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Abstract

A growing body of literature suggests that changes in consciousness are reflected in specific
connectivity patterns of the brain as obtained from resting state fMRI (rs-fMRI). As simultaneous
electroencephalography (EEG) is often unavailable, decoding of potentially confounding sleep
patterns from rs-fMRI itself might be useful and improve data interpretation. Linear support vector
machine classifiers were trained on combined rs-fMRI/EEG recordings from 25 subjects to separate
wakefulness (SO) from non-rapid eye movement (NREM) sleep stages 1 (S1), 2 (S2), slow wave sleep
(SW) and all three sleep stages combined (SX). Classifier performance was quantified by a leave-one-
subject-out cross-validation (LOSO-CV) and on an independent validation dataset comprising 19
subjects. Results demonstrated excellent performance with areas under the receiver operating
characteristics curve (AUCs) close to 1.0 for the discrimination of sleep from wakefulness (SO|SX),
S0|S1, SO|S2 and SO|SW, and good to excellent performance for the classification between sleep
stages (S1|S2:~0.9; S1|SW:~1.0; S2|SW:~0.8). Application windows of fMRI data from about 70
seconds were found as minimum to provide reliable classifications. Discrimination patterns pointed
to subcortical-cortical connectivity and within-occipital lobe reorganization of connectivity as
strongest carriers of discriminative information. In conclusion, we report that functional connectivity

analysis allows valid classification of NREM sleep stages.
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1. Introduction

Studying brain functional connectivity by the use of resting state functional magnetic resonance
imaging (rs-fMRI) has become a widely used analytical tool to investigate brain function in vivo
(Biswal et al. 2010; van den Heuvel and Hulshoff Pol 2010). Recently, rs-fMRI connectivity has been
proposed as an intermediate phenotype for psychiatric and neurological disorders (Meyer-
Lindenberg and Weinberger 2006; Seeley et al. 2009; Fornito et al. 2013). However, the quest of
translating rs-fMRI to biomarker applications and its use as a phenotyping technique requires
standardization of acquisition schemes and postprocessing strategies that control for various signals
of non-neuronal origin.

Besides minimizing potentially spurious results through adequate consideration of cardiovascular
signals, motion and global signals (Cole et al. 2010; Van Dijk et al. 2012), there remain factors during
rs-fMRI acquisition itself that impact the reliability of functional connectivity measures: Besides
acquisition length (Van Dijk et al. 2010), one potential obstacle during the acquisition of rs-fMRI data
is the type of experimental instruction with regard to eyes closed versus eyes open (with or without
fixation) (Patriat et al. 2013; Tagliazucchi and Laufs 2014). Most functional connectivity analyses
further assume an analytical signal that is relatively stationary within the recording interval (see
Hutchison et al. (2013)), which is in contrast to observations of fluctuating cognitive states and
vigilance levels during states referred to as ‘wakeful resting’ (Christoff et al. 2009; Christoff 2012). By
now these temporal fluctuations in functional connectivity have become a subject of investigation
themselves (Chang and Glover 2010). Changes of vigilance levels are especially likely if the resting-
state scan is either performed after several other MR acquisitions during which no cognitive task is
performed, or if it follows a series of cognitively demanding experimental tasks: subjects may then
change their focus and drift from wakefulness into periods of light sleep. Additional variability may
be expected in patient samples with current medication that promotes or inhibits sleep, symptoms

affecting sleep or comorbid sleep disorders, or anxiety during the scan that increases vigilance.
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Although the brain's high metabolic activity and most spontaneous activity as measured with fMRI is
preserved during periods of light sleep or low-level sedation (Fukunaga et al. 2006; Greicius et al.
2008), there is now an increasing body of evidence for vigilance-stage specific changes of functional
connectivity (see Picchioni et al. (2013) for a review). In line with results of earlier studies using
simultaneous electroencephalography (EEG) and positron emission tomography (PET) (Braun et al.
1997; Maquet 2000), recent EEG-fMRI experiments reported decreases in frontoparietal (Horovitz et
al. 2009; Larson-Prior et al. 2011; Sdmann et al. 2011) and thalamocortical connectivity (Spoormaker
et al. 2010; Picchioni et al. 2014), but preserved or increased functional connectivity of unimodal
sensory cortices (Larson-Prior et al. 2011) during non-rapid-eye movement (non-REM) sleep. In REM
sleep, functional thalamocortical connectivity was found to differentiate tonic and phasic REM sleep
(Wehrle et al. 2007). Furthermore, in non-REM sleep a sleep-stage specific reorganization of nodes of
the default mode network (DMN) and its anti-correlated network has been reported (Sdmann et al.
2011), with a dynamic functional connectivity analysis pointing to significant changes in connectivity
already during transition to sleep stage 1. This is closely related to the direct effect of objectively
lower vigilance and increased sleep pressure, as induced by sleep deprivation, which modulates
functional connectivity of the DMN and other resting state networks (Sdmann et al. 2010; De Havas
et al. 2012). Finally, higher order measures of network features derived from rs-fMRI time series such
as small-worldness (Spoormaker et al. 2010) or temporal autocorrelation patterns (Tagliazucchi et al.
2013) were reported to undergo changes in sleep.

To date, most rs-fMRI studies do not control for the state of vigilance during the scan, or document
whether subjects have had normal sleep before the scan or control for the subject’s circadian rhythm
(e.g., morningness-eveningness type). A recent study revealed that in about one third of typical
resting state scans loss of wakefulness occurs within 3 minutes (Tagliazucchi and Laufs 2014). Taking
into account the aforementioned results of studies on sleep and sleep deprivation, with considerable
effect sizes for functional connectivity changes, it is likely that changes in vigilance systematically

confound functional connectivity analyses. This risk holds particularly for case-control studies in
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which one group is more inclined to have altered vigilance, perhaps due to disease status,
medication effects or potential comorbidity with sleep disorders. Similarly, the interpretability of
genetic associations gained from imaging genomic samples may be impacted by this confound.
Besides behavioral assessment such as the psychomotor vigilance task, EEG is the most objective
method to track levels of vigilance, sleep onset and sleep depth (e.g., according to the criteria by
Rechtschaffen and Kales (1968) that recently have been revised by the American Academy of Sleep
Medicine (AASM 2007)). However, the special equipment for simultaneous EEG-fMRI acquisition is
often unavailable, and even if available, setup of the EEG device is uncomfortable and time-
consuming, thus posing an additional burden on fMRI studies. Hence, if behavioral state is controlled
at all, most studies rely on post-acquisition self-reported vigilance levels (Fox and Raichle 2007).
However, such subjective ratings of sleep features may be unreliable as known from clinical
observations (Vanable et al. 2000).

