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Abstract 

An episode of complete failure to respond during an attentive task accompanied by behavioural 

signs of sleep is called a behavioural microsleep. We proposed a combination of high-resolution 

EEG and an advanced method for time-varying effective connectivity estimation for reconstructing 

the temporal evolution of the causal relations between cortical regions when microsleeps occur 

during a continuous visuomotor task. We found connectivity patterns involving left-right frontal, 

left-right parietal, and left-frontal/right-parietal connections commencing in the interval [-500;-250] 

ms prior to the onset of microsleeps and disappearing at the end of the microsleeps. Our results 

from global graph indices derived from effective connectivity analysis have revealed EEG-based 

biomarkers of all stages of microsleeps (preceding, onset, pre-recovery, recovery). In particular, this 

raises the possibility of being able to predict microsleeps in real-world tasks and initiate a ‘wake-

up’ intervention to avert the microsleeps and, hence, prevent injurious and even multi-fatality 

accidents. 
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1. Introduction 

During extended attention-demanding tasks, subjects frequently fail to respond to certain stimuli. 

Three different types of failures can occur: response error (incorrect response), slowed response 

(increased reaction time), and absence of any response. An episode of complete failure to respond 

— lapse of responsiveness (‘lapse’) — accompanied by behavioural signs of drowsiness and slow-

eye-closure is known as a behavioural microsleep (‘microsleep’) (Peiris et al., 2006). The 

occurrence of microsleeps to people working in sectors requiring high vigilance, such as car and 

truck drivers, locomotive drivers, airline pilots, air traffic controllers, health professionals, and 

process control workers, can have serious/fatal consequences (Léger et al., 2014; Krahl et al., 2010; 

Akerstedt, 2000; Summala et al., 1999). For this reason, technology able to detect microsleeps soon 

after their onset - or, better still, prior to their occurrence - and initiate wake-up warnings, has 

become an important objective towards helping minimize the occurrence of such accidents. 

Early detection and prediction of microsleeps suggests a strong need for the investigation of their 

neurophysiological correlates.  

We have conducted several studies, based on behavioural, functional magnetic resonance imaging 

(fMRI), and/or electroencephalographic (EEG) data, to determine the neuronal processes underlying 

microsleeps (Poudel et al., 2014; Innes et al., 2013; Peiris et al., 2011; Jones et al., 2010; Davidson 

et al., 2007; Peiris et al., 2006). Multiple behavioural cues, including visuomotor responsiveness, 

eye-closure, head-nodding, and facial video, have been used to identify microsleeps. fMRI studies 

have revealed a consistent decrease in bilateral thalamic activity associated with loss of arousal 

(Portas et al., 1998), transition to sleep (Kaufmann et al., 2006), slowed reactions after sleep 

deprivation (Chee et al., 2008), and microsleeps (Poudel et al., 2014). Decreased activity in the 

posterior cingulate gyrus and medial frontal cortex, and increased activity in occipito-parietal and 

frontal areas, are associated with loss of vigilance (Olbrich et al., 2009) and microsleeps (Poudel et 

al., 2014, 2013, 2009, 2008). 

EEG studies have shown increased spectral power in the delta, theta, and alpha bands, and 

decreased spectral activity in the beta, gamma, and higher bands during drowsiness (Jap et al., 

2009; Lin et al., 2005a; Cajochen et al., 1999; Jung et al., 1997). However, there are few 

correlations between lapses and changes in power spectra (Peiris et al., 2006).  

Among the techniques available for the neurophysiological characterization of microsleeps, fMRI 

has provided the best results in terms of 3-D spatial resolution and localization (Poudel et al., 2009, 
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2008) while EEG is more desirable in terms of its high temporal resolution (Peiris et al., 2006, 

2011; Davidson et al., 2007; Poudel et al., 2010). EEG seems to have the most potential for early 

detection and prediction of microsleeps in a real-world environment, due to a combination of its 

high temporal resolution and feasibility, portability, and wearability. 

fMRI/EEG studies conducted until now have provided insights in the localization of the cerebral 

activities associated to the microsleeps, characterizing the spectral content of such activations. 

However, a description of the temporal evolution of the cerebral phenomena underlying 

microsleeps, a separate characterization of the mechanisms at the basis of onset and recovery from 

microsleeps and, most important, a representation of the cerebral circuits (groups of areas 

communicating each other) involved in such phenomenon are still missing. For this reason, we 

proposed a combination of high-resolution EEG techniques (Babiloni et al., 2001) and advanced 

methods for time-varying effective connectivity estimation (Milde et al., 2010) with the aim: 

- to improve knowledge on the cerebral mechanisms underlying microsleeps, disentangling 

different neurophysiological aspects correlated with their the onset and ending; 

- to provide biological markers of microsleeps to be used in their early-detection/prediction. 

Our approach has allowed us to improve the low spatial resolution of EEG by reconstructing the 

cortical sources of EEG activity and provide a time-frequency description of the cerebral networks 

established between different cerebral areas during the occurrence of a microsleep. Estimation of 

effective connectivity allows us to go beyond results derivable from spectral analysis (Poudel et al., 

2014) by providing information on the interaction between different brain areas during each stage of 

microsleeps (preceding, onset, pre-recovery, recovery). This goes beyond the simple hypothesis of 

involvement of specific areas in the process by making assumptions on the structure of the neural 

circuit (effective connectivity) and, more importantly, about its timing. 

