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Abstract

This project aims to characterize the impact of underlying noise distributions on diffusion-

weighted imaging. The noise floor is a well-known problem for traditional magnitude-based 

diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal 

averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase 

variations of complex-valued diffusion data with the intention to extract real-valued dMRI 

datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but 

instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We 

acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise 

ratio. Both the extracted real-valued and traditional magnitude data were compared regarding 

signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results 

clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. 

Furthermore, the proposed method enables unbiased use of widely employed linear least squares 

estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber 

directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will 

therefore help to clear the way for more detailed and accurate studies of white matter 

microstructure and structural connectivity on a fine scale.

Introduction

Diffusion-weighted MRI (dMRI) has long been employed to provide neuroscientific and 

clinical imaging data by sensitizing MRI signals to anisotropic water diffusion (Stejskal and 

Tanner, 1965; Turner et al., 1990). In order to achieve this contrast, the MR signal is 

attenuated by application of magnetic field gradients along a specific direction, depending 

on the direction in which diffusion is to be measured. This results in an image with useful 
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contrast but reduced signal-to-noise ratio (SNR). Diffusion MRI models such as Diffusion 

Tensor Imaging (DTI) (Basser et al., 1994), Q-ball (Descoteaux et al., 2007; Tuch et al., 

2002), Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2005) or AxCaliber (Assaf et al., 

2008) employ such diffusion-weighed signals to gain microstructural tissue information.

An MRI signal is inherently complex-valued, having both magnitude and phase components. 

During the diffusion-encoding process, physiological effects such as brain motion, cardiac 

pulsation, perfusion and respiration cause background phase variations, φBG, across the 

acquired complex image. Even though the background phase strongly varies for each 

imaging slice and repetition, it generally follows a spatially smooth distribution (Bammer et 

al., 2010). These background fields do not have an impact on the commonly used magnitude 

of the data. Phase data are generally not included in diffusion analyses since they are 

overlaid by φBG, which varies considerably for each imaging slice and repetition (see Figure 

1).

When the SNR of magnitude data is low, the distribution of image noise can have an impact 

on the diffusion data. A complex MRI signal, S, generally consists of positive signal 

intensity, I0, with phase information, φBG, and uncorrelated complex Gaussian noise, SE. For 

visualization purposes, complex MRI data, S, are generally split into magnitude, I, and 

phase, φ.

(1)

In this equation, both the signal and the noise distribution of the magnitude, I, are not 

Gaussian. Signal and noise rather resemble a non-zero-mean Rician distribution - more 

specifically, for multi-channel data and parallel imaging, a non-central χ2 distribution (Aja-

Fernández et al., 2011; Gudbjartsson and Patz, 1995). This is generally not an issue if the 

SNR is high, because the distribution of noise approximates a Gaussian in such cases. In 

dMRI and other low SNR acquisitions, however, signal averaging unfortunately “piles up” 

the non-Gaussian noise. This results in biased data points at low signal intensities - the so-

called “noise floor”. Please note that the Gaussian nature of thermal noise entails both 

positive and negative signal fluctuations. However, the magnitude representation of noise 

can be best described by means of a non-central χ2 distribution. As a result, fitting low SNR 

data to a model of diffusion-related attenuation becomes challenging when only its 

magnitude is used.

The noise induced bias on the diffusion signal is a well-known issue in dMRI, especially 

when signal averaging is employed to increase SNR (Jones et al., 2013). The individual 

dMRI data often have low contrast, which leads to inaccurate diffusion measures such as 

fractional anisotropy (FA) and increased angular error in fiber tracking (Jones and Basser, 

2004). The problem becomes more severe as SNR drops, for example with strong diffusion 

weighting or high spatial resolution. However, such data promise to provide the most 

detailed information about anatomical microstructure (Cohen-Adad et al., 2012; Descoteaux 

et al., 2011; Heidemann et al., 2012; Setsompop et al., 2013; Wedeen et al., 2012). The noise 

floor induces a signal bias and, therefore, prevents such data from being used to their full 

benefit.

Eichner et al. Page 2

Neuroimage. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When optimized coil combinations are used to obtain magnitude data, the impact of non-

Gaussian noise distributions for multi-channel data can be reduced (Setsompop et al., 2012a; 

Sotiropoulos et al., 2013). However, this strategy only ameliorates the noise floor problem 

associated with combining coil-elements, and does not solve it for the analysis of the 

diffusion-direction data.

For complex-valued data with low SNR, signal averaging and model fitting are only valid if 

the data are overlaid by an uncorrelated Gaussian noise distribution. This condition is 

fulfilled if the real part, , and the imaginary part, , of the complex signal, S, are 

considered separately.

(2)

In this equation,  and  denote the real and imaginary part of the complex MR signal, 

whilst  and  denote uncorrelated real and imaginary complex noise. If averaging is 

carried out in such a complex-valued domain without noise bias, it is possible to 

significantly increase the spatial resolution for structural imaging (Bernstein et al., 1989; 

Oros-Peusquens et al., 2010; Turner et al., 2008).

Unfortunately, it is not beneficial to directly average complex dMRI data, since the shot-to-

shot variability in background phase contamination, φBG, diminishes signal coherence in 

both the real and imaginary components. This causes unwanted elimination in the signal due 

to averaging. This effect does not occur when the magnitude, I, is taken. If the time- and 

spatially-dependent phase variation could be eliminated, a coherent complex signal with 

constant background phase could be reconstructed. Removing φBG would enable to 

coherently average the real part of the signal, , without an undesirable noise bias.

