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Abstract

Accurate electroencephalographic (EEG) source localization requires an electrical head model 

incorporating accurate geometries and conductivity values for the major head tissues. While 

consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, 

measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely 

reflecting both inter-subject and measurement method differences. In simulations, mis-estimation 

of skull conductivity can produce source localization errors as large as 3 cm. Here, we describe an 

iterative gradient-based approach to Simultaneous tissue Conductivity And source Location 

Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar 

effective EEG sources found by adequate independent component analysis (ICA) decomposition 

of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15 cm2-

scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 

30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive 

Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young 

adults we identified sets of 13 independent components having near-dipolar scalp maps 

compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, 

SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to 

accurately estimate skull conductivity non-invasively from any well-recorded EEG data in 

combination with a stable and non-invasively acquired MR imaging-derived electrical head model 

could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical 

imaging modality.
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1. Introduction

Human electroencephalographic (EEG) source localization aims to reconstruct the current 

source distribution in the brain from one or more maps of potential differences measured 

noninvasively from electrodes on the scalp surface. An electric forward head model of the 

head plays a central role in accurate source localization. The volume conduction model must 

specify both the geometry and the conductivity distribution of the modeled tissue 

compartments (scalp, skull, cerebrospinal fluid, brain grey and white matter, etc.). While it 

is possible to extract head geometry information from magnetic resonance (MR) images of 

the subject’s head (Dale et al., 1999; Akalın-Acar and Gençer, 2004; Ramon et al., 2006), 

there has been no effective way to directly and non-invasively measure brain and skull tissue 

conductivities (Ferree et al., 2000; Goncalves et al., 2003b). Studies involving direct skull 

measurements have reported consistent conductivity values for scalp, brain, and 

cerebrospinal fluid (CSF). However, skull and therefore brain-to-skull conductivity ratio 

(BSCR) values reported in the literature (detailed below) have varied between 8 and 80 in 

adults (Hoekema et al., 2003; Rush and Driscoll, 1968). This presents a problem for accurate 

EEG source localization, as we have shown in a previous study in which we examined the 

effects of forward modeling errors on EEG source localization (Akalin Acar and Makeig, 

2013).

There, using four-layer BEM head models based on four young-adult MR head images, we 

estimated the volume-conducted scalp projections of a 3-D grid of equivalent dipole brain 

sources and then localized the same sources from their projected scalp maps in head models 

incorporating different BSCR value assumptions and examined the resulting localization 

errors. Assuming the simulated BSCR value of 25 in the forward head model allowed near 

perfect dipole source localization; assuming an (incorrect) BSCR value of 15 gave a 

maximum error of 15 mm for equivalent dipoles near the skull (grid median, 5 mm), while 

assuming a BCSR value of 80 gave still larger localization errors up to 31 mm in magnitude 

(grid median, 12 mm). These localization errors were larger for sources near the skull or 

brain base; the closer the sources to the center of the brain, the lower the localization error. 

However, most cortical EEG sources, including those found by independent component 

analysis (ICA), are relatively near the skull. These simulations demonstrated that the current 

absence of a method for performing accurate, non-invasive skull conductivity estimation for 

each EEG subject is a major factor limiting the accuracy of EEG source reconstruction.

1.1. Measuring skull conductivity

Rush and Driscoll (1968) first reported an adult BCSR of 80 by measuring impedances 

through a half-skull immersed in fluid, thereby establishing a standard still commonly used 

in inverse source localization software. More recent conductivity estimates have been 

obtained from combining EEG data with magnetoencephalographic (MEG) and/or 
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invasively recorded electrocorticographic (ECoG) data (Gutierrez et al., 2004; Baysal and 

Haueisen, 2004; Lai et al., 2005; Lew et al., 2009), or by using current injection or magnetic 

field induction, an approach termed electrical impedance tomography (EIT) (Ferree et al., 

2000; Gao et al., 2005; Ulker Karbeyaz and Gencer, 2003).

A mean BSCR of 72 was reported in a study of six subjects (Goncalves et al., 2003a) based 

on analysis of evoked somatosensory EEG potentials and MEG fields (SEP/SEF). The same 

group, however, reported a mean value of 42 using EIT (Goncalves et al., 2003b). 

Meanwhile, Oostendorp measured BSCR values as low as 15 for a piece of skull temporarily 

removed during a pre-surgical monitoring study (Oostendorp et al., 2000). Other relatively 

low BSCR estimates (18.7 ± 2.1) have since been reported for two epilepsy patients from in 

vivo experiments using intracranial electrical stimulation by injecting current using subdural 

electrodes (Zhang et al., 2006), and BSCR values between 18 and 32 have been derived 

from simultaneous intracranial and scalp EEG recordings for adult epilepsy patients during 

pre-surgical evaluations (Lai et al., 2005). Such variations in reported BSCR values may 

occur not only based on measurement method differences but also through natural inter-

subject variations in skull thickness and density, both also known to change throughout the 

life cycle (Oostendorp et al., 2000; Hoekema et al., 2003; Wendel et al., 2010).

Considering its strong influence on the accuracy of EEG source localization, skull 

conductivity should be a subject-specific parameter in any accurate electrical forward head 

model (Akalin Acar and Makeig, 2013; Huiskamp et al., 1999; Dannhauer et al., 2011). 

However, as surveyed above most direct skull conductivity measurement methods are 

invasive. Less invasive methods based on electrical impedance tomography (EIT) or 

magnetic resonance EIT (MREIT) that inject or induce small currents to estimate 

conductivity require special equipment and are not in common use. For instance, Ferree et al 

injected small electric currents into scalp EEG electrodes and recorded the resulting 

potentials at the other electrodes. Skull conductivity was estimated in a four-layer spherical 

model using a simplex algorithm that minimized error between measured and computed 

scalp potentials. The mean reported BSCR value was 24 (Ferree et al., 2000). As a large but 

variable portion of the current injected flows through the scalp itself, such procedures may 

also be subject to error or bias.

Other groups have proposed estimating skull conductivity using somatosensory event-

related potential (SEP) and evoked field (SEF) peak scalp maps. Gutierrez et al. (2004) used 

SEP and SEF peak scalp maps to estimate layer conductivities in a four-layer spherical head 

model, estimating the location iteratively so as to minimize differences in equivalent source 

locations computed from the MEG and EEG maps. Similarly, Baysal and Haueisen (2004) 

reported a mean BSCR value of 23 across nine subjects by combining SEP/SEF peak scalp 

maps. Vallaghe et al. (2007) used an average evoked response in a somatosensory 

experiment and assumed the source projection to the scalp montage could be modeled by a 

single equivalent dipole located in the cortex. They estimated BSCR as 81 and 89 for right 

and left hand SEP. Huang et al. (2007) confirmed that simultaneous EEG and MEG 

recordings could obtain more accurate source localization than either EEG or MEG 

recordings alone. They performed a two-step approach, estimating tangential source 

projections of event-related fields (ERFs), fitting conductivity values, then solving for the 
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radial projections absent in MEG using the simultaneously recorded event-related potentials 

(ERPs). However, MEG recording is much more expensive and much less commonly 

available than EEG.

