric information for subcortical and thickness information for the cortical structures. 

To correlate individual contributions with intelligence, we used the behavioral performance 

score on progressive matrices test (Bilker et al., 2012), also provided by the HCP Q3 release. 

Supporting our observations for the FXS and TD data, results with the HCP data showed a 

consistent pattern, i.e., although the individual contribution towards group-level SCN 

reduces in amplitude with increasing group size, the correlation between individual 

contribution and behavioral assessment remains stable at larger group sizes (stable estimates 

were obtained for a group size of 25–30 participants and above; Supplementary Figure 3).

3.5 Heteroscedasticity analysis

To test whether the correlations between individual-contribution and clinical variables of 

interest is merely due to heteroscedasticity, we employed robust correlations based on 

percentile bootstrap confidence intervals (Cyril R Pernet, 2012). As shown in the 

Supplementary Figure 1 and Supplementary Table 1, all the observed correlations remain 

significance (p<0.05) after controlling for heteroscedasticity.

3.6 Effect of Sex on individual contribution and correlation to behavioral/genetic measures

In a separate set of analyses, we regressed out sex from the morphometric data (along with 

age and total cortical tissue thickness and subcortical volume) and reconstructed the 

structural correlation matrices (SCM). The individual contribution towards group-level SCN 

was then derived from the revised SCMs and was correlated with behavioral/genetic data in 

individuals with FXS and with TD participants. In the FXS group, the individual 

contribution was observed to be correlated with clinical assessments in the same manner as 

they were observed to be correlated without regressing out sex as a nuisance covariate 

(Supplementary Table 3). In the typically developing individuals, however, after regressing 

out sex the correlation between individual contribution to graph diameter and intelligence 

was not significant.

4. DISCUSSION

Comparing group-level SCNs provide crucial information regarding differences in structural 

connectivity between groups (Alexander-Bloch et al., 2013a). To estimate significant group-

level differences in connectivity researchers bin individuals from both groups into 

pseudorandom sets and estimate the statistical significance using permutation statistics 
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(Hosseini et al., 2012a). However, these observed group-level differences cannot be related 

to clinical assessments from individual participants in each group. Thus, our current work 

was motivated by the argument that relating observed differences in group-level 

connectivity and network properties to clinical assessments could provide better 

understanding of the underlying connectivity differences. We introduced two novel distance-

based approaches to extract individual contributions to both overall connectivity and to 

network properties of segregation and integration. The efficacy of the proposed approaches 

was tested in two independent datasets. Additionally, the stability and robustness of 

proposed approaches was tested using permutation analysis.

One potential reason for the wide usage of SCNs lies in the fact that the required 

morphometric data can be extracted from T1-weighted images that are relatively 

straightforward to administer, acquire and aggregate, at a large-scale, across imaging centers 

and populations. Other neuroimaging modalities that provide information regarding 

anatomical connectivity, e.g., diffusion-weighted imaging (DWI), are generally 

characterized by longer scan durations, low signal-to-noise ratio, and higher susceptibility to 

head movement artifacts – making the investigation of anatomical connectivity harder 

especially in clinical populations. Thus, our proposed methods to extract individual 

differences from group-level SCNs could provide a relatively feasible and effective 

biomarker for altered neurodevelopmental brain connectivity.

To test the efficacy of the proposed approaches, we examined the relation between extracted 

individual contribution and intelligence scores in both groups. In the FXS group, we found 

that the individual contributions to both structural correlation matrix as well as network 

diameter were related to the intelligence scores. Using both the LOO and AOP approaches, 

the observed negative relations between the contributions to global structural correlations 

and the intelligence scores suggest that the participants with FXS who contribute higher than 

the group mean have lower intelligence scores. Previous research suggests that severe 

intellectual disabilities are frequently evident in individuals with FXS (Garber et al., 2008). 

