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Abstract

The hippocampal memory system is thought to alternate between two opposing processing states: 

encoding and retrieval. When present experience overlaps with past experience, this creates a 

potential tradeoff between encoding the present and retrieving the past. This tradeoff may be 

resolved by memory integration—that is, by forming a mnemonic representation that links present 

experience with overlapping past experience. Here, we used fMRI decoding analyses to predict 

when—and establish how—past and present experiences become integrated in memory. In an 

initial experiment, we alternately instructed subjects to adopt encoding, retrieval or integration 

states during overlapping learning. We then trained across-subject pattern classifiers to ‘read out’ 

the instructed processing states from fMRI activity patterns. We show that an integration state was 

clearly dissociable from encoding or retrieval states. Moreover, trial-by-trial fluctuations in 

decoded evidence for an integration state during learning reliably predicted behavioral expressions 

of successful memory integration. Strikingly, the decoding algorithm also successfully predicted 

specific instances of spontaneous memory integration in an entirely independent sample of 

subjects for whom processing state instructions were not administered. Finally, we show that 

medial prefrontal cortex and hippocampus differentially contribute to encoding, retrieval, and 

integration states: whereas hippocampus signals the tradeoff between encoding vs. retrieval states, 

medial prefrontal cortex actively represents past experience in relation to new learning.
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1 INTRODUCTION

The hippocampal memory system is thought to alternate between two opposing processing 

states: encoding and retrieval. The idea of opposing encoding and retrieval states is central 

Corresponding author: Franziska R. Richter, who is now at the Department of Psychology, University of Cambridge, Cambridge, 
UK. frr28@cam.ac.uk.. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of Interest: None

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
Neuroimage. 2016 January 1; 124(0 0): 323–335. doi:10.1016/j.neuroimage.2015.08.051.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to computational models of episodic memory (Hasselmo, Bodelón, & Wyble, 2002; O'Reilly 

& McClelland, 1994) and is supported by experimental evidence across levels of analysis. 

For example, encoding and retrieval are associated with distinct electrophysiological activity 

states in rodents (Douchamps et al., 2013; Hasselmo et al., 2002; Kunec, Hasselmo, & 

Kopell, 2005; Siegle & Wilson, 2014) and humans (Rizzuto et al., 2006), and human fMRI 

studies have identified distinct activity patterns corresponding to encoding and retrieval 

(Donaldson et al., 2001; Duncan, Tompary, & Davachi, 2014; Eldridge et al., 2005). 

However, the opposition between encoding and retrieval states poses an important problem 

whenever new learning overlaps with past experience (O'Reilly & McClelland, 1994). In 

such cases, the overlap can trigger retrieval of past experience (Kuhl et al., 2010), creating a 

potential tradeoff between remembering the past and encoding the present. Indeed, 

understanding the tradeoff between encoding and retrieval states during the learning of 

overlapping experiences has been of central interest to computational models of episodic 

memory (O'Reilly & McClelland, 1994).

One way to avoid a tradeoff between encoding and retrieval is by integrating present 

experience into existing memories of past experience. For example, a present conversation 

with a friend may trigger the retrieval of a past conversation with that friend; integration 

achieves a balance between remembering this past conversation and encoding the present 

conversation by allowing the present conversation to be incorporated into an existing 

representation of the past conversation. Memory integration has important behavioral 

consequences: it can allow for novel inferences concerning the relationship between 

temporally discrete events (Preston & Eichenbaum, 2013; Zeithamova, Dominick, & 

Preston, 2012), it has been associated with reduced interference-related forgetting (Anderson 

& McCulloch, 1999), and it can facilitate new learning (Schlichting & Preston, 2014; Tse et 

al., 2007). But when and how do memories become integrated?

Neuroimaging studies have shown that memory integration occurs ‘online’— that is, during 

new learning (Shohamy & Wagner, 2008; Wimmer & Shohamy, 2012; Zeithamova & 

Preston, 2010) —and that it is related to the reactivation of past experience during new 

learning (Zeithamova et al., 2012). Behavioral studies have shown that subtle manipulations 

of learning context can influence the probability that present experience will be integrated 

with past experience by altering the relative balance between encoding and retrieval states 

(Duncan, Sadanand, & Davachi, 2012). Intuitively, integration requires avoiding a 

processing state that is either ‘pure encoding’ or ‘pure retrieval’ as both extremes would 

prevent present experience from being related to past experience. Here, we asked whether 

memory integration is associated with a processing state during learning that can be 

discriminated from encoding and retrieval states based on neural activity patterns. To the 

extent that mnemonic processing states can be ‘read out’ from neural activity patterns, can 

these read-outs be used to predict the specific experiences that will become integrated in 

memory?

We conducted a human fMRI experiment in which subjects learned initial (old) associations 

followed by overlapping (new) associations. During learning of the new associations we 

provided instructions that alternately biased subjects’ processing toward encoding of current 

experience (the new association), retrieval of past experience (the old association), or 
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integration of past with present. We used pattern classification analyses to test whether the 

processing states (encoding, retrieval, integration) elicited discriminable (i.e., decodable) 

patterns of neural activity. As noted above, prior evidence indicates that encoding and 

retrieval are associated with distinct profiles of neural activity (Donaldson et al., 2001; 

Douchamps et al., 2013; Duncan et al., 2014; Eldridge et al., 2005; Hasselmo et al., 2002; 

Kunec et al., 2005; Rizzuto et al., 2006; Siegle & Wilson, 2014), but these studies have not 

directly attempted to read out processing states from patterns of neural activity on individual 

learning trials. More importantly, prior studies have not tested whether an ‘integration state’ 

can be discriminated from encoding and/or retrieval states.

Critically, to the extent that an integration state could be discriminated from encoding/

retrieval states, we sought to validate this result by relating it to behavior. To this end, we 

derived from our pattern classifier the strength of evidence for an integration processing 

state on each learning trial and then asked whether that evidence predicted performance on 

a subsequent (and un-anticipated) behavioral integration test. As an even stronger validation 

step, we also collected data in an additional sample of subjects that completed the same 

learning paradigm except that we did not instruct/bias processing states during learning. 

Rather, any fluctuations in processing states were completely subject-driven. This allowed 

us to test whether a classifier that was trained on data from the first sample of subjects 

(‘instructed subjects’) would successfully transfer to the second sample of subjects 

(‘uninstructed subjects’). That is, could we predict specific instances of memory integration 

in the uninstructed subjects based on what the classifier learned from the instructed subjects? 

This allowed us to test whether spontaneous memory integration is associated with a pattern 

of neural activity that generalizes across subjects.

In separate analyses, we also measured (again, using decoding methods) the degree to which 

older memories were reactivated during new learning and tested whether reactivation 

predicted memory integration (Shohamy & Wagner, 2008; Wimmer & Shohamy, 2012; 

Zeithamova et al., 2012). Finally, although our primary analyses were based on whole-brain 

pattern classification analyses, we also report targeted, secondary analyses that compared 

regions that have previously been implicated in memory integration—i.e., medial prefrontal 

cortex (MPFC) and the hippocampus (Shohamy & Wagner, 2008; van Kesteren et al., 2013; 

Zeithamova et al., 2012)—in order to clarify their respective contributions to memory 

integration.

2 METHODS

2.1 Participants

Twenty-one subjects (17 female; mean age = 23.04) participated in the ‘instructed’ version 

of the experiment and another 8 (6 female; mean age = 21.13) participated in the 

‘uninstructed’ version. Two additional subjects (one instructed, one uninstructed) were 

excluded due to technical errors. Of the 21 instructed subjects, one was excluded only from 

analyses related to the direct association test (see below) due to an error saving the data. 

Subjects were recruited from the New York University community, were 18–35 years of 

age, right-handed, native English speakers, had normal or corrected-to-normal vision, and 

had no history of neurological disorders. Informed consent was obtained according to 

Richter et al. Page 3

Neuroimage. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



procedures approved by the New York University Committee on Activities Involving 

Human Subjects. Subjects received payment for their involvement in the study.

2.2 Materials

Stimuli consisted of 144 words and 288 pictures. Word length ranged from 3 to 11 letters (M 

= 5.95). The pictures consisted of photographs of famous people (e.g., Tom Cruise; faces), 

famous locations (e.g., Taj Mahal; scenes), and common objects (e.g., wrench; objects). All 

word-picture pairings and the assignment of words and pictures to conditions were 

randomized for each subject.

2.3 Procedures

Both the ‘instructed’ and the ‘uninstructed’ versions of the experiment consisted of four 

phases: acquisition, new learning, direct association test, and integration test. Only the 

acquisition and new learning phases were conducted during fMRI scanning. As detailed 

below, the only differences between the instructed and uninstructed versions were in (a) the 

instructions and trial timing during the new learning phase and (b) the order of the direct 

association and integration tests.