Later, Lew et al. (2009) used simulated annealing (SA) to estimate brain and skull 

conductivities by pre-computing the forward problem for a set of brain and skull 

conductivities and then using an SA optimizer to simultaneously search for the source 

location and conductivity. They proposed to apply their method to EEG data in which the 

underlying sources may be unitary and for which very good SNR ratios can be achieved, 

e.g., at early peaks in auditory and somatosensory evoked response averages. However, 

estimating conductivities from only one source location could bias the results, whereas using 

a spatially distributed set of isolated sources might be more accurate and robust.

In the following sections, we first formalize the forward and inverse problems and their 

solutions, explain the effect of skull conductivity on inverse problem solutions, then 

illustrate how compactness of the source estimates for near-dipolar source scalp maps 

depends on skull conductivity. Next, we detail the SCALE (‘simultaneous conductivity and 

location estimation’) approach for estimating skull (or other head tissue) conductivity and 

the location of a number of EEG sources concurrently, describe verification of the SCALE 

approach in a simulation study, and finally report results of its application to 128-channel 

EEG data sets from two young adult subjects.

2. Methods

2.1. The EEG forward problem

Let σ be the conductivity distribution of the head and J̄
p be the primary current density 

representing the brain source(s). Then, the potential distribution ϕ within the head generated 

by J̄
p can be represented by the quasi-static Maxwell Equation:

(1a)

(1b)

where V and S denote the volume and surface of the conductive body, respectively, and n̄ is 

the unit normal on surface S. Here, the natural boundary condition is assumed, i.e., the 

normal component of the current density on the surface of the conductive body is set to zero. 

From Equation 1, ϕ can be solved for when σ and J̄
p are specified. This is the forward 

problem of electrical source imaging.

When realistic head models are employed, the forward problem is solved using a numerical 

modeling approach such as the Finite Element Method (FEM), Boundary Element Method 

(BEM), or Finite Difference Method (FDM) (Akalın-Acar and Gençer, 2004; Gençer and 

Acar, 2004; Wolters et al., 2002; Vanrumste et al., 2000). For the numerical solutions in this 

study we used FEM head models built using the transfer matrix approach (Gençer and Acar, 

2004).
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2.2. The EEG Inverse Problem

The relationship between scalp EEG signals Y and underlying brain source activities S can 

be modeled by a linear system:

(2)

where S is the source matrix, B is the noise matrix and L is the lead field matrix relating 

source strengths to their volume-projected scalp potentials. When we perform ICA 

decomposition of the EEG data, here using AMICA (Palmer et al., 2007), then

(3)

where P is the number of maximally independent component processes (ICs), Qi is the 

spatial projection pattern (scalp map) of the i th IC, and Ti is its activity time course. If Pn of 

P ICs can be identified as near-dipolar, the EEG for these Pn ICs can be written as:

(4)

Solving an EEG inverse problem from Yn gives an estimate of the spatial distribution of 

source activity generating the observed independent component scalp map:

(5)

(6)

where Ŝi is the source of the ith IC. Here we can use any linear source localization method to 

estimate the source distribution Ŝi (Baillet et al., 1999; Ramirez and Makeig, 2006; Mosher 

et al., 1999). Using simulations, we have shown that BSCR can strongly affect the accuracy 

of source localization (Akalin Acar and Makeig, 2013).

2.3. Head model sensitivity to conductance parameters

The numerical electrical forward head model is comprised of matrices representing the head 

geometry, the distribution of conductivity values within the head, and the locations of the 

scalp sensors. By parameterizing the forward model (conductivity values, sensor locations, 

skull thickness, etc.) we reasoned it should be possible to perform optimal conductivity 

estimation using a gradient-based or simplex optimization approach while simultaneously 

improving the inverse problem solutions, in a particular sense, for the given independent IC 

sources. As described above, any change in conductance parameters assumed for the several 

head tissue parameters requires computationally expensive computation of the head model 

and transfer matrices.
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Here we focus on optimizing the skull conductivity estimate alone (equivalent to optimizing 

the BSCR). Our approach is to attempt to find a skull conductivity (or equivalently, BSCR 

value) that simultaneously maximizes the compactness of the computed spatial source 

distribution estimates for many or all of an identified group of near-dipolar ICs while 

minimizing the spatial difference between measured and computed IC distributions using the 

relative difference measure (RDM) (Meijs et al., 1989).

Our inclusion of source compactness as an objective is motivated by the large 

preponderance of short-range cortical connections for both excitatory and, especially, for 

inhibitory neurons. The sparsity of long-range connections makes it difficult or impossible 

for a broadly distributed source domain to emit a unitary signal across an EEG dataset. 

Unitary effective sources of scalp EEG should therefore be small emergent domains or 

patches of coherence cortical field activities. The relative anatomic separation of such 

patches gives the tendency for the time courses of their separate activities to be relatively 

independent of one another, possibly excepting a sparse subset of time points at which they 

may receive common alerts that modulate their activities. ICA exploits their relative 

independence to learn spatial filters that separate their time courses by in effect learning 

their separate projection patterns to the scalp electrode montage, as embodied in the IC scalp 

maps contained in columns of the matrix inverse of the ICA unmixing matrix.

2.4. Linearizing changes in scalp potentials produced by small changes in assumed tissue 
conductivity

One way to optimize the BSCR estimate involves linearizing the potential change in the 

neighborhood of the currently estimated set of tissue conductivities (Gençer and Acar, 

2004). To linearize the potentials around a conductivity distribution σ0, we begin by 

perturbing the conductivity estimates by Δσ and writing the resulting conductivity vector as

(7)

The corresponding potential becomes:

(8)

If we discretize the head model with N mesh nodes and M mesh elements we can express 

Equation 1 in matrix notation:

(9)

where Φ is an N × 1 vector of unknown source potentials, σ denotes the M × 1 vector of 

element conductivities, A is a sparse, symmetric N × N matrix containing element geometry 

and conductivity information, and b is an N × 1 vector of primary current density. Let D be 

an m × N sparse matrix that selects m electrode locations among the N nodes in the FEM 

mesh, i.e. Φs = DΦ.