Because of these significant gains from complex averaging in dMRI, several attempts have 

been made to resolve this issue. For instance, the background phase has been estimated by 

means of extensive spatial smoothing (Holdsworth et al., 2012; Pipe, 1999). In another 

study, the removal of φBG is performed with the help of various polynomial and linear fits to 

the signal in image and diffusion space (q-space) (Sperl et al., 2013).

Background phase contamination is also an important issue for multi-shot dMRI 

measurements, where varying background phase terms prevent accurate combinations of 

multiple imaging shots. One way of estimating the smooth background phase is by acquiring 

low resolution two-dimensional navigators and performing phase correction before multiple 

shots are combined (McNab et al., 2010; Miller and Pauly, 2003; Porter and Heidemann, 

2009). In a more recent implementation, multi-shot dMRI data acquired without additional 

navigator application were reconstructed using total variation (TV) for background phase 

estimation (Chang et al., 2014; Chen et al., 2013). However, it needs to be noted that even in 

the advance of methods to remove background phase contamination, it is still a common, yet 

suboptimal practice to use magnitude images for dMRI.

In this work, characterization of background phase elimination was performed for dMRI, 

specifically for high spatial resolutions and strong diffusion weightings. A TV smoothing 
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algorithm was used to estimate and remove φBG, in order to gain real-valued data with 

significantly reduced noise bias.

DMRI data were acquired with strong diffusion and high resolution as well as with 

conventional clinical acquisition parameters. Real and Magnitude data were extracted from 

these datasets to perform a qualitative and quantitative comparison of both data types. The 

presented reconstruction method achieved idealized conditions for signal averaging without 

noise bias and allows higher contrast in diffusion model reconstructions with reduced 

magnitude bias as well as more accurate fiber tracking results.

Theory

Background Phase Correction

An accurate estimation of φBG is the first necessary step for an effective background phase 

removal. The image phase term, φ, can be regarded as a superposition of background phase 

contamination, φBG, tissue phase, φTissue, coil phase, φCoil, and phase noise, φE.

(3)

It is not directly obvious from Equation (1) that the total phase can be derived from the 

uncorrelated superposition of φBG and φE. However, it has been shown that signals with 

noisy phase are closely approximated by Gaussian distributions even for low SNR values 

(Gudbjartsson and Patz, 1995). Additionally, if the coil-element data are combined with an 

optimized complex weighting, as in Sotiropoulos et al. (Sotiropoulos et al., 2013), the noisy 

phase signal retains its Gaussian character. Therefore the phase noise, φE, can be viewed as 

superimposed on the other phase contributions.

Figure 2A shows the image reconstruction process as a flowchart. It is crucial to use a 

complex coil combination method, which flattens out coil phase information and thereby 

yielding a smooth phase image (Hammond et al., 2008; Pruessmann et al., 1999). For the 

sake of brevity, coil and tissue phase information can be disregarded since they will be 

removed with φBG.

(4)

As can be seen in the flowchart (see Figure 2A), the real diffusion image reconstruction 

method differs from the standard magnitude reconstruction strategy only after the multi-

channel coil combination. The real valued diffusion data reconstruction requires two 

additional steps of local phase correction and real-part extraction.

The local phase correction itself can also be subdivided into two sub steps: i.) an accurate 

estimation of the background phase contamination and ii.) a subsequent removal of φBG (see 

Figure 2B). The result of this operation is a diffusion-weighted dataset, Scorr, without 

background phase contaminations.
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(5)

The new dataset, Scorr, contains no further phase information apart from the uncorrelated 

phase error and can, therefore, be directly viewed as real and imaginary part (see equation 

2). Once the data have been accurately rephased, it is no longer necessary to use the 

magnitude of the data. In this way, a complex valued dMRI dataset is obtained, containing 

no undesired noise bias.

Regarding the background phase estimation, it is crucial to adequately separate actual 

background phase information, φBG, from the phase noise, φE, which is part of the complex 

Gaussian noise and should, therefore, not be rephased. In practice, an elimination of the 

phase noise, φE, would result in transforming the real part of Scorr into its magnitude, I. This 

would reintroduce the undesired noise bias to the data and thus make the whole process 

redundant (Holdsworth et al., 2012).

If phase estimation and correction are performed correctly, the actual signal will be 

repositioned in the real part of Scorr. Therefore, Scorr is a superposition of the original signal, 

I0, and the real and imaginary parts of the complex Gaussian noise, SE (see equation 1).

(6)

In this case, the imaginary part of the signal contains only Gaussian noise and can, therefore, 

be discarded from further processing. At this step, the real part of the data, which is overlaid 

by Gaussian noise, can be extracted for further analyses.

(7)

Please note that the different notations of Scorr in the previous equations (see equations 5, 6 

& 7) do not introduce the same quantity multiple times. In contrast, they show different 

representations of the same complex-valued dataset.

Implementation of Background Phase Estimation

A precise estimation of φBG is the key step in removing background phase. As already stated 

in the Introduction, there are different methods for background phase estimation in dMRI.

Spatial smoothing operations such as triangular filtering of k-space has been shown to be 

fast and suitable for background phase removal in clinical dMRI, even on a large scale 

(Holdsworth et al., 2012; Pipe, 1999). However, the optimal smoothing kernel size depends 

on image SNR and resolution and is, therefore, hard to configure. Problems can also arise 

when strong diffusion weighting is used. In such cases, background phase contaminations 

can take convoluted shapes (see Figure 2B) that might be unresolved in the smoothed image. 

