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Abstract

Previous research has shown that there is considerable overlap in the neural networks mediating 

successful memory encoding and retrieval. However, little is known about how the relevant human 

brain regions interact during these distinct phases of memory or how such interactions are affected 

by memory deficits that characterize mild cognitive impairment (MCI), a condition that often 

precedes dementia due to Alzheimer’s disease. Here we employed multivariate Granger causality 

analysis using autoregressive modeling of inferred neuronal time series obtained by deconvolving 

the hemodynamic response function from measured blood oxygenation level- dependent (BOLD) 

time series data, in order to examine the effective connectivity between brain regions during 

successful encoding and/or retrieval of object location associations in MCI patients and 

comparable healthy older adults. During encoding, healthy older adults demonstrated a left 

hemisphere dominant pattern where the inferior frontal junction, anterior intraparietal sulcus 

(likely involving the parietal eye fields), and posterior cingulate cortex drove activation in most left 

hemisphere regions and virtually every right hemisphere region tested. These regions are part of a 

frontoparietal network that mediates top-down cognitive control and is implicated in successful 

memory formation. In contrast, in the MCI patients, the right frontal eye field drove activation in 
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every left hemisphere region examined, suggesting reliance on more basic visual search processes. 

Retrieval in the healthy older adults was primarily driven by the right hippocampus with lesser 

contributions of the right anterior thalamic nuclei and right inferior frontal sulcus, consistent with 

theoretical models holding the hippocampus as critical for the successful retrieval of memories. 

The pattern differed in MCI patients, in whom the right inferior frontal junction and right anterior 

thalamus drove successful memory retrieval, reflecting the characteristic hippocampal dysfunction 

of these patients. These findings demonstrate that neural network interactions differ markedly 

between MCI patients and healthy older adults. Future efforts will investigate the impact of 

cognitive rehabilitation of memory on these connectivity patterns.

1. Introduction

The field of cognitive psychology has long held that the mental processes invoked during the 

encoding and retrieval of memories are inexorably linked (see [1] for review). In support of 

this idea, functional neuroimaging research has revealed substantial overlap in the brain 

regions mediating the successful encoding and retrieval of memories [2–4] . This finding is 

often referred to as the “reinstatement hypothesis” since it conveys the importance of re-

activating the same brain regions during both phases of memory. Rugg and colleagues [5] 

proposed a neuroanatomical model wherein the encoding-related neocortical representations 

of a stimulus are bound into a memory by the hippocampus. The successful retrieval of this 

memory depends on the re-activation of at least a subset of these previously engaged 

regions, which is facilitated by the hippocampus. In many respects, this model is consonant 

with the multiple trace theory of episodic memory proposed by Moscovitch and colleagues 

[6].

Extensive evidence suggests that, relative to their younger counterparts, cognitively intact 

older adults show greater lateral prefrontal (PFC) activation that is typically viewed as 

compensatory in nature [7] and is present even after controlling for potential vascular 

confounds [8]. Greater effective connectivity has also been reported between PFC 

subregions as well as between the PFC and medial temporal lobe (MTL) structures in older 

relative to younger adults [9, 10]. Thus, both activation and connectivity analyses suggest 

that older adults rely comparatively more on the PFC during memory encoding and retrieval. 

This shift may reflect increased top-down cognitive control over memory-related processes, 

perhaps compensating for age-related decline in hippocampal structure and function [11].

Mild cognitive impairment (MCI) is generally believed to be a precursor to dementia, 

particularly of the Alzheimer’s type [12]. In contrast to the normal patterns of learning and 

memory described above, patients with MCI experience characteristic memory deficits that 

are typically attributed to medial temporal lobe (e.g., hippocampal) dysfunction [12, 13]. 

However, we [14] and others [15] have reported widespread hypoactivation in patients with 

MCI, suggesting network-level dysfunction. Further, correlational analyses between 

activation magnitude and behavioral performance have revealed marked shifts in the brain 

regions associated with new memories in MCI patients relative to controls [14, 16]. Such 

findings led us to hypothesize that MCI patients rely on more basic cognitive processes (e.g., 

focusing on physical properties of stimuli) while learning new information, at the expense of 
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more effective “top-down” strategies that are at least partially dependent on the PFC [14]. 

This interpretation is consonant with both behavioral [17–19] and neuroimaging [20] 

findings of impaired top-down control in patients with MCI. Thus, memory deficits in MCI 

may arise following the combination of hippocampal dysfunction and loss of the previously 

noted, age-appropriate upregulation of the PFC; a possibility supported by previous research 

[21].