Effective connectivity is defined as the simplest cerebral circuit describing the causal relations 

observed experimentally between distinct signals recorded from different cerebral sites (Friston, 

1994). Among the different estimators defined in the context of effective connectivity, we selected 

those based on the concept of Granger Causality (Granger, 1969) which, unlike Structural Equation 

Modeling (McIntosh, 1998) and the Dynamic Causal Model (Friston et al., 2003), does not require 

any a priori knowledge on the connectivity structure and thus can be used when no specification 

about the connectivity linkages is available (exploratory tools) (Sato et al., 2009). Partial Directed 

Coherence (PDC) is a Granger-Causality-based spectral estimator providing the directed influences 

between any given pair of signals in a multivariate data set (Baccalá and Sameshima, 2001). Several 

studies have demonstrated the higher accuracy of approaches based on the use of multivariate 
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models built on original time-series (Kus et al., 2004), being the bivariate approach affected by a 

high number of false positives due to the impossibility of the method in discarding a common effect 

on a couple of signals of a third one acquired simultaneously (Blinowska et al., 2004). PDC is also 

of particular interest because it can distinguish between direct and indirect connectivity flows in the 

estimated connectivity pattern better than the other multivariate Granger-Causality approaches 

(Astolfi et al., 2007). The original definition of PDC estimator is based on the hypothesis of 

stationarity of signals included in the estimation process. As microsleeps are inherently non-

stationary phenomena, their characterization requires a time-varying adaptation of PDC, based on 

the Kalman filter (Milde et al., 2010), which has been recently introduced to follow the temporal 

evolution of time-varying brain networks. 

Thus, the state of the art methodologies for increasing spatial resolution of EEG signals and 

reconstructing the temporal evolution of cerebral networks were used to reach the aims of this 

study. 

2. Material and Methods 

2.1. Participants 

Twenty right-handed volunteers (10 male/10 female, mean age 29.3 years (21–45 years)) 

participated in this study. They had no history of neurological, psychiatric, or sleep disorders.  They  

were asked to refrain from consuming any stimulants or depressants, such as alcohol, caffeine, and 

nicotine, during the 4 hours prior to the session. Participants had to report a usual time to bed 

between 10–12 pm and a usual time in bed from 7.0–8.5 hours.  Their sleep habits were monitored 

during the 6 days and 5 nights prior to the experimental session by way of a sleep diary and 

actigraphy (Actiwatch, Mini Mitter Inc., Bend OR, USA). Ethical approval for the study was 

obtained from the New Zealand Upper South B Regional Ethics Committee. 

2.2. Experimental tasks 

Subjects, comfortably lying in a fMRI scanner and wearing a 60-electrodes EEG cap, performed a 

continuous 2-D tracking task, which was extended, monotonous, and non-stimulating task, and, 

hence, favours the occurrence of microsleeps even when non-sleep-deprived (Peiris et al., 2006; 

Poudel et al., 2014; Innes et al., 2013; Poudel et al., 2008; Buckley et al., 2014). Experimental 

sessions were conducted in post-prandial time (1:30 pm or 2:30 pm), with the aim of facilitating the 

occurrence of microsleeps. Each participant performed a two-block experiment, comprising a 10-

min cued eye-closure task (baseline period), used for simulation of microsleep-like behaviour, and a 
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50-min continuous random visuomotor tracking task (microsleeps period). In the continuous 

tracking task, subjects had to manoeuvre a finger-based joystick (Current Designs, Philadelphia, 

PA, USA) to pursue a 2-D random target moving continuously on a computer screen (Poudel et al., 

2013). Baseline period was designed as an event-related task with an interstimulus time of 12 s, 

used to pseudo-randomly present 3 s cues for eye-closure and stopping during visuomotor tracking 

(see Fig.1a and 1b). Each cue was presented 24 times during the experiment. The participants were 

instructed to close and stop tracking for ‘Stop+Close’ cues and just stop tracking for ‘Stop’ cues. 

Participants were familiarized with the tracking task and instructed to control the joystick position 

so that the response disc was as close as possible to the centre of the moving target at all times. See 

elsewhere for further details on the experimental design (Poudel et al., 2014, 2013).  

2.3. Behavioural, EEG and fMRI recordings 

Participants performed the tracking task inside an MRI scanner (GE Signa 3.0 T). Joystick 

response, eye-video, EEG, and fMRI data were recorded synchronously.  Video of the right eye was 

captured using a Visible Eye™ system (Avotec Inc., Stuart FL, USA) mounted on the head-coil of 

the MRI scanner. The video was recorded on a PC at 25 fps (350 x 280 px) using a video-capture 

card and custom-built video-recording software. 

Continuous EEG was acquired using an MRI-compatible Maglink EEG cap, SynAmps2 amplifiers, 

and Scan 4.4 software (Compumedics Neuroscan, Charlotte, NC, USA).  The Maglink cap has 64 

EEG electrodes placed according to an extension of the 10-20 international system, a reference 

electrode between Cz and Pz, and a ground electrode anterior to Fz. Quick-cell inserts were placed 

in electrode cavities and soaked with electrolyte solution (0.3 ml) to create a conductive column 

from the scalp to the electrode. Continuous vertical electrooculogram (VEOG) was acquired by 

placing electrodes above and below the left eye. Data was acquired at 10 kHz, with a low-pass filter 

at 2 kHz.  