A similar problem arises when using low-order polynomial fitting for estimation of φBG 

(Sperl et al., 2013). Polynomial functions may be inappropriate to properly estimate higher-
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order phase terms and, therefore, be unsuitable at strong diffusion weighting. The 

polynomial method is furthermore restricted to high-density q-space sampling for DSI, and 

involves additional processing steps (i.e., phase unwrapping and brain masking), making an 

implementation for online reconstruction difficult.

Navigator-based phase removal strategies for multi-shot dMRI were shown to be stable and 

reliable (McNab et al., 2010; Miller and Pauly, 2003; Porter and Heidemann, 2009). 

However, reacquiring data at the k-space center is time consuming, making this method less 

desirable for fast EPI acquisitions.

In this work, a total variation (TV) denoising algorithm was employed for background phase 

estimation. TV has already been successfully used for combining multi-shot dMRI data 

without additional navigation (Chen et al., 2013).

The TV denoising algorithm assumes a piecewise smooth distribution of an n-dimensional 

noisy signal, y, to estimate the underlying denoised signal, x. Similarity of the original and 

denoised signals is measured by the sum of squares error, . To 

enforce the degree of smoothness, a regularization term, λ, of the l1 norm of the signal 

gradient, ▽x, is introduced:

(8)

The TV algorithm was selected due to its edge-preserving denoising characteristics (Rudin 

et al., 1992). TV can be used on complex-valued datasets, , yielding an image intensity 

weighted estimation of background phase contamination. Furthermore, no additional 

preprocessing steps, such as masking or phase unwrapping are required, providing a future 

option for online real-valued dMRI reconstruction.

It must be noted, however, that even though real-valued dMRI extraction employs TV, it is 

not a denoising strategy for dMRI. It rather employs knowledge about smoothness of the 

background field to correct for phase contamination and, thus, for creating an image with a 

Gaussian noise distribution. In this context, equation 8 was only employed to extract the 

smooth phase term of the denoised signal, x, to subsequently rephase the original noisy non-

smoothed dataset, y.

Methods

High-resolution dMRI Data Acquisition

Diffusion MRI data of one healthy adult were acquired. Written informed consent was 

obtained before the experiment. Imaging was performed on the MGH-UCLA Skyra 

Connectom Scanner (Siemens Healthcare Sector, Erlangen) using a maximum gradient 

strength of GMax=300mT/m with a slew rate of 200T/m/s. A custom-built 64 channel 

phased-array coil was employed for signal reception (Keil et al., 2013). Six repetitions of 

one dMRI dataset were acquired using a single-refocused spin-echo Stejskal Tanner 

sequence (Stejskal and Tanner, 1965) with an EPI readout.
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The acquisition parameters were repetition time (TR)=4600ms, echo time (TE)=54ms, Field 

of View (FoV)= 210×210mm2, Matrix size = 176×176, 98 slices, in plane GRAPPA 

acceleration (R)=2 (Griswold et al., 2002), Partial Fourier (PF)=6/8, Simultaneous Multi 

Slice (SMS) acceleration factor SMS=2, blipped-CAIPI PE-Shift=3 (Setsompop et al., 

2012a, 2012b) and Bandwidth=1578 Hz/Px. MRI data with diffusion weighting of 

b=5000s/mm2 and 128 diffusion directions were acquired with 10 interspersed b=0 images 

in a total acquisition time of 10:35 for each repetition. SMS was performed using a 

dedicated online reconstruction software with low inter-slice leakage (Cauley et al., 2014a).

To create complex-valued multi-channel dMRI data, the reconstruction of magnitude and 

phase images was performed separately. The reconstructed magnitude data for each channel 

were combined using a vendor-provided adaptive coil combination (Walsh et al., 2000). 

Phase data of individual coil-elements were combined using an optimized method for high 

field strength (Hammond et al., 2008). This method provides a good approximation to the 

SENSE coil combine described by Pruessmann et al. (1999) for field strengths of up to 3T. 

For higher field strength, it might be necessary to acquire coil sensitivity maps to employ 

SENSE coil combination, or to use local phase offset corrections (Robinson et al., 2011). 

The magnitude and phase data were combined into complex-valued datasets using 

Mathworks Matlab 8.3.

Conventional dMRI Data Acquisition

In addition to high-resolution dMRI, diffusion data with conventional acquisition parameter 

settings were recorded from one healthy adult. Written informed consent was obtained 

before the experiment. Imaging was performed on a MAGNETOM Verio MRI system 

(Siemens Healthcare Sector, Erlangen) using a maximum gradient strength of 

GMax=40mT/m with a slew rate of Slew=200T/m/s. A 12-element head matrix coil (Siemens 

Healthcare Sector, Erlangen) was employed for signal reception. A dMRI dataset was 

acquired using a twice-refocused spin-echo sequence with EPI readout (Reese et al. 2003).

The acquisition parameters were TR=13800ms, TE=100ms, FoV= 218×218mm2, Matrix 

size = 128×128, 72 slices, R=2 and b = 1000s/mm2 with 60 diffusion directions and 7 

interspersed b=0 images. This dMRI dataset was recorded in a total acquisition time of 

15:24 min. The data were reconstructed offline using Matlab. The individual coil-elements 

were combined using root sum of squares for magnitude and an optimized method 

(Hammond et al., 2008) for phase data. The magnitude and phase data were combined into 

complex-valued datasets.