A recent development in the analysis of rs-fMRI data is the application of multivariate models such as
support vector machines (SVM) (Pereira et al. 2009; Richiardi et al. 2011). Examples for the
application of multivariate models in the analysis of rs-fMRI include maturation of the brain
(Dosenbach et al. 2010), classifying healthy controls from patients with various psychiatric and
neurodegenerative disorders (Supekar et al. 2008; Cecchi et al. 2009; Richiardi et al. 2012) or to
decode task specific brain activities in healthy subjects (Richiardi et al. 2011; Shirer et al. 2012).
Recently, Tagliazucchi et al. (2012) presented a report on predicting sleep stages from connectivity
patterns in rs-fMRI using a pre-defined set of functional regions-of-interest (ROls) and SVM with non-
linear kernels. Later, Tagliazucchi and Laufs (2014) entered a broader set of connections from a
whole brain parcellation to train and later apply SVM-based classifiers on independently acquired rs-
fMRI samples.

In line with this work, the present study further elaborates the possibilities of classifying sleep-wake
states within rs-fMRI data. To this end, we trained a statistical model for inferring the respective

sleep stage on the basis of a previously published EEG-validated rs-fMRI dataset and a second
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independent sample acquired later. We systematically assessed the classification performance by
using separate training and validation data, and employing a leave-one-subject-out cross-validation
(LOSO-CV) procedure to avoid overestimating the classifier’'s performance. Moreover, we
investigated the minimum acquisition length required for reliable predictions and unlike previous
studies we did not use the same length for training and applying the classifier but investigated effects
of different training length and application length separately.

For training the sleep-stage classifier, we made use of linear support vector machines (SVMs), which
have the inherent advantage that resulting models are interpretable, i.e., one can derive a weight
value per single rs-fMRI connection that can be interpreted in terms of importance of that
connection for the classification. While previous work has successfully demonstrated the feasibility of
predicting sleep stages from rs-fMRI connectivity patterns using support vector classification
(Tagliazucchi et al. 2012), the black-box nature of the employed non-linear SVM kernels hampers the
elucidation of the respective underlying predictive connectivity networks. Although there are
methods for deriving importance values of single features even from such black-box classifiers
(Guyon et al. 2002), these are often computationally intensive and typically do not take advantage of
the non-linear nature of the classifier. Even though interpreting linear SVM is feasible in theory, it is
often challenging with a large number of features in play. This holds in particular for settings in which
the features themselves are highly correlated among each other, such as functional connections in
the brain. Thus, in most empirical settings the actual importance value of correlated features is
distributed across the entire correlated group (Altmann et al. 2010; Tolosi and Lengauer 2011). As a
result in our application, a single connection may seem unimportant, while in fact it merely belongs
to a larger correlated group of important functional connections. Thus, in addition to extracting
importance weights for single connections, we employed the concept of reduced and increased
connectivity indices (Richiardi et al. 2012) to provide a two dimensional view of resulting

discriminative connectivity patterns.
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2. Material and Methods

2.1. EEG-fMRI Acquisition, EEG Sleep Stage Rating and FMRI Preprocessing

EEG-fMRI acquisition: We used two datasets comprising simultaneous EEG-fMRI recordings across

wakefulness and NREM sleep stages. The training set was based on previously published recordings
(Spoormaker et al. 2010) (25 subjects, 24.7+2.8 years, instructed to try to fall asleep). A second,
independent validation set was derived from an EEG-fMRI study unrelated to sleep that included
longer resting state recordings (Kiem et al. 2013) (19 males, mean 27.0+2.7 years, instructed to try to
stay awake). In both cases, subjects were instructed to rest in the scanner with their eyes closed.
Recording times were 9 pm in the training sample (Spoormaker et al. 2010) and 4 pm in the
validation sample (Kiem et al. 2013). EEG-fMRI acquisition techniques of the two datasets were
highly similar and postprocessing steps as detailed below were identical. Polysomnographic
recordings were performed using an MR-compatible EEG system placed according to the
international 10/20-electrode system with 19 channels and additional electrooculography, submental
electromyography and electrocardiography (sampling rate 5 kHz; bandpass filter of 0.5-30 Hz;
EasyCAP modified for sleep, Hersching, Germany; VisionRecorder Version 1.03, BrainProducts,
Gilching, Germany). After offline artefact removal (VisionAnalyzer 1.05, Brain Products, Gilching,
Germany), EEG data was scored according to the criteria of Rechtschaffen and Kales (1968) in 20-s
epochs (Vision RecView, BrainProducts, Gilching, Germany). FMRI of both datasets were recorded on
a 1.5 Tesla clinical MR scanner (General Electric, Milwaukee, USA; training dataset: model Signa;
validation dataset: recorded after upgrade to Signa Excite) using echo planar imaging through an 8-

channel head coil with parameters as follows: Training dataset: 25 AC-PC-oriented oblique slices, 3

mm thickness, 1 mm gap, TR 2000 ms, TE 40 ms, flip angle 90°, FOV 20 x 20 cm?, 64 x 64 matrix, in-
plane resolution 3.44 x 3.44 mm?) obtained as time series of 800 images (26.7 min). Validation

dataset: 28 AC-PC-oriented oblique slices, 4 mm thickness, 0.5 mm gap, TR 2000 ms, TE 30 ms, flip
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angle 90°, FOV 20 x 20 cm?, 64 x 64 matrix, in-plane resolution 3.44 x 3.44 mmz) obtained as time
series of 735 images (24.5 min).

Sleep stage rating: Generally, EEG data were screened by independent raters (not involved in the

later fMRI analysis) for 5-minute-epochs that comprised at least 85% of one behavioural state
(wakefulness, sleep stage 1, sleep stage 2 and slow wave sleep). Eventually, for the training dataset,
92 usable epochs were identified (27 wakefulness (S0), 23 sleep stage 1 (S1), 24 sleep stage 2 (S2),
and 18 slow-wave sleep (SW)); for the validation dataset, 42 epochs were identified (17 SO, 13 S1, 12
S2). Supplementary Table S1 provides a detailed account of the amount and stage of epochs

contributed by each subject in the training and the validation dataset.