The fMRI side of the study is not discussed further in this paper. Full details on the structural MRI 

and fMRI methodology can be seen elsewhere (Poudel et al., 2014).  

2.4. Identification of Microsleeps 

We used well-established behavioural rating criteria to identify individual episodes of microsleeps 

(Peiris et al., 2006; Poudel et al., 2014, 2012).  Briefly, a custom-built SyncPlayer™ program was 

used to replay synchronized eye-video, VEOG, and tracking target (x and y), response (x and y), 

speed, and tracking error. Any episodes of flat tracking (zero response speed) of 0.5–15 s duration 

accompanied by behavioural signs of drowsiness and full or partial (>80%) slow-eye-closures were 
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marked as microsleeps.  The response position, speed, and error signals were used to mark the onset 

and end of flat tracking responses.  Eye-video was used as a cue to mark the onset and end of flat 

tracking responses. 

A minimum inter-microsleep interval of 500 ms was required to ensure that a microsleep’s onset is 

not overlapped with the end of the previous microsleep event. Only microsleeps with a duration ≥2 

s were included in the study, in order to avoid overlapping of neural mechanisms associated with 

the onset of a microsleep with those associated with end of a microsleep.  

2.5. EEG analysis 

2.5.1. Signal pre-processing 

Clean EEG was obtained from the continuous artefact-laden EEG collected in the scanner by 

removing echo-planar gradient artefacts using template subtraction (Allen et al., 2000) and cardio-

ballistic artefacts by independent component analysis (ICA) (Briselli et al., 2006).  

EEG data were then downsampled to 100 Hz and band-pass filtered (1–45 Hz) to limit the 

frequency content of acquired signals to the bands of interest. ICA was applied to remove horizontal 

and vertical eye movements(Hoffmann and Falkenstein, 2008). The analysis was performed on two 

different time intervals, segmented according to the beginning and the end of the microsleep, 

respectively. Specifically, EEG traces were segmented into two time windows defined as [-500; 

750] ms (ON-phase) and [-750; 500] ms (OFF-phase) relative to the onset and the end of 

microsleep, respectively (Fig. 1a,b). The ranges of these two temporal windows were defined on the 

basis of a statistical analysis performed on the distributions achieved for microsleep duration and 

inter-microsleep interval among all the subjects involved in the experiment. The same segmentation 

was applied to baseline data (Fig. 1a,b). Residual artefacts were rejected according to a semi-

automatic procedure based on the identification of a threshold for the maximum allowed amplitude 

for EEG signals (±80 μV). All trials in which 2 or more channels exceeded such a threshold were 

excluded from the analysis.  

2.5.2. Cortical waveforms reconstruction 

The activity of cortical sources was reconstructed, starting from EEG signals acquired at scalp level, 

by means of the weighted minimum-norm solution for the associated linear inverse problem 

(Babiloni et al., 2001). The transformation from scalp to cortical domain was performed by means 

of a realistic head model available from the Montreal Neurologic Institute (Holmes et al., 1998). 

Then, by averaging the contribution of different sources, the waveforms of 12 cortical regions of 
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interest (ROIs) (Brodmann Area (ba): 19L/R, 7L/R, 5L/R, 8L/R, 9/46L/R, 10L/R) (Fig. 1c) were 

derived. Such ROIs were selected on the basis of the fMRI results reported by Poudel et al. (2014). 

2.5.3. Connectivity Analysis and Statistical Validation 

The estimation of cerebral networks underlying microsleeps was performed by means of time-

varying Partial Directed Coherence (Baccalá and Sameshima, 2001; Astolfi et al., 2006, 2008), a 

spectral multivariate estimator based on Wiener-Granger causality theory (Granger, 1969). The 

order of the Multivariate Autoregressive model (MVAR) used in the estimate was set to 16. The 

amount of data available for the estimate guaranteed the accuracy of the process. The number of 

data observations for each subject was, in fact, much higher than the number of parameters to be 

estimated in a network comprising 12 nodes.    

The time-varying approach was used in the present work in order to follow the time evolution of the 

estimated circuits during the microsleeps onset and ending. In particular, the reconstructed cortical 

waveforms were subjected to time-varying effective connectivity estimation via the General Linear 

Kalman Filter algorithm (Milde et al., 2010; Toppi et al., 2012a). This approach provided accurate 

sample-by-sample connectivity values within the considered time intervals. High accuracy in the 

connectivity estimates plus high temporal resolution were ensured by the choice of GLKF 

forgetting factors equal to 0.3, as suggested by Milde et al. (2010). Selection of these values for the 

two forgetting factors ensured high temporal resolution in describing all transitions in connectivity 

patterns occurring in considered EEG epochs lasting 1.5 s. Connectivity patterns elicited during 

microsleeps were statistically contrasted against those achieved in the baseline, to exclude the 

effects due to the interruption of tracking task and to the eye-closure. The statistical threshold for 

PDC estimates was obtained as the 95th percentile of baseline PDC distribution, corrected for 

multiple comparisons by the False Discovery Rate (Benjamini and Yekutieli, 2001). The significant 

connectivity values were then averaged in four frequency bands, defined according to the individual 

alpha frequency (Klimesch, 1999). In particular, we considered two frequency bands: theta [IAF-6; 