Acquisition and new learning phases—Subjects completed 8 fMRI scan runs, with 

each run consisting of an acquisition round followed by a new learning round. None of the 

materials (words or pictures) repeated across scan runs. In acquisition rounds, subjects 

studied associations between words and pictures. Pictures were drawn from three visual 

categories: faces, scenes, or objects. Each trial (4s) consisted of a word presented directly 

above a picture. After presentation of the word-picture pair there was an 8s inter-trial 

interval (ITI) which included a fixation cross followed by presentation of three single-digit 

numbers and then another fixation cross. For each number that was presented, subjects were 

required to indicate via button-press whether it was odd or even. This task was included in 

order to reduce continued rehearsal of the pairs during the ITI. There were a total of 18 trials 

in each acquisition round and the procedures for this round were identical across the 

instructed and uninstructed versions of the experiment.

After each acquisition round, subjects completed a new learning round. For the instructed 

version, a screen first instructed subjects to “Get Ready” (10s), followed by a reminder of 

the shape-to-instruction mappings (8s) and a fixation cross (4s). For the uninstructed 

version, a “Get Ready” screen (6s) was followed by a fixation cross (4s). For both versions 

of the experiment, the new learning round began immediately after the fixation cross. In 

each new learning round, all of the words from the immediately preceding acquisition round 

were presented again, but were paired with a new picture. The ‘new’ picture presented with 

each word was always from a different category than the ‘old’ picture that had appeared 

with that word in the acquisition round. In the instructed version, each word-picture pair was 

presented for 2s and was followed by a shape cue (square, circle, or triangle), which 

remained on the screen for 6s. The shape cue instructed subjects to either rehearse the old 

association only (retrieve condition), rehearse the new association only (encode condition), 

or rehearse and try to link the new and old associations (integrate condition). The 

assignment of shape cues to instructions was counterbalanced across participants. Subjects 
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had time to memorize the shape-to-instruction assignment prior to entering the scanner. In 

the uninstructed version, each word-picture pair was presented for 4s and was not followed 

by a shape cue. Rather, subjects were simply instructed to learn each pair for a later test 

(equivalent to the encoding condition for the instructed subjects). For both the instructed and 

uninstructed versions of the experiment, there was an 8s ITI between trials, identical to the 

acquisition phase (including the odd/even task).

Post Tests—Upon exiting the scanner, subjects completed one post-test that measured 

memory for the previously studied word-picture pairs (direct association test) and another 

that measured the ability to ‘remember’ across pairs (integration test).

In the direct association test, each trial presented subjects with a word directly above 6 

picture options. One of the pictures had previously been paired with the given word (target) 

and the other 5 pictures had been paired with a different word (alternatives). Each trial either 

tested memory for an old pair (from the acquisition rounds) or a new pair (from the new 

learning rounds). Old and new trials were pseudo-randomly intermixed, but the distinction 

between old and new trials was not explicitly relevant to subjects: their task was simply to 

choose which picture, from the set of 6 options, had previously been paired with the word. 

For trials that tested an old pair, all 5 alternative pictures were old pictures from the same 

visual category as the target. Likewise, for trials that tested a new pair, all 5 alternative 

pictures were new pictures from the same visual category as the target. Subjects had 6s to 

select the target picture via mouse click on each trial.

The integration test assessed subjects’ ability to link pictures that shared a common word 

cue. On each trial of the integration test, subjects were presented with a picture from the new 

learning phase and attempted to ‘remember’ the old picture that shared a word cue with the 

new picture, despite never having studied the old and new pictures together and not having 

been warned that their memory would be tested in this way. Each trial consisted of two 

steps. In the first step (category memory) participants were presented with three category 

labels (face, scene, object) beneath the new picture and had to select the visual category to 

which the corresponding old picture belonged. Subjects had 4s to make the category choice 

via mouse click. Immediately after their response (or when 4s elapsed) subjects were shown 

a set of 4 pictures that tested their item memory (1 target + 3 alternatives). Here, subjects 

were required to select the specific old picture (target) that was indirectly associated with the 

new picture (i.e., the old picture that shared a word cue with the new picture). The 3 

alternatives were always from the same category as the target picture and were drawn from 

the set of old pictures. The item memory step was included irrespective of whether subjects 

selected the correct category label in the prior step. The specific pictures displayed during 

the item step were independent of the participants’ accuracy on the category step. That is, if 

a subject selected ‘face’ at the category step, but the target was in fact a ‘scene,’ then the 

subject would be shown 4 ‘scenes’ (i.e., pictures from the correct category) at the item step. 

Subjects had 3 s to choose the correct picture via mouse click. Note: the time limits placed 

on the integration test were challenging, but were intended to reduce the probability that 

subjects would ‘solve’ these trials by separately recalling individual pairs as opposed to 

recalling pre-existing integrated representations.
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In the instructed version of the experiment, the direct association test preceded the 

integration test; while this means that the direct association test may have, in some way, 

influenced performance on the integration test, this should only have served as a source of 

noise that would work against our ability to predict performance on the integration test. For 

the uninstructed version, because we were specifically interested in predicting performance 

on the integration test (in order to replicate a finding from the instructed version), we 

reversed the order and conducted the integration test before the direct association test to 

reduce any potential influence that the direct association test might have on integration test 

performance.

2.4 fMRI acquisition

fMRI scanning was performed on the 3T Siemens Allegra head-only scanner at the Center 

for Brain Imaging at New York University using a Siemens head coil. Structural images 

were collected using a T1-weighted protocol (256 × 256 matrix, 176 1-mm sagittal slices). 

Functional images were acquired parallel to the anterior commissure–posterior commissure 

axis using a single-shot EPI sequence (repetition time = 2 s; echo time = 30 ms; field of 

view = 192 × 240 mm, flip angle = 82 degrees, bandwidth = 4,165 Hz/px and echo spacing 

= 0.31 ms). For all functional scanning, we obtained 35 contiguous oblique-axial slices (3 × 

3 × 3-mm voxels) per volume. Field map and calibration scans were used to improve 

functional-to-anatomical image co-registration.

Acquisition and new learning rounds occurred in alternation, with each fMRI scan (block) 

consisting of one round of acquisition followed by one round of new learning. In the 

instructed version of the experiment a total of 268 volumes were collected (8m 36s) during 

each block. Of the 268 volumes, the first 5 were discarded, the next 108 corresponded to the 

acquisition round, the next 11 included a momentary break and a reminder of the mapping 

of shapes to instructions (5 volumes for a “Get Ready” screen, 4 volumes for instructions, 2 

volumes for a fixation cross), and the final 144 corresponded to the new learning round. For 

the uninstructed participants a total of 226 volumes were collected in each block (7m 32s). 

Of the 226 volumes, the first 5 were discarded, the next 108 corresponded to the acquisition 

round, the next 5 included a momentary break between the acquisition and new learning 

rounds (3 volumes for a “Get Ready” screen, 2 volumes for a fixation cross), and the final 

108 corresponded to the new learning round. Note: fewer volumes separated the acquisition 

and new learning phases for uninstructed participants than instructed participants, as there 

were no shape-to-instruction mappings of which to remind the uninstructed subjects. 

Likewise, the length of the new learning round was shorter for the uninstructed subjects 

because the instruction cues were not presented.

2.5 fMRI preprocessing

Data preprocessing and analysis was performed using SPM8 (Wellcome Department of 

Cognitive Neurology, London, United Kingdom), FSL (FMRIB's Software Library, Oxford, 

United Kingdom) and custom Matlab (The MathWorks, Natick, MA) routines. 

Preprocessing procedures involved corrections for head motion, coregistration of functional 

to anatomical images (using a registration procedure that aligned both functional and 

anatomical images to a calibration scan), an unwarping procedure, normalization to the 
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Montreal Neurological Institute (MNI) gray matter template, and spatial smoothing using a 

5-mm full-width/half-maximum Gaussian kernel. We chose to smooth the data, using a 

moderate kernel, to benefit across-subject decoding; however, we did not expect this to 

compromise within-subject decoding (Kamitani & Sawahata, 2010).

2.6 Pattern classification analyses

Pattern classification analyses were applied to ‘raw’ (unmodeled) fMRI data. All pattern 

classification analyses were performed using sparse multinomial logistic regression 

implemented with the Princeton Multi-Voxel Pattern Analysis Toolbox (http://

www.pni.princeton.edu/mvpa) and custom Matlab routines.

2.7 fMRI preprocessing for pattern classification analyses

In addition to the standard fMRI preprocessing steps, several additional preprocessing steps 

were applied to the fMRI data before pattern classification analyses were performed. 

Functional data were high-pass filtered (0.01 Hz), detrended, and z-scored within scan. All 

statistical analyses and inferences were based on fMRI data that were temporally 

compressed so that each trial corresponded to a single spatial pattern. For trials in the 

acquisition phase, the 3rd and 4th volumes (4-8s post word-picture pair onset) were averaged. 