Changes in the scalp potentials:

Acar et al. Page 6

Neuroimage. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(10)

(11)

where SΦ is the m × M sensitivity matrix, and Δσ is M × 1. See (Gençer and Acar, 2004) for 

a detailed derivation of the sensitivity matrix.

2.5. The SCALE approach

We propose an iterative method for noninvasively estimating head tissue (in particular, 

skull) conductivity values and brain source distributions simultaneously using (1) a 

realistically shaped finite element method (FEM) head model constructed from a subject 

MR head image and (2) the scalp maps of 10–30 near-dipolar EEG source processes 

compatible with a single cortical patch source distribution, identified by ICA decomposition 

of a sufficient amount and quality of high-density EEG data collected in any experimental 

condition. Because of its demonstrated efficacy (Delorme et al., 2012), we here use adaptive 

mixture ICA (AMICA) for this purpose (Palmer et al., 2007, 2006). We generate subject-

specific four-layer FEM forward head models using the Neuroelectromagnetic Forward head 

modeling Toolbox (NFT) (Akalin Acar and Makeig, 2010), then select 10 or more IC 

sources whose scalp maps are “dipolar”, i.e., well accounted by a single equivalent model 

dipole, compatible with a source distribution consisting of a compact cortical patch 

(Delorme et al., 2012). Typically, the equivalent dipole source locations of such IC sources 

found in decompositions of continuously recorded EEG data are widely distributed across 

cortex.

More formally, we assume that each IC source represents a far-field projection to the 

electrodes of local cortical field potentials that are fully or partially coherent across a single 

small cortical domain or patch of unknown size and shape. In large part because of the 

extreme preponderance of short-range corticocortical connections (≤ 100µm), wholly so for 

inhibitory neurons and glia, and the predominance of tight radial thalamocortical loops, both 

supporting oscillatory local field dynamics, models of cortical field dynamics (Deco et al., 

2008) demonstrate the emergence of such patches or islands of cortical local field synchrony 

likened to “pond ripples” by Freeman (2003) and to recurring (point spread) avalanches by 

Beggs and Plenz (2004). Thus, brain connectivity both favors the emergence of temporal 

synchrony within small, connected cortical domains and minimizes temporal synchrony 

between such domains other than in exceptional locations and circumstances. Because of the 

common alignment of cortical pyramidal cells perpendicular to the cortical surface, spatially 

coherent local field activity across such a patch will have a non-negligible far-field 

projection to the scalp (Baillet et al., 2001;Nunez and Srinivasan, 2006), forming an 

effective EEG source whose time course may typically be near statistically independent of 

the time courses of concurrent far-field potentials generated by other, spatially separated 

cortical source patches.
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Net far-field currents projecting from such EEG source areas are each volume-conducted to 

nearly all of the scalp electrodes. Each electrode channel sums potentials from multiple 

effective cortical brain as well as several types of non-brain (“artifact”) sources. Because the 

outward (or inward) “rippling” of the phase waves across the cortical surface is fairly slow 

(1–2 m/s) (Nunez and Srinivasan, 2006) and their expected effective size is relatively small 

(circa 1 cm or less) (Beggs and Plenz, 2004; Baillet et al., 2001), at the frequencies of most 

oscillatory EEG processes the net source projections to the scalp should be nearly spatially 

stationary. For example, at 10 Hz and 1 m/s wave speed, the phase difference between the 

center and periphery of an outspreading circular avalanche 1 cm in diameter is only 18 

degrees. Under favorable circumstances therefore, ICA decomposition can separate such 

effective source activities by linearly decomposing recorded multichannel data into 

maximally temporally distinct (independent) component processes (Makeig et al., 1996, 

2002, 2004) many of which are associated with near “dipolar” scalp projection patterns 

compatible with an origin in cortical field activity that is spatially coherent across a cm2-

scale cortical patch (Delorme et al., 2012).

Though the ICs used to localize the sources are associated with “near-dipolar” scalp 

projection patterns, SCALE uses a distributed source model rather than an “equivalent 

dipole” source model. In the presence of measurement and modeling errors, the fitting error 

represents the sum of multiple errors from different causes, and cannot be directly used to 

estimate the conductivity (Vallaghe et al., 2007). An equivalent dipole may be localized as 

deeper or less deep in the head depending on whether the actual skull conductivity is higher 

or lower than the head model estimate while keeping the model fitting error low. When the 

source is constrained to be compact and oriented orthogonal to the cortical surface, however, 

incorrect estimation of skull conductivity cannot be compensated by simply moving the 

center of the source estimate deeper or less deep within the head volume. For this reason, 

distributed source localization of an imaged 2-D cortical source space allows successful 

conductivity estimation.

When the effective source is constrained to be compact and to lie within and orthogonal to 

the imaged cortical surface, an error in BSCR estimation cannot be compensated by a shift 

in patch depth, as it can in 3-D distributed source models (Pasqual-Marqui, 1999), or by 

increase in effective source area as in minimum-norm approaches (Hämäläinen and 

Ilmoniemi, 1994; Pasqual-Marqui, 1999). A possible exception is the cingulate sulcus; a 

(small) upward-oriented source estimate there might not win out over a (still smaller) source 

estimate on the upper cortical surface. But this geometry (parallel cortical surfaces, one 

below the other) may only exist rarely in cortex, and it is unlikely that one such mis-

localized IC would strongly bias the estimated BSCR.

Using multiple, spatially dispersed IC sources simultaneously for conductivity estimation 

makes it possible to differentially weight results for each source at each iteration based on a 

“goodness of fit” criterion, e.g. a measure of the spatial compactness of the IC spatial source 

distributions that we estimate using the “sparse, compact and smooth” (SCS) algorithm of 

Cao et al. (2012) (summarized in the Appendix). The objective of the SCALE approach is 

then to adapt conductivity values in the subject forward head model so as to best maximize 
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the compactness of the estimated cortical IC source distributions while also maximizing the 

goodness of fit of their modeled scalp channel projections to the selected IC source maps.

SCALE proceeds in successive alternating (minimum error) source localization and 

(maximum compactness) conductivity estimation steps, each iteration requiring 

(re)computation of the electrical forward head model lead field matrix. The method is 

therefore computationally intense, making implementations using parallel processing 

desirable. However, the FEM head model formulation we use allows us to linearize the 

forward problem near a conductivity distribution by creating a sensitivity matrix that maps 

conductivity changes to resulting changes in scalp electrode potentials (Gençer and Acar, 

2004). This allows us to use gradient-based optimization, avoiding the need for more global 

schemes that may require a larger number of head model evaluations.