FMRI preprocessing: FMRI data were processed using SPM5 (http://www.fil.ion.ucl.ac.uk/spm), FSL

vd.1l (http://www.fmrib.ox.ac.uk), and in-house software written in Matlab 2008b
(http://www.mathworks.de/products/matlab) and IDL v6.4 (http://www.creaso.com). The time
series comprised 144 images (150 images with first 6 images generally excluded due to potential
incomplete T1-equilibrium in wakeful epochs collected from the very beginning of an fMRI recording)
and underwent the following processing: (1) Correction of slice time differences, (2) realignment of
time series to the corresponding first image using rigid body transformation, (3) spatial normalization
to a standard EPI template in MNI space with interpolation to 3 x 3 x 3 mm® using standard linear
and nonlinear deformations (all in SPM5) and (4) brain extraction to remove soft tissues (Brain
Extraction Tool, FSL4.1). The time series was then residualized against the following regressors to
remove signal fluctuations of non-neural origin: (1-4) average time courses of the white matter and
CSF compartment and their 1% order derivatives, (5-16) movement regressors (six parameters
derived from the realignment procedure) and their 1* order derivatives. Eventually, time series of 90
automated anatomical labeling (AAL) atlas regions (Tzourio-Mazoyer et al. 2002) were extracted
(Supplementary Table S2). The cerebellum was excluded due to heterogeneous coverage across

subjects in the training dataset. Next, the time series were band-pass filtered in the range of 0.01-0.1
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Hz, using a 3" order Buttherworth filter and the Pearson’s product moment correlation coefficient (r)
was computed between each pair of ROIls. Finally, the feature vector was derived from the upper
triangle of the 90 x 90 correlation matrix; r values were converted to z-scores by Fisher’s transform

and stored in a vector of 4,005 elements per epoch.

2.2. Classifier and Classification Performance Measure

Linear support vector machine (SVM) classification with L2-regularization as implemented in libsvm
(Chang and Lin 2011) was selected as the classifier for this study (libsvm was accessed via the R-
package e1071). Prior to training the classifiers, each feature in the training dataset was scaled to
mean=0 and variance=1. The same transformation was then applied to the unseen instances in the
validation dataset. The cost parameter for punishing misclassifications on the training epochs (C) was
set to 1.0 prior to the respective experiment. Thus, no parameter optimization was performed.
Platt’s algorithm (Platt 1999) was used to extract class probabilities from the SVM classifiers. All
computations were carried out in R (Team 2013).

Performance of trained classifiers was measured using the area under the receiver operating
characteristics (ROC) curve (referred to as AUC). Classifiers provide decision scores and, as a user,
one is free to choose a threshold for the switch between the two classes to occur. The thresholds
result in different sensitivity and specificity of the classifier for the whole dataset. ROC curves simply
depict the sensitivity and specificity of a classifier at all possible thresholds. The area under this ROC
curve (AUC) is a convenient summary measure for the entire curve. The AUC ranges between 0.0 and
1.0. A value of 1.0 indicates the existence of a threshold that leads to perfect classification (100%
sensitivity at 100% specificity), whereas a value of 0.5 signifies random performance. The AUC can be
interpreted as the probability that a randomly selected instance from the first class receives a higher
score than a randomly selected instance from the second class (Fawcett 2006). In addition, the AUC
is closely related to the Wilcoxon test of ranks (Hanley and McNeil 1982). Thus, a higher AUC signifies

a better separation of the classes, i.e., a better classification performance. The advantage of the AUC
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is that it is a threshold-free way to assess classifier performance. We used the R-package ROCR (Sing
et al. 2005) for AUC computations. In the multi-class classification setting we computed the accuracy
(ACC), i.e., the fraction of correctly classified samples, due to the lack of an adequate ROC-based
measure for multi-class classification. Further, due to the sleep stage SW not being available in the
validation dataset, performance for the four-class setting could not be computed on the validation

dataset.

Classification performance was first assessed by using a leave-one-subject-out cross-validation
(LOSO-CV) procedure on the training dataset. Second, classifier performance was probed by applying
the classifiers trained on the training dataset to the epochs of the validation dataset. Briefly, in LOSO-
CV, all epochs from all-but one subject are used to train the classifier, and the epochs belonging to
the remaining left-out subject are used as independent test data for measuring classification
performance. This is carried out for each subject individually, thereby mimicking the application of
the classifier to novel data. While for most applications standard cross-validation (CV) is an
appropriate way to assess classifier performance, it may overestimate the performance when

multiple instances originate from the same individual, as present in this study.

2.3. Classification Experiments

We examined the impact of using subsets of the whole 5-minute epoch on classifier performance.
For training the classifier we first used the maximal usable length of the fMRI data in each epoch,
representing 288 seconds (144 volumes at TR 2000 ms), followed by successively shorter windows of
144,96, 72, 48, 36, and 24 seconds. Here, we followed two approaches: (i) use only the first n second
fragment of each epoch which keeps the amount of training data constant (termed single-window-
variant) or (ii) use all non-overlapping n second fragments of the epoch as separate training
instances, thus generating relatively more training instances for shorter fragments (termed multi-

windows-variant). For probing the impact of the fragment length when applying the classifier to new
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unseen epochs, we used the first window of n seconds length (using the same window sizes as
above). Performance measures were computed for all pairs of fragment lengths, using both the
single-window and the multi-windows variant.

We trained one SVM classifier for each pair of sleep stages, i.e., six binary classifiers to separate
between wakefulness (S0), sleep stage 1 (S1), sleep stage 2 (S2), and slow-wave (SW) sleep,
combining sleep stages 3 and 4. In addition, we trained one classifier separating between SO and any
other sleep stage (S1, S2, SW) by pooling the data on all sleep stages (termed SX). In order to derive a
multi-class classifier from the six binary classifiers we applied a standard voting scheme (Hsu and Lin
2002): each test epoch was scored by all six binary classifiers and the epoch was labeled with the
behavioral stage receiving the most votes. Possible ties were broken randomly. For further validation

the analysis was repeated with the roles of training and validation data swapped.

2.4. Model Decoding

Making use of the advantages of linear SVMs to interpret classification models more directly and to
facilitate decoding of the connectivity patterns discriminating between states, we analyzed the
models using the increased and reduced connectivity index (ref. to as IClI and RCI, respectively)
(Richiardi et al. 2012), as explained below.

SVM decoding: From the linear SVMs we extracted weights for each rs-fMRI connection. These
weights relate to the direction and importance of the single connection for the classification. Briefly,
during training the SVM classifier assigns a weight a; = 0 to each of the N training samples x; ; the
class for a new sample X is computed as:

N
f@) = sgn (Z a5, f)>,

i=1

where sgn is the sign function (i.e., returns -1 or 1), K is the kernel function, and y; is the class label
(either 1 or -1). Trainings samples with a; # 0 are called support vectors. In cases where we use a

linear kernel, i.e., K(x;, Z) = X, * X;, we can rearrange the formula into:

11



Altmann et al.
&) =sgn(¥- T, ayix,),
hence the connection weights are derived by a linear combination of the support vectors:
W= ng=1 ayix; -

Finally, in order to render the SVM connection weights between classifiers more comparable for
visualization purposes, we rescaled the SVM connection weights by a standard Z-transformation

(subtracting the mean weight and dividing by the standard deviation of the weights).