For trials in the new learning phase, volumes 4-6 were averaged for the instructed version 

and volumes 3-5 were averaged for the uninstructed version. A different time window was 

used for the uninstructed subjects simply to account for the fact that no instruction cue was 

shown; thus, the window either corresponded to 4-10s post instruction onset (instructed 

version) or 4-10s post trial onset (uninstructed version). A wider temporal window was used 

for trials in the new learning phase than the acquisition phase to account for the fact that 

retrieval and integration processes should take longer to unfold (during new learning) than 

encoding processes (during acquisition). The temporal windows and averaging used here 

were selected a priori based on our previous studies (Kuhl & Chun, 2014; Kuhl, Johnson, & 

Chun, 2013; Kuhl et al., 2011) and were therefore not ‘optimized’ to find the effects of 

interest. After a single spatial pattern was obtained for each trial and only relevant trials 

were selected, additional z-scoring was performed (again, as in our previous work). First, z-

scoring was performed across all voxels within each volume (i.e., mean response for each 

volume on each trial = 0), which had the effect of expressing the activity of a given voxel on 

a given trial relative to activity in other voxels. Second, z-scoring was performed, for each 

voxel, across all trials within each phase. For example, the mean response for each voxel 

within the acquisition phase would equal 0. This had the effect of expressing the activity of a 

given voxel on a given trial relative to the response of that voxel on other trials from the 

same phase.

Decoding mnemonic processing states—Decoding of mnemonic processing states 

was performed using across-subject pattern classification. There were two motivations for 

using across-subject classification. First, we cued different mnemonic processing states 

using shapes, and the assignment of shape to instruction was fixed within subjects but 

counterbalanced across subjects. Thus, performing classification across-subjects 

deconfounded shape and processing instruction. Second, we were specifically interested in 

whether a classifier trained using ‘instructed’ subjects would generalize to a set of 
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‘uninstructed’ subjects. Decoding of processing states was performed using three-way 

classifiers (encode vs. retrieve vs. integrate) as well as using separate pairwise classifiers 

(encode vs. retrieve, encode vs. integrate, retrieve vs. integrate).

For the instructed subjects, across-subject classification used leave-one-subject-out cross-

validation. Specifically, the pattern classifier was trained on data from 20 of the 21 subjects, 

and tested on data from the held-out subject. This was repeated iteratively until each 

subject's data was ‘held-out’ once. As an example, for the three-way classification of 

processing state, the classifier would be trained on a total of 20 (subjects) * 144 (trials per 

subject) = 2,880 total trials and tested separately on each of 144 trials for the held-out 

subject. For the uninstructed subjects, across-subject classification was performed by 

training the classifier on all 21 of the instructed subjects (3,024 trials) and testing the 

classifier on each trial for each of the uninstructed subjects.

As an intuitive measure of classifier performance, we report classification accuracy for 

decoding of processing states, where chance accuracy was either 33.33% (for three-way 

classification) or 50% (for two-way classification). Note: classification accuracy was not 

relevant for the uninstructed version, since there was no correct (instructed) processing state 

in these subjects. For all analyses in which classifier-based evidence was used to predict 

behavioral performance, classifier evidence was defined as the log odds of the classifier 

output. More specifically, if x represents the classifier output corresponding to a given 

condition on a given trial, classifier evidence was calculated as: log[x/(1-x)]. This log 

transformation step was included in order to correct for non-normality in the distribution of 

raw classifier output.

Decoding reactivation—To test for reactivation of old associations during the new 

learning phase, subject-specific classifiers were trained to learn visual category information 

(face vs. scene vs. object) based on trials in the acquisition phase and were then tested on 

each trial in the new learning phase. As with the process-based classifiers, classifier 

evidence was defined as the log odds of the classifier's output. For each trial, one visual 

category corresponded to the new picture, one category corresponded to the old picture, and 

one category served as a baseline (neither old nor new). To obtain a measure of reactivation, 

classifier evidence for the baseline category was subtracted from classifier evidence for the 

category of the old picture. Thus, if classifier evidence corresponding to the old picture was 

greater than evidence for the baseline picture, this produced a positive reactivation value 

(Kuhl, Bainbridge, & Chun, 2012; Polyn et al., 2005). If classifier evidence corresponding to 

the old picture was equal to evidence for the baseline category, the reactivation value would 

be 0. All of the reactivation-based analyses we report are based on these continuous 

measures of the strength of reactivation.

2.8 Anatomical brain masks

Pattern classification analyses were restricted to specific brain regions using standard-space 

anatomical masks. The anatomical masks or regions of interest (ROIs) were created using 

the Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). A ‘whole 

brain’ mask was created that included all of prefrontal cortex, posterior parietal cortex, 
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temporal cortex, occipital cortex, and hippocampus. For all of our core analyses, we used 

this whole brain mask. However, because a secondary aim was to characterize how 

individual brain areas contribute to memory integration, we also divided the whole brain 

mask into twelve sub-regions according to the AAL labels: inferior frontal gyrus, middle 

frontal gyrus, superior frontal gyrus, medial prefrontal cortex (including anterior cingulate 

cortex), orbitofrontal cortex, inferior parietal lobule (including AAL regions corresponding 

to angular and supramarginal gyri), superior parietal lobule, medial parietal cortex, lateral 

temporal cortex, ventral temporal cortex, occipital cortex, and hippocampus. We favored an 

approach using relatively broad ROIs as opposed to searchlight analyses because (a) here, it 

was not of interest to localize effects to highly specific anatomical coordinates but, instead, 

to characterize information at the level of broad anatomical regions, and (b) the greater 

anatomical specificity afforded by searchlight analyses carries a cost in the form of more 

stringent corrections needed for multiple comparisons.

2.9 Statistical analyses

Statistical analyses were performed using R, SPSS and Matlab. We report results from 

paired-sample and independent sample t-tests, repeated measures ANOVA, and logistic 

regression. T-tests were two-tailed except in the following situations where there were 

obvious directional predictions: (a) when pattern classification accuracy was compared to 

chance, (b) when pattern classifier evidence was compared to a ‘baseline level’ and (c) when 

a statistical test was an internal replication of another result.

3 RESULTS

3.1 Behavioral measures of associative memory

After completing all of the acquisition and new learning rounds in the scanner (Figure 1A-
B), subjects completed the direct association and integration tests. The direct association test 

allowed us to assess whether processing instructions during the new learning phase 

influenced participants’ subsequent memory for the old pairs and/or new pairs. Trials from 

the direct association test were scored as ‘correct’ if subjects selected the target picture from 

the set of 6 choices within the time limit (see Methods). The percentages of correct trials as 

a function of pair type (old vs. new pairs), processing instruction (retrieve, encode, integrate) 

and experiment (instructed vs. uninstructed) are reported in Table 1. Because subjects 

sometimes failed to make a response in the allotted time (old pairs, instructed subjects: M = 

5.2%; old pairs, uninstructed subjects: M = 5.6%; new pairs, instructed subjects: M = 12.9%; 

new pairs, uninstructed subjects: M = 6.3%), a true measure of ‘chance performance’ was 

not available. However, relative to a conservative chance estimate of 16.6% (because 6 

picture options were available to choose from), accuracy for both the old and new pairs was 

above chance in each instruction condition for the instructed subjects (t19's > 2.3, p's < .05) 

as well as for the uninstructed subjects (t7's > 3.3, p's < .05). For the instructed subjects, 

processing instructions significantly influenced memory for the new pairs (F2,38 = 10.23, p 

< .005, Greenhouse-Geisser corrected), but not for the old pairs (F < 1). For the new pairs, 

accuracy was higher in the encode condition (M = 38.4%) than integrate condition (M = 

34.1%; t19 = 2.13, p = .047), and accuracy in the integrate condition was, in turn, higher than 

in the retrieve condition (M = 24.3%; t19 = 2.74, p = .01). Thus, processing instructions—
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which appeared immediately after new pairs were presented—significantly influenced later 

memory for the new pairs but did not influence memory for the previously studied old pairs.

The integration test probed memory for associations across overlapping pairs (associations 

that were never directly studied; Figure 1C). Each integration test trial consisted of two 

steps: a category-level decision and an item-level decision. Table 2 displays the percentage 

of correct trials for each step, as well as the percentage of trials where both steps were 

correct, as a function of processing instruction (retrieve, encode, integrate) and experiment 

(instructed vs. uninstructed). Because subjects sometimes failed to make a response in the 

allotted time (category decision, instructed subjects: M = 6.4%; category decision, 

uninstructed subjects: M = 3.5%; item decision, instructed subjects: M = 19.7%; item 

decision, uninstructed subjects: M = 6.3%), a true measure of chance performance was not 

available. However, relative to a chance estimate of 33.3% for the category decision 

(because 3 options were available), performance was above chance for each instruction 

condition in the instructed subjects (t7's > 3.7, p's < .005) and for the uninstructed subjects 

(t7 = 3.22, p = .01). For the item decision, relative to a conservative chance estimate of 25% 

(because 4 options were available), accuracy was above chance for the instructed subjects in 

the integrate condition (t20 = 3.35, p = .003) and encode condition (t20 = 2.37, p = .03), but 

not the retrieve condition (t20 = .22, p = .83); accuracy for the uninstructed subjects trended 

toward being above 25% (t7 = 1.61, p = .15). Notably, accuracy for the item decision was 

higher if the category decision was correct vs. incorrect (timed out or error): for instructed 

subjects, this difference was highly significant (M = 39.0% vs. M = 25.3%, t20 = 5.30, p = .