The sensitivity matrix derived above allows us to obtain forward problem solutions near a 

given conductivity distribution σ0 and source distribution Φ0 without having to recompute 

the forward problem at each step. This, in turn, allows us to iteratively search for a change in 

conductivity Δσ that improves the solution of the forward problem in the sense of reducing 

the RDM error of the forward solution gf for the set of ICs:

(12)

RDM, a robust measure of source distribution accuracy sensitive to changes in both source 

magnitude and distribution (Meijs et al., 1989), is defined as:

(13)

where ΦR is the reference potential distribution, Φ is the calculated potential distribution, 

and m is the number of electrodes. We can then iteratively improve the source estimates 

using the updated conductivity estimates, repeating this process until the solution converges.

The basic SCALE approach is thus:

1. Generate a forward electrical head model and select a starting σ0 (a vector of L 

conductivity values).

2. For each iteration i = 0, 1, 2, …,

a. Calculate the forward model using the conductivity distribution, σi.

b. For each ICj, j = 1, 2, …, Pn where Pn is the number of near-dipolar ICs.

i. Estimate source distribution sj (a vector of n source magnitudes) from 

ΦICj (a vector of m electrode potentials for the jth IC).

ii. Compute the estimated electrode potentials Φj at σi from sj.

iii. Calculate the sensitivity matrix, Sj (the m × L sensitivity matrix for 

source distribution sj).
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iv. Compute Δσj = minΔσ(RDM(ΦICj, SjΔσ + Φj)).

c.
Compute . (wjs may be used to weight the evidence from 

the different ICs.)

d. Update the conductivity distribution, σi+1 = σi + Δσi.

3. Stop if Δσ ≤ ε.

2.6. Finding the optimum conductance change

The goal of the SCALE approach described above finds a σ that allows optimization of all or 

most Pn independent component source distributions. Since each IC source j has a separate 

sensitivity matrix, we have chosen to compute an optimum  for each IC. For this 

purpose, we search for the  value that minimizes the RDM. The final Δσ is then 

computed as a weighted sum of these values. Using equations (13) and (11):

(14)

(15)

Since the RDM function is non-linear, and the sensitivity matrix is only accurate near σ0, a 

straightforward approach is to first scan a coarsely-spaced set of pre-selected BSCR values 

in a fixed range near σ0 for a skull conductivity value giving the lowest RDM value. The 

computation of the new potential Φj(σ + Δσ) at each 0394;σ only requires a multiplication by 

the sensitivity matrix (Equation 15), making scanning a single-variable conductivity change 

quite fast compared to the rest of the procedure. However, if the SCALE approach were 

used to search for more than one tissue conductivity, using a more global optimization 

algorithm could be preferable.

Following the above steps results in Δσ, an L × Pn matrix of optimal conductivity values for 

each IC. The  for each iteration is computed as a weighted sum of the columns of this 

matrix:

(16)

We tested three different approaches to choosing the source weight vector w in Equation 16:

1. M1: Weight every source equally: wi = 1/Pn, i = 1…Pn

2. M2: Weight the estimate source according to the compactness of its estimated 

source distribution.

Acar et al. Page 10

Neuroimage. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. M3: Incorporate both the compactness and the RDM in computing the source 

weight:

In the equations above, compactness(i) is the compactness of the potential distribution 

estimated for the ith source as follows:

(17)

where T is the number of voxels in the source distribution whose absolute weight values are 

above a given threshold, and r(i) − r(j) is the distance between the source voxels. In our 

calculations we used 0.1 for k as this value produced monotonically increasing compactness 

values when the BSCR value approached the asymptotic BSCR value in our simulation 

studies.

2.7. Forward head model and EEG data

To test the SCALE approach using actual EEG data we used two data sets (45 min, 128 

scalp channels, 256-Hz sampling rate) collected using a Biosemi Active Two system during 

an arrow flanker task (McLoughlin et al., 2014) from two male subjects, 20 and 23 years of 

age. Whole-head T1-weighted MR images with 1-mm3 voxel resolution for the two subjects 

obtained using a 3-T GE MRI system were used to generate four-layer realistic head tissue 

models via the NFT toolbox (Akalin Acar and Makeig, 2010) that models scalp, skull, CSF, 

and brain tissues. We also generated a high-resolution cortical surface source space 

containing 80,000 sources for each subject using Freesurfer (Dale et al., 1999). The median 

surface area of the face of the elements on the source space mesh was 0.8 mm2. The tissue 

surface and cortical source space meshes for subject S1, as well as the locations of the 128 

scalp electrodes are shown in Figure 1.

For each subject, after high-pass filtering the continuous EEG data above 1 Hz we removed 

artifacts by initial likelihood-based rejection of time points (5%–10% of data) (McLoughlin 

et al., 2014), and applied (single-model) AM-ICA decomposition (Palmer et al., 2007) and 

then selected 13 near-dipolar ICs with brain-based equivalent dipoles for Subjects S1 and S2 

(Figure 2).

Our previous simulations using subject-specific BEM head models demonstrated that the 

overall effect of changing the assumed skull conductance (and thus, BSCR) on recovered 

dipole source locations is to smoothly and monotonically decrease or increase the depth of 

the source solutions (Akalin Acar and Makeig, 2013). In those simulations, the source space 
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employed was the homogeneous 3-D brain volume. Here, we used a high-resolution cortical 

surface source space derived from a subject MR head image using Freesurfer (freesurfer.net) 

(Fischl, 2012). Thereby, we assumed that the far-field projections of an IC source can be 

modeled as a weighted sum of a patch of adjacent equivalent dipoles in the cortical mantle 

whose orientations are orthogonal to the local orientation of the cortical surface (Baillet and 

Garnero, 1997).

Since the geometry of the oriented cortical source space conforms to the highly invaginated 

cortical surface, the largest part of whose surface area is in cortical sulci (fissures) rather 

than in (outward-facing) gyral surfaces, the effects of changes in the modeled BSCR on 

distributed compact source estimates for a simulated or actual single-patch source are not 

smooth and continuous. Rather, as change in the BSCR makes the 3-D equivalent dipole for 

the source move deeper or more superficial, the maximally compact cortical source 

distribution in the cortical surface-normal source space may fractionate into multiple non-

adjacent patches (often with opposite signs) and then coalesce to another more or less 

compact solution on another gyrus. This process gives local minima in estimated source 

compactness as a function of assumed BSCR, one located at the correct BSCR value (in 

nearly all cases the most compact solution) as well as possible relative minima at other 

BSCR values.