IAF-2] Hz, and alpha [IAF-2; IAF+2] Hz, where IAF = 9.4 ± 0.3 Hz. Beta and gamma bands were 

excluded from the analysis due to a high number of artefacts and low signal to noise ratio, 

respectively. We then averaged the sample-by-sample estimates in time intervals defined according 

to the microsleep event. In particular, the periods [-500 ; 750] ms relative to the onset (ON-PHASE) 

and the periods [-750 ; 500] relative to the end (OFF-PHASE) of microsleeps were divided into five 

intervals of equal duration (250 ms) (see Fig. 2 and Fig. 3). Average PDC values in  250-ms time 

intervals took into account inter-subject variability in the dynamics of brain circuits activated during 

microsleeps. Such inter-subject variability, typical of physiological processes such as underlying 
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microsleeps, prevented our exploration of the hypothesis that the temporal evolutions of 

connectivity networks are aligned both within and between healthy subjects.  

Secondly, the reduction of the number of points in which statistical comparisons between real and 

random networks were performed (i.e., 6 points corresponding to 6 time intervals instead of the 150 

corresponding to the data samples included in the EEG epochs) ensured more accurate and sensitive 

results due to not being affected by family-wise error rate. Moreover, under-sampling of the 

estimated patterns smoothed the trends achieved for graph indices, hence reducing the random 

oscillations of their values and providing more stable values for statistical analysis. 

2.5.4. Statistical group analysis of connectivity patterns 

To summarize the results achieved on single participants and to obtain the network characterizing 

microsleep events, we performed a group analysis consisting of a statistical comparison between 

microsleeps and baseline networks, computed along the population (paired t-test, significance level 

5%). Such comparison was repeated for each frequency band and for the two microsleeps phases 

(ON and OFF), separately. False Discovery Rate correction was applied in order to reduce the 

occurrence of false positives. Such group analysis allowed to achieve the group statistical patterns 

showed in Fig.2 and Fig.3, where we reported only the connections differing in the population from 

the baseline. 

2.5.5. Graph Theory Analysis 

To describe and quantify the connectivity patterns obtained by time-varying PDC, we computed a 

number of indices derived from graph theory applied to the brain networks. The statistical approach 

here adopted for the validation of connectivity networks allowed to extract adjacency matrices 

(describing the internal structure of the network being investigated) for the computation of graph 

indices, avoiding the alterations of the real topological properties of the networks that may arise 

applying empirical approaches as demonstrated by Toppi et al. (Toppi et al., 2012b).  

The adjacency matrix is a mathematical representation of a network, used in graph to extract salient 

indices characterizing network properties. The generic ijth entry of a directed binary adjacency 

matrix is equal to 1 if there is an effective link directed from the jth to the ith signal and is equal to 0 

if no links exist. The adjacency matrix can be built by comparing each connectivity value Aij with 

its corresponding threshold value 𝜏௜௝. In particular: 

𝐺௜௝ ൌ ൜
1 →   𝐴௜௝ ൒ 𝜏௜௝

0 →  𝐴௜௝ ൏ 𝜏௜௝
  , (1)
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where and  represent the entry (i, j) of the adjacency matrix G and the connectivity matrix A, 

respectively, and  is the corresponding threshold. Different approaches have been developed for 

evaluating the threshold values, most of them based on qualitative assumptions aiming at fixing the 

edge density in the network or the degree of some nodes or at maximizing small-world properties of 

the investigated networks. In this study we used a statistical approach in which the threshold τij 

corresponds to the 95th percentile (corrected by False Discovery Rate for multiple comparisons) of 

PDC distribution achieved in the baseline condition. The use of a statistical threshold for the 

extraction of the adjacency matrix has been demonstrated superior to an empirical approach by 

avoiding alterations to real topological properties of investigated networks (Toppi et al., 2012b). 

In the present study, we considered two sets of indices, the first describing integration and 

segregation properties of the investigated networks (global indices), the second characterizing the 

involvement and the role of specific ROIs (local indices).  

 

Global Indices 

Characteristic Path Length - defined as: 

𝐿 ൌ
1
𝑛

෍ 𝐿௜ ൌ
1

𝑛ሺ𝑛 െ 1ሻ
෍ 𝑑௜௝

௜,௝∈ே
௜ஷ௝

௜∈ே

 , 
(2)

where  is the average distance between node 𝑖 and all other nodes and is the distance between 

node i and node. N represents the number of nodes in the graph. The Characteristic Path Length is 

also defined as the average shortest path length in the network. The shortest path length (geodesic 

distance) between two nodes is the minimum number of connections linking two regions (Sporns et 

al., 2004). 

Global Efficiency —defined as: 

𝐸௚ ൌ
1

𝑁ሺ𝑁 െ 1ሻ
෍

1
𝑑௜௝௜ஷ௝

 , (3)

where N represents the number of nodes in the graph and the geodesic distance between i and j. 

It is defined as the average of the inverse of the geodesic length and represents the efficiency of the 

communication between all the nodes in the network (Latora and Marchiori, 2001).  

Local Efficiency — defined as: 

ijG ijA

ij

iL ijd

ijd
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𝐸௟ ൌ
1
𝑁

෍ 𝐸௚ሺ𝑆௜ሻ
ே

௜ୀଵ

 , (4)

where N represents the number of nodes in the graph and the sub-graph achieved by deleting the 

ith row and the ith column from the original graph. 