00003), and a similar trend was observed for uninstructed subjects (M = 34.9% vs. M = 

26.8%, t7 = 2.00, p = .09). Thus, although the category and item decisions were fully 

independent in terms of the task structure, accuracy of the category decision was predictive 

of accuracy of the item decision.

For the instructed subjects, processing instructions had a modest, non-significant influence 

on integration test accuracy at the category level (F2,40 = 1.43, p = .25; Figure 1D), but a 

robust influence on accuracy at the item level (F2,40 = 10.32, p = .0002) and on the 

probability of selecting the correct category and item (F2,40 = 7.89, p = .001; Figure 1D). 

Across all three measures, accuracy was numerically greatest in the integrate condition and 

lowest in the retrieve condition. That is, although the integrate and retrieve conditions each 

required that subjects ‘think back’ to the old association immediately after presentation of 

the new association, the integrate condition yielded better performance on the subsequent 

integration test (category and item: M = 22.1%) than did the retrieve condition (category and 

item: M = 13.6%; t20 = 3.16, p = .005). Thus, simply thinking back to the old pair after 

seeing the new pair was not sufficient to produce the same level of performance on the 

integration test that was observed with the integrate instruction. On the other hand, accuracy 

was only modestly higher for the integrate than encode conditions (category and item: t20 = 

1.13, p = .27), indicating that the difference between these conditions was more subtle.

3.2 Decoding mnemonic processing states

Having established that processing instructions influenced behavioral performance, we next 

tested whether processing states could be decoded from fMRI activity patterns (for the 
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instructed subjects). That is, could we classify whether a given trial was associated with an 

encode, retrieve, or integrate instruction? To test this, we used fMRI activity patterns from 

the period immediately following the instruction cue (see Methods). Notably, classification 

was performed using leave-one-subject-out cross validation, where the classifier was 

trained, on each cross validation fold, to ‘learn’ the mapping of instruction condition to 

fMRI activity patterns based on 20 out of 21 subjects and then tested on each trial from the 

held-out subject (Figure 2A). The motivation for using across-subject classification was 

two-fold: (1) this approach would yield classifiers that could potentially predict processing 

states in new, independent subject samples, and (2) because our paradigm conveyed 

instructions via shape cues (Figure 1B)—and because the mapping of instruction to shape 

cue was fixed within subjects but counterbalanced across subjects—an across-subject 

approach avoided the possibility of simply decoding the shape that subjects were shown 

(i.e., circle vs. triangle vs. square). Thus, by design, our classifier could only succeed in 

decoding processing states to the extent that instructions elicited activity patterns that were 

consistent across subjects.

Using a (near) whole brain mask consisting of prefrontal, parietal, temporal, and occipital 

cortex, as well as the hippocampus (see Methods), three-way classification of processing 

instructions (encode vs. retrieve vs. integrate; chance accuracy = 33.3%) was significantly 

above chance (M = 40.6%, SD = 5.2%; t20 = 6.46, p < 1.4 × 10−06, one-tailed t-test; Figure 
2B). Notably, the whole-brain classifier significantly out-performed each of the sub-regions 

that comprised the mask (t20`s > 2.1, p's < .05; Figure 2C), indicating that the classifier 

made use of broadly distributed information. The distribution of voxels maximally active for 

each processing state can be seen in Supplementary Figure 1.

Because we were specifically interested in the distinction between an integration state vs. 

encoding/retrieval states, we also separately tested pairwise classifiers: encode vs. retrieve, 

integrate vs. encode, and integrate vs. retrieve. Using the whole-brain mask, classification 

accuracy was above chance for each pair of classifiers (t20`s > 3.2, p's < .005, one-tailed t-

tests) and classification accuracy did not significantly differ across the three pairwise 

classifiers (F2,40 = 1.98, p = .15). Thus, each of the three processing instructions elicited 

distinct, and broadly distributed, neural activity patterns that generalized across subjects.

3.3 Predicting memory outcomes by decoding processing states

The preceding results indicate that we were able to decode the processing states subjects 

engaged on individual trials in the new learning phase. Of particular importance, integrate 

trials could be discriminated from encode/retrieve trials based on the neural activity patterns 

they evoked. We next asked whether we could use classifier-derived evidence for processing 

states to predict when individual memories would be integrated. In other words, when a 

classifier ‘detected’ strong evidence for integration during a particular new learning trial, did 

this correspond to higher accuracy on the corresponding trial in the post-scan integration 

test? As noted above, processing instructions influenced behavioral performance on the 

integration test; thus, the critical question is whether the classifier could predict performance 

on the integration test when controlling for the instructions that subjects actually received on 
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each trial. Specifically, did variability in the strength of classifier evidence within each 

instruction condition relate to performance on the integration test?

To test for a relationship between classifier-derived evidence for integration and 

performance on the integration test, we applied logistic regression analyses for each of the 

instructed subjects wherein integration success (a binary measure based on post-test 

performance) was regressed upon classifier evidence from each trial during the new learning 

phase. Classifier evidence was derived from the three-way (encode vs. retrieve vs. integrate) 

whole-brain classifier. A total of nine regression analyses were run for each subject, 

reflecting separate analyses for each combination of form of evidence (encode evidence, 

retrieve evidence, integrate evidence) and instruction condition (encode trials, retrieve trials, 

integrate trials). The resulting beta values were then averaged across instruction conditions 

resulting in three mean beta values per subject that reflected the strength of the relationship 

between classifier evidence for each processing state and performance on the integration 

test. Critically, because the regression analyses were always separately run within each 

instruction condition, the regression was unbiased by (i.e., controlled for) any differences in 

performance that were related to the actual instructions. The mean beta values for each 

subject were then compared to a test value of o (i.e., no relationship). Although our 

prediction was that integrate evidence would predict performance on the integration test, for 

comparison we also tested whether encode and/or retrieve evidence predicted performance 

on the integration test.

One caveat for this analysis is that there were multiple ways in which ‘success’ on the 

integration test could be defined. Specifically, the integration post-test consisted of two 

steps: a category-level decision and an item-level decision (Figure 1C). Because the mean 

percentage of trials with category + item level accuracy was relatively low, and resulting bin 

sizes for correct trials were therefore quite small for some subjects, we chose to define 

successful integration as trials on which subjects made accurate category-level responses, 

regardless of whether or not subjects selected the specific item correctly. With this 

definition, a mean of 45.3% of the trials were associated with successful integration and 

54.7% with unsuccessful integration. Although this division of trials was ‘blind’ to accuracy 

at the item-level, item-level accuracy was, as noted above, much higher when subjects were 

accurate relative to inaccurate at the category level.

There was a significant, positive relationship between classifier-based evidence for 

integration and performance on the integration test (t20 = 2.26, p = .04; Figure 3A). Thus, 

even when removing the effect that instructions had on behavior, decoded evidence for an 

integration state during new learning predicted that overlapping events would be integrated 

in memory. Importantly, performance on the integration test was not predicted by classifier 

evidence for a retrieval state (t20 = −1.38, p = .18) or an encoding state (t20 = −0.39, p = .

72). [Indeed, integrate evidence better predicted subsequent integration performance than 

did retrieve evidence (t20 = 2.21, p = .04)]. Likewise, classifier evidence for an integration 

state did not predict performance (either positively or negatively) for the old associations or 

new associations, as measured by the direct association test (t19`s < 1.4, p's > .2; see 

Supplementary Figure 2B-C). Thus, there was a selective relationship between classifier-

derived evidence for an integration state and performance on the integration test.
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It is notable that, although integration putatively requires that past experience be retrieved/

reactivated during new learning, evidence for a retrieval state tended to negatively predict 

performance on the integration test (Figure 3A). Presumably, this is because a ‘pure’ 

retrieval state comes at the expense of successfully encoding present experience at all, let 

alone the relationship between past and present (integration). Indeed, retrieve evidence 

negatively predicted subsequent memory for the new associations, as measured by accuracy 

on the direct association test (t19 = −3.97, p = .0008). Thus, classifier-derived evidence for a 

retrieval state clearly reflected situations in which present experience was not effectively 

encoded.

The preceding analyses demonstrate that, among the instructed sample of subjects, 

classifier-derived evidence for an integration state predicted subsequent performance on the 

integration test. Because this relationship was evident when controlling for the instructions 

subjects received, we believe the classifier did not learn to decode processing instructions, 

per se, but instead learned to decode the processing states elicited by the instructions. If so, 

then the classifier should also succeed in identifying processing states when instructions are 

altogether absent. To test this idea, we trained a new classifier using the whole-brain masks 

for the entire sample of instructed subjects (n = 21) and then applied the trained classifier to 

each trial for each of the uninstructed subjects (n = 8). As described above (see Methods), 

the uninstructed sample of subjects completed a nearly identical experiment, with the critical 

difference being that processing states were not manipulated during new learning for the 

uninstructed subjects. Instead, subjects were simply instructed to try to remember each pair 

that they studied (equivalent to the encoding condition for the instructed subjects). After 

exiting the scanner, subjects completed an un-anticipated integration test (the format of the 

integration test was identical for the instructed and uninstructed subjects).