Real Value Extraction of Acquired dMRI Data

The background phase has a distinct shape for each EPI shot. Real value extraction was 

performed as depicted in Figure 2B, using TV with Matlab 8.3. The l1 regularized TV 

formulation was solved through a fast iterative Split-Bregman method, using a 

preconditioned hierarchically semi separable (HSS) solver (Cauley et al., 2014b; Goldstein 

and Osher, 2009; Xia et al., 2010). The algorithm was run using a soft threshold of β=30% 

of the total variation and a TV regularization of λ = 6. These parameters were chosen based 

on experience and resulted in stable phase correction for both the high-resolution and 
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conventional dMRI dataset. As can be seen from Figure 2A, the real-valued data are a direct 

output of our suggested phase correction algorithm. For comparison, the identical dMRI 

dataset was reconstructed as standard magnitude images.

Diffusion Data Processing

Diffusion MRI magnitude as well as real data were preprocessed using the standard FMRIB 

Software Library (FSL) diffusion tensor imaging (DTI) preprocessing pipeline1. In a 

nutshell, both real and magnitude data were concatenated and corrected for motion and eddy 

currents using the function eddy as implemented in FSL. Next, a DTI fit of the corrected real 

and magnitude data was conducted using the FSL function dtifit.

Additionally, both real and magnitude data of the high-resolution dataset were averaged over 

the number of repetitions to enable a qualitative evaluation of signal averaging ability. To 

demonstrate the impact of noise bias in dMRI data on the DTI fit, the six-fold averaged 

high-resolution dataset was increasingly contaminated with χ2 -distributed noise with five 

degrees of freedom. The noise was distributed homogenously throughout the image (i.e. no 

parallel noise amplification was taken into account). DTI fits of the noise-contaminated 

datasets were realized using FSL dtifit.

An evaluation of “diffusion contrast” within fiber structures with homogenous orientation 

was performed for real and magnitude dMRI data. This contrast was defined as the 

difference between the maximum and the minimum image intensity, over the complete 

range of diffusion gradient directions, for a given b-factor and region of interest (i.e., 

diffusion perpendicular vs. along the fiber direction). Using the averaged dMRI datasets, a 

region of interest (ROI) with homogeneous fiber direction was selected within the corpus 

callosum. The diffusion-contrast was calculated within this ROI.

High SNR Human Connectome Project dMRI Dataset

The openly available Human Connectome Project (HCP) dataset was employed to compare 

the results of the DTI fits for the acquired real/magnitude dMRI data with randomly selected 

high SNR dMRI data. An MGH HCP dataset of five subjects with 1.5 mm isotropic 

resolution was obtained from the HCP database2. The MGH HCP data were acquired using 

the same pulse sequence and system hardware as the data acquired for this study. The 

acquisition parameters were TR=8800ms, TE= 57ms, FoV= 210 × 210 mm2, Matrix size = 

140 × 140, 96 slices and b-values = [1000,3000,5000,10.000] s/mm2 with [64,64,128,256] 

diffusion directions respectively. The downloaded dataset was already preprocessed, 

including corrections for gradient non-linearity, motion-correction and eddy-currents. A DTI 

fit of the MGH HCP dataset was conducted using FSL dtifit. The mean distribution and 

standard deviation of FA values was calculated and normalized to the number of image 

voxels using Matlab.

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
2https://db.humanconnectome.org/
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Quality Assessment of Non-averaged Real and Magnitude Q-ball Reconstructions Using 
Regular Bootstrap

The quality and variability of the magnitude and real data based Q-ball reconstruction were 

assessed using a regular bootstrapping method of the six acquired repetitions with high 

resolution (Cohen-Adad et al., 2011).

The preprocessed dMRI data were re-shuffled with regular bootstrapping using jackknife 

sampling to synthesize 500 bootstrapped repetitions. For each synthetic dataset, the diffusion 

orientation distribution function (ODF) was estimated voxel-by-voxel, using Q-ball 

reconstruction based on spherical harmonics functions (Descoteaux et al., 2007). To assess 

stability of the estimated fiber directions, the angular confidence intervals were derived for 

the first (CI1) and the second ODF maxima (CI2) as a measure of angular uncertainty.

Quality Assessment of Averaged Real and Magnitude Q-ball Reconstructions Using 
Residual Bootstrap

Regular bootstrapping can provide valuable information about uncertainties in ODF 

reconstruction. However, multiple repetitions of datasets are required to resample a high 

number of synthetic bootstraps. An alternative approach to assess Q-ball reconstruction 

quality of dMRI data, which does not require multiple repetitions, is residual bootstrapping 

(Sotiropoulos et al., 2011). Residual bootstrapping was employed on both the averaged 

magnitude and real diffusion high-resolution datasets to evaluate the effect of noise floor on 

the ODF reconstructions. This was done using the FSL function qboot with the default 

settings: Constant Solid Angle (CSA) ODF (Aganj et al., 2010), lmax=4, number of peaks = 

2, threshold for ODF peak = 0.4.

Results

Magnitude vs. Real Averaging

Figure 3 shows the results of signal averaging six acquisitions for real and magnitude data. 

The non-averaged real and magnitude data quality is displayed in Figure 3A, and the six-

times averaged data are shown in Figure 3B. All images are displayed on the same scale.

The very low SNR is clearly noticeable in both non-averaged images (see Figure 3A). 

However, it can be seen that the Gaussian noise of the real data already results in higher 

contrast than in the magnitude counterpart.

The difference in the underlying noise distribution becomes even more evident in the 

averaged data in Figure 3B. The averaged magnitude data clearly show the effect of 

accumulated noise, resulting in a mist of uniform noise overlaying the image, even if a high 

number of averages is employed. In contrast, the real data after phase correction show a 

different behavior after signal averaging. There is no accumulation of noise floor, allowing 

for small-scale signal changes to become clearly visible (see Figure 3B, bottom). 