Effective connectivity studies capture directionality of influence and are an ideal method for 

assessing this possible shift in cognitive processing. However, most of the existing work on 

connectivity in MCI has relied on functional connectivity analyses (which do not include 

directionality information) using data acquired during the resting state. Such data may not 

accurately reflect active cognitive processes such as learning and memory, especially given 

recent findings of poor relationships between measures of functional and effective 

connectivity in patients with MCI [22]. Of the few effective connectivity studies in MCI 

patients, Neufang and colleagues [22] demonstrated significantly reduced connectivity, when 

compared to healthy controls, between frontal and parietal regions known to be involved in 

top-down processing. The current study is, to the best of our knowledge, the first to examine 

effective connectivity during memory encoding and retrieval in patients with MCI and 

comparable healthy controls. Given the literature reviewed above, we predicted that patients 

with MCI, when compared with healthy older adults, would demonstrate reduced PFC 

connectivity during encoding (i.e., the loss of top- down processing) and that the 

hippocampus would play a reduced role during retrieval given the characteristic dysfunction 

in this structure.

2. Materials and Methods

2.1 Participants

A total of 34 right-handed older adults, of whom 18 were MCI patients and 16 were healthy 

older controls, completed functional magnetic resonance imaging (fMRI) scanning as they 

encoded and recalled object-location associations (OLAs). Their baseline 

neuropsychological (see Table 1) and encoding-related fMRI data were reported earlier [14]. 

Each of the MCI patients had been diagnosed with amnestic MCI according to Petersen’s 

criteria [23] at a consensus conference, prior to being included in our study. Specifically, 

they presented with subjective memory complaints and showed objective evidence of 

memory impairment but intact everyday functioning. The healthy older controls (HOC) were 

recruited from a longitudinal registry maintained by the Emory Alzheimer’s Disease 

Research Center and from the general community. These individuals were free of subjective 

and objective memory impairments and were independent in activities of daily living. 

General exclusion criteria included a history of neurologic disease (e.g. dementia, stroke, 

epilepsy, traumatic brain injury), psychiatric disorders (e.g. severe depression, bipolar 

disorder, schizophrenia), and current or past alcohol or drug abuse.

As previously reported [14], all participants completed a brief neuropsychological screening 

protocol at the time of enrollment, which was typically within one month before fMRI 

scanning. The protocol consisted of the Mini Mental Status Exam (MMSE) [24], the 

Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) [25], the 
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Trail Making Test, the Geriatric Depression Scale (GDS) [26], and the Functional Activities 

Questionnaire (FAQ) [27]. The RBANS includes a series of tests that comprise 5 larger 

indices (Immediate Memory, Visuospatial/construction, Attention, Language, Delayed 

Memory) as well as a Total score. Multiple studies have demonstrated the utility of the 

RBANS for diagnosing MCI and Alzheimer’s dementia [28–30]. The resulting 

neuropsychological data were use to verify that MCI patients had not progressed to dementia 

or reverted to “normal” (i.e., ensuring persistent impairment) and that HOC were not 

demonstrating deficits relative to historic expectations. As seen in Table 1, the groups were 

comparable in regard to demographic (i.e., age, education) and most cognitive variables 

(aside from learning, memory, and semantic fluency). The groups also demonstrated 

comparable brain volumes (see 2.4 Volumetric analysis), thereby mitigating concerns about 

partial volume effects confounding the imaging data. Each participant provided informed 

written consent. Emory University’s Institutional Review Board and the Research and 

Development Committee of the Atlanta VAMC approved the study.

2.2 fMRI scanning paradigm

The OLA task was described in detail earlier [14]. Briefly, participants were instructed to 

learn and remember 92 OLAs. The objects were selected because they were highly concrete, 

familiar, imageable, and frequently used in everyday life. We created two versions of each of 

9 rooms that are encountered in daily life (bathroom, bedroom, dining room, garage, 

kitchen, laundry room, living room, office, recreational room). In each room, we identified 

five locations that spanned the width and, to the extent possible, height of the room and then 

pseudorandomly placed 5 objects within each room such that any of the objects could have 

reasonably appeared in any of the locations. This resulted in 90 OLAs that were each shown 

once during fMRI scanning (see below) and are referred to as the “novel stimuli” hereafter. 

The remaining two OLAs were created by placing a single object within an additional 

kitchen and living room. These two stimuli were presented multiple times during scanning, 

which controlled for low-level perceptual processes and general task familiarity; they are 

referred to as the “repeated stimuli” hereafter.

The same design was used for both the encoding and retrieval scans, which were separated 

by a 1-hour delay. During each of 5 functional runs, participants viewed 18 novel and 9 

repetitions of the repeated stimuli in a “slow” event-related design. Each 6s trial consisted of 

a 2s object-only phase (to allow for object identification) followed immediately by the object 

in its location for 4s. Trials were separated by 8s ISIs to allow return of signal to baseline. 

Six 10s baseline periods were pseudorandomly distributed in each run to allow for 

estimation of baseline signal. Total run length was 438s. The order of runs was randomized 

for each participant.

During encoding, participants were instructed to remember the object’s location. During 

retrieval, participants selected the object’s location from among 3 choices, each of which 

was an actual target location within that room, using an fMRI-compatible response pad. This 

design was intended to promote recollection (i.e., requiring the retrieval of the unique 

object-location pair) over familiarity (i.e., recalling that something belonged within a 

location without clear memory for the actual pairing).