As with the instructed subjects, we used a three-way classifier (encode vs. retrieve vs. 

integrate) to derive evidence for each of the three processing states. Classifier-derived 

evidence for each state was then used as a predictor variable in subject-specific logistic 

regression analyses. Strikingly, we again found that greater classifier evidence for 

integration during new learning was associated with better performance on the critical 

integration test (t7 = 1.95, p = .046; one-tailed t-test; Figure 3B). As before, integrate 

evidence better predicted performance on the integration test than did retrieve evidence (t7 = 

3.01; p < .01, one-tailed t-test). Thus, the classifier was clearly successful in identifying 

spontaneous, subject-driven fluctuations in mnemonic processing states.

3.4 Individual differences in processing states

The preceding section assessed the relationship between trial-level evidence for an 

integration state and subsequent performance on the integration test (i.e., within-subject 

analyses). A complimentary question is whether individual differences in processing states 

were correlated with performance on the integration test (i.e., between-subject analyses). To 

this end, we tested whether participants that showed more evidence for integration during 

new learning (i.e., a higher percentage of trials labeled by the classifier as ‘integrate trials’) 

also exhibited better performance on the subsequent integration test. For this analysis, we 

combined the instructed and uninstructed samples of subjects to increase statistical power. 
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As shown in Figure 3C there was a marginally significant correlation between the 

percentage of trials in the new learning phase that were labeled by the classifier as 

‘integrate’ and the percentage of trials in the integration test with accurate category-level 

responses (r = .34, p = .076; Figure 3C). Although the low number of integration test trials 

with accurate category + item memory precluded within-subject analysis of classifier 

evidence as a function of subsequent category + item memory (because of very low bin 

sizes), the low bin sizes were not problematic for across-subject analyses. Indeed, the 

across-subject correlation between the percentage of trials labeled as integrate and the 

percentage of integration test trials with accurate category- and item-level responses 

(‘category + item accuracy’) was highly significant (r = .53, p = .003; Figure 3D). Thus, 

individual differences in the degree to which an integration state was engaged during new 

learning (as indexed by the pattern classifier) were related to individual differences in 

performance on the integration test. Note: from here forward, we use category + item 

accuracy for all across-subject correlations, but comparisons of correlations based on 

category-level vs. category + item-level accuracy and other, related correlation analyses can 

be found in Supplementary Figure 3.

Because there were a handful of subjects that had relatively high category + item accuracy, 

we also tested for a within-subject relationship between integrate evidence and integration 

test performance, based on category + item accuracy, in this sub-sample of subjects with 

more favorable bin sizes. As can be seen in Figure 3E, when combining the instructed and 

uninstructed subjects, there was a ~10% gap in category + item accuracy between the 5 

highest performing subjects (mean accuracy = 39.9%) and the remaining 24 subjects (mean 

accuracy = 13.4%). We thus repeated the within-subject logistic regression analysis for these 

‘high-performing’ subjects (n = 5). For this analysis, ‘successful’ integration was defined as 

trials associated with accurate category + item memory and ‘unsuccessful’ integration as all 

other trials. Indeed, within this sub-sample, there was a very robust trial-level (within-

subject) relationship between classifier-based evidence for integration and performance on 

the integration test (t4 = 7.97, p = .001; Figure 3E). Thus, for those subjects with 

sufficiently high category + item accuracy, decoded integration evidence clearly predicted 

category + item accuracy on the integration test.

3.5 Reactivation of older memories during new learning

All of the above process-based decoding analyses were orthogonal to the specific content 

that subjects were remembering (i.e., whether subjects were processing faces, scenes, or 

objects). However, prior studies have found that successful memory integration can be 

predicted by measuring the content of the memory system during new learning: specifically, 

by measuring the degree to which older memories are reactivated during new learning 

(Wimmer & Shohamy, 2012; Zeithamova et al., 2012). Motivated by this prior work we 

applied decoding analyses to measure and quantify reactivation of older memories during 

the new learning phase. We used fMRI data collected during learning of the old pairs 

(acquisition rounds) to train subject-specific pattern classifiers to decode the visual category 

information (face vs. scene vs. object) and then tested these classifiers on data from the new 

learning phase (Kuhl et al., 2011; Polyn et al., 2005). On each new learning trial, one of the 

three visual categories corresponded to the old picture, one corresponded to the new picture, 
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and one functioned as a baseline (neither old nor new). To obtain a measure of reactivation, 

the classifier evidence for the baseline category was subtracted from classifier evidence for 

the category of the old picture (Figure 4A) (Kuhl et al., 2012).

Using the whole brain mask, significant reactivation of the old picture was observed in each 

of the three instruction conditions (t20`s > 3.8, p's < .001, one-tailed t-tests), but the strength 

of reactivation was strongly modulated by instruction condition (F2,40 = 8.92, p < .001; 

Figure 4B). Statistically, reactivation was comparable in the integrate and retrieve 

conditions (t20 = −0.61; p = .55), with both conditions eliciting stronger reactivation than the 

encode condition (t20's > 3.8, p's < .005).

We also measured reactivation for the uninstructed subjects. Although these subjects were 

never explicitly told to retrieve old items, we nonetheless saw modest evidence for 

reactivation (Figure 4C). Notably, for both the instructed and uninstructed subjects, the 

whole brain classifiers tended to perform worse than some of the individual sub-regions 

(which contrasted with the processing state classifier, see Figure 2C).

We next tested whether trial-by-trial variability in classifier-derived evidence for 

reactivation of older memories during new learning predicted performance on the 

subsequent integration test. This analysis was very similar to the regression analysis 

described above relating evidence for an integration state to performance on the integration 

test, with the only difference being that we changed the predictor variable (instead of 

decoded evidence for processing state, here we used decoded evidence for reactivation). As 

before, subject-specific logistic regression analyses were performed separately for each 

instruction condition in order to control for task-instructions. Resulting beta values were 

then averaged across instruction conditions to produce a single beta value per subject. Here, 

we also combined data across the instructed and uninstructed samples, in order to increase 

sensitivity.

Using trial-by-trial reactivation strength derived from the whole brain mask, reactivation did 

not predict performance on the integration test (t28 = 0.26, p = .80; see Supplementary 

Figure 2D-F for this and related analyses). However, there was a modest, but significant 

correlation between individual differences in reactivation strength and individual differences 

in performance on the integration test (r = .39, p = .03; Supplementary Figure 4). 

Additionally, there was a significant, positive relationship between trial-by-trial variability 

in reactivation strength and the strength of classifier evidence for integration, as measured 

by subject-specific, trial-level correlations between these two forms of classifier evidence 

(instructed and uninstructed samples combined and controlling for instruction condition 

among the instructed subjects; mean z-transformed correlation = 0.037, t20 = 3.20, p = .003; 

Supplementary Figure 5).

We also tested for a relationship between reactivation and memory on the subsequent direct 

association test (i.e., the old association and new associations), again using subject-specific 

logistic regression analyses that combined across instructed and uninstructed subjects and 

controlled for instruction condition among the instructed subjects. Consistent with prior 

evidence (Kuhl et al., 2010), we found a positive relationship between trial-by-trial 
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fluctuations in reactivation strength during new learning and subsequent memory for 

corresponding old associations (t27 = 2.29, p = .03; Supplementary Figure 2E). That is, if old 

associations were reactivated during new learning, they were more likely to be subsequently 

remembered. Likewise, there was a robust across-subject correlation between the strength of 

reactivation and subsequent memory for old associations (r = .65, p < .001; Supplementary 

Figure 4). Subsequent memory for the new associations was not related to trial-by-trial 

variability in reactivation of old associations during new learning (t27 = .26, p = .80; 

Supplementary Figure 2F) nor to across-subject differences in reactivation strength (r = .17, 

p = .39; Supplementary Figure 4).

3.6 Processing states in regions of a priori interest

Previous research has indicated that the medial prefrontal cortex (MPFC) and hippocampus 

(HIPP) are particularly important for memory integration (Benoit, Szpunar, & Schacter, 

2014; Schlichting & Preston, 2015; van Kesteren et al., 2013; Zeithamova & Preston, 2010; 

Zeithamova et al., 2012). Additionally, integration has been linked to reactivation of older 

memories in ventral temporal cortex (VTC) during new learning (Zeithamova et al., 2012). 

We therefore conducted several follow-up analyses targeting these three regions of a priori 

interest in order to better characterize their respective mechanistic contributions to memory 

integration.