We used the permutation importance algorithm with 10,000 permutations (Altmann et al. 2010) to
identify connections that exhibit significantly large SVM weights. Briefly, permutation importance
works by randomly permuting the class labels N times and every time training an SVM with those
labels. Each SVM produces a set of SVM weights. The fraction of random SVM weights for a given
connection that is equal or larger than the unpermuted SVM weight is used as a p-value. This p-value
signifies whether the SVM weight is significantly larger than can be expected by chance or whether it

is within the area of expected variation.

Increased and Reduced Connectivity Index: We computed ICI and RCI by grouping overall functional

connectivity into ‘increasing and ‘decreasing’ connections based on the sign of the connection
weights provided by the SVM (ref. to as SVM weight). Briefly, in the SVM model each connection
between two ROIs receives either a positive or a negative SVM weight that indicate for which class
(and how strongly) the corresponding connection votes. The ICI for a single epoch is defined as the
weighted sum of all connection scores (i.e., scaled Fisher’s z-scores) with a positive SVM weight.
Correspondingly, the RCl is the weighted sum of all connection scores with a negative SVM weight. In
both cases the absolute value of the SVM weight is used to compute the weighted sum. Hence, each
epoch can be represented as a pair of its ICl and RCI, and allows visualization of discriminative

connectivity alterations between sleep stages as estimated by the SVM. We computed the ICI and

12
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RCI for epochs in the training dataset in the same LOSO-CV procedure that was also employed for
performance assessment. Further, ICl and RCI for epochs in the validation dataset were computed

using SVM trained on the entire training dataset.

2.5. SVM Sleep Stage Tracking

In order to exemplify the classifier’s capability to track changes in consciousness, we selected one
full-length scan (800 images; 26.7 min) based on the observation that the subject crossed all non-
REM sleep stages during one recording. The full-length scan was processed in the exact same way as
described above. In particular, the first six image volumes at the beginning of the fMRI recording
were discarded due to potential incomplete T1-equilirbium. Based on our results on suitable
application window sizes (Figure 1) we further analyzed the scan using a window of 96 s (48 volumes)
shifted by 4 s (two volumes). Prediction for the sleep stage was obtained using the multiclass
classifier. In addition, we used the SO|SX classifier to obtain a probability score for sleep (SX). Since
the subject originated from the training dataset, we used classifiers trained on data from all-but that
subject. Inter-rater agreement between predicted sleep stages and EEG derived stages was

measured using Cohen’s weighted kappa coefficient (k) with squared weights for disagreements.
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3. Results

3.1. Classifier Performance

The average performance of the classifiers for each combination of window lengths for training and
applying the classifier is depicted in Figure 1. Training the classifiers with connectivity scores
obtained from fragments of 24 s in the single-window-variant resulted in a performance close to
chance, regardless of the fragment length used for applying the classifier (Figure 1A). Once training
fragments were sufficiently long (=72 s), performance mostly depended on the fragment length for
which the classifier will be applied, with a peak found at a window length of 144 s. In contrast, using
the multi-windows-variant with all non-overlapping fragments from one epoch for training the
classifiers, there was no such drop in performance for short fragment lengths (Figure 1B). In fact,
performance mainly depended on the fragment length used for applying the classifier. The strongest
improvements of the multi-windows-variant over the single-window-variant were seen for the
shortest fragment length. Sizes of the training fragments of longer than 72 s led to no further
improvement but rather unchanged performance levels (Figure 1C).

A more differentiated view on the classifier performance for each task is provided in Figure 2 that
zooms into performance levels for maximum fragment length of 288 s for applying the classifier.
Here, in addition to the LOSO-CV accuracy the performance on the validation dataset is also
displayed. The LOSO-CV performance for most of the tasks was almost perfect with AUCs close to
1.0, except for the discrimination between S1|S2 and S2|SW with AUCs of ~0.9 and ~0.8,
respectively. As a general observation, performance levels were lower for separating adjacent sleep
stages than to separate stages with at least one interposed stage. Moreover, the multi-windows-
variant resulted in higher performance values and more stable classifiers as indicated by the slope of
the curve. This benefit was most pronounced for those classifications tasks that showed poor
performances at short training window length, such as S1|S2, S2|SW, and S1|SW. The task of
separating wakefulness from any sleep stage (SX) achieved close to perfect performance in the LOSO-

CV setting and on the validation dataset. Table 1 provides detailed information on the LOSO-CV
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results of the binary classifiers for the training dataset using the longest window of 288 s. Based on a
permutation test with 1,000 random relabelings of the training data, all classification results (AUC as
well as accuracy) were significant.

In the multiclass scenario, accuracy was 78% for a three-class classifier (SO, S1, and S2) on both
training (via LOSO-CV) and validation dataset (Figure 2). For comparison, random performance was
estimated to be about 35%. In the four-class setting (SO, S1, S2, and SW) the accuracy dropped
slightly to 70% on the training data. Notably, the performance of a random classifier was estimated
with 22% in the four-class case. In both cases, we observed a notable benefit of using the multi-
windows-variant over the single-window-variant for small window lengths up to 48 s.

In general, the performance on the validation dataset was almost indistinguishable from the
performance estimated using LOSO-CV on the training dataset. In addition, we swapped the roles of
the training dataset and the validation dataset and re-computed the classifier performance (Figure
S1). Again, performance for most tasks was very good (AUCs above 0.9) with the exception being

S1|S2 (peak LOSO-CV AUC of 0.8).

3.2. Model Decoding

SVM decoding: We computed the discriminative weights for each rs-fMRI connection for all six binary
classifiers and the SO|SX classifier from SVMs trained using the multi-windows-variant (48-s-
windows; Figure 3). The S0|S1 classifier has large weights for subcortical-cortical connections, in
particular thalamocortical connections; thus, pointing toward the relative importance of these
connections for the classification. To confirm this, we trained a classifier using only subcortical-
cortical connections on the training dataset and it achieved an AUC of 0.95 on the validation dataset.
Figure 4 provides a more detailed visualization of the discriminative connectivity pattern in
anatomical space based on the 41 connections that achieve a P<0.01 in the permutation importance
test (Figure S2 shows all 200 connections with P<0.05; Figures S3, S4 and S5 depict the connections