Hampstead et al. Page 4

Neuroimage. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 fMRI scanning parameters

MR scans were performed on a Siemens Trio 3T MRI scanner (Siemens Medical Solutions, 

Malvern, PA), using a 12-channel head coil. For blood oxygenation level-dependent (BOLD) 

contrast, T2*-weighted functional images were acquired using a single- shot, gradient-

recalled, echo-planar imaging (EPI) sequence with the following parameters: repetition time 

(TR) 2000ms, echo time (TE) 30ms, field of view (FOV) 220mm, flip angle (FA) 90°, 29 

axial slices of 4mm thickness, in-plane resolution 3.4×3.4mm, and in-plane matrix 64×64. 

These images were co-registered with high-resolution anatomic images acquired using a 3D 

MPRAGE sequence (TR 2300ms, TE 3.9ms, inversion time (TI) 1100ms, FA 8°) consisting 

of 176 sagittal slices of 1mm thickness (FOV 256mm, in-plane resolution 1×1mm, in-plane 

matrix 256×256).

2.4 Volumetric analysis

As previously described [14], we obtained volumetric measurements from the high-

resolution anatomic images using NeuroQuant®, which is a fully automated program that 

has been validated against other segmentation procedures and found sensitive to volumetric 

changes in mild AD [31] and MCI [30]. This program provides volumes for three medial 

temporal lobe regions (hippocampus, amygdala, inferior lateral ventricles). We used the 

percent of intracranial volume (%ICV) values for each of these regions since this method 

reduces measurement variability more than other commonly used methods [32]. These 

values are shown in Table 1; importantly, there were no significant differences between the 

groups.

2.5 Functional image analyses

As described earlier in detail [14], image processing and analysis were performed using 

Brain-Voyager QX v2.4 (Brain Innovation, Maastricht, The Netherlands). Functional runs 

were motion-corrected in real time using Siemens 3D-PACE (prospective acquisition motion 

correction). For each subject, the functional images were realigned to the first image of the 

series. Images were pre-processed using trilinear-sinc interpolation for intra-session 

alignment of functional volumes, sinc interpolation for slice scan time correction, and high-

pass temporal filtering to two cycles per run to remove slow drifts in the data. They were 

then co- registered with anatomic images and transformed into Talairach space. For group 

analysis, transformed data were spatially smoothed with an isotropic Gaussian kernel of 

4mm (full-width half-maximum) and normalized across runs and subjects using the default 

z-baseline normalization option in BrainVoyager (based on data where the predictor values 

are at or near zero (≤0.1)).

We coded each novel trial as either correct or incorrect based on whether the participant 

successfully recalled the unique OLA pairing during the retrieval scan. Incorrect trials were 

excluded from subsequent analyses. The HOC performed significantly better than chance 

(t(15)=5.4, p<0.001; range = 34.45 – 72.22% correct) while the MCI did not (t(17)=1.58, 

p=0.132; range = 21.11 – 65.56% correct). However, both groups responded significantly 

faster on correct than incorrect trials during the retrieval scan (HOC: t(15)=6.67, p<0.001; 

MCI: t(17)=2.34, p=0.032) thereby suggesting differences in cognitive processing between 

trials with correct responses and those with incorrect responses. There was no significant 
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relationship between accuracy and reaction time differences between trials with incorrect 

and correct responses in either group (HOC: r=0.114, p=0.674; MCI: r=−0.155, p=0.54). 

Given the low accuracy of the MCI group, we performed additional analyses of the fMRI 

data. These results, illustrated in Supplemental Figures 1–3, clearly demonstrate that there 

were, in fact, significant differences between correct and incorrect trials on both contrast- 

and connectivity-based analyses.

As stated above, our primary aim was to examine the patterns of connectivity between brain 

regions during memory encoding and retrieval. Therefore, we used a general linear model 

(GLM) treating participants as a random factor, and performed a conjunction analysis to 

identify brain regions more active for the novelcorrect than the repeated trials (i.e., novelcorrect 

> repeated) during both encoding and retrieval in the entire sample (i.e., both healthy 

controls and MCI patients). The resulting FDR-corrected (FDR q≤0.05) activation map (Fig. 

2) revealed bilateral activations in brain regions associated with the ventral visual stream 

(e.g., fusiform gyrus), dorsal visual stream (e.g., superior parietal lobule), lateral 

frontoparietal cognitive control network (e.g., inferior frontal gyrus, intraparietal sulcus), 

and medial temporal lobe (e.g., hippocampal body). We selected a total of 29 regions of 

interest (ROIs) from this contrast (Table 2), using previous meta-analytic findings of areas 

that are involved in successful encoding and retrieval [4] to guide our selection.

In order to ensure that areas preferentially involved in encoding or retrieval were also 

included in the connectivity analyses, we directly compared the novelcorrect trials during 

encoding and retrieval (i.e., encoding novelcorrect > retrieval novelcorrect). The resulting 

FDR-corrected activation map (FDR q≤0.05) revealed 6 areas active during encoding but not 

retrieval: the anterior hippocampus, other temporal lobe structures (e.g., middle temporal 

gyrus; temporal pole), and medial PFC (see Table 2). Ten additional regions were selected 

because they were uniquely associated with retrieval (e.g., caudate, putamen, cingulate 

cortex, rostral PFC). We again referred to meta-analytic findings [4] whenever possible.