As a first step, we compared pairwise processing state classification accuracy across the sub-

regions. An ANOVA with factors of sub-region (MPFC vs. HIPP vs. VTC) and state pair 

(encode vs. retrieve, retrieve vs. integrate, encode vs. integrate) revealed a significant 

interaction, (F4,80 = 2.57, p = .04; Figure 5A). Of particular interest was the dissociation 

between MPFC and HIPP: in MPFC classification was numerically highest— and only 

above chance—for encode vs. integrate (t20 = 2.50, p = .01, one-tailed t-test), whereas in 

HIPP, classification was numerically highest and only above chance for encode vs. retrieve 

(t20 = 4.52, p = .0001, one-tailed t-test). When specifically considering MPFC vs. HIPP, the 

interaction between region and state pair was significant (F2,40 = 4.17, p = .02), confirming 

that these regions were differentially signaling subjects’ mnemonic processing states. A 

complementary analysis comparing the similarity (correlation) of activation patterns across 

processing states and across sub-regions revealed similar results (Supplementary Figure 6).

The fact that HIPP did not distinguish integrate trials from either encode or retrieve trials 

(t20's < 1.2 p's > .12) is notable given that the hippocampus has previously been implicated 

in memory integration (Preston & Eichenbaum, 2013; Schlichting, Zeithamova, & Preston, 

2014; Shohamy & Wagner, 2008; Zeithamova, Schlichting, & Preston, 2012). One 

possibility is that HIPP may have been poorly suited to the across-subject decoding 

approach that we used. To address this concern, we re-ran the processing state decoding 

analyses in the hippocampus within-subjects (i.e., using leaving one scan out cross-

validation). The results were nearly identical to the across-subject results: encode vs. 

retrieve classification was significantly above chance (t20 = 2.66, p = .008, one-tailed t-test), 

but integrate trials could not be distinguished from either encode or retrieve trials (t20's < 

1.1, p's > .15, one-tailed t-tests). Thus, the within- and between- subject analyses each 
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indicated that hippocampal activity patterns did not differentiate an integration state from 

encoding or retrieval states.

Next, for each of the same sub-regions, we asked whether classifier-derived processing state 

evidence predicted performance on the integration test. The analyses were identical to the 

whole brain version (Figure 3A), with the exception that here we combined evidence from 

the instructed and uninstructed samples in order to increase sensitivity. That is, although 

there were separate procedures for performing classification for the instructed and 

uninstructed samples, we pooled the beta values produced by the subject-specific logistic 

regression analyses (total n = 29). The relationship between classifier-derived integration 

evidence and integration test performance was marginally significant in MPFC (t28 = 1.90, p 

= .068), and significant in VTC (t28 = 2.21, p = .04), but not significant in HIPP (t28 = 0.19, 

p = .85). Integration test performance was also negatively predicted by retrieve evidence in 

MPFC (t28 = −2.21, p = .04), and by encode evidence in VTC (t28 = −2.54, p = .02). We did 

not observe, for any of the sub-regions, significant correlations between individual 

differences in the percentage of trials in the new learning phase labeled by the classifier as 

‘integrate’ and the percentage of trials in the integration test with accurate category + item 

(or category only) level responses (r's < .1; see Supplementary Figure 3).

3.7 Reactivation in regions of a priori interest

Our final analyses focused on reactivation within the three sub-regions of interest. As noted 

above, VTC reactivation of older memories during new learning has previously been 

associated with successful memory integration (via across-subject correlation analysis; 

Zeithamova et al., 2012). However, despite considerable evidence implicating MPFC in 

integration (Benoit et al., 2014; van Kesteren et al., 2013; Zeithamova & Preston, 2010; 

Zeithamova et al., 2012), prior studies have not directly probed reactivation within MPFC in 

relation to integration.

In VTC, we observed significant reactivation across all instruction conditions (t20's > 3.8, p's 

< .005) and reactivation was strongly modulated by instruction condition (F2,40 = 9.01, p = .

0006; Figure 6A), with the lowest degree of reactivation for encode trials. In MPFC, 

reactivation was significant across all conditions (t20's > 2.4, p's < .05) and there was a 

marginally significant effect of instruction on reactivation (F2,40 = 2.86, p = .07; Figure 
6A). In HIPP, reactivation was robust only in the retrieve condition (retrieve: t20 = 4.22, p 

= .0004; others: t20's < 1.1, p's > .29), and there was a significant effect of instruction on 

reactivation (F2,40 = 5.05, p = .01). A targeted ANOVA comparing reactivation in HIPP vs. 

MPFC across retrieve vs. integrate trials revealed a significant interaction (F1,20 = 4.78, p = .

04), reflecting relatively greater reactivation in HIPP for retrieve than integrate trials and 

relatively greater reactivation in MPFC for integrate than retrieve trials. Thus, compared to 

HIPP, MPFC played a greater role in representing older memories when there was a demand 

to integrate past with present.

We next tested whether sub-region reactivation was related to behavioral performance on 

the integration test. We first performed within-subject logistic regression analyses that 

related trial-by-trial fluctuations in reactivation to category-level accuracy on the integration 

test, combining data from the instructed and uninstructed samples and controlling for 
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instruction condition for the instructed subjects (identical to the whole-brain version of this 

analysis described above). A significant positive relationship was observed for VTC (t28 = 

2.14, p = .04; Figure 6B), but not for MPFC (t28 = −.71, p = .49) or HIPP (t28 = −0.09, p = .

93). We also tested whether individual differences in mean reactivation during new learning 

correlated with mean accuracy on the integration test (category + item). For this analysis 

(Figure 6C) we again combined the instructed and uninstructed samples. Significant 

positive correlations were observed for MPFC (r = 0.57, p = .001) and VTC (r = 0.48, p = .

008), but not HIPP (r = .25, p = .19). For both VTC and MPFC, the relationship between 

reactivation and integration was qualitatively similar for instructed vs. uninstructed samples 

(Figure 6C: black vs. green trend lines).

4 DISCUSSION

Here, we sought to ‘read out’ mnemonic processing states from patterns of fMRI activity 

acquired during the learning of overlapping events so that we could predict when events 

would be integrated in memory. In an initial set of ‘instructed’ subjects, we explicitly biased 

mnemonic processing states and used across-subject decoding analyses to discriminate 

encoding, retrieval, and integration states. Validating these decoding results, we found that 

decoded evidence for an integration state during overlapping learning predicted performance 

on a subsequent test of memory integration. Strikingly, we found that our decoding 

algorithm could also successfully predict integration in a new set of ‘uninstructed’ subjects 

whose processing states were not biased in any way. Finally, we compared how several 

regions of a priori interest contributed to memory integration. We found that medial 

prefrontal cortex (MPFC) and hippocampus (HIPP) differentially signaled subjects’ 

mnemonic processing states. Namely, activity patterns in MPFC were relatively more 

diagnostic of an integration state whereas HIPP activity patterns were relatively more 

diagnostic of the tradeoff between encoding vs. retrieval states. Complementing this 

dissociation, we found that in MPFC—but not HIPP—older memories were reactivated in 

service of integration.

4.1 Decoding mnemonic processing states

Computational models, behavioral studies, electrophysiological recordings, and 

neuroimaging data all support the idea that the memory system fluctuates between distinct 

processing states and that these states are reflected in profiles of neural activity. For 

example, fMRI studies have shown that encoding and retrieval processes differentially 

modulate activity in several brain regions (Donaldson et al., 2001; Duncan et al., 2014; 

Eldridge et al., 2005). Likewise, electrophysiological recordings in humans (Rizzuto et al., 

2006) and rodents (Douchamps et al., 2013; Hasselmo et al., 2002; Kunec et al., 2005; 

Siegle & Wilson, 2014) have identified distinct neural correlates of encoding vs. retrieval. 

Our study builds on these findings in two ways. First, in addition to considering encoding 

vs. retrieval states, we also considered integration as a potentially distinct state of the 

memory system. Second, we applied machine-learning algorithms in order to decode trial-

level fluctuations in mnemonic processing states from distributed neural activity patterns. 

Several aspects of this decoding-based approach are notable for methodological reasons.
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In the context of memory research, a growing number of fMRI studies have applied 

decoding analyses to read out what human subjects are remembering (e.g., Kuhl et al., 2011; 

Polyn et al., 2005). There are, however, several examples where pattern classifiers have 

been used—as in the present study—to decode cognitive processes or operations that are 

thought to generalize across the content or stimuli that subjects are seeing or remembering 

(e.g., McDuff, Frankel, & Norman, 2009; Poldrack, Halchenko, & Hanson, 2009; Rissman, 

Greely, & Wagner, 2010). Interestingly, we found that decoding of processing states was 

significantly better when considering whole brain activity patterns compared to any of the 

individual sub-regions within the whole brain mask. This suggests that individual sub-

regions carried non-redundant information and that processing states were related to broadly 

distributed information (see Figure 2D). In contrast, reactivation-based decoding (a form of 

content decoding) was as robust or better in several of the sub-regions (e.g., VTC) compared 

to the whole brain mask.

Another important feature of our decoding approach is that it was applied across subjects. 