that achieve a P<0.01 in the permutation importance test for S0|S2, SO|SW and S1|SW,
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respectively). Here it becomes further evident that frontotemporal and frontoparietal connections
are stronger in S1 than in SO. Comparison among the discriminative patterns in the other classifiers
revealed that both for S0|S2 and for SO|SW the subcortical-cortical connections including the
thalamocortical connections lost their relative importance for the classification. Between SO and S2
as well as between SO and SW, connectivity of the middle and inferior occipital gyri to a group of
areas comprising the calcarine gyrus, lingual gyrus and the cuneus, decreased (hot colored areas in
OC-0OC-fields in SO|S2 and SO|SW part of Figure 3). By contrast, increases of connectivity between SO
and S2 as well as between SO and SW were observed between the calcarine gyrus and the lingual
gyrus as well as the cuneus (cool colored areas in the respective OC-OC-fields). Further, specific
parietal and limbic (mainly cingulate cortex) connections increased as well. The occipital lobe
reorganization was also observed in the SVM connection weights for S1|SW with additional strong
connections emerging from the calcarine gyrus to the contralateral calcarine gyrus and the bilateral
cuneus and lingual gyrus. There was no strong focal discrimination pattern for S1|S2 and S2|SW.
Finally, SO|SX combined the previous patterns between SO and individual sleep stages, mainly strong

thalamocortical connections and reorganization of connections within the occipital lobe.

Combined ICI/RCI plots for model decoding: A 2D-visualization of the SVM decision boundary as

represented by ICl and RCI is shown in Figure 5 for all six binary classification tasks for the training
dataset using LOSO-CV. Similar to the ROC-based performance measures, plots indicate that fewer
misclassifications occurred for more distant sleep states in terms of a larger average distance of the
individual epochs from the decision boundary. An exception is the classification between S2 and SW.
Here, many instances were close to the decision boundary and many misclassifications occurred. A
closer look at the distribution of ICI and RCI for each class and classifier helps interpreting these
results (Figure S6 in Supplementary Material): While between SO and either S1 or S2 the contribution
of positively weighted discriminative edges (ICl) stayed almost constant, the average RCl showed a

pronounced drop for the transitions from SO to either S1 or S2. That is, a large portion of brain
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connectivity increased when transitioning from wakefulness (S0) to light sleep (S1 or S2). When
comparing SO and SW there were changes of both, ICI and RCI, with the changes in positively
weighted discriminative edges (ICl) being more pronounced. The same holds true for S1 and SW.
Here the average of the negatively weighted discriminative edges (RCI) was found to be almost
indistinguishable between sleep stages, whereas the main changes in brain connectivity occurred in
ICI. That is, there was a decrease in large-scale brain connectivity when comparing SO or S1 to SW.
These general patterns were also observed on the single-subject level (Figure 5): As an example,
subject 22 showed stronger RCI values, for SO and S1 — which was even more pronounced for the
comparison SO and S2. When comparing SO to SW (or S1 to SW), changes for subject 22 were mainly
seen for ICI (reduction). Comparable ICI/RCI patterns were observed for the independent test

instances (Figure S7 in Supplementary Material).

3.4. SVM Sleep Stage Tracking

To exemplify the feasibility of our method and a potential application field, we recorded and tracked
sleep stages for a single subject over 27 min recordings across wakefulness and NREM sleep stages
(Figure S8). For the SO|SX classifier we employed a sleep probability cutoff of 0.75 to decide between
sleep and wakefulness. This cutoff was selected as it yielded both good sensitivity (0.86) and good
specificity (0.89) in the LOSO-CV on the entire training data. Overall, as measured by Cohen’s kappa
for inter-rater agreement, the fMRI-based sleep staging captured the changes from wakefulness to
the different sleep stages very well: k=0.75. The fMRI classifier missed short changes in the EEG-
based rating, but captured the overall trend. A short window at the beginning of the scan was two
stages apart while the remainder or the scan was well captured. Periods of SO were well recognized

and, in general, phases of sleep were rarely missed by the probability SX-based classifier.
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4. Discussion

Changes in consciousness are reflected in altered functional connectivity patterns of the brain as de-
monstrated by a growing literature (for reviews see: Boly et al. (2008); Larson-Prior et al. (2011);
Picchioni et al. (2013)). Here we employed rs-fMRI based whole-brain connectivity data to train linear
SVM classifiers to separate resting wakefulness from NREM sleep stages. Classification performance
was estimated in two fMRI datasets with EEG-validated sleep ratings using the LOSO-CV scheme.

In brief, classification performance was close to perfect for separating wakefulness (S0) from any
sleep stage (SX) (AUC values ~0.95). Performance based on the LOSO-CV scheme in the original
dataset differed only marginally from performance on the validation dataset, which points out good
generalizability of the linear SVM classifier to novel instances. As second probe of the generalization
capability the roles of the training and validation dataset were swapped. This procedure had
practically no impact on the classification performance, further corroborating the good overall
classification performance and generalizability for the SO|SX classification and most of the binary
classifications. For specific binary classifications, such as S1|S2, classification accuracy was lower
(AUC values 0.8-0.9), and subsequently, multiclass classification performance was around 75% which,
however, is still considered good in terms of multiclass problems. As expected from the rs-fMRI
literature on sleep, a better discrimination of more ‘remote’ sleep stages reflects the gradual
connectivity reorganizations that accompany the transitions from wakefulness to deep sleep,
although some processes such as thalamocortical connectivity might show a non-linear (e.g., U-
shaped) relation with sleep stages: here, transient loss of thalamocortical connectivity has been
observed in light sleep with (partial) recurrence in SW (Spoormaker et al. 2010; Picchioni et al. 2014).
A main reason for lower S1|S2 discrimination may be the actual presence of only weak to moderate
connectivity changes between these two sleep stages, as reported before on the first dataset using
different analysis approaches (Spoormaker et al. 2010; Samann et al. 2011) and as similarly observed
in the recent study of Tagliazucchi and Laufs (2014). In addition, classical scoring rules assessing

epochs of 20 to 30 s do not capture faster changes of neural activity. For example, transient EEG
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waveforms, such as K-complexes and sleep spindles, define occurrence of sleep stage 2, with the
Rechtschaffen and Kales rules stating: “(...) relatively long periods may intervene between these
events without the occurrence of a stage change. If less than 3 min of the recording which would
ordinarily meet the requirements for Stage 1 intervene between sleep spindles and/or K complexes,
these intervening epochs are to be scored Stage 2 (..)” (Rechtschaffen and Kales 1968). Some
connectivity changes, e.g., those accompanying sleep spindles (Andrade et al. 2011), may therefore
not be sustained enough to alter the average connectivity of a whole epoch of stage 2. Further, this
rule may foster misclassifications as the underlying brain state may in fact more resemble
‘intermittent stage 1’ (Himanen and Hasan 2000). Though this limitation is intrinsic to the accepted
gold standard chosen for this study, it is noteworthy that our growing-window-approach
demonstrated a minimum of about 1 minute of fMRI data needed until most classifiers stabilized

(Figure 1).