It is the average of the global efficiencies computed on each sub-graph belonging to the network 

and represents the efficiency of communication between all nodes around node i in the network 

(Latora and Marchiori, 2001).  

Clustering Coefficient— defined as: 

𝐶 ൌ
1
𝑛

෍ 𝐶௜ ൌ
1
𝑛

෍
𝑡௜

൫𝑘௜
௢௨௧ ൅ 𝑘௜

௜௡൯൫𝑘௜
௢௨௧ ൅ 𝑘௜

௜௡ െ 1൯ െ 2 ∑ 𝐺௜௝𝐺௝௜௝∈ே௜∈ே௜∈ே

, (5)

where  represents the number of triangles involving node i,  and  are the number of 

incoming and outgoing edges of nodes i respectively, and Gij is the entry ij of adjacency matrix G.  

It describes the intensity of inter-connections between the neighbours of a node (Watts and 

Strogatz, 1998). It is defined as the fraction of triangles around a node or the fraction of a node’s 

neighbours that are neighbours of each other (Fagiolo, 2007).  

Small-Worldness — A network G is defined as a Small-World network if  and 

, where  and  represent the characteristic path length and the clustering 

coefficient of a generic graph and  and  represent the corresponding quantities for a 

random graph. On the basis of this definition, a measure of Small-Worldness of a network can be 

defined as 

𝑆𝑊 ൌ

𝐶ீ
𝐶௥௔௡ௗ

ൗ

𝐿ீ
𝐿௥௔௡ௗ

ൗ
  , (6)

A network has the property of small worldness if SW > 1. 

It is also defined as a measure of the level of organization in a network (Watts and Strogatz, 1998). 

In this paper we used the formulation of (Humphries and Gurney, 2008). 

To be validated against the null case, the values achieved for global indices characterizing the 

connectivity networks (local efficiency, clustering coefficient, Small-Worldness) were statistically 

compared (independent samples t-test, p<0.05) with those computed on 50 random graphs 

generated by imposing the same number of connections of the corresponding real networks, 

iS

it
in
ik out

ik

randG LL 

randG CC  GL GC

randL randC
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randomly shuffled among all possible positions in the network. Such an approach provided 

assurance that the differences in graph indexes found between different phases of the microsleeps 

were not due to differences in the density of the corresponding estimated networks.   

Local Indices 

Density — defined as 

𝑘 ൌ ቌ
1

𝑁ሺ𝑁 െ 1ሻ
෍ ෍ 𝐺௜௝

ே

௝ୀଵ

ே

௜ୀଵ

ቍ ∙ 100 , (7)

where N is the number of nodes in the network and 𝐺௜௝ represents the entry (i, j) of the adjacency 

matrix G.  

It is defined as the percentage of existing connections in a network over the total. The density index 

can also be computed on particular sub-networks extracted from the complete network. In the 

present work, we computed the density index in cortical regions located in the anterior part of the 

brain (anterior density) or right hemisphere (right density). In particular, for the computation of 

anterior density and right density indices we considered anterior areas to comprise ba10L, ba8L, 

ba9/46L, ba10R, ba8R, and ba9/46R, and right hemisphere areas to comprise ba10R, ba8R, ba5R, 

ba7R, ba19R, and ba9/46R.  

Degree— defined as 

𝑤௙ ൌ ෍ 𝐺௙௝ ൅
௝∈ே,௝ஷ௙

෍ 𝐺௜௙

௜∈ே,௜ஷ௙

  , (8)

where gij represents the entry ij of the adjacency matrix G. 

The degree of each node is the number of links connected directly to that node. In directed 

networks, the in-degree of a specific brain region is the number of inward links and the out-degree 

is the number of outward links (Sporns et al., 2004).  

The values achieved for global indices (local efficiency, clustering coefficient, Small-Worldness) 

were statistically compared (independent samples t-test, p<0.05) with those computed on 50 

random graphs generated by imposing the same number of connections of the corresponding real 

networks (van Wijk et al., 2010). 
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3. Results 

3.1. Behavioural Microsleeps 

Twenty subjects were involved in the study, among which 14 had frequent microsleeps (≥ 36 during 

the 50 min of recording) and, of these, 10 had reasonably good 64-channel EEG (the other 4 had too 

many serious artefacts).  Thus, we report here the results obtained from these 10 subjects (6 males / 

4 females, mean age 30.4 years). They had an average of 89.0 microsleeps (36–188) with a mean 

average duration of 3.6 s (1.3–6.3 s).  

3.2. Connectivity Analysis 

Time-varying connectivity patterns elicited during the ON-phase in the group of subjects are shown 

in Fig. 2a and 2c, for theta and alpha bands, respectively (see Methods for details about the 

estimation of time-varying connectivity and the statistical group analysis). As for the theta band, the 

cortical patterns in Fig. 2a reveal a connectivity network, statistically different from the baseline 

condition, commencing 500 ms prior to the onset of the microsleep. From 250 ms before the 

microsleep onset we see a pattern which reinforces during the microsleep. In particular, we found 

two connectivity patterns, one composed by fronto-parietal connections, mainly involving right-

parietal/left-frontal areas starting in the interval [-500;-250]ms before microsleep onset and one 

involving right-parietal/right-frontal areas 250 ms before microsleep onset. A close communication 

within frontal areas (left and right hemispheres) commences in the interval [-500;-250] ms before 

microsleep onset and persists during the microsleep, whereas a strong inter-connection between 

parieto-occipital areas occurs immediately following the microsleep onset.  