Furthermore, employing real-valued data prevents magnitude related upward bias – 

especially in the center of the image, where parallel g-factor noise amplification is the 

strongest.
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The evaluation of diffusion contrast for the high-resolution real-valued dMRI dataset 

showed an increase of approximately 75% compared with the corresponding magnitude 

dataset. With conventional acquisition parameters, the real-valued data dMRI gave an 

increase of diffusion contrast by ~20%.

Diffusion Tensor Imaging for Real and Magnitude High-Resolution Data

The results of the DTI fits for the acquired high-resolution dMRI data are summarized in 

Figure 4. A direct comparison between color-coded directional fractional anisotropy (FA) 

values for both real-valued and magnitude data is shown in Figure 4A (magnitude data) and 

Figure 4B (real data). The effect of noise bias becomes visible, as FA values based on 

magnitude data are in average smaller than FA data based on real-valued data. This is the 

result of diffusion attenuation being damped by the noise floor in highly attenuated regions, 

leading to a reduction of measured diffusion fractional anisotropy. This effect is not present 

for real dMRI data, leading to a more accurate representation of the diffusion propagator 

(i.e., less “blobby”). Therefore, real-valued dMRI data generally create an FA map with 

higher contrast (see Figure 4B). This effect is especially severe in the central brain regions 

(magnified), where the intrinsic SNR of the receiver array is reduced. In addition, the coil 

profiles are less orthogonal in these regions, leading to higher g-factor noise amplification, 

which further reduces SNR when parallel imaging is employed (Keil and Wald, 2013; 

Pruessmann et al., 1999; Wiesinger et al., 2004).

The effect of noise on magnitude-based FA is also illustrated in Figure 4C. The FA 

calculated from low SNR magnitude data is reduced in highly anisotropic regions, such as in 

the corpus callosum (CC, reduced by ~40%) and the corticospinal tracts (CST, reduced by 

~50%)3. High magnitude-based FA values in Figure 4C are only visible in areas adjacent to 

the reception coil, where SNR is generally higher (Keil et al., 2013) (difference highlighted 

by white boxes). In contrast to the magnitude-based FA dataset, the results of the FA 

calculation based on real-valued data correctly identify highly anisotropic areas as such (see 

Figure 4D). The calculated real FA values are distributed evenly throughout the brain, with 

no bias towards high SNR areas.

The distribution of FA values over the whole brain volume can be seen in the histograms in 

Figure 4E. Both real-based and magnitude-based FA histograms show two peaks for gray 

and white matter. Comparing both histograms, it is visible that the real-based FA values 

cover a wider dynamic range of values, resulting in increased contrast. The magnitude-based 

FA distribution shows a clear trend to smaller values, which can also be observed in the 

respective FA images (Figure 4A-D).

In contrast to low SNR magnitude data, the distribution of real FA values shows large 

agreement with the FA distribution of the HCP dataset. Both, the dynamic range and 

intensity distribution of FA values of the two datasets are very similar. Figure 4F displays 

the effect of an increasing level of artificial χ2 noise on FA values. A homogenous increase 

of the χ2 noise level visibly reduces the FA contrast throughout the image. The histogram in 

3The FA reduction of noisy magnitude signals is similar to previously published results (Jones and Basser, 2004).
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Figure 4F confirms this observation, as an increasing noise level reduces the dynamic range 

of FA values and shifts higher amounts of image voxels to small values.

The DTI results of a conventional dMRI dataset (1.7mm isotropic, b=1000s/mm2) are 

summarized in Figure 5. Figure 5A shows preprocessed dMRI data quality prior to the DTI 

fit. The real-valued dataset displays visibly higher image contrast at b=1000s/mm2 

compared to the magnitude dataset. The DTI FA values of this dataset show differences in 

FA contrast. This is especially evident in inferior parts of the brain, where non-uniform 

noise amplification induces a bias in the DTI fit (see Figure 5B, difference image). The 

distribution of FA values across the brain shows that conventional dMRI datasets are not as 

strongly influenced by noise as the high-resolution datasets with strong diffusion weighting. 

However, a similar trend is observable, as the real-valued data result in higher dynamic 

range and a reduced amount of low FA values.

Regular Bootstrapping Results

The regular bootstrapping results are summarized in Figure 6. The angular uncertainty of the 

primary (CI1) and secondary maximum (CI2) are shown for one axial brain slice in Figure 

6A. The distributions of CI1 and CI2 values within this slice are displayed in histograms in 

Figure 6B. Note that the angular uncertainty of fiber directions is shown only up to CI<45°. 

No visible difference between the angular uncertainties of the first maximum (CI1) can be 

observed (see Figure 6A). The top histogram in Figure 6B confirms this observation. Real 

dMRI data provide a slight shift to smaller angular error, CI1, compared to magnitude data. 

Both CI1 histograms have the same basic shape, with one distinct peak at approximately 10° 

angular uncertainty.

A greater impact of dMRI data type on angular uncertainty can be seen with regard to the 

second ODF maximum (CI2). The arrows in the bottom row of Figure 6A indicate that for 

magnitude data a much larger number of spurious secondary fiber directions with an angular 

uncertainty CI2>45° appear in the corpus callosum. In fiber crossing areas, more secondary 

fiber directions with low angular error (CI2) appear in the real-based data (Figure 6A, 

bottom, boxes). In total, 25% more crossing fibers with an angular uncertainty of CI2<45° 

can be found using real dMRI data. At locations, where both real and magnitude data were 

able to resolve fiber crossings, a shift to lower uncertainty is observed for real dMRI data 

(Figure 6B). The magnitude-based CI2 histogram is clearly shifted to higher errors, due to 

the lower contrast these data provide.