Our data confirm the very good reported classification accuracy for predicting sleep stages by an
SVM approach (Tagliazucchi et al. 2012; Tagliazucchi and Laufs 2014). One apparent performance
difference is a medium S2|SW classification accuracy in our work (AUC ~0.8) compared to an
accuracy of 0.95 for classifying between N2 and N3 in Tagliazucchi et al. (2012). Several factors may
play a role for this: First, Tagliazucchi et al. (2012) used mainly (20 of 22) functionally defined ROls
based on temporal ICA whereas we used a predefined anatomical parcellation (Tzourio-Mazoyer et
al. 2002). Using functionally defined ROIs could indeed protect from non-discriminating features
within an atlas ROl that reduce its discrimination power (Shirer et al. 2012). Later, Tagliazucchi and
Laufs (2014) used a whole brain parcellation with feature selection based on univariate comparisons,
yet, pairwise discrimination accuracies between sleep stages were not reported in detail. Further, as
cerebellar connections seem to play a role in the descent to sleep (Tagliazucchi and Laufs 2014), the
exclusion of these due to incomplete coverage in some subjects in our sample may have impacted

classifier performance to some degree. Second, the applied CV scheme differed in that we used the
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more realistic LOSO-CV while Tagliazucchi et al. (2012) relied on a standard 5-fold CV scheme, which
may result in instances from the same individual being used for building the classifier and for
assessing its performance. As this can lead to artificially increased performance values, we consider
the approach presented here more conservative. Third, the exact origin of the validation dataset:
Tagliazucchi et al. (2012) set aside the last 18 scans of a recording series for being used as validation
dataset. In contrary, the validation scheme described here likely involves less dependencies as at it
was acquired 2 years after the first dataset by different operators, after a substantial hardware
upgrade of the scanner (GE Signa to GE Signa Excite), and in the context of a different experimental
design with different instructions (see methods). The use of a different kernel in the SVM is unlikely
to be of large relevance, as the feature space is already large and should allow for linear decision
boundary (LaConte et al. 2005). In fact, Tagliazucchi et al. (2012) report little differences between a
polynomial kernel function and a radial basis function kernel. Further, the use of linear classifiers is
preferable as it facilitates a direct decoding of the model, which we did in extracting discriminative
weights for each connection and demonstrating respective IClI and RCl differences across sleep
stages.

We evaluated the effects of the (functional connectivity) window length used for training the
classifier and its application. For this, we screened all possible combinations of window lengths
during training and application; typically window lengths for training and application are set to be
identical (representing the diagonal of the matrix shown in Figure 1) (Shirer et al. 2012; Tagliazucchi
et al. 2012). Generally, the lack of a steep drop in performance when moving to rather short (58-72
s) time windows was noted. In addition, the asymmetry of the result matrix (B) compared with (A)
points out that the use of multiple non-overlapping shorter windows seems superior compared to
the use of a single larger time window of the same total length for classifier training. As the EEG-
validated sleep stage was assumed to be the same for all non-overlapping time windows of that
epoch, this pattern could indirectly point towards outlier features of some parts of the epoch that

reduce the classification performance of the whole epoch. Simply put, the benefit of the multi-
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window-variant over the single-window-variant of the same length is clearly due to the increased
sample size, whereas the benefit of the multiple short windows over the single full-length window is
more complex and may be due to sampling of connectivity changes that are non-stationary
throughout the 5 min epoch.

After having established a good classification performance of the classifier, we extracted discrimi-
native weights for each connection in each classification condition. This method allowed us to re-
construct the discriminatory patterns in anatomical space which facilitates both a comparison of our
results with other rs-fMRI connectivity studies on sleep and a comparison across different types of
analyses such as ICA, cross-correlation analysis and graph theory analysis (Spoormaker et al. 2010;
Andrade et al. 2011; Samann et al. 2011). In the present hypothesis-free approach, several discri-
minatory patterns were identified: First, a decrease of thalamocortical and generally subcortical-
cortical (all lobes) connectivity emerged as strong carrier of the discrimination between SO and S1,
with thalamocortical connections regaining strength in deeper sleep stages, as observed previously
(Spoormaker et al. 2010; Picchioni et al. 2013). Concurrently, widespread weak to moderate
connectivity increases were observed some of which were more transient (such as frontoparietal
connections) and some were lasting into deep sleep (such as frontolombic and parietolimbic
connections; compare S0|S1, SO|S2 and SO|SW). Generally, these observations are in line with
previous reports (Larson-Prior et al. 2009; Spoormaker et al. 2010; Spoormaker et al. 2012;
Tagliazucchi and Laufs 2014). A major impact for the discrimination between wakefulness and sleep
was found for the reorganization of connectivity within the occipital lobe that comprised parallel
decreases and increases. Decreasing connectivity of the calcarine cortex to contralateral occipital
regions in sleep (note blueish areas within OC-OC-fields of the SO|SW comparison, Figure 3) was
similarly reported in a seed-based connectivity analysis of our group (Spoormaker et al. 2012) and
parallels reports of increasing BOLD fluctuations in visual and somato-motor regions during light

sleep (Fukunaga et al. 2006; Horovitz et al. 2009). These latter reports focused on voxelwise
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fluctuation amplitudes or variance, yet, a full integration of these measures with connectivity
changes has not been achieved so far.

Despite the reorganization within the occipital lobe, decoupling of the occipital lobe from the
subcortical system as a whole was observed. Both observations are likely unrelated to the eyes-open
vs. -closed status as subjects were resting with their eyes closed from the start. Notably, signature
and distribution of functional connectivity changes of the visual cortex may also depend on the pre-
processing scheme (see supplemental of Tagliazucchi and Laufs (2014)). Either way, specific occipito-
temporal and temporoparietal connections showed gradual decline of connectivity from SO to deep
sleep, matching previous observations (Horovitz et al. 2009; Spoormaker et al. 2010; Samann et al.
2011). Frontal connectivity changes appeared as complex and heterogeneous, with sleep-associated
connectivity decreases to subcortical areas and (selected) occipital, limbic and parietal areas (e.g.,
angular gyrus).