In all then, a total of 45 ROIs were identified and submitted to the effective connectivity 

analyses described below. All ROIs were cubes of 5 mm per side, centered on the peaks of 

activation. Although deactivations are important, it is less clear how to interpret effective 

connectivity in relation to deactivations as compared to activations; thus, deactivations were 

not considered in this initial study.

2.6 Effective connectivity analyses

Granger causality analysis (GCA) is an exploratory method that can be used to study 

directional influences between different brain regions. The principle underlying GCA is that, 

if past values of time series “A” help predict the future values of time series “B”, then a 

causal influence from time series A to time series B can be inferred [33]. GCA was 

performed on latent neuronal time series obtained by blind deconvolution of the 

hemodynamic response function (HRF) from the measured BOLD time series, as described 

in detail in recent publications [34–38]. Such hemodynamic deconvolution removes the 

smoothing effect of the HRF and also its inter-subject and inter-regional variability [39], 

leading to improved estimation of effective connectivity [40, 41] and avoiding potential 

confounds due to HRF variability across regions within individuals, and between individuals 
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(whether normal or pathologic). The BOLD time series were averaged across voxels 

contained in each ROI, normalized separately for each run and participant by dividing by the 

grand mean for that run, and concatenated across all runs and participants to form a single 

vector per ROI. The resulting data were deconvolved using a cubature Kalman filter-based 

method [42]. Then, a dynamic multivariate autoregressive (MVAR) model (of order 5, 

obtained from the Akaike [43] and Bayesian [44] information criteria) was applied to the set 

of hidden neuronal variables obtained after deconvolution. The model is considered dynamic 

because its coefficients were allowed to vary as a function of time. Both recent simulations 

[45] and experimental results [46] indicate that MVAR modeling methodology is very 

reliable for making inferences about path directionality and significance. The underlying 

model used in deconvolution is formulated in continuous time, and hence, can be sampled at 

any arbitrary resolution. As Havlicek et al showed [42], sampling the latent neural variables 

at TR/10 provides the best reconstruction of neural events. Since the independent variables 

in our model were not significantly correlated with the error term, there was no endogeneity 

bias. Also, the deconvolved time series were input to the model without having to artificially 

slice the time series, by permitting the MVAR model coefficients to vary as a function of 

time to obtain dynamic GC time series. Time points (or TRs) associated with those trials in 

the encoding and retrieval phases that corresponded to correctly remembered stimuli were 

identified and the effective connectivity values corresponding to those periods were 

extracted from the dynamic GC time series (for each path) and pooled into encoding and 

retrieval connectivity samples, respectively (Fig. 3). Effective connectivity was first 

evaluated within each participant group (i.e., healthy older adults, MCI patients) during 

encoding and retrieval by performing a one sample Welch’s t-test (for each path) using 

group- level connectivity samples aggregated across all subjects in the group. We then 

compared group- level connectivity samples from both groups using a two sample Welch’s t-

test. The paths whose p-values obtained from the t-tests were smaller than 0.05 (FDR-

corrected) were then interpreted. For convenience, we refer to “sources” and “targets” of 

“paths”, or “drivers” and “recipients” of connectivity, recognizing that a path does not 

necessarily imply a direct projection from one ROI to another. The overall flow of our 

analyses can be seen in Figure 3. Although all ROIs were entered into the analyses at once, 

we present the findings separately for intra- and inter- hemispheric connectivity, for 

convenience. In the figures below, drivers are qualitatively identified as those source nodes 

with the highest number of outputs. Between-group differences were evaluated using t-tests 

to obtain paths whose weights differed significantly. All analyses used an FDR-corrected 

p<0.05.

3. Results

3.1 Effective connectivity during encoding

HOC—The left anterior intraparietal sulcus (IPS) emerged as the only intrahemispheric 

source of significant paths; these paths targeted the left inferior frontal junction (IFJ – the 

meeting place of the inferior frontal sulcus and precentral sulcus), ventromedial PFC, 

posterior cingulate cortex (PCC), and middle temporal gyrus (MTG) (see Figure 4). This 

same left IPS region, as well as the left IFJ and left PCC, emerged as the primary sources of 
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interhemispheric paths (Figure 5). The PCC was the only right hemisphere source that 

reached statistical significance, with its effect on the left caudate.

MCI—Within the left cerebral hemisphere, the retrosplenial cortex (RSC) was the primary 

source, with paths emanating from it that targeted the PFC, parietal, and temporal neocortex 

as well as the hippocampus (Figure 4). A single primary driver, located at the junction of the 

superior frontal and precentral sulci, drove connectivity in the right hemisphere. This region 

corresponds to the location of the frontal eye fields (FEF) and is known to be responsible for 

voluntary attentional shifts [47, 48]. These same two regions (i.e., left RSC and right FEF) 

were the sole drivers of interhemispheric connectivity, with the right FEF being the most 

influential (Figure 5).