Further, in a recent study, Hall et al. (2013) observed reduced resting-state functional 

connectivity in individuals with FXS as compared with age- and IQ-matched control 

participants, and within the FXS group reduced connectivity was linked with lower IQ 

scores (Hall et al., 2013). Although structural correlations complement resting-state 

connectivity, previous research also suggests a convergence in results from these approaches 

(Hosseini and Kesler, 2013). Thus, cautiously building upon previous work, the observed 

negative relation in our study suggests that higher alterations than the group mean in global 

anatomical connectivity, in individuals with FXS, are related to greater intellectual 

disability.

In addition to global structural correlations, individual contributions to the graph diameter 

were also related with intelligence scores in the FXS group, such that a positive contribution 

towards the graph diameter was associated with higher intellectual functioning in patients 

with FXS. Interestingly, using the LOO approach in the age-matched TD participants, a 

similar positive relation between individual contribution to graph diameter and intelligence 

scores was found. Graph diameter is a measure of network integration and represents the 

maximum distance between any two vertices (or regions) in the graph (Rubinov and Sporns, 
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2010). In the current paper, the distance between two regions is defined as the inverse of 

magnitude of correlation strength between the two regions. Thus, a graph with overall 

stronger correlation strength between regions would represent overall shorter distances 

between regions and hence shorter graph diameter and path length. Interestingly, shorter 

path length also indicates higher efficiency (in communicating signal from one vertex to 

another) of a graph and previous work investigating the neural correlates of intelligence in 

adults has suggested that both the integrity of connections (or white matter pathways) and 

the overall network efficiency are important (Deary et al., 2010; Li et al., 2009; van den 

Heuvel et al., 2009). Thus, it is unclear, why a positive contribution to graph diameter, and 

potentially reduced efficiency, is positively associated with intelligence in each of the two 

young cohorts (age range 12–23 years) studied here.

One plausible conjecture could be that previous work associating path length (and 

efficiency) with intelligence scores was limited to adults. Thus, it is unknown whether a 

similar relation would be observed in younger, still developing, populations, mainly due to 

the fact that the development of brain (and perhaps intelligence) involves a substantial 

amount of synaptic pruning (Gogtay et al., 2004; Luo and O’Leary, 2005; Paus, 2005; Paus 

et al., 2008). In a recent study, researchers observed that in individuals aged 10 to 21 years, 

cortical thickness in both left and right hemispheres decreases (speculated to be due to 

synaptic pruning) over time. Further, this decrease is positively related to intelligence 

(Schnack et al., 2014). Theoretically, pruning edges in a graph leads to increased diameter 

and eccentricity. Boersma et al. (2013), using EEG data, observed a similar increase in 

graph diameter and eccentricity with brain development (Boersma et al., 2013). Taking these 

results and theory into account, we speculate that the direct relation between a network’s 

graph diameter and intelligence for our young cohort is potentially in line with current 

knowledge of brain development and thereby provides putative criterion validity to the 

proposed approaches.

Although Leow and colleagues have recently examined the anatomical network properties in 

fragile X pre-mutation carriers (CGG repeat between 55 and 200) using DWI (Leow et al., 

2014), it is unknown how the reduced percentage of FMRP in individuals with full mutation 

FXS (CGG repeats >200) affects anatomical connectivity and graph properties. In the 

present work, using both LOO and AOP approaches, we observed a significant negative 

relation between FMRP percentage and contribution to global structural correlations. 

Further, no relation was observed between individual contribution to the three graph 

properties and FMRP percentage, thereby suggesting that reduced FMRP affects anatomical 

connectivity at the global network configuration level.

In addition to relating individual contribution with behavioral and genetic measures, we also 

examined how every cortical and subcortical region influenced the contribution towards 

global structural correlations. Using the LOO approach, no single region or set of regions 

stood out as most contributory for either group. However, using the AOP approach, a clearly 

prominent influence was evident for bilateral caudate regions in individuals with FXS. 