Thus, our classifiers could only succeed in decoding processing states to the extent that 

mappings between these states and neural activity patterns generalized across subjects. We 

anticipated that this across-subject decoding approach would be possible based on prior 

examples of across-subject decoding of cognitive processes (Mitchell et al., 2004; Poldrack 

et al., 2009; Rissman et al., 2010). Indeed, across-subject generalizability was a critical 

feature of the present approach as it allowed us to test whether a classifier trained on data 

from the set of instructed subjects would transfer to the set of uninstructed subjects. The fact 

that we observed transfer from the instructed to the uninstructed sample is striking because 

the very experimental manipulation that was used to train the classifier in the instructed 

subjects (i.e., the instructions) was absent in the uninstructed subjects. While this meant that 

there was no ‘correct’ label for each trial for the uninstructed subjects, we were able to 

validate the classifier's predictions by relating these predictions to performance on the 

subsequent integration test. Using this approach, it would therefore be possible to test for 

spontaneous memory integration in other unconstrained learning contexts or to compare the 

relative strength of integration across individuals. One potential advantage of such an 

approach is that it can isolate integration processes that occur at the time of learning 

(Shohamy & Wagner, 2008) as opposed to integration that might occur ‘offline’ during 

periods of rest or sleep following learning (Kumaran & McClelland, 2012).

4.2 Integration as a distinct processing state

Using whole-brain, across-subject decoding analyses, we found that integration was clearly 

discriminable from encoding and retrieval states. Critically, we validated these classification 

results by showing that decoded evidence for an integration state positively predicted 

performance on the integration test. In contrast, decoded evidence for encoding or retrieval 

states did not (positively) predict performance on the integration test. In fact, evidence for a 

retrieval state negatively predicted subsequent memory for new associations. Importantly, 

because we controlled for the instructions subjects received on each trial, these relationships 

between decoded processing state evidence and performance on the subsequent memory 

tests cannot be explained in terms of subjects following or not following instructions.
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What might have contributed to the classifier's ability to detect an integration state? There 

are multiple sources of information the classifier may have exploited, including: working 

memory load, cognitive control demands, relational processing demands, an abstract 

intention ‘to integrate,’ etc. While we cannot tease apart these possibilities, they are not 

mutually exclusive. Indeed, it seems likely that different regions contributed different forms 

of information, which is consistent with our observation that the whole brain classifier out-

performed all of the sub-regions. Thus, ‘integration’ may well be supported by a set of sub-

processes. Of critical interest here, however, was to capture the broader processing state that 

is associated with memory integration.

It is also notable that, when considering pairwise classification of the three processing states, 

we did not observe a significant difference in accuracy across the three pairs (encode vs. 

retrieve, encode vs. integrate, retrieve vs. integrate). This is consistent with the idea that 

integration requires a processing state that is qualitatively distinct—or at least some sub-

processes that are qualitatively distinct—from encoding and retrieval. If integration were 

simply ‘in between’ encoding and retrieval states, we would have expected an integration 

state to be more confusable with encoding/retrieval states (as was seen in HIPP). When 

considering candidate subprocesses that contribute to integration (e.g., working memory, 

cognitive control), it is also clear that integration does not lie ‘in between’ encoding and 

retrieval.

Although decoding of processing states was clearly most accurate when using the whole 

brain classifier (Figure 2C), we compared classification accuracy across several sub-regions 

of a priori interest (MPFC, HIPP, and VTC) in order to better understand how these regions 

contribute to memory integration. When considering pairwise classification (encode vs. 

retrieve, retrieve vs. integrate, encode vs. integrate) across the three sub-regions, we 

observed a significant pair-by-region interaction. In other words, these regions differentially 

signaled the three processing states. Whereas HIPP strongly distinguished between encoding 

and retrieval states, it did not differentiate either of these states from integration (VTC was 

qualitatively similar to HIPP). In contrast, classification accuracy in MPFC was numerically 

highest, and only above chance, for encode vs. integrate trials. Although direct classification 

of retrieve vs. integrate trials was not successful in MPFC, there was a marginally 

significant relationship between classifier-derived evidence for integration in MPFC and 

performance on the integration test (Figure 5C). Moreover, MPFC evidence for retrieval 

negatively predicted integration test performance. Collectively, these results indicate that 

activity patterns in MPFC were somewhat more diagnostic of an integration state than were 

activity patterns in HIPP, consistent with the idea that these regions make dissociable 

contributions to memory integration (Zeithamova & Preston, 2010). That said, considered 

on their own—and in relation to whole brain activity patterns—MPFC activity patterns were 

only weakly diagnostic of an integration state.

The fact that HIPP was selectively sensitive to the comparison of encode vs. retrieve trials is 

consistent with proposals that the hippocampus alternates between opposing encoding and 

retrieval states (Buzsáki 1989; Carr & Frank, 2012; O'Reilly & McClelland, 1994). 

Integration, in contrast, was representationally ‘in between’ encoding and retrieval states in 

the hippocampus. However, it is important to emphasize that these data do not argue against 
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a role for the hippocampus in integration; rather, they clarify what that role might be 

(particularly in relation to MPFC). One possibility is that the hippocampus alternates 

between encoding and retrieval states but that these alternations occur on the order of 

hundreds of milliseconds (Douchamps et al., 2013; Hasselmo et al., 2002; Kunec et al., 

2005; Rizzuto et al., 2006; Siegle & Wilson, 2014). This rapid alternation could allow for 

near-simultaneous encoding and retrieval (Kemere et al., 2013; Paulsen & Moser, 1998); 

however, these alternations would not be visible at the level of fMRI time scales. 

Alternatively, encoding and retrieval may not be categorically distinct states, and integration 

may reflect a processing state that is somewhere along an encoding-retrieval continuum 

(Carr & Frank, 2012). In either case, integration would elicit hippocampal activity patterns 

(as measured by fMRI) that would be representationally in between (and therefore 

confusable with) encoding and retrieval states, as seen here.

In contrast to HIPP, the pattern of decoding results in MPFC is not easily explained in terms 

of a single encoding-retrieval dimension. Indeed, MPFC did not successfully distinguish 

between encoding and retrieval states (Figure 5A). Rather, the demand to integrate past with 

present may require a qualitatively different form of processing that relies on MPFC. Our 

reactivation-based decoding results, which are considered in the following section, provide 

additional insight into how MPFC contributes to integration.

4.3 Relationship between reactivation and integration

Whole-brain analyses revealed that reactivation was present across all instruction conditions, 

but was markedly greater for retrieve and integrate trials than encode trials. These data 

provide confirmation that subjects successfully modulated internal representations of past 

experience in-line with instructions. Notably, trial-level variability in whole-brain 

reactivation was not predictive of performance on the integration test. However, there was a 

significant trial-level relationship between decoded evidence for an integration state and 

decoded evidence for reactivation (i.e., between evidence from the process-based and 

reactivation-based classifiers). This correlation is consistent with the idea that reactivation 

was a component of integration.

As can be seen in Figure 4C, reactivation was more robust in several of the sub-regions than 

in the whole brain mask. When specifically considering the sub-regions of a priori interest 

(MPFC, HIPP, VTC), we observed informative differences across the sub-regions. In VTC, 

there was robust evidence for reactivation across all instruction conditions, with greater 

reactivation for retrieve/integrate trials than encode trials (Figure 6A). Moreover, trial-level 

variability and individual differences in VTC reactivation during new learning predicted 

performance on the memory integration test (Figures 6B-C), consistent with prior evidence 

(Zeithamova et al., 2012).

Prior studies, however, have not specifically tested for reactivation within MPFC. Indeed, 

one question raised by prior studies (e.g., see Benoit et al., 2014) is whether MPFC supports 

integration by biasing reactivation in posterior regions (Schlichting & Preston, 2015) or by 

actively representing multiple events in an integrated manner. We found clear evidence for 

MPFC reactivation across all trials, with reactivation numerically greatest for integrate trials 

(Figure 6A). While we did not observe a trial-by-trial relationship between MPFC 
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reactivation and integration test performance, there was a robust across-subject relationship 

between MPFC reactivation and performance on the integration test (Figure 6C). 

Collectively, these findings clearly indicate that MPFC reactivated past experience during 

new learning, but provide mixed evidence as to whether MPFC reactivation during new 

learning contributes to memory integration.

In HIPP, evidence for reactivation was robust during retrieve trials, but absent during 

integrate trials. Moreover, neither trial-level nor across-subject variability in HIPP 

reactivation predicted performance on the integration test. Thus, as with the process-based 

decoding analyses, the reactivation-based decoding analyses suggest that MPFC and HIPP 

differentially contribute to memory integration. Namely, relative to HIPP, MPFC plays a 

more important role in actively representing past experience during new learning. More 

generally, these data are consistent with evidence that prefrontal cortex allows for active 

representation of multiple memories (Bor et al., 2003; Hernández et al., 2010; Siegel, 

Warden, & Miller, 2009), particularly when task demands involve relating individual 

memories to one another.