In order to highlight the role of each cortical region in the elicited networks, we have also 

represented the in-degree and out-degree indices of each ROI on the same cortex model (see 

Methods for details about the degree computation). The degree analysis results for the ON-phase 

are shown in Fig. 2b and 2d, for theta and alpha bands. In particular, results in theta (Fig. 2b) points 

out a role of right parieto-occipital areas, mainly ba7R, as main target of information flows (high in-

degree) and a role of left frontal areas as main driver of the network (high out-degree). This is kept 

for all the microsleep duration. Moreover, ba10R shows a role as main target of information flows 

in the interval [-250 ; 500] ms according to the microsleep onset. Taken all together, these results 

highlight the existence of a fronto-parietal network directed from bilateral frontal regions (mainly 

left) to right parieto-occipital cortical areas. Such network is established before and during the 

microsleep event. Results in alpha band confirm the same patterns and the corresponding role of 

considered ROIs (see Fig.2c-d). 
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The results of the group analysis performed, as described in Methods section, on connectivity 

patterns elicited during the OFF-phase in theta and alpha bands are shown in Fig.3a-3c. The cortical 

networks resulting in the period [-750 ; 0] ms according to the end microsleep confirm the pattern 

obtained after the microsleep onset (right-parietal/left-frontal areas and right-parietal/right-frontal 

areas). Moreover, in the interval [-250 ; 0] ms before the end of microsleep, the connection between 

ba9/46_L and ba10_R disappears. 

Fronto-parietal connections persist up to 250 ms beyond the end of the microsleep and then slowly 

disappear. The degree analysis results (Fig. 3b–3d) point out an involvement of left frontal areas 

(ba9/46L, ba10L) similar to the one obtained during the ON-phase. Such role is gradually reduced 

toward the end of the microsleep until its disappearance. A similar behaviour is found for ba7_R. 

3.3. Graph Theory Analysis 

Local Indices 

To further investigate the properties of the networks obtained by the connectivity analysis, specific 

graph theory indices are computed (see Methods for mathematical details about the graph indices 

adopted). Fig. 4a,c shows an increase of the anterior density and right density indices along the five 

time intervals analysed during the ON-phase. The same indices decreased in the window around the 

end of a microsleep in the OFF-phase (Fig. 4b,d).  

 

Global Indices 

Fig. 5 shows the results of a statistical comparison between the local efficiency index (see Online 

Methods) computed during microsleeps onset and conclusion, and correspondent random networks, 

in the theta band. In particular, significant differences between real and random networks resulted in 

the 0–250-ms interval following the microsleep onset (Fig. 5a) with a higher local efficiency of the 

microsleep network with respect to random networks. A substantial decrease in the local efficiency 

index can be seen toward the end of the microsleep (Fig. 5b). This index is significantly higher than 

that of random networks until ~250 ms prior to the end of the microsleep.  

 

Results related to the clustering coefficient index are reported in Fig. 6, and show significantly 

higher values for real networks with respect to the random ones in all of the intervals, with an 

increase along the microsleep onset. In contrast, a decreasing trend can be seen during the OFF-
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phase. Significant differences between microsleep and random networks are observed during the 

microsleep and disappear immediately after.  

Finally, results related to the Small-Worldness index are reported in Fig.7, and show a trend similar 

to the clustering coefficient.  

Similar results for all the indices here reported were obtained for the alpha band. 

4. Discussion 

This paper is the first to report on changes in time and frequency characteristics of the information 

flow between multiple cortical areas during spontaneous behavioural microsleeps. This could be 

achieved by the use of advanced methods for the estimation of time-varying effective connectivity 

in conjunction with the knowledge about the physiological correlates of microsleeps from previous 

studies. 

Spatial characterization of microsleeps 

The current EEG data were collected simultaneously with fMRI (Poudel et al., 2014). Results of 

fMRI analysis performed on this experiment and reported elsewhere (Poudel et al., 2014) revealed 

decreased activation associated with microsleeps in several brain regions bilaterally, including the 

midbrain, thalamus, posterior cingulate cortex, and occipital cortex, and small clusters in the right 

prefrontal cortex and cerebellum. At the same time, fMRI revealed increased activation in several 

cortical areas, particularly in parietal regions encompassing the bilateral postcentral, superior 

parietal, and supramarginal cortices. Although fMRI has provided immensely valuable insight into 

the 3-D spatial attributes of microsleeps (Poudel et al., 2014), its relatively long sampling interval 

(2.5 s) seriously limits its ability to reveal spatiotemporal aspects of neural activity related to 

microsleeps. In contrast, the high temporal resolution of EEG, together with the powerful 

multivariate analysis of connectivity, goes a long way to fill this gap by identifying time-resolved 

information flow between different key areas in the cortex. 

Spectral characterization of microsleeps 

A previous study (Peiris et al., 2006) showed that microsleeps during an extended continuous 

visuomotor task, similar to the one we used in the current study, are associated with increased 

power and positive correlations in the delta, theta, and alpha bands and decreased power in the beta, 

gamma, and higher bands, even if the correlations between EEG band power and definite 

microsleeps are low. Other studies have shown a correlation between theta activity and drops in 

performance on a pursuit tracking task (Poudel et al., 2010) and a simulated driving task (Lin et al., 
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2005a). The theta and alpha bands, moreover, are involved in cerebral processes related to alertness, 

attention and their loss due to pathological or fatigue phenomena (Chua et al., 2014; Song et al., 

2014; Wascher et al., 2014). The connectivity analysis performed in the present study was therefore 

focused on theta and alpha bands. 