HOC vs. MCI—As is clear from the within-group analyses above, healthy controls and 

MCI patients demonstrated substantially different patterns of connectivity. When we 

performed a between-group comparison of connectivity, healthy controls demonstrated 

significantly greater weights for paths originating in the left IFJ and driving all right 

hemisphere ROIs as well as for a path from the right dorsal PCC to the left caudate. 

Conversely, MCI patients demonstrated significantly greater weights for paths arising in the 

right FEF and targeting virtually all right and left hemisphere ROIs (Figures 6 & 7).

3.2 Effective connectivity during retrieval

HOC—Three right hemisphere sources accounted for both intra- (Figure 4) and 

interhemispheric connectivity (Figure 5). The anterior hippocampus (i.e., head) was the 

primary driver as it interacted with virtually all ROIs regardless of cerebral hemisphere. The 

inferior frontal sulcus (IFS) and anterior thalamus were also significant drivers. There were 

no significant sources in the left hemisphere.

MCI—There were no significant paths within the left hemisphere. In the right hemisphere, 

the anterior thalamus and, to a lesser extent, the right IFJ were the primary sources of paths 

(Figure 4). These same two regions were the primary drivers of interhemispheric 

connectivity, with the right anterior thalamus playing a central role (Figure 5). The left 

putamen demonstrated significant interhemispheric driving of the right dorsomedial 

thalamus and rostral PFC.

HOC vs. MCI—Relative to MCI, healthy controls demonstrated significantly greater 

weights for paths originating in the right anterior hippocampus and driving the left IPS, 

PCC, fusiform gyrus, parahippocampal cortex, temporal pole, FEF, and rostral PFC. Greater 

path weight was also evident from the right anterior thalamus to the left PCC. There were no 

areas with stronger connectivity in the MCI compared to the control group (Figures 6 & 7).

4. Discussion

The current study is the first to examine differences in task-related effective connectivity 

during memory encoding and retrieval as well as how connectivity is affected by MCI. We 

included only trials in which stimuli were successfully encoded and recalled in order to 

avoid confounding successful memory formation with mere attempts; notably, both MCI 
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patients and controls exhibited significantly faster correct responses compared to incorrect 

responses. The two primary goals were to 1) examine whether activated regions interact 

differently during memory encoding and retrieval and 2) examine how the patterns of 

connectivity are affected by MCI.

Our findings in cognitively intact older adults revealed that the phase of memory has a 

substantial impact on the pattern of effective connectivity. Successful encoding was largely 

associated with paths arising in three left hemisphere regions (the IFJ, IPS, and PCC) 

whereas retrieval was associated with paths arising from three right hemisphere regions 

(anterior hippocampus, anterior thalamus, and IFS). From a global standpoint, this pattern 

supports the hemispheric asymmetry in encoding and retrieval model (HERA; [49, 50]), 

which holds that the left hemisphere preferentially mediates encoding while the right 

mediates retrieval. One of the key weaknesses of the HERA model is that the nature of the 

task can bias the overall pattern of activation such that verbal processing is more likely to 

engage the left hemisphere while visuospatial processing is more likely to engage the right 

hemisphere [51–53]. However, the current study used an OLA task that is both theoretically 

and empirically (see Table 2 and [14]) mediated by both cerebral hemispheres, thus 

minimizing intrinsic bias towards one or the other hemisphere. Thus, our findings support 

the HERA model by demonstrating that brain regions interact differently based on the phase 

of memory (i.e., encoding vs. retrieval). The loci of the particular regions driving phase-

specific differences in the healthy controls are also meaningful given the larger body of 

research reviewed earlier. Specifically, neocortical areas drove encoding-related activation 

whereas the hippocampus was the primary driver of retrieval-related activation; findings that 

support the model proposed by Rugg and colleagues [5]. This pattern differed significantly, 

however, in those with MCI as is discussed below.

4.1 Effective connectivity during encoding

In cognitively intact older adults, the primary drivers during encoding (i.e., the IFJ, IPS, and 

PCC) are all part of a commonly identified frontoparietal network that is involved in 

adaptive cognitive control [54] and working memory [55]. Our data suggest that the left 

anterior IPS, a region also known as the parietal eye field (PEF), played a critical role early 

in the learning process, which is consonant with its role in goal-directed (i.e., top-down) 

attentional processing (see [56] for review). This region drove activation within the 

ventrolateral PFC, which has long been associated with deeper levels of processing [57] and 

successful memory encoding [58, 59]. Specifically, our data suggest that the IFJ and PCC 

received information from the left anterior IPS via intrahemispheric paths; these three 

regions then modulated activation in all right hemisphere regions. Previous research has 

shown that the IFJ modulates top-down attentional processing [60] and adaptively drives the 

use of critical brain regions in a task- specific manner [61, 62].The PCC is known to be 

involved in self-referential [63] and semantic processing [64], both of which enhance the 

salience of memories. Such personally-relevant, semantic processing is consonant with this 

region’s role in recollective (i.e., high-confidence) memories [65]. Together, these findings 

suggest that cognitively intact older adults rely on top- down, elaborative processing during 

successful memory encoding of OLAs.
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In contrast, MCI patients demonstrated a markedly different pattern of effective connectivity 

that was primarily driven by the right FEF and to a lesser degree by the left RSC. The FEF 

mediates oculomotor saccades and evidence has emerged for its role in voluntary shifts of 

spatial attention (see [56] for review). Considering these findings within the context of the 