One potential application of fMRI-based sleep staging is to screen resting state fMRI datasets to
exclude epochs during which subjects were not awake. Only recently, SVM based classifiers from
combined EEG-fMRI data of 30 subjects were applied to datasets of the 1,000 Functional
Connectomes Project (Biswal et al. 2010; Tagliazucchi and Laufs 2014): In brief, results point to sleep
occurring in a high proportion of cases which corroborates a long suspected confound for clinical (or
genomic) rs-fMRI studies (Samann et al. 2010; Séamann et al. 2011). Such an application needs
particularly good discrimination between wakefulness and light sleep: here, we report AUC-values of
~0.9 for SO|S1 discrimination with sensitivity and specificity values being both above 0.85. Overall,
this performance seems sufficient to screen larger datasets without losing too many data points due
to false classification as S1. While an influence of the instruction (eyes closed, eyes open [with or
without fixation]) on the resulting behavioral state is likely (Tagliazucchi and Laufs 2014), it should be
considered that connectivity patterns during wakefulness already differ between the various eyes-
states (Patriat et al. 2013). Therefore, extrapolation from classifiers built on eyes-closed datasets to

datasets with a different obtained with eyes-open instructions might lead to uncontrolled false
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classifications. Here we demonstrated by predicting the instances in the validation dataset that our
classifier generalizes well across hardware changes and different operators given the eyes-closed
instruction as well as identical postprocessing. Ideally, classifiers have to be rigorously validated (i.e.,
with available ground truth) on data from different instructions and hardware prior to their
application to a wide variety of acquisition settings as can be found in the 1,000 Functional
Connectomes Project.

Given the relatively short required window length for applying the classifier (about 1 minute), an-
other application is the construction of hypnograms from fMRI data (see Figure S8 for one long
epochs of 27 minutes). In this exploratory analysis our rs-fMRI-based sleep showed a good
agreement with the EEG-based gold standard (k=0.75). Thus, such hypnograms may provide a more
objective estimate of subjects’ vigilance states compared to self-reported vigilance. By employing
such an intermediate step, epochs of a specific vigilance state of interest can be extracted and
merged from longer recordings to ensure a homogeneous vigilance background.

Several limitations of this study need to be discussed: first, we built our classifiers on combinations of
fMRI data with 5 minute-epochs of one prevailing sleep stage. However, using continuous and
uninterrupted EEG epochs is not a prerequisite for training the classifier. Theoretically, the data basis
could have been larger if discontinuous but shorter time windows (e.g., 1-minute EEG-ratings) would
have been employed. Second, our validation dataset did not cover slow wave sleep (SW), which
rendered the independent validation of three of the six binary classifiers impossible. Third, the
optimal handling of global signal regression and other nuisance variables is still under discussion;
recent reports even suggest that individual decisions for global regression per epoch/recording may
be preferable (Chen et al. 2012). Here, we refrained from including the global signal as regressor due
to its close correlation with thalamic activity (Zhang et al. 2008) that may alter thalamocortical
connectivity patterns. Indeed, when applied to our data, the regression of global signal makes the
differences in thalamocortical connectivity between SO and S1 disappear (Figure S9 in the

Supplementary Material). Further, when conducting the LOSO-CV for SO|S1 the AUC of 0.93 (as
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gained by our original processing) drops to 0.84 after global signal regression. This indicates, that the
well-known thalamocortical disconnection in the transition from SO to S1 is an important carrier of
the classification performance, although the remaining information after global signal regression is
still useful. In conclusion, we would therefore not recommend a global regression step for rs-fMRI-
connectivity based sleep stage classification. Fourth, the behavioral instructions differed between the
training dataset, in which subjects were encouraged to fall asleep, and the validation dataset, in
which subjects were asked to try to stay awake. In the latter case, cognitive mechanisms may have
been activated that prevent falling asleep and that overlap with sleep promoting changes. Overall,
however, the results of the validation across samples suggest that the influence of specific brain
activity during wakefulness on the sleep stage classification is only minor. Fifth, our study protocol
did not aim at collecting REM sleep data, which limits a full description of sleep stage specific
connectivity. Still, for applications that aim at detecting intrusions of sleep into recordings of
presumed wakefulness, the lack of REM sleep in our data is less critical, as direct transitions from
wakefulness to REM are considered rare or even pathological events. Last, we used a broad band-
pass filter (0.01-0.1 Hz), accepting that classification results may be different for smaller bandwidths,

e.g., as observed for graph-theory analysis (Achard et al. 2006; Spoormaker et al. 2010).

Clearly, the classification approach presented here is only validated for rs-fMRI data from a single
research center. Further studies are required to elucidate which parameters are essential to a
successful transfer of such a classifier to other sites with different hardware and acquisition
parameters. Required changes may be trivial, such as adjusting the threshold between two sleep
stages (here a default of 0.5 was used), or essential, such as retraining the classifier under
consideration of the data distribution at the new site (e.g., transductive learning or learning under
covariate shift) or even requiring additional training data from the new site. Although done so
previously (Tagliazucchi and Laufs 2014), in our opinion, the application of a classifier trained in one
site to other sites with different hardware (field strength, coil) and sequence parameters still

contains an unknown risk of systematic classification shift or more noisy predictions. It should be
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emphasized, however, that in our work a successful transfer of the classifier to a second dataset (and
vice versa) was observed that differed in (i) details of the EPl-sequence parameters, (ii) instructions
to the subjects before the rs-fMRI acquisition and (iii) differences in the team supervising the EEG-
fMRI acquisition. Further encouraging is the successful use of the classifier to detect propofol-
induced loss of consciousness from whole brain functional connectivity (AUC 0.82-1.0; Figure S10 in
the Supplementary Material). Since this dataset was acquired on a different hardware platform
(Schroter et al. 2012), this is a first strong hint towards generalizability of the classifier to 3 Tesla
platforms. Still, further validation on sleep EEG-fMRI recordings acquired on different platforms and
field strength are needed to warrant broad generalizability. Based on the current data we were able
to reliably detect periods of sleep as short as 72 s (Figure 1). The lower limit of the length of the
temporal window is determined by the quality of the estimated functional connections. Typically, low
frequency BOLD signal fluctuations < 0.1 Hz are considered for functional connectivity analyses.
These are well sampled using standard MRI repetition times (in the order of seconds). However,
when reducing the length of the sampling window, according to the convolution theorem, the
frequency spectrum will be convolved with a sinc function, which results in a blurred representation
of individual fluctuations and a potentially distorted correlation analysis. In our data, the lower limit
for reliable sleep stage detection was about 1 minute. Shorter fMRI time windows worsened the
performance. This is in line with observations showing that correlation strength within and between
networks of resting state fMRI data stabilize for data acquisition windows longer than about 1-2
minutes (Van Dijk et al. 2010; Whitlow et al. 2011). However, new methods such as multiband fMRI
(Feinberg and Setsompop 2013) that enable effective TRs of less than 1 s will bring the required

acquisition time closer to 30 s or even 20 s, that is into the range of EEG based sleep scoring.