Connectivity Analysis 

In contrast to the studies focusing on changes in the EEG spectral power during lapses, the focus of 

the present study was on determining time-frequency changes in causal connections between 

cortical areas. By comparison with baseline connectivity during alert performance, we revealed 

characteristic connectivity patterns in the theta and alpha bands arising immediately following and, 

importantly, prior to the onset of a microsleep.  

We focused on both the microsleep onset and its transition to awakening. As for the microsleep 

onset, we can observe a characteristic connectivity pattern establishing prior to the behavioural 

signs of microsleeps occurrence and persisting for the entire duration of the event. As for the 

transition to awakening, characteristic changes in connectivity patterns were observed prior to, and 

following, the behavioural end of microsleeps. These changes clearly reflect the neural processes 

and mechanisms (in terms of information flow) underlying recovery from microsleeps.  

Our connectivity results show how the areas identified by fMRI studies as involved in microsleep 

processes (Poudel et al., 2014) communicate with each other before, during, and after microsleeps. 

To our knowledge, such description of the circuit underlying the process of microsleeps is 

unprecedented in literature, as well as the definition of markers, based on brain networks properties, 

able to track the process of microsleep in time with the resolution of milliseconds. 

Three sub-networks were mainly associated with microsleeps: 

1) Left-frontal/right-frontal - This network is associated with the period of 500 ms preceding 

the microsleep, persists for the duration of the event and reduces toward the end of 

microsleep. The involvement of frontal areas in microsleeps indicates a residual activity of 

these areas which usually deactivate during non-REM sleep, as demonstrated by PET 

(Achermann et al., 2001; Maquet et al., 1997). The increase of anterior density index along 

the temporal evolution of microsleep events supports this finding. 

2) Right-parietal/left-frontal - This network, too, appears in the interval [-500;-250]ms before 

the event onset, persists for the duration of the microsleep and characterizes both the 

beginning and the end of the event. The presence of an increase of fronto-parietal network is 

an important feature which allows the distinction between microsleeps and all the other 
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levels of sleep. In fact, several neuroimaging studies have demonstrated the reduction of 

fronto-parietal connections, until their complete disruption, in accordance with the level of 

sleep depth (Spoormaker et al., 2012; Sämann et al., 2011; Horovitz et al., 2008). Network 

modularity (a measure of functional segregation) has been found to increase during deeper 

sleep stages highlighting the interruption of communication between frontal and parietal 

areas (Tagliazucchi et al., 2013).  

3) Right-parietal/right-frontal - This sub-network appears in the interval [-250;0] ms before 

microsleep onset and persists for the duration of the event. The strong involvement of the 

right hemisphere before and during the microsleep event, in the theta band, could be 

attributed to the loss of attention during microsleep, being such hemisphere associated to 

this important cognitive function (Asplund et al., 2010; Corbetta and Shulman, 2002). 

Subsequent analysis of the connectivity network features by graph analysis allowed the synthesis of 

all the information reported in the estimated networks and characterization of their main properties. 

In particular, we found an increase in the Small-World index associated with the temporal evolution 

of the microsleep event. This feature of microsleep networks is in agreement with results reported 

by Ferri and colleagues who used graph theory to examine functional connectivity from EEG 

recordings of spontaneous activity in sleep. In particular, they found a Small-World-like network in 

sleep in theta and alpha bands (Ferri et al., 2008, 2007). The increase of local efficiency during 

microsleep onset and its decrease at the end of the event is consistent with networks associated with 

sleep, maintaining an optimal and efficient functional structure (Koenis et al., 2013). The increase 

of the clustering coefficient along microsleeps can be interpreted as  a modification of the 

hierarchical organization of large-scale networks into smaller independent modules. Such result is 

consistent with the dynamics of effective connectivity and the emergence of functional clusters 

while recording spontaneous EEG activity during sleep (Dimitriadis et al., 2009).  

The time-varying approach led to identification and temporal characterization of the networks 

associated with the occurrence of and recovery from microsleeps. Probably of greatest real-world 

importance is the presence of changes in connectivity patterns seen up to 500 ms prior to 

microsleeps. That there are characteristic changes in brain activity preceding microsleeps, when one 

is struggling to counter the overpowering homeostatic urge of the brain to take a rest/nap from the 

current active task, is not surprising. In fact, Davidson et al. (2007), using a long short-term 

memory (LSTM) recurrent neural network, showed that information in the EEG spectra up to ~4 s 

prior to a microsleep can be used to improve microsleep detection. This raises the possibility of 

being able to use multi-channel EEG to predict the onset of microsleeps and, hence, initiate, say, 
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auditory or vibratory stimuli to arouse the user and prevent the occurrence of the microsleep and, in 

turn, potentially prevent a injurious/fatal/multi-fatality lapse of responsiveness in a vehicle-driver, 

pilot, air-traffic controller, anaesthetist, machine operator, or military personnel. Although we were 

able to reveal connectivity changes up to 500 ms preceding the onset of microsleeps, this does not 

exclude the possibility of changes having occurred even earlier, as we had somewhat arbitrarily 

chosen a minimum inter-microsleep-interval of 500 ms in our study. Further studies are needed to 

systematically investigate the dimension of the temporal window in which such microsleeps could 

be predicted. While preliminary, and needing replication in a larger sample, the EEG-based findings 

from this paper, together with findings from fMRI-based studies (Poudel et al., 2014), contribute 

substantially to our understanding of the neural mechanisms underlying the often fatal phenomena 

of microsleeps. 