OLA task, cognitively intact older adults may have approached the task with the active goal 

of associating the object and location, a cognitive set that engaged the PEF (i.e., goal-

directed attentional processing) and other regions described above. Conversely, MCI patients 

may have relied on a more basic, FEF-mediated, visual search process that reflects the loss 

of top-down control; a possibility supported by previous findings [17–19].

While the implications are less clear, the shift from PCC in controls to RSC in MCI may 

also be functionally meaningful since midline posterior regions (e.g., precuneus, PCC, RSC) 

are affected early in the course of AD [66]. The severity of such compromise is associated 

with learning and memory impairment [67, 68]. In fact, there is evidence of functional 

connectivity disruption of the RSC in MCI [69], suggesting that this region is dysfunctional. 

However, findings from the resting state may not capture the entirety of the RSC’s response 

to disease. Our data, acquired during actual task performance, revealed that MCI patients 

were more reliant on the left RSC during successful encoding. This finding may reflect the 

compensatory coordination of task-related brain areas and is consistent with the RSC’s 

extensive reciprocal connections with other structures of the Papez/Delay-Brion circuit as 

well as key neocortical regions that include the PEF [70]. Although the exact cognitive 

processes remain unclear, this region has been implicated in episodic memory, navigation, 

and imagining and planning for future events [70]. It has extensive reciprocal connections 

with the anterior thalamic nuclei, which is intriguing given the increased involvement of 

these nuclei during retrieval (see below). In fact, prior research has shown that 

hippocampally-based spatial learning is dependent on the integrity of the RSC and anterior 

thalamic nuclei [71]. Although our data suggest that the hippocampal dysfunction in MCI 

patients resulted in a compensatory upregulation of functionally related areas, future studies 

should evaluate how methodological factors such as the nature of scan acquisition (i.e., task 

vs. rest), task (e.g., learning vs. memory), and analytic method (e.g., functional vs. effective 

connectivity), influence such findings.

4.2 Effective connectivity during retrieval

In cognitively intact older adults, successful memory retrieval was primarily mediated by the 

right hippocampus with the right anterior thalamic nuclei and right IFS playing relatively 

lesser roles. These findings support previous models of memory wherein the hippocampus is 

central to the recollection of episodic memories [5, 6]. It is interesting to note that the 

anterior hippocampal ROI was significantly more active during encoding than recall (see 

Table 2), yet it was the primary driver of retrieval-based activation – at least in healthy older 

adults. We posit that, because the anterior hippocampus plays a vital role in associative 

binding during encoding [72], it must help coordinate the recall of the individual 

components of the memory during retrieval. However, our data also support Aggleton’s [71] 

recent call to consider changes within the larger memory-related network in those with 

learning and memory deficits. Specifically, MCI patients relied on an altered network during 

successful memory retrieval that was characterized by intrahemispheric input from the right 
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IFJ to the right anterior thalamic nuclei, which then drove activation in most of the other 

regions included. A recent meta-analysis revealed that the right IFJ monitors task-concurrent 

versus non-concurrent responding [73] and error monitoring [74]. This type of monitoring 

presumably becomes more necessary as the salience of, or confidence in, memories decline 

– as would be expected with the hippocampal dysfunction observed in these MCI patients 

(see Figures 6 & 7 and [14, 75]). The anterior thalamic nuclei were previously shown to be 

critical for hippocampally-based spatial processing [71] though other work raises the 

possibility that this is at least partially due to unique contributions from the mamillary 

bodies via the mamillothalamic tract [76]. Regardless, the thalamus has dense reciprocal 

connections with virtually every other brain region and our data raise the possibility that 

patients capitalized on this extensive innervation via compensatory reliance on the anterior 

thalamic nuclei. An alternative explanation is that patients were less efficient in retrieving 

the location of a given object, which then necessitated more extensive cognitive “searching” 

mediated by the IFJ. Future studies could explicitly examine these possibilities by 

examining connectivity during high- versus low-confidence trials.

4.3 Potential limitations

Several methodological factors warrant discussion, the first of which relates to behavioral 

differences between the groups. While acquiring the data, we provided extensive practice 

and ensured that all participants understood the instructions before they entered the scanner. 