Several previous studies, across different neuroimaging modalities, have shown abnormality 

in the size and/or shape of the caudate nucleus that are specific to individuals with FXS as 

compared to individuals with idiopathic developmental delay, autism and typical 
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development (Gothelf et al., 2008; Hazlett et al., 2009; Hoeft et al., 2008; Peng et al., 2014). 

As the enlarged caudate in FXS is thought to be contributory to the cognitive as well as 

specific behavioral deficits associated with the syndrome (Lightbody and Reiss, 2009), its 

prominent influence towards individual contribution to global structural correlations provide 

conceptual support to the proposed AOP approach.

To test the robustness and stability of proposed metrics, two stability analyses were 

performed. Using permutation analyses, we observed that although the magnitude of 

individual contribution (across both LOO and AOP approaches) decreases with increasing 

number of participants, the relation between individual contribution and intelligence/genetic 

assessments increases asymptotically and stabilizes around base size of 25–30 participants. 

This finding suggests that the proposed approaches are robust and stable in predicting and 

relating to behavioral/genetic assessments. We also found that, on average, twenty-five 

control participants provide stable estimation of contribution for patients using the AOP 

approach.

To be consistent with the previous literature (He et al., 2006), thickness was used as the 

cortical morphological feature to construct structural correlation networks. For subcortical 

regions, volumetric information was utilized. Similar approaches of mixing thickness for 

cortical regions and volume for subcortical to construct structural correlation networks have 

been previously published (Hosseini et al., 2013). It is important to note that our proposed 

approaches should not be affected by the choice of morphometric measure. To confirm this 

assumption, using the same dataset, we constructed structural correlation networks using 

cortical and subcortical volumes and derived individual contribution using the proposed 

approaches. Similar, albeit weaker, relations were observed between individual contribution 

and behavioral/genetic metrics (Supplementary Figure 2 and Table 2).

Although widely used, structural correlation based connectivity models may not fully 

represent actual anatomical and/or functional connectivity. Recent studies have observed 

moderate to strong convergence between structural correlation based connectivity and 

anatomical/functional connectivity. For example, Gong et al. (2012) detected presence of 

axonal fiber bundles between cortical regions for which a structural correlation model had 

predicted strong connectivity (Gong et al., 2012). Similarly, Alexander-Bloch and 

colleagues (2013) showed that structural covariance in cortical thickness was related to the 

synchronized maturational change between distributed cortical regions and that the 

structural covariance networks were also associated with functional connectivity and 

network organization (Alexander-Bloch et al., 2013b). Based on the results of these and 

related studies, structural correlations are believed to at least partially depict actual 

anatomical/functional connectivity (Bernhardt et al., 2011; Cheverud, 1984; Wright et al., 

1999; Zhang and Sejnowski, 2000).

Although the proposed approaches were successfully applied to both individuals with FXS 

as well as typically developing control participants, it is important to note that the relations 

observed between individual contribution and behavioral/genetic assessments in the FXS 

group could be inordinately influenced by the X-linked nature of the syndrome. That is, on 

the one hand we have males with FXS who have a full “dose” of the disorder (due to single 
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X-chromosome), whereas females with FXS only have half of a “dose” and hence are 

intermediate between typically developing participants and full mutation males with respect 

to the brain anatomy and percentage of FMRP. Thus, the observed relations between 

individual contribution and clinical assessments could have been affected by the relatively 

larger variance associated with female participants with FXS. However, when we used sex 

as a covariate, the observed relations between individual contribution and behavioral/genetic 

measures were largely unaffected in individuals with FXS.

Although novel methods are proposed in this paper, one potential limitation of these 

methods is that they require a minimum number of participants (n=25–30) in order to extract 

stable individual differences. Further, no relations were observed between the extracted 

contribution and widely used graph theory metrics, i.e., characteristic path length and 

clustering coefficient. The cause for lack of such relations is unclear. However, one 

plausible explanation could be the young age group of our participants. Future research is 

required to apply the proposed approaches to adult patient populations. Additionally, our 

typically developing participant pool had an average IQ of about 119, which is more than 

one standard deviation above the norm value (100). Thus, this high IQ sample may not be 

representative of the population at large. Due to sampling with replacement, the correlation 

values reported in the stability analyses might be marginally inflated. However, this 

potential inflation would not affect the overall results regarding the robustness of our 

proposed approaches. Lastly, as Spearman’s rank correlation was used here to non-

parametrically estimate statistical dependence between variables, it is important to point out 

that in ranked correlations the magnitude of difference between two values can not be 

interpreted. However, this issue does not limit our proposed approaches, as other 

correlations methods (e.g., Pearson) could instead be used where necessary.