Because of the presence of these local minima, searching for the optimal skull conductivity 

using a local optimization algorithm is sensitive to initial conditions (Lew et al., 2009). Our 

approach seems to avoid becoming trapped in local minima by 1) constraining the inverse 

problem as much as possible using actual physiological constraints, 2) by simultaneously 

testing the effects of assumed BSCR on multiple ICs with near-dipolar scalp-maps (and 

thereby compatible with compact single cortical patch source distributions) and, crucially, 3) 

by weighting the solution in favor of BSCR values that produce more compact source 

distributions whose scalp projection patterns are close to the given IC scalp maps. In 

practice, we observe that source distributions for near-dipolar ICs, when estimated by SCS 

using wrong (not as simulated) or implausible (not plausibly actual) BSCR values, tend to be 

more spatially dispersed, while distributions using the correct (simulated) or SCALE-learned 

BSCR values are dominated by a single compact cortical patch.

2.8. Test data

First, we generated multiple head models for the two test subjects to observe whether and 

how the compactness of compact source distributions may vary as a function of assumed 

BSCR. For each subject, we generated nine separate FEM electrical forward-problem head 

models with linear tetrahedral elements using the NFT toolbox (Akalin Acar and Makeig, 

2010), incorporating nine different BSCR values (5, 10, 20, 30, 40, 50, 60, 70, and 80). We 

then estimated the cortical source distributions for the scalp maps of 13 ICs for each subject 

using the SCS algorithm applied to each of the nine forward models, and measured the 

compactness of the estimated cortical source distributions using Equation 17 above. We also 

computed the mean compactness across all the simulated sources for each subject.

Next, we simulated 15 circular Gaussian patch sources with radius 10 mm and standard 

deviation 3.33 mm, including both sulcal and gyral sources uniformly distributed across the 
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cortex in the head model of subject S1, as shown in Figure 3, and computed their forward 

projections to 128 simulated scalp electrode channels. We used this simulation study to 

evaluate the relative values of three (M1–3) weighting schemes (see Section 2.6) for 

estimating skull conductivity.

We then computed a reference scalp map projection for each simulated source using a 

forward-model BSCR of 25 and added sensor noise sufficient to give a signal-to-ratio (SNR) 

of 20 dB using the definition below (Equation 18). We then estimated skull conductivity 

with initial BSCR starting values of 80 and 20, using a SCALE approach incorporating each 

of the three weighing choices to test their relative efficacy.

(18)

Finally, we applied the iterative SCALE approach to actual EEG data from the two subjects 

(S1 and S2). For each subject we tested two different starting BSCR values (25 and 80) and 

also compared the results for the three proposed IC weighing schemes (M1–M3, Section 

2.7).

3. Results

Here we report results of three initial tests of the SCALE approach to estimating model head 

conductance values from EEG data (with scalp channel locations specified) combined with a 

standard structural MR head image.

3.1. Effects of skull conductivity estimation on source location distributions

The mean source compactness profile for subject S1 (left panel, black trace in Figure 4) was 

maximum at BSCR = 30, while for subject S2 (right panel), maximum mean source 

compactness was obtained at BSCR = 60. From this initial test, we concluded that sampling 

source compactness at discrete BSCR values using may be used to suggest more and less 

optimal individual subject BSCR values to use in MR head image-derived FEM electrical 

forward problem head models.

We also explored directly how differences in estimated source distributions for 13 ICs 

depended on assumed BSCR for the two subjects. Measured source compactness for each IC 

in each forward model are shown in Figure 4. Estimated source distributions for occipital 

ICs 16 and 18 had peak compactness at BSCR=30, while source distributions for ICs 7 and 

13, with maximum projections to lateral cortex, had highest compactness at BSCR=20. 

These values fall within the range of values reported in most modern direct BSCR 

measurement studies. The estimate variation with IC source location and/or orientation 

could in part reflect regional variations in skull thickness; temporal skull tends to be thinner 

than occipital skull (Lynnerup, 2001; Anderson, 1882; Hwang et al., 1999).
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3.2. SCALE convergence for simulated EEG patch sources: Effects of IC weighting method

Computing compactness at a set of BSCR values (9 in our initial test above) requires re-

computing the FEM matrix for every BSCR value and electrode location. This is a 

computationally expensive approach, particularly if we wish to seek an exact estimate. To 

attempt to improve on this blind sampling approach, we tested the application of iterative 

SCALE estimation by estimating BSCR using a set of 15 simulated single cortical patch-

source distributions in the head model of subject S1, attempting to more accurately estimate 

the simulated BSCR while minimizing the number of the successive BSCR estimates for 

which the forward head model needs to be recomputed.

We first illustrate source localization results using simulated data in the forward head model 

of subject S1 for three types of sources; a gyral source, a sulcal source, and a relatively deep 

interhemispheric source in Figure 5. The data were simulated using BSCR=25. Sensor noise 

was added to the scalp map (signal-to-noise ratio 20 dB). The simulated source area and the 

noise-added scalp maps are shown in the upper left corner box in each figure. Source 

compactness is plotted for BSCR values 5, 10, 20, 30, 40, 50, 60, 70, and 80. Estimated 

source distributions are visualized at various BSCR values using the semi-inflated cortical 

surface (sulcal areas in dark grey). In all three cases, the sources are most compact, and 

compactness values correspondingly maximum, at BSCR test values of 20 or 30.

We then used the SCALE algorithm to estimate skull conductivity with starting BSCR 

values of 80 and 20, again testing each of the three weighing choices (M1–M3) using 

simulated IC scalp maps without added noise (Figure 6). We also applied SCALE (using the 

M3 weighting scheme) to noise-added simulated EEG source scalp maps with signal-to-

noise ratios of 20, 25, and 30 dB, again starting SCALE at BSCR=80 and at BSCR=20. We 

obtained more reliable results using the M3 weighing scheme, likely because it uses both the 

compactness and model-data goodness-of-fit measures.

In the noise-free case BSCR converged to 32.6, in 17 steps when initialized to 80, and in 9 

steps when initialized to 20. When we added noise, the convergence rates were almost the 

same. For noise-added maps simulated with SNR=30, computed BSCR values converged to 

35.2. Thus, given noisy source scalp map data, the BSCR values converged close to the 

BSCR value (32.6) obtained using noise-free scalp map data with only weak noise-level 

dependent differences.