We also reminded patients of the instructions between each functional run. As with the 

previously reported activation analyses [14], we chose to limit analyses to only stimuli that 

were successfully encoded/retrieved. This approach eliminated confounding factors that are 

associated with subsequent forgetting (see meta-analysis [77]) but resulted in a different 

number of trials being considered for each participant (typically fewer for MCI than 

controls). This concern may be mitigated by our previous findings that MCI patients 

demonstrated a comparable pattern of activation as did healthy controls, albeit of a lesser 

magnitude [14]. We also used Welch’s t-test, which is designed for samples of unequal size 

and unequal variance [78]. As a result, the difference in the number of included trials should 

not affect the connectivity results. Although accuracy for the location of novel objects was 

not significantly different than chance in the MCI group, three pieces of data mitigate 

concerns that correct trials were due merely to guessing. First, MCI patients were 

significantly faster to respond on correct than incorrect trials. The relationship between 

reaction time and accuracy was not significant, which indicates that the high performing 

individuals do not account for the previously noted differences. Second, MCI patients 

demonstrated a more extensive pattern of activation during incorrectly than correctly 

encoded trials, especially within the right hemisphere (Supplemental Figure 1), suggesting 

inefficient or “noisy” processing. In contrast, patients demonstrated greater activation during 

correctly retrieved trials, possibly suggesting more contextually rich (multi-modal) 

memories. Third, there were substantial differences in effective connectivity for correct and 

incorrect trials (Supplemental Figures 2 & 3). Regardless, future studies should attempt to 

match the number of trials across groups, especially considering the relatively poor overall 

performances in both groups, though this may require substantial modifications (e.g., fewer 

stimuli, longer encoding duration) that could in turn present other issues (e.g., ceiling 

performance, boredom in controls). An alternative approach for future studies is to correlate 
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behavioral performance and path weights, which could replicate and extend our current 

results. Although we attempted above to consider likely explanations for the observed 

differences in effective connectivity between MCI and controls, we should emphasize that it 

remains uncertain whether the differences reflect pathologic or compensatory processes in 

MCI. It is interesting to note that patterns of interhemispheric connectivity were especially 

different between the groups, which suggests that additional study of these interactions may 

be fruitful.

Unlike other effective connectivity methods that require a priori models and that use a 

limited number of brain regions [79–82], our approach was largely data-driven and used a 

large number of areas. As with any approach it is possible that we omitted critical nodes in 

our analyses. However, our findings in controls are remarkably consistent with theoretical 

models of hemispheric specialization [50, 83] and medial temporal lobe functioning [5, 6], 

providing some reassurance that appropriate regions were included. The results obtained by 

the application of GCA to fMRI data could theoretically be confounded because of slower 

temporal sampling relative to faster neuronal processes as well as the variability of the 

hemodynamic response, which can be partially of non-neural origin. However, recent studies 

employing theoretical arguments [84], empirical simulations, and experimental 

manipulations have shown the validity and utility of the application of GCA to fMRI. 

Although Smith et al [85], based on simulations of various connectivity methods, argued 

against using GCA, many simulations reported both before [86, 87] and after [45, 88–90] 

this study have shown the validity of the application of GCA to fMRI data. However, it is 

noteworthy that simulations make restrictive assumptions, and hence it is not surprising that 

some of them do not agree with each other. In this context, experimental studies become 

important. Abler et al [91] used a simple auditory-motor paradigm in one of the earlier 

experimental studies and demonstrated, using fMRI data acquired with a relatively long TR 

of 2440 ms, that GCA correctly inferred causal influences from the auditory cortex to the 

motor cortex, which was expected in this paradigm. In addition, they argued that significant 

Granger causality obtained from slowly sampled fMRI data may correctly reflect 

corresponding neural connectivity, but the reverse may not always be true, i.e. absence of 

significant Granger causality obtained from slowly sampled fMRI data does not always 

imply a corresponding lack of causal influence at the neural level. This caveat must be 

considered when interpreting results obtained using the application of GCA to fMRI data 

acquired with longer TRs. Experimental studies in the recent past demonstrated, using 

deconvolved fMRI data, that neural delays lesser than the acquisition TR can be inferred 

using GCA [40, 46, 92]. By using intra-cerebral EEG as ground truth, David et al [40] 

showed that directional connectivity inferred from both GCA (applied to deconvolved fMRI 

data) and dynamic causal modeling (DCM) matched that obtained by intra-cerebral EEG. 

The convergence of evidence from these different methods provides face validity to the 

application of GCA to deconvolved fMRI. In the current study, our TR was reasonable with 

respect to previous studies (such as the one by Abler et al) and the potential confounding 

effects of HRF variability were accounted for by deconvolving it out of the observed fMRI 

data. Given these factors, we believe the current analyses to be valid. However, it will be 

important for future studies to replicate our findings using both GCA and other analytic 

methods with more favorable acquisition parameters (e.g., faster sampling and/or higher 
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field strength) or other approaches such as magnetoencephalography or 

electroencephalography.