ODF Shapes for both Data Types

Averaged ODFs were calculated using Matlab during regular bootstrapping. For visual 

comparison, averaged ODFs are displayed for one region of interest (ROI) with fiber 

crossings in Figure 6C. The selected ROI is displayed as an orange box within the brain on 

the left side of Figure 6C. Visual inspection of both ODF types shows that ODFs based on 

real data are sharper and more uniform within one tissue type (see yellow boxes in Figure 

6C). Fiber crossings are resolved more clearly (left box) and single fiber directions show no 

small secondary maxima (right box).
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Residual Bootstrapping Results

The results of residual bootstrapping for CSA ODF reconstruction are displayed in Figure 7. 

Axial and coronal views are shown with the estimated fiber orientations for six-times 

averaged magnitude and real dMRI data (see Figure 7). The real and magnitude 

reconstructions were both able to resolve crossing fibers (i.e. in the crossing region between 

corpus callosum, CC, and corticospinal tracts, CST, also known as centrum semiovale, 

CSO). However, the magnitude reconstructions identified a high number of non-existing 

fiber crossings, perpendicular to the true fiber orientation in the corpus callosum - even after 

low SNR magnitude dMRI data had been averaged extensively (Figure 7A). When averaged 

real dMRI data was used, the number of incorrectly estimated fiber crossings was visibly 

reduced in the CC (see Figure 7B).

Adjustment of the threshold for finding fiber directions for the calculated magnitude-based 

dyads made it possible to suppress the spurious fiber crossings in the corpus callosum. 

However, this procedure also eradicated the anatomically plausible fiber crossings in the 

centrum semiovale.

Discussion and Conclusion

This study illustrates the substantial benefit of using real-valued data for diffusion MRI. 

Advances in both imaging methods and hardware allow previous limits of dMRI data 

acquisitions to be surpassed for contemporary neuroscientific and clinical applications. 

However, this striving for higher resolution and stronger diffusion weighting will reduce the 

SNR. Especially with low SNR acquisitions, a non-Gaussian noise distribution has a severe 

impact on diffusion reconstruction, resulting in reduced diffusion-contrast and biased model 

fits.

We introduced a total-variation based method for background phase correction of complex-

valued dMRI data with high resolutions and strong diffusion weighting. The employed 

rephrasing algorithm uses TV to estimate the smooth background phase of dMRI data, 

which is then subtracted from the whole complex dataset. This results in a complete rotation 

of the complex dMRI signal into the real part. The complex image noise does not follow a 

smooth variation and is, therefore, unaffected by the TV algorithm. After rephasing, the real 

part, , of the complex data contains all of the actual image information and can be 

extracted for further analysis. In contrast to magnitude data, the image noise of real data 

does not follow a non-central χ2 distribution but rather a Gaussian distribution with a zero 

mean. The use of real dMRI data thus significantly reduces the bias of image noise on low 

SNR images. The employed Matlab Code for background phase correction is available upon 

request.

In this work, we acquired six repetitions of a high-resolution dMRI data set with a strong 

diffusion weighting of b=5000s/mm2. We chose a combination of both high resolution and 

strong diffusion weighting to acquire a dataset with very low SNR to help illustrating the 

effect of noise distributions. Real data extraction was performed using the introduced TV 

based method (see Figure 2). The presented results indicate that real diffusion data enable 
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true signal averaging without an accumulation of noise as opposed to traditional magnitude 

MRI (see Figure 3).

Furthermore, we compared the results of fitting a diffusion tensor model to the extracted real 

as well as the traditional magnitude data. The results for magnitude data are largely in 

agreement with previously published studies showing a damping of FA contrast if 

magnitude data are employed (Jones and Basser, 2004). After real-part extraction, the DTI 

fit showed visibly increased FA contrast, especially in central brain regions where noise 

amplification from parallel imaging noticeably reduces SNR. The FA distribution over the 

whole brain volume (Figure 4E) shows that the dynamic range of FA across the brain was 

increased when real dMRI data were employed. After real-value extraction, the FA 

distribution of the acquired data resembled the FA distribution of high quality dMRI data 

from the Human Connectome Project. This suggests that an elimination of noise bias in 

dMRI can dramatically increase the quality of diffusion model fits of low SNR data. In this 

work, we employed a strong diffusion weighting of b=5000s/mm2 to emphasize the effect of 

χ2 noise on low SNR data. Please note that the DTI model is generally not valid for such 

high b-values due to non-Gaussian diffusion contributions (Kiselev and Il'yasov, 2007). 

Therefore, it is advisable to employ lower b-values up to b=3000s/mm2 for accurate DTI 

results.

Even though, dMRI datasets with high resolutions and strong diffusion weightings provide 

large amounts of information, they are generally not employed in clinical and neuroscientific 

practice. To estimate the influence of non-Gaussian noise bias on conventional dMRI 

acquisitions, we acquired a dataset with 1.7mm isotropic resolution and b=1000s/mm2. As 

expected, the DTI FA results of this dataset are not as susceptible to real value extraction as 

high-resolution datasets. However, a similar trend showing a larger dynamic range and 

fewer low FA values can also be observed for this dataset - especially in inferior brain 

regions. Even though the direct impact of real-valued data on dMRI acquisitions with 

conventional parameters is not drastic, the introduced method will help to maintain 

sufficient FA contrasts, when higher resolutions or diffusion weightings are desired. In this 

context, slice-accelerated acquisition methods (Setsompop et al., 2012b) will help to 

generate sufficient amounts of data to increase SNR by averaging.