In conclusion, we report that an SVM-based multivariate classification algorithm trained by EEG-
validated rs-fMRI acquisitions of defined behavioral states allows for robust automated discrimi-
nation of wakefulness from sleep and decoding of separate NREM-sleep stages. We extend previous

observations in that our hypothesis-free, atlas-based parcellation system revealed major discrimi-
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nating patterns such as subcortical-cortical connectivity including thalamocortical connectivity as
well as strong and spatially concise connectivity re-configuration within the occipital lobe that

converge with a growing literature on sleep rs-fMRI analysis.
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Figure Captions

Figure 1: Performance overview. Each entry in the matrix corresponds to the average AUC across the
six binary classification tasks (S0|S1, S0|S2, SO|SW, S1|S2, S1|SW, and S2|SW) for pairs of window
lengths of the training window (x-axis) and the application window on which the trained classifiers
were used in a LOSO-CV manner (y-axis). (A) Performance for use of the single-window-variant. Note
decreases in performance for smallest training window size. (B) Performance for use of the multi-
windows-variant. (C) Difference of AUC values between approaches shown in (A) and (B). Note strong

performance improvement in (B) compared with (A) for the smallest training window size.
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Figure 2: Classifier performance for individual tasks. Each panel depicts the performance of one
classifier trained on the training dataset using either LOSO-CV (blue) or the validation dataset
(orange). X-axis denotes the training window length using either the single-window-variant (down
facing triangles) or the multi-windows-variant (up facing triangles). All results refer to a test window
length of 288 s (i.e., all 144 image volumes) and are provided as AUC. Dashed horizontal lines mark
random performance. The eighth and ninth panel shows the performance of a three-class classifier

(S0, S1, S2) and four-class-classifier (S0, S1, S2, SW), respectively. Here results are given in accuracy

(ACC).
S0IS1 S01S2 SoISwW
N B I V.V N N —— ™~ ]
1.0 e o . 1.0 5A = N - 1.0 6000——%
0.8 va 0.8 0.8
O0.6- Q0.6- O0.6-
2 2 2
0.4 0.4 1 0.4
0.2 0.2 0.2
0.0 0.0 0.0
T T T T T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 30 0 50 100 150 200 250 30 0 50 100 150 200 250 30
length training window (s) length training window (s) length training window (s)
S$11S2 S1ISwW S2ISW
1.0 1.0 — 1.0
LAA- LA rV' -
0.8 > - = 0.8 Yv’ 081 Prda—a
4 7~ -~
0% o 0061 o 06 p
204l ¥ 2 2
<044 ) 04 | 044 W I
v \y
0.2 - _ﬂ 0.2 0.2 - w
0.0 0.0 1 0.0
T T T T T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
length training window (s) length training window (s) length training window (s)
S0ISX Multiclass (3 classes) Multiclass (4 classes)
1.0 asab , 1.0 - 1.0 4
Q== <
0.8 084 A N 0.8
,'\_/' A A A‘/o:eﬁﬁ == =X
o0.6- 00.6- "/ O0.6-
2 2 2 v
0.4 0.4 é 04d 7
v
0.2 0.2 0.2
0.0 0.0 1 0.0
T T T T T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 30 0 50 100 150 200 250 30 0 50 100 150 200 250 30

length training window (s)

length training window (s)

length training window (s)

® Training (LOSO-CV)
Validation

-V - single-window-variant
—A— multi-windows-variant

34



Altmann et al.

Figure 3: Discriminative weights derived from linear SVM classifiers. The discriminative weights for
each connection are color coded with warm colors indicating stronger connections during the first
stage and cold colors indicating stronger connections during the second stage. E.g., in SO|S1 warm
and cold refer to stronger connections in SO and S1, respectively. Weights are represented as Z-
scores and capped at 3.0 for better comparison. The axes are labeled with the lobe or gross
anatomical region of the ROI: FR (frontal), CE (central), LI (limbic), OC (occipital), PA (parietal), SC
(subcortical), and TM (temporal). ROIs on the y-axis are ordered in the same way as the ones on the

x-axis; for details on ROls see Supplementary Table S2.
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Figure 4: Visualization of the most discriminant connections for S0|S1. The matrix highlights the
most discriminant connections for SO|S1 (in Z-scores). These 41 connections achieved a p-value of
0.01 or less in the permutation importance test. The connections voting for SO are coded in red and
the connections voting for S1 are coded blue. Surrounding the matrix are anatomical back-
reconstructions of these connections in axial (left) and sagittal view (bottom) generated with the
Flexible Brain Graph Visualizer (https://sourceforge.net/projects/flexbgv/). Yellow circles represent

ROIs, which are scaled according to the number of connections. Edges are colored red and blue

according to the coloring in the matrix.
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Figure 5: Increased and Reduced connectivity index for all classification tasks. Each panel represents
one binary classifier with the ICI plotted on the x-axis and the RCl on the y-axis. Each epoch is
represented by an integer; epochs originating from the same individual are represented by the same
integer across all classification tasks. Misclassified epochs are encircled in black. The dashed grey line

represents the decision boundary.
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Tables

Table 1: Detailed LOSO-CV classification results on the training dataset using the 288 s window. AUC:
area under the ROC curve based on the predicted SVM scores; Wilcoxon P-value: two-sided test
based on the predicted SVM scores; ACC: accuracy, i.e., fraction of correct classifications; PPV:
positive predictive value, i.e., fraction of correctly classified subjects that were predicted to sleep. For
ACC, PPV, Sensitivity and Specificity a threshold of 0.5 was used. The permutation P-value for AUC
and ACC was derived by randomly permuting the class labels 1,000 times and then conducting the
LOSO-CV. The fraction of instances with equal or larger AUC/ACC values than the unpermuted labels

serves as a P-value.

Task AUC Wilcoxon | Permutation | ACC Permutation | Sensitivity | Specificity | PPV
P-value P-value P-value
(AUC) (ACC)
S0|s1 0.93 6.8e-9 <0.001 0.88 <0.001 0.87 0.89 0.87
S0|Ss2 0.97 1.8e-11 | <0.001 0.92 <0.001 0.88 0.96 0.95
SO|SW | 0.99 2.3e-12 | <0.001 0.98 <0.001 0.94 1.00 1.00
S1|s2 0.82 7.9e-5 0.001 0.72 0.007 0.54 0.91 0.87
S1|SW | 0.99 6.9e-11 | <0.001 0.90 <0.001 0.94 0.87 0.85
S2|SW | 0.75 5.4e-3 0.005 0.69 0.012 0.67 0.71 0.63
S0 |SX 0.95 1.8e-11 | <0.001 0.92 <0.001 0.95 0.85 0.94
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