3.3. SCALE convergence for actual EEG sources using RDM-based minimization

Finally, we applied the SCALE approach to sets of actual ICs separated by AMICA from the 

two subjects’ recorded EEG data sets. Figure 7 shows the convergence of the BSCR 

estimates. The M1 (equal) source weighting scheme did not converge, while the M2 and M3 

weighting schemes showed similar performance. Therefore only results using M2 and M3 

are shown here. For the first subject (left), starting from either initial value (BSCR 80 or 25), 

SCALE converged to a BSCR estimate of 34 (upper left) while achieving comparable 

weighted-mean source compactness (near 2.0, lower left). For the second subject (right), 

again starting at either of the same initial BSCR values SCALE converged to the same 

estimated BSCR (54) and weighted mean source compactness (near 0.6). The BSCR 
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estimates returned by SCALE (34, 54) remained near the coarse optima (30, 60) dicovered 

in our initial discrete-value testing (Figure 4).

The BSCR estimates for the two subjects (34, 54) were well separated. Post hoc 

measurements revealed 7.1% more segmented skull voxels in the head model of S2. In the 

S1 head model, the skull constituted 9.5% of the whole head volume, whereas for S2 the 

skull constituted 10.2% of the head model. Also, mean skull thickness in S2 was 3.4 mm, 

whereas for S1 skull thickness was 3.0 mm. These differences in skull volume and thickness 

could have contributed to the higher estimated BSCR value for S2 relative to S1. Another 

possible cause might be higher-density skull compacta layers and/or a thinner skull 

spongioform layer in S2 (not easily estimated from these MR images).

Figure 8 plots the IC5 source scalp map (top center) and indicates the compactness of the 

estimated cortical source distribution versus estimated BSCR at each SCALE iteration (red 

and blue dots), for some iterations estimated source distributions are shown on the semi-

inflated cortex model using a (color vs. greyscale) visualization threshold determined by 

plotting a cumulative histogram (upper left inset) of squared cortical voxel weights and 

finding the point of steepest ascent (elbow) of the resulting curve.

Note the changing estimated source area for BSCR estimates near 80 (red dots), becoming 

more focused on a single cortical patch near convergence. When SCALE iterations begin 

with a BSCR estimate of 25 (lower left), note the multiple active regions in the source 

estimate, with strongest activity estimated to be on a different gyrus than in the converged 

result (upper right). For both starting points, as SCALE iterations progress the active source 

area converges to nearly the same source distribution (upper right). This example 

demonstrates how SCALE may be used to stably estimate skull conductivity and thereby to 

improve the accuracy and robustness of distributed inverse source localization.

3.4. Computational complexity

The computational cost of SCALE depends on head mesh size and on the numbers of 

sources, electrodes, and modeled conductivity layers. The aim of this section is to indicate 

how long different stages of the SCALE algorithm require in its present implementation on a 

single current CPU.

The table below summarizes computation times for a 4-layer realistic head model with a 

total of 250,000 nodes using a single 2.4-GHz 64-bit Opteron processor. The following 

parameters define the size of the problem. Typical values for these parameters are also 

given. N: number of nodes in the FEM mesh (~ 240,000); L: number of conductivity 

compartments (1–20); S: number of brain sources (10–30); K: number of source dictionary 

patches (~ 80,000); and E: the number of scalp electrodes (~ 128–256). Based on these 

parameters, the memory and computation time requirements at various stages of 

computation as computed and tested (on a ×86 64-bit 2600 MHz Linux workstation), 

respectively:

1. Forward problem setup: Generate FEM matrix (N × N sparse) = 100–200 MB 

(20 min)
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2. Forward problem solution: Generate lead field matrix (K × E full) = 80–160 MB 

(3.7 hours)

3. Inverse problem: Solve Ax = b (A=lead field matrix, K × E; b=scalp potential, E 

× 1) (1 hour)

4. Sensitivity matrix: Generate N × L × S full matrix = 20–1,200 MB (6 hours)

Thus, about 11 hours were required to complete the single iteration above. To estimate 

conductivity while simultaneously refining the source location estimates, the SCALE 

algorithm iterated the operations above T = 5–10 times. SCALE thus converged after 

between 55 and 110 hours (2.3 and 4.6 days) of processing (with N=240,000, K=80,000, 

E=154, S=13, L=1, T=8).

We anticipate that the most computationally demanding steps above should be 

straightforward to port to time- and cost-efficient GPU processors. The large number of 

integral evaluations required to fill in the elements of the sparse FEM matrix can be 

parallelized. Since the computational intensity (the ratio of mathematical operations to size 

of input data) for the integral calculations is fairly high, a significant speedup should be 

achievable (Wolters et al., 2002; Ataseven et al., 2008). In the literature, an 87× speed-up 

has been reported using a FEM GPU implementation (Fu et al., 2014). A comparable speed-

up applied here would reduce the computation time required for a single iteration to only 7.5 

minutes, and could give SCALE convergence in 1 hour or less. Further, once learned for a 

subject, the SCALE-derived forward head model could be used for any data recorded for the 

same subject, potentially for years afterwards unless head injury or significant skull changes 

with aging made re-computation necessary. In regular use, only a (highly parallelizable) 

lead-field matrix computation would be required for each new electrode montage.

4. Discussion

Here we have presented a novel iterative approach (SCALE) to estimating skull conductivity 

non-invasively from nearly any well-recorded, sufficiently long, high-density EEG data set. 

SCALE estimates conductivity by simultaneously improving the compactness and stability 

of distributed EEG source localization for near-dipolar independent component (IC) 

effective source processes. These ICs are extracted from the data by ICA decomposition and 

compatible with an origin in a single cortical patch (Delorme et al., 2012). Using the 

sensitivity matrix in an electrical forward head model built from a subject MR head image, 

the relationship between changes in implied skull conductivity resulting from changes in 

scalp potential distribution allow SCALE to iteratively optimize skull conductivity smoothly 

and efficiently given a number of brain-source compatible source scalp projection maps. 

SCALE uses overall compactness of the estimated source distributions as a goodness-of-fit 

criterion.

In our initial tests using distributed simulated source projections, SCALE converged near to 

the simulated BSCR values. Further, using the final estimated (near the simulated) rather 

than the initially assumed (not as simulated) BSCR values in the SCALE head model gave 

more accurate source distributions as evidenced by more compact source distributions with 

lower residual error (Figure 6). Next, we applied SCALE to IC maps derived from two EEG 
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data sets acquired from two young adult male subjects. For both subjects, whether we 

initialized the BSCR estimate to 80 or to 25 the SCALE result converged to the same BSCR 

and source distribution estimate, suggesting that the approach successfully avoided falling 

into local minima.

The final BSCR estimates (34 and 54) were, however, quite different for the two subjects. 