Real valued data follow a Gaussian intensity value distribution. Therefore, heavy noise 

might result in negative intensity values at low signal. This might engender issues when 

using a log transformation to linearize the diffusion decay. In such cases, it might be 

beneficial to either exclude the data from the fit or to replace negative intensity values with a 

small value greater than zero.

Advanced dMRI models using non-linear least squares and weighted least squares 

algorithms employ knowledge about the noise floor to minimize its impact on diffusion 

model fits (Veraart, Sijbers, et al. 2013). Such advanced diffusion models will show less 

benefit from real valued dMRI data than general linear least squares approaches.

Unfortunately, parallel imaging methods induce spatially varying noise levels in the data, 

thereby complicating proper estimations of noise levels. Additionally, diffusion data 
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processing steps (such as eddy correction & registration) transform the underlying non-

Gaussian noise distributions from known χ2 distributions to unknown distributions (Veraart, 

Rajan, et al. 2013). These effects hamper the use of advanced data fitting strategies to reduce 

bias in model fitting.

The log transformation, which is often applied to dMRI data during model fitting, induces 

heteroscedasticity on the data. This is a general problem of diffusion model fits and also 

occurs when using real valued dMRI data. Hence, for optimal DTI fitting results of real 

valued dMRI data, it is also recommended to employ non-linear or weighted fitting 

procedures (Jones and Cercignani, 2010; Jones et al., 2013; Veraart et al., 2013b).

We would like to emphasize that the noise floor of magnitude dMRI data introduces severe 

signal bias not only for DTI, but also generally for every diffusion MRI experiment. For 

example, model-free (Lätt et al., 2008; Ong et al., 2008) or model-based (Assaf and Basser, 

2005; Assaf et al., 2008) q-space methods aiming at estimating axon diameter strongly 

suffer from this magnitude bias, because the estimated parameters become incorrect 

(Alexander, 2008). Utilization of real instead of magnitude data thus has the potential to 

significantly increase the performance of diffusion MRI models in general. Future work will 

aim to investigate the impact of real-valued dMRI data on higher order diffusion models. 

Some of these models already account for a noise bias (Assaf and Basser, 2005) and might 

therefore show less benefit from removing it.

For both real and magnitude data, a regular bootstrap comparison was performed to evaluate 

the angular error of primary and secondary fiber direction estimations. During this process, 

six repetitions of the acquired high resolution dMRI data were resampled to create 500 

synthetic bootstraps. Orientation density functions were calculated for all synthesized 

datasets. Subsequently, the angular uncertainties of primary and secondary (crossing) fiber 

orientations were estimated from the distribution of ODFs. For this consideration, we 

employed a Q-ball reconstruction based on Descoteaux et al. (2007), which is known to 

create smooth ODFs and can therefore result in an underestimation of fiber directions 

(Aganj et al., 2010). However, for comparing very noisy data, as in the current work, it can 

be beneficial to use conservative reconstruction methods, since more recent strategies tend 

to show increased susceptibility to noise and might, therefore, detect a higher number of 

non-existent fiber crossings for both data types. The results of the employed bootstrapping 

methods show that the use of real diffusion data for Q-ball reconstruction detected 25% 

more existing fiber crossings with an angular uncertainty of less than 45°, compared to 

magnitude data. When only fiber crossings detected by both data types were compared, real 

dMRI data Q-ball reconstruction created ODFs with strongly reduced angular error of the 

secondary fiber direction (see Figure 6). Furthermore, regular bootstrapping revealed that a 

greater number of incorrectly estimated fiber crossings with high angular error greater than 

45° was found when using magnitude data. The angular uncertainty of the first fiber 

direction for Q-ball reconstructions did also improve slightly for real compared to 

magnitude dMRI data.

To evaluate the effect of signal averaging on CSA Q-ball reconstruction, we conducted a 

residual bootstrapping analysis. For magnitude data, the accumulation of noise as a result of 
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averaging (see Figure 3) prevented an accurate ODF reconstruction. Even though 

anatomically plausible fiber crossings were correctly identified, the magnitude 

reconstruction also identified spurious fiber crossings in almost every voxel within the 

highly anisotropic corpus callosum – even after extensive signal averaging. Changing the 

threshold for ODF maxima recognition resulted in a failure to identify existing fiber 

crossings for magnitude data. Again, real dMRI data did not show this behavior and was 

able to show anisotropic diffusion within the corpus callosum whilst resolving existing fiber 

crossings.

Our analyses show that using real-value dMRI data is advantageous over magnitude data 

both for increased diffusion and image contrast and data fitting. Please note that the major 

benefits of our presented strategy are partially due to the fact that very low SNR data were 

acquired. Magnitude dMRI data with low resolution and weak diffusion weighting, as still 

often employed in clinical and neuroscientific practice, are influenced to a lesser extent from 

magnitude-induced noise bias, due to their higher SNR. In such low-resolution cases, real-

valued dMRI only achieved an ~20% increase of diffusion contrast. However, SNR has a 

strict trade-off with spatial resolution and diffusion weighting. Recently-developed MRI 

systems with stronger gradients and a higher number of parallel imaging channels allow to 

acquire data with significantly higher diffusion-weightings and spatial resolutions (but still, 

unavoidably, with low SNR) (Keil et al., 2013; Setsompop et al., 2013). For such high-

resolution data, the use of real dMRI data resulted in a direct increase of diffusion contrast 

by ~75%.