Altogether, we proposed two approaches to estimate individual contribution to anatomical 

connectivity using group-based SCNs. We anticipate that the methods developed here could 

be used as a putative biomarker for altered neurodevelopment in clinical populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The proposed approaches to extract individual contribution at the global level of structural 

correlation matrices and at the level of graph theory metrics. (A) Using the Leave-One-Out 

(LOO) approach, where within each group (FXS and TD), each participant Pj was left out to 

estimate his/her contribution. (B) Using the Add-One-Patient (AOP) approach, where the 

contribution of a patient participant is derived by computing the distance between a 

correlation matrix (or graph metric) derived from typically developing participants and a 

correlation matrix (or graph metric) derived from a new group that includes all typically 

developing participants and the patient Pj.
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Figure 2. 
Relations observed between extracted contributions and behavioral/genetic measures. The 

symbol \mu and bold line on y-axis, in A–D, depicts group-mean of individual contribution 

and it is shown to provide information regarding position of each individual’s contribution 

with respect to the group mean. Full dataset was used for these correlations and Spearman 

rank correlation values (rho) are reported.
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Figure 3. 
Regional contribution to individual differences in FXS and TD groups. (A) Using the LOO 

approach; and (B) using the AOP approach. Colored-band represents standard error of the 

mean for each group. The dashed lines in (B) indicate group mean and three standard 

deviations above the mean, to show that the influence of left and right caudate is prominent 

towards the extracted individual contribution using the AOP approach.
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Figure 4. 
Stability analysis to test the effect of increase in number of participants on the magnitude of 

individual contribution and on the correlation between individual contribution and 

behavioral/genetic measures. As evident, across groups, with increasing number of 

participants, the individual contribution exponentially decreases. However, the correlation 

between contribution and behavior/genetic scores asymptotically increases and stabilize 

around n=25–30. Similar pattern was evident for the network properties (e.g., diameter). 

Absolute value of individual contribution in used in A and C and the error bars represent 

standard error of the mean. Spearman rank correlation (rho) was used to estimated 

correlation between individual contribution and behavioral/genetic measures.
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Figure 5. 
Number of TD participants required for stable estimation of individual contribution based on 

AOP approach for all participants in the FXS group. Graph was generated by randomly 

selecting subsets (of different size M) from TD participant pool. Repeating this random 

selection process 1000 times generated the error-bars on the graph. The error bars represent 

standard error of the mean. Y-axis depicts Spearman rank correlation (rho) values.
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Table 1

Group-wise participant characteristics.

Fragile X Syndrome (FXS) Typically Developing (TD)

Number of participants 50 (30 females) 50 (30 females)

Age in years (S.D.) 17.53 (2.8) 17.66 (2.65)

Full Scale IQ (S.D.) 72.34 (19.8) 119.40 (14.4)

%FMRP (S.D.) 40.17 (26.9) -

Mean Brain Volume (S.D.) 1258.884 (121.82) 1254.837 (100.15)

Mean Cortical Thickness (S.D.) 2.84 (0.142) 2.75 (0.114)

Subcortical Gray Volume (S.D.) 200.85 (17.8) 200.25 (17.7)
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Table 2

Variation in slice thickness across participants in both groups (typically developing or TD and participants 

with FXS).

Slice Thickness (in mm)
Group

Total (n=100)
TD (n=50) FXS (n=50)

1.5 42 38 80

1.6 7 11 18

1.7 1 1 2
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