There might be several reasons for this difference beyond the measured individual 

difference in skull thickness and volume (Huiskamp, 2008) and other possible skull 

geometry differences discussed above. Our FEM model only represented four tissue types 

FEM models including as many as 12 tissue types have been attempted (Ramon et al., 

2006). Also, the skull boundaries and cortical surface orientations are not easy to determine 

precisely from limited-resolution 3-D MRI images (Dogdas et al., 2005; Studholme et al., 

1996) and these affect EEG source localization (Lanfer et al., 2012; Ollikainen et al., 1999). 

These factors may result in geometric and/or electrical head model inaccuracies. In the head 

modeling used here for SCALE, several approximations are made in forward modeling 

(Akalin Acar and Makeig, 2010) that may cause skull modeling inaccuracies. For instance, 

if the FEM model skull layer is somewhat thinner than the subject’s skull, then its 

conductivity should be estimated by SCALE as somewhat higher than its actual value to 

compensate for this modeling error.

Conductivity is defined as conductance per length (S/m) or equivalently, mS per m of skull 

depth. For uniform materials, conductance is independent of layer thickness. However, the 

skull has three layers, two outer compacta layers (reported conductivity 2.25 mS/m) with an 

intermediate spongiform layer (7.73 mS/m) between them (Akhtari et al., 2000). These 

authors measured skull layer thicknesses and conductivities in four subjects and found no 

strong dependence between the thickness of the individual skull layers and their respective 

conductivities. However, whole skull conductivity does show some dependency. For 

instance, in a thicker skull in which the thickness of the (higher conductivity) spongiform 

layer is large relative to the thicknesses of the compacta layers, total skull conductivity can 

be expected to be higher than that of a thinner skull (Law, 1993). On the other hand, skull 

conductivity has been shown to be dependent on electrolyte content and on bone density 

(Akhtari et al., 2000; Chakkalakal et al., 1980). Thus, skull conductivity may be more 

strongly dependent on its material properties than on geometric details.

Unlike the simplifying SCALE assumption we used here, skull conductivity is not uniform 

across its surface. According to Law (1993), radial skull conductivity varies with location 

and also varies above and near sutures. In Bashar et al. (2010), skull conductivity was 

measured in 20 different regions, and skull conductivity was reported to vary widely 

(between 4.7 and 73.5 mS/m). Turovets et al. (2007) segmented a skull into 10–12 

anatomically relevant bone plates and, based on parameterized EIT measurements, reported 

that regional skull conductivity varied between 4 and 44 mS/m while Tang et al. (2008) 

reported variations between 3.4 and 17.4 mS/m based on in vivo measurements of skull 

fragments. One future improvement to SCALE would be to model the non-uniform 

conductivity distribution of the skull. Since each source is mainly affected by the 

conductivity of the skull areas close to the source, different sources individually converge to 

different conductivity values. Trying to globally optimize the conductivity values of every 
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skull voxel, however, would be a computationally prohibitive and massively ill-posed 

problem. Estimating a low-dimensional distribution of spatial conductivity differences may, 

however, prove possible.

In a further exploration Tang et al. (2008) showed that the proportion of spongiform tissue 

within the skull is positively correlated with its radial conductivity, and confirmed that local 

skull conductivity may significantly increase near skull sutures. While some researchers 

have modeled the skull as anisotropic (Marin et al., 1998; Chauveau et al., 2004) or have 

separately modeled its three layers as isotropic (Sadleir and Argibay, 2007; Dannhauer et al., 

2011; Montes-Restrepo et al., 2014), direct modeling of such details may require higher-

resolution structural images (e.g., CT images with their imposed radiation risk) and was not 

attempted here.

While the initial results reported here are promising, SCALE requires further validation 

using data from more subjects, e.g., including from infants for which at least a few direct 

measurement results (quite different from those for adults) have been reported. Improving 

our confidence in the obtained source localizations could also increase confidence in the 

accuracy of the SCALE approach to EEG source imaging. The validity of its source 

distribution estimates might be tested using concurrently recorded data from modalities less 

sensitive to skull conductivity, e.g., conductivities of simultaneously recorded EEG and 

MEG and/or EEG and ECoG data. One might also test the accuracy of SCALE source 

localization by including ICs accounting for well-studied features of sensory ERPs in 

modalities whose most active source locations may possibly be identified in parallel fMRI 

studies. It may also be of interest to attempt to extend the SCALE approach to learning more 

conductivity parameters including, e.g., scalp and brain, although correctly estimating skull 

conductivity should improve source localization more than correctly estimating conductivity 

for the other head tissue types, as their conductivity ratios are much closer to 1:1 than BSCR 

values.

The simultaneous conductivity and location estimation (SCALE) approach presented here 

appears to be a promising non-invasive approach to simultaneously improving skull (and 

perhaps other brain tissue) conductivity estimates, at the same time improving the accuracy 

of EEG source distribution estimates based on more optimal single-subject head models. In 

wider use, the advantage of using individual head models for EEG source imaging might 

spur the development of low-cost MR head imaging methods. For adults, a forward 

electrical head model, once computed, might be expected to remain usable for any EEG 

application until head injury or aging prompted acquisition of a new model. For infants and 

children, in particular, accurate source localization could for the first time allow accurate 

measurement of individual consistencies and differences in localized sources of both 

ongoing and event-related EEG phenomena. Extension of the method to patients with skull 

insults also seems possible (Akalin Acar et al., 2011). If validated through further study, 

SCALE might play an important role in advancing the utility and reliability of functional 

brain imaging using relatively low-cost, wireless, wearable, and easily tolerated, highly 

temporally-resolved and better spatially-resolved EEG source imaging.
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A. The sparse compact and smooth (SCS) EEG inverse problem approach 

(from (Cao et al., 2012))

Since the EEG source localization problem is highly under-determined, prior knowledge of 

the nature of the sources is essential for finding a unique and useful solution. In a Bayesian 

framework, such knowledge is embedded in the prior distribution P(d). Many existing 

approaches, such as minimum l2–norm approaches, minimum current estimation (MCE), 

SLORETA, etc., often assume that both the dipole strength vector d and the noise vector n 
are normally distributed with zero mean and known covariance matrices Σd and Σn. These 

methods encourage source smoothness (Huang et al., 2006; Pasqual-Marqui et al., 2002; 

Wipf and Nagarajan, 2009; Akalin Acar et al., 2009)). Alternative, sparsity-inducing 

Bayesian methods such as Sparse Bayesian Learning (SBL) encourage source sparsity 

(Friston et al., 2008; Wipf and Nagarajan, 2010) learn the form of P(d) from the observed 

data by updating a set of flexible hyperparameters γ. The current sources contributing to 

EEG signals, however, should be both spatially compact and locally smooth, typically taking 

the form of a compact (but non-point like) cortical source patch comprised of parallel 

dipolar activations aligned with cortical pyramidal cells normal to the cortical surface. This 

observation led to the development of the Sparse compact smooth (SCS) approach (Cao et 

al., 2012). A formulation of this approach may be presented using the generalized 

framework given by Wipf and Nagarajan (2009):

(19)

(20)

In (20), γ ≜ [γ1, …, γdγ]T is a vector of dγ nonnegative hyperparameters. The appropriate 

covariance Σd can be estimated by modifying γ, whose components control the relative 

contribution of each covariance basis element Ci. The proper hyperparameter γ can be 

estimated by hyperparameter MAP estimation (γ-MAP) Wipf and Nagarajan (2009) which 

maximizes hyperparameter likelihood P(p|γ). This is equivalent to minimizing the cost 

function

(21)

where
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(22)

After the hyperparameter γ is estimated, yielding the estimated covariance matrix Σ̂
d a MAP 

point estimate of d can be computed

(23)

with

(24)

The choice of covariance set C ≜ {Ci : i = 1, …, dγ} is essential to the solution.