4.4 Conclusions and clinical implications

Taken as a whole, our findings indicate that MCI patients demonstrate a loss of top-down 

cognitive control during encoding as well as a loss of hippocampally-driven retrieval when 

compared to cognitively intact older adults. These differences are especially striking given 

the relatively mild clinical status of those with MCI (i.e., Delayed Memory Index ~ 1.7 SD 

below the mean but comparable brain volumes as the HOC). Our findings are particularly 

meaningful since we previously reported that cognitive rehabilitation techniques that require 

top-down processing improved long-term retention [93, 94]. These previously described 

behavioral changes were accompanied by increased activation in the left frontoparietal 

control network during encoding [95] as well as the hippocampus during both encoding and 

retrieval [75]. Thus, our previous data suggest that relatively simple cognitive interventions 

can mitigate the maladaptive changes described above, at least under certain circumstances. 

We plan to explore potential changes in effective connectivity associated with such 

interventions. The present findings may also help inform the selection of neurostimulation 

methods and pharmacologic agents that target cognitive control processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of stimuli and design of the encoding (top) and retrieval (bottom) runs.
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Figure 2. 
Surface rendering of the activation map from the conjunction analysis. Results are FDR 

corrected at p<0.05. White squares represent regions selected for subsequent Granger 

causality analysis. Subcortical ROIs can be visualized by the green squares in the volume-

based slices to the right.
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Figure 3. 
Analytic flow of the study.
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Figure 4. 
Intrahemispheric connectivity for the healthy controls (top row) and MCI patients (bottom 

row) during encoding (left columns) and retrieval (right columns). Reference bars represent 

the FDR corrected p ≤ 0.05. Abbreviated region names are included; see Table 2 for 

unabbreviated list.
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Figure 5. 
Interhemispheric connectivity in healthy controls (top row) and MCI patients (bottom row) 

during encoding (left) and retrieval (right). Reference bars represent the FDR corrected p ≤ 

0.05. Abbreviated region names are included; see Table 2 for unabbreviated list.
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Figure 6. 
Intrahemispheric connectivity differences between healthy controls and MCI patients during 

encoding and retrieval. Reference bars represent the FDR corrected p ≤ 0.05. Abbreviated 

region names are included; see Table 2 for unabbreviated list.
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Figure 7. 
Interhemispheric connectivity differences between healthy controls and MCI patients during 

encoding and retrieval. Reference bars represent the FDR corrected p ≤ 0.05. Abbreviated 

region names are included; see Table 2 for unabbreviated list.
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Table 1

Demographic, neuropsychological, brain volumetrics, and performances on the experimental OL task for the 

healthy older controls (HOC) and MCI groups. Standard deviations are provided in parentheses.

HOC (n=16) MCI (n=18) t(32) p-value

Age 72.1 (7.3) 71.2 (8.5) 0.33 .74

Education (years) 16.1 (2.7) 17.1 (2.1) 1.19 .25

MMSE 27.8 (1.97) 26.7 (2.3) 1.47 .15

RBANS Indices (Standard Scores)

  Immediate Memory* 105.8 (13.5) 87.1 (13.2) 4.1 <.001

  Visuospatial/construction 99.5 (14.4) 94.9 (16.8) 0.84 .41

  Language* 103.3 (15.2) 92.2 (7.1) 2.77 .009

  Attention 110.4 (11.8) 105.9 (11.8) 1.11 .28

  Delayed Memory* 103.8 (8.9) 74.9 (15.1) 6.68 <.001

  Total Score* 106.5 (14.4) 87.8 (10.4) 4.39 <.001

Trails A (T-scores) 49.0 (8.7) 45.8 (12.1) 0.87 .39

Trails B (T-scores) 50.4 (9.0) 47.7 (6.7) 0.98 .34

GDS (raw scores) 1.1 (1.9) 1.6 (1.9) 0.74 .46

FAQ* (raw scores) 0.4 (0.7) 3.6 (3.9) 3.07 .005

Brain Volumetrics (% intracranial volume; ICV)

  Cortical gray 30.1 (2.1) 29.1 (1.6) 1.57 .13

  Lateral ventricles 2.2 (0.8) 2.8 (1.0) 1.95 .06

  Inferior lateral ventricles 0.16 (0.05) 0.19 (0.07) 1.73 .09

  Hippocampus (Total) 0.49 (0.06) 0.46 (0.06) 1.39 .18

    Left 0.24 (0.03) 0.23 (0.03) 1.0 .32

    Right 0.25 (0.03) 0.24 (0.04) 1.5 .14

  Amygdala 0.23 (0.03) 0.21 (0.05) 1.70 .10

Object-Location Association Test

  Novel accuracy (% correct)* 48.6 (11.3) 37.3 (10.6) 3.0 .005

  Novel reaction time (in seconds) 2.72 (.64) 2.78 (.50) 0.3 .79

  Repeated accuracy (% correct) 99.2 (1.6) 95.9 (9.5) 1.3 .19

  Repeated reaction time (in seconds) 0.94 (.16) 1.0 (.32) 0.6 .55

Significant differences are indicated by * (via t-tests).

MMSE = mini-mental state exam; RBANS = Repeatable Battery for the Assessment of Neuropsychological Status; GDS = Geriatric Depression 
Scale; FAQ = Functional Activities Questionnaire. Brain volumes were obtained from NeuroQuant®. Table modified from Hampstead et al., 
(2011), Neuropsychologia, 49, 2349–2361.
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