4.4 Summary

Here, we used a novel methodological approach to determine how and when memory 

integration occurs. We show that integration involves a processing state of the memory 

system that is distinct from encoding/retrieval states and is reflected in broadly distributed 

neural activity patterns. Moreover, by decoding the processing states on individual learning 

trials, we were able to reliably predict behavioral expressions of memory integration. We 

show that this approach is flexible and powerful and also provides important new insight 

into the relative contributions of specific brain regions to memory integration.
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Highlights

• Memory retrieval, encoding, and integration elicit distinct fMRI activity patterns

• By decoding memory states during learning, subsequent behavior can be 

predicted

• Decoded evidence for an integration state selectively predicts across-event 

memory

• Reactivation of older memories is related to, but dissociable from, integration

• Medial prefrontal cortex and hippocampus differentially signal memory states
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Figure 1. 
Experimental design and behavioral results. (A) During acquisition rounds (8 total), subjects 

studied word-picture pairs (old pairs; 4s each). Pictures were drawn from three categories: 

faces, scenes, objects. (B) Each acquisition round was followed by a new learning round in 

which words from the immediately preceding acquisition round were paired with new 

pictures (new pairs, 2s each). After each word-picture pair disappeared, a shape cue (6s) 

instructed participants to: encode the new pair, retrieve the old pair, or integrate the old and 

new pairs. (C) After all of the acquisition/new learning rounds, subjects completed a 

surprise integration test. On each trial, a picture from the new learning rounds was presented 

and subjects attempted to remember the corresponding old picture (i.e., the picture that 

shared the same word cue). The integration test consisted of two steps: first participants 

indicated the category of the old picture (object, face, or scene; 4s maximum), and then 

subjects indicated the specific old picture from a set of 4 choices (all from the same visual 

category; 3s maximum). (D) Instructions during new learning (encode, retrieve, integrate) 

significantly influenced accuracy in selecting the specific picture (F2,40 = 7.89, p = .001); 

there was a similar but non-significant pattern for the category-level decision (F2,40 = 1.43, 

p = .25). Error bars correspond to standard error of the mean.
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Figure 2. 
Decoding mnemonic processing states. (A) State decoding was performed using leave-one-

subject-out cross-validation, in which classifiers were iteratively trained to decode the 

instruction received on each trial (retrieve vs. encode vs. integrate) using data from 20/21 

subjects and then tested on each trial for the held-out subject. (B) Pairwise classification 

accuracy (for each pair of processing states) for the whole brain mask. (C) Three-way 

classification accuracy in sub-region masks. Dashed red line = performance of whole brain 

classifier. Error bars correspond to standard error of the mean. Notes: ** p < .005, one-tailed 

t-test; IFG = inferior frontal gyrus; MFG = middle frontal gyrus; SFG = superior frontal 

gyrus; MPFC = medial prefrontal cortex; OFC = orbitofrontal cortex; LTC = lateral 

temporal cortex; VTC = ventral temporal cortex; HIPP = hippocampus; IPL = inferior 

parietal lobule; SPL = superior parietal lobule; MPAR = medial parietal cortex; OCC = 

occipital cortex.
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Figure 3. 
Predicting integration. (A) Classifier evidence for each processing state (i.e., retrieve 

evidence, encode evidence, integrate evidence) was used to predict behavioral performance 

on the post-scan integration test. Separate logistic regression analyses were performed for 

each subject and each instruction condition (to control for effects of instruction). Each bar 

represents the mean beta values from the regression analyses. Performance on the 

integration test was selectively predicted by classifier-derived evidence for an integration 

state during new learning. (B) A classifier was trained on data from the full sample of 

‘instructed’ subjects and applied to data from a separate set of ‘uninstructed’ subjects. Trial-

level classifier evidence from the uninstructed subjects was then used to predict performance 

on the integration test (as in A). Again, evidence for an integration state during new learning 

predicted performance on the integration test. (C) The across-subject correlation between 

percentage of new learning trials labeled by the classifier as ‘integrate’ and mean category-

level accuracy on the subsequent integration test was marginally significant [data are 

collapsed across instructed (black) and uninstructed (green) samples, but separate trend lines 

are shown for each group for comparison]. (D) Same as (C) except that integration test 

performance (y-axis) reflects mean category + item accuracy. (E) Rank ordered category + 

item accuracy for individual subjects [combining across instructed (black) and uninstructed 

(green) samples]. Among the small sub-group of subjects with accuracy above 30% (n = 5), 

there was a robust trial-level relationship between classifier-derived evidence for an 

integration state during new learning and category + item level accuracy on the subsequent 
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integration test. Notes: * p < .05, ** p < .005; a two-tailed t-test was used for (A), but a one-

tailed t-test was used for (B) given that the analysis was a replication with a clear directional 

prediction.
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Figure 4. 
Decoding reactivation. (A) Pattern classifiers were trained to discriminate visual category 

information (face vs. scene vs. object) using data from the acquisition phase. The classifiers 

were then tested on each trial in the new learning phase to measure the strength of evidence 

for the category of the old picture (as well as for the baseline and new picture categories); 

evidence for the baseline category was subtracted from evidence for the old category to 

obtain a measure of reactivation. (B) Reactivation in the whole brain mask as a function of 

instruction condition. (C) Reactivation in twelve sub-regions of the whole brain mask, 

separately for the instructed and uninstructed subjects. Error bars correspond to standard 

error of the mean. Notes: ** p < .005, one-tailed t-test; IFG = inferior frontal gyrus; MFG = 

middle frontal gyrus; SFG = superior frontal gyrus; MPFC = medial prefrontal cortex; OFC 

= orbitofrontal cortex; LTC = lateral temporal cortex; VTC = ventral temporal cortex; HIPP 

= hippocampus; IPL = inferior parietal lobule; SPL = superior parietal lobule; MPAR = 

medial parietal cortex; OCC = occipital cortex.
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Figure 5. 
Process decoding in sub-regions of interest. (A) Pairwise classification accuracy for each 

pair of instruction conditions across sub-regions. (B) Trial-by-trial fluctuations in classifier 

evidence for each processing state were used to predict category-level behavioral 

performance on the post-scan integration test using logistic regression analyses (as in Figure 
3A) for each of the sub-regions. Each bar represents the mean beta values from separate 

regressions for each form of classifier evidence (retrieve, encode, integrate) and each sub-

region. Notes: ** p < .01; * p < .05; ~ p < .1. One-tailed t-tests were used for (A) given that 

classifier accuracy was compared to chance, but two-tailed tests were used in (B). 

Performance on the integration test was positively predicted by classifier-derived integrate 

evidence in MPFC (marginally significant) and VTC. Integration test performance was 

negatively predicted by retrieve evidence in MFPC and encode evidence in VTC.
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Figure 6. 
Reactivation in sub-regions of interest. (A) Pattern classifiers were trained to discriminate 

visual category information (face vs. scene vs. object) using data from the acquisition phase 

and were then tested on each trial in the new learning phase. Classifier evidence for the 

baseline category (i.e., the category to which neither the old nor new picture belonged) was 

subtracted from evidence for the old category to obtain a measure of reactivation. Across the 

sub-regions, reactivation was greater for integrate and retrieve trials than encode trials. HIPP 

was characterized by relatively weaker reactivation on integrate than retrieve trials, which 

contrasted with MPFC. (B) Trial-by-trial fluctuations in reactivation strength during new 

learning were related to category-level accuracy on the subsequent integration test using 

subject-specific logistic regression analyses (data from instructed and uninstructed subjects 

were combined). Individual bars reflect mean beta values from these regression analyses, 

separately for each sub-region. Reactivation in VTC positively predicted subsequent 

performance on the integration test. (C) Individual differences in mean reactivation during 

the new learning phase were correlated with category + item accuracy on the subsequent 

integration test, separately for each sub-region. Significant across-subject correlations were 

observed in MPFC and VTC. [Notes: ** p < .01; * p < .05; ~ p < .1. One-tailed t-tests were 

used for (A) given that reactivation was compared to baseline, but two-tailed tests were used 

in (B). the correlations combined the instructed (black) and uninstructed (green) samples, 

but separate trend lines are shown for each group for comparison].
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Table 1

Direct association test performance

Old pairs New pairs

Mean (SD) Mean (SD

Instructed Retrieve 64.9% (21.5%) 24.3% (14.4%)

Encode 63.1% (22.7%) 38.4% (17.5%)

Integrate 64.3% (23.4%) 34.1% (17.4%)

All trials 64.1% (22.1%) 32.3% (14.3%)

Uninstructed All trials 49.5% (18.3%) 37.9% (18.0%)
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Table 2

Integration test performance

Category Item Category & Item

mean (SD) mean (SD) mean (SD)

Instructed Retrieve 42.8% (11.5%) 25.6% (12.2%) 13.6% (10.9%)

Encode 46.3% (12.0%) 32.9% (15.3%) 19.9% (12.1%)

Integrate 46.8% (12.3%) 37.3% (16.8%) 22.1% (14.8%)

All trials 45.3% (9.7%) 31.9% (13.2%) 18.6% (11.3%)

Uninstructed All trials 44.3% (9.6%) 31.3% (11.0%) 16.5% (11.2%)
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