In conclusion, the application of advanced methodologies for cortical sources reconstruction, time-

varying connectivity estimation, and graph theory analysis has led to improve the understanding of 

neurophysiological basis of microsleep events. In fact, this combination of methodologies allowed 

the spatial limitations of EEG technique to be minimized while maximizing the benefits of its high 

temporal resolution, so as to provide a spatio-temporal characterization of microsleep events. In 

summary, microsleep networks are characterized by an involvement of frontal and fronto-parietal 

sub-networks. In addition, the networks are asymmetric in favour of the right hemisphere, show 

Small-World properties, and tend to create clusters. The high temporal resolution of EEG and thus 

of the time-varying approach for effective connectivity estimation allowed us to follow the temporal 

evolution of microsleep events and to find a set of neurophysiological features that could potentially 

be used as predictors of behavioural microsleeps. 
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Fig. 1. a-b) Scheme of the two time windows (a: on-phase and b: off-phase) considered in the experiment for behavioral 

microsleeps events (red) and baseline (green) conditions. c) Graphical representation of the cortex model and regions of 

interest (ROIs). The model is the Colin template, MNI Institute. ROIs considered in study included the Brodmann Area 

(ba): 19L/R, 7L/R, 5L/R, 8L/R, 9/46L/R, 10L/R. 
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Fig. 2. a-c) Statistical group patterns of connectivity from N=10 subjects during the ON-phase in theta (panel a) and 

alpha (panel c) bands. Each network  is related to a specific time interval defined according to the microsleep onset: (-

500 ; -250) ms, (-250 ; 0) ms, (0 ; 250) ms, (250 ; 500) ms, (500 ; 750) ms (BM – behavioral microsleep). Connectivity 

patterns are represented on the realistic cortical model used for the analysis, which is seen from above, with the nose 

pointing to the bottom of the figure. Each connection between two cortical regions is represented by means of an arrow, 

whose colour and diameter code for the corresponding PDC value averaged in the population. The cortical regions of 

interest (ROIs) are highlighted with different colours (see Figure 1c for ROIs labels). b-d) Graphical representation of 

in-degree and out-degree indices computed for each ROI. Patterns are referred to the intervals defined in panels a and c. 

Circles colour and diameter code for the degree of the corresponding ROI (in-degree in red, out-degree in blue). 
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Fig. 3. a-c) Group statistical patterns of connectivity from N=10 subjects during the OFF-phase in theta (panel a) and 

alpha (panel c) bands. Each network  is related to a specific time interval defined according to the microsleep end: (-750 

; -500) ms, (-500 ; -250) ms, (-250 ; 0) ms, (0 ; 250) ms, (250 ; 500) ms (BM – behavioral microsleep). Connectivity 

patterns are represented on the realistic cortical model used for the analysis, which is seen from above, with the nose 

pointing to the bottom of the figure. Each connection between two cortical regions is represented by means of an arrow 

whose colour and diameter code for the corresponding PDC value (averaged in the population, see colour bar). The 

cortical regions of interest (ROIs) are highlighted with different colours (see Fig.1c for ROIs labels). b-d) Graphical 

representation of in-degree and out-degree indices computed for each ROI. Patterns are referred to the intervals defined 

in panels a and c. Circles colour and diameter code for the degree of the corresponding ROI (in-degree in red, out-

degree in blue). 
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Fig. 4. Time-varying trend (mean ± SD) of anterior areas density index (panels a and b) and right hemisphere density 

index (panels c and d) computed on the networks elicited in the theta band during the onset (panels a and c) and the end 

(panels b and d) of microsleeps events. Average values (N=10) computed for the five time intervals defined according 

to the onset and the end of microsleep (same intervals reported in Figs. 2,3). The microsleep time window is marked in 

grey. The periods preceding and following microsleeps are reported in white. 
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Fig. 5. Statistical comparison between local efficiency index (mean ± SD) computed on microsleeps (star markers) and 

corresponding values computed for random networks (square markers) in the theta band, during the onset (panel a) and 

end (panel b) of microsleep events. Average values (N=10) computed for the five time intervals defined according to 

the onset and the end of microsleep (same intervals reported in Figs. 2,3). The microsleep time window is marked in 

grey. The periods preceding and following microsleep events are highlighted in white. The light grey circles indicate a 

significant difference between real and random networks (p<0.05). 
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Fig. 6. Statistical comparison between the clustering index computed on microsleeps (mean ± SD; star markers) and 

corresponding values computed for random networks (square markers) in the theta band, during the onset (panel a) and 

end (panel b) of microsleep events. Same representation of the previous figure. 
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Fig. 7. Statistical comparison between Small-Worldness computed on microsleeps (mean ± SD; star markers) and 

corresponding values computed for random networks (square markers) in the theta band, during the onset (panel a) and 

end (panel b) of microsleep events. Same representation of the previous figures. 

 