Importantly, current advances in SMS for diffusion enable faster acquisitions than 

traditional MRI, allowing a higher number of averages to be acquired (Eichner et al., 2014a; 

Feinberg et al., 2010; Setsompop et al., 2012a, 2012b). Slice-acceleration has only recently 

been developed and further improvements can be expected using specialized technologies 

for slice excitation and reconstruction (Bilgic et al., 2014; Eichner et al., 2014b; Norris et al., 

2011).

For these reasons, real-valued dMRI will fully reveal its potential as it deals with highly 

accelerated data, with high spatial resolution and/or strong diffusion weighting. The 

possibility of acquiring high numbers of averages will enable true signal averaging with 

significantly reduced noise bias, leading to higher resolutions and deeper insight into tissue 

microstructure.
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Highlights

• We implemented a method to overcome the noise bias in dMRI

• Real-valued dMRI data are overlaid with Gaussian noise

• Real dMRI enables unbiased signal averaging and linear least squares model fits

• Increased diffusion-contrast and sensitivity to crossing fibers

• More accurate fiber tracking results with reduced angular error
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Figure 1. 
Complex Diffusion-Weighted MRI Signal. The figure shows six repetitions of one specific 

diffusion direction. The magnitude image (top row) remains constant, whilst the phase 

image (bottom row) shows different patterns for each shot. Such shot-to-shot phase 

variations can arise from subject movement (e.g., shot 3), cardiac pulsation (e.g., shot 6), 

blood circulation or field inhomogeneities when diffusion gradients are employed.
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Figure 2. 
Workflow for Extracting Real-Valued Diffusion Data. A Flow chart for creating real-valued 

dMRI data. The standard reconstruction steps are displayed in white. The additional steps 

for extracting real-valued data are indicated in blue. B Depiction of the phase correction 

process. The complex-valued dMRI signal is used for the estimation of the smooth 

background phase, φBG, without noise contamination. The background phase is subtracted, 

creating a complex image without background phase contamination. The real part, including 

diffusion-contrast and Gaussian noise are extracted. The imaginary part contains only 

imaginary part of the complex Gaussian noise and can therefore be discarded.
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Figure 3. 
A Single repletion of dMRI data with low SNR for magnitude (top) and phase corrected 

real-valued data (bottom). B Results of signal averaging for both data types. After six 

averages, the magnitude data show accumulated noise - visible as a “mist” overlaying the 

image. The phase corrected real-valued dMRI data are not affected by noise bias. Therefore, 

averaging visibly increases SNR for real diffusion data. The bottom graph of Figure B 

shows the signal course of real and magnitude data alongside the lines in the averaged data. 

The dashed line marks a signal intensity of zero. The diminished noise floor of real-valued 

data allows identifying smaller intensity differences. All images in this figure are displayed 

on the same scale.
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Figure 4. 
A, B DTI fit results for standard magnitude and real-valued dMRI data. Real diffusion DTI 

results are significantly brighter - especially in central magnified low SNR regions of the 

brain, where additional anatomical structures become visible. C, D For standard magnitude 

data, large FA values are only visible in high SNR areas (close to receive coil-elements). In 

the center, the noise bias of magnitude data greatly reduces FA, even in highly anisotropic 

fiber structures (such as the corticospinal tract). Real diffusion is not influenced by noise 

bias, thereby creating more anatomically correct FA maps, even in low SNR regimes. E A 

shift to higher FA contrast over a larger range can be observed for real diffusion data. The 

distribution of FA based on real-valued data rather resembles the FA distribution resulting 
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from high quality HCP datasets. The error bars on the HCP histogram denote biological 

variability of FA across the five observed HCP subjects. F Left: An artificial increase of χ2 

noise level results in a total reduction of DTI FA values. Right: datasets with artificial strong 

χ2 noise contamination yield FA histograms that resemble the magnitude FA in histogram E.
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Figure 5. 
DTI Results for conventional dMRI dataset. A preprocessed real-valued and magnitude 

dMRI data prior to the DTI fit (corresponding images displayed on same scale). B Coronal 

FA maps, resulting from DTI fit. The real-valued dataset results in higher FA contrast in the 

inferior parts of the brain (right). C FA distribution for real and magnitude dMRI dataset 

with conventional acquisition parameters. The FA distribution of real-valued data shows an 

attenuated, yet generally similar behavior as for the high-resolution dMRI dataset.
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Figure 6. Regular Bootstrapping Results from Six Repetitions
A Angular Confidence Intervals for the primary and secondary fiber direction (CI1, CI2). 

Angular error of CI 1 is similar for magnitude and real data. Real diffusion data show more 

secondary fiber directions with CI2<45° (box). Magnitude data result in more secondary 

fiber reconstructions with high CI2>45° - even in single fiber structures such as the corpus 

callosum (arrow). B Voxel histograms of CI1 and CI2: Real diffusion data show increased 

sensitivity to secondary fiber crossings with low angular error. The histograms were masked 

to show the distribution of voxel locations, where directions were detected for both data 

types. C Calculated ODF shapes within fiber crossing area marked (red) in b0 image. ODFs 

based on real-valued dMRI data are more accurately defined in crossing fiber areas (left 

yellow box). In areas without fiber crossings, real diffusion ODFs yield less secondary fiber 

directions and appear sharper than magnitude ODFs (right yellow box).
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Figure 7. 
Residual-Bootstrapping Results for Six-Fold Averaged Data of A Magnitude and B Real 

Diffusion data. Many anatomically implausible orthogonal fiber crossings are detected in the 

Corpus Callosum for magnitude data (A). These are almost completely eliminated for real 

diffusion data
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