A.1. An alternative model: the SCS algorithm

Instead of modeling the sources as a mixture of multiple Gaussian kernels, Cao et al. (Cao et 

al., 2012) proposed a correlation-variance model that exploits the fact that one can factor 

any full-rank covariance matrix into the product of a correlation matrix and the square root 

of the diagonal variance matrix, as follows:

(25)

The matrix element R(i, j) holds the correlation coefficients between the strengths of the ith 

and jth dipoles; these values are assumed to be given by a prior estimate. Assuming a local 

tendency toward synchronization of neural activities at nearby dipoles in the source space, 

this correlation may be assumed to be exponentially decreasing as the squared distance 

between dipole locations. A direct definition of the correlation matrix could be

(26)

where r(i) denotes the location of the ith dipole and ‖r(i) − r(j)‖ is the the Euclidean distance 

between dipole i and dipole j. However, to guarantee the positive definiteness of the 

correlation matrix R, instead of using the definition in (26) we introduce another matrix H 
with the same dimension of R such that

Here, we assume the that the components of H are given by

(27)

with
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(28)

The parameter b is related to the distance within which the correlation coefficient remains at 

a relatively high level; a is related to the decay rate of the correlation coefficient beyond that 

distance; ci is a scaling factor that makes R(i, i) = 1. The values of a and b can either be pre-

defined or learned from the data. After setting proper values for a and b, most entries of H 
will be close to zero, i.e. H will be a sparse matrix. Therefore, the heavy computational load 

from the high dimension of H is greatly reduced. In fact, the iteration speed of SCS can be 

faster than SBL.

The major thrust of the Sparse, Compact, and Smooth (SCS) algorithm is to learn from the 

data the variance of the dipole sources σ ≜ [σi, …, σn]T and ε ≜ [εi, …, εm]T, the noise 

variance under the γ-MAP framework:

(29)

with

(30)

where Σp is defined as in (22).

We implement the sparse, compact, and smooth (SCS) algorithm by using an adaptive 

gradient approach to updating the a posteriori estimate of σi and εi. This is distinctly 

different from the way the EM algorithm is used in SBL-based approaches. Here, it avoids 

computational difficulty due to the non-diagonal structure of Σd. Further details of the 

optimization as well as first sample results can be found in (Cao et al., 2012).
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Highlights

1. We propose Simultaneous Conductivity And Location Estimation (SCALE) for 

EEG data.

2. SCALE uses only EEG independent component sources and a subject head MR 

image.

3. In simulation studies, SCALE accurately estimated skull conductivity.

4. Applied to EEG from two subjects, SCALE converged regardless of initial 

condition.

5. SCALE may make noninvasive, high-resolution EEG source imaging feasible.
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Figure 1. 
(Left) Scalp, skull, CSF and brain surfaces for subject S1 including the measured 128 scalp 

electrode locations. (Right) High-resolution Freesurfer cortical source space for subject S1.
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Figure 2. 
Scalp maps of the near-dipolar brain-based independent component (IC) processes used for 

subjects S1 and S2.
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Figure 3. 
The 15 cortical Gaussian patch sources used in the simulations.
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Figure 4. 
Normalized compactness values for all 13 IC sources (colored traces) using 9 forward head 

models built from the MR head image for each subject (S1, S2) assuming BSCR estimates 

from 5 to 80, plus mean compactness for each model (black trace) averaged across all 13 

(equally weighted) sources.
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Figure 5. 
Simulated source localization results using the head model geometry of subject S1 for three 

sources with noise added; a gyral source, a sulcal source, and a relatively deep 

interhemispheric source. The simulated source area and the scalp maps (with noise-added) 

are shown in the upper left corner box in each panel. Source compactness is plotted for 

BSCR values 5, 10, 20, 30, 40, 50, 60, 70, and 80. Note the strong (rightmost) scalp 

positivity contributed by the added noise. Estimated source distributions are visualized at 

some BSCR values on the semi-inflated cortical surface (sulcal areas, dark grey).
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Figure 6. 
Step-wise convergence of the BSCR estimates produced by SCALE (with M3 weighting) 

for a simulated data set of 15 cm2-scale cortical source patches (Figure 3) using a forward 

head model with a BSCR value of 30. The left figure shows the estimated BSCR value at 

each step using the source weighting schemes explained in Section 2.6 without adding scalp 

map noise. The right figure shows the successive BSCR estimates with sensor noise added. 

The initial SCALE BSCR estimates were BSCR=80 (circular markers) and BSCR=20 

(square markers).

Acar et al. Page 31

Neuroimage. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
SCALE BSCR value convergence (top row) and weighted-mean estimated source 

compactness (bottom row) for two sets of 13 brain source-compatible independent sources 

(ICs) (see Figure 2) separated from actual EEG data of Subjects S1 and S2 respectively 

using Adaptive Mixture ICA (AMICA). For each subject, SCALE was run beginning with 

initial BSCR estimates of 80 and 25, respectively, using source weighting schemes M2 and 

M3.
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Figure 8. 
Estimated BSCR, source compactness, and visualized source distributions for IC5 of subject 

S1 using two SCALE-generated sequences of S1 forward head models for initial estimates 

BSCR=80 (red trace) and BSCR=25 (blue trace). Semi-inflated cortical surface plots show 

the estimated (central medial) source distribution at several SCALE iterations. The color bar 

(lower right) shows estimated voxel source signal density relative to its maximum absolute 

value. The grey-white to color masking value in these plots (±30% of the maximum voxel 

density value) was selected as the elbow in the cumulative histogram (upper left) of squared 

voxel values in the ultimate source estimate.

Acar et al. Page 33

Neuroimage. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


