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Abstract

Myelin water fraction (MWF) mapping with magnetic resonance imaging has led to the ability to 

directly observe myelination and demyelination in both the developing brain and in disease. 

Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has been 

proposed as a rapid approach for multicomponent relaxometry and has been applied to map MWF 

in human brain. However, even for the simplest two-pool signal model consisting of MWF and 

non-myelin-associated water, the dimensionality of the parameter space for obtaining MWF 

estimates remains high. This renders parameter estimation difficult, especially at low-to-moderate 

signal-to-noise ratios (SNR), due to the presence of local minima and the flatness of the fit 

residual energy surface used for parameter determination using conventional nonlinear least 

squares (NLLS)-based algorithms. In this study, we introduce three Bayesian approaches for 

analysis of the mcDESPOT signal model to determine MWF. Given the high dimensional nature of 

mcDESPOT signal model, and, thereby, the high dimensional marginalizations over nuisance 

parameters needed to derive the posterior probability distribution of MWF parameter, the 

introduced Bayesian analyses use different approaches to reduce the dimensionality of the 

parameter space. The first approach uses normalization by average signal amplitude, and assumes 

that noise can be accurately estimated from signal-free regions of the image. The second approach 

likewise uses average amplitude normalization, but incorporates a full treatment of noise as an 

unknown variable through marginalization. The third approach does not use amplitude 

normalization and incorporates marginalization over both noise and signal amplitude. Through 

extensive Monte Carlo numerical simulations and analysis of in-vivo human brain datasets 

exhibiting a range of SNR and spatial resolution, we demonstrated the markedly improved 

accuracy and precision in the estimation of MWF using these Bayesian methods as compared to 

the stochastic region contraction (SRC) implementation of NLLS.
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1. INTRODUCTION

Myelination changes are an important feature of brain development (1) and of the 

pathophysiology of a number of central nervous system diseases including multiple sclerosis 

(2-3), phenylketonuria (4-5), schizophrenia (6), epilepsy (7) and psychotic disorders (8), and 

has been recently associated with Alzheimer's disease (9). Magnetic resonance imaging 

(MRI) methods for assessing myelination have been developed around the concept of the 

MRI-visible myelin water fraction (MWF) (10), conventionally measured through 

multicomponent T2 analysis of transverse signal decay data acquired using multiple spin 

echo-based sequences, such as the classic Carr-Purcell-Meiboom-Gill (11-16) or the 

gradient- and spin-echo (17) sequences.

Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has 

been proposed as an alternative approach to multicomponent relaxometry with greatly 

reduced acquisition time and making use of conventional MR acquisition sequences (18), 

namely, spoiled gradient recalled echo (SPGR) and fully balanced steady state free 

precession (bSSFP), with, for both sequences, imaging data acquired over multiple flip 

angles (FA) with a very short repetition time (TR). mcDESPOT has been applied to map 

MWF in human brain (19-23) with data acquisition sufficiently rapid to permit whole brain 

coverage. However, Bouhrara et al. (24) showed that, even for a simple two-pool model, 

quantitative parameter estimation from mcDESPOT is problematic, especially at low-to-

moderate SNR. This parameter instability was found to persist in spite of the use of 

stochastic region contraction (SRC) in combination with nonlinear least squares (SRC-

NLLS) algorithm, which has been proposed as an effective procedure for extracting 

parameter values from mcDESPOT data (25-26). It has been found (24) that given the 

flatness of NLLS parameter fit energy surfaces, SRC-NLLS remains highly sensitive to local 

minima and requires, therefore, high SNR data for reliable estimation of MWF. This limits 

the utility of mcDESPOT for the high resolution whole brain mapping studies required to 

detect spatial changes in MWF and to reduce partial volume effects.

Several previous studies have established the potential benefits of the Bayesian probability 

approach to parameter estimation (27-31). Indeed, unlike NLLS-based algorithms, Bayesian 

analysis does not require initial estimates, so that derivation of the posterior probability 

distribution function (PDF) for a given parameter is less sensitive to the local minimum 

structure of the global fit function. In addition, Bayesian analysis permits the incorporation 

of prior probability distributions. In favorable cases, the product of a prior and the likelihood 

function can be integrated analytically, serving to decrease the dimensionality of the 

integrations required to derive the posterior PDF of a given parameter (30).

In this study, we investigated the accuracy and precision of MWF determination from a two-

component mcDESPOT model using three Bayesian-based methods. As is conventional, the 
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MWF was defined as the amplitude of the component with the smaller value for T2, 

reflecting a motionally-restricted water pool. We compared these results with those derived 

using SRC-NLLS. We first review the theory of the two-pool mcDESPOT signal model. We 

then describe in detail our Bayesian approaches for MWF mapping using mcDESPOT. Next, 

we present extensive Monte Carlo (MC) simulations that give the relative bias and 

dispersion in the estimation of MWF for several underlying input parameters as a function of 

SNR, using the SRC-NLLS- and the Bayesian-based approaches. Finally, we present MWF 

maps obtained from human brain datasets that exhibit a range of SNR and spatial resolution.

2. THEORY

2.1. The Two-pool mcDESPOT Signal Model

mcDESPOT is based on the use of SPGR and bSSFP datasets, each acquired over a range of 

FAs, with very short TR (18, 32). Neglecting exchange between components, the two-

component SPGR signal is conventionally given by (33)

[1]

where the dimensionless quantity B1 denotes an RF transmit scaling factor, s and l 
respectively denote the short- and long- T2 components, fs is the fraction of the short T2 

component,  represents the signal amplitude at echo time TE = 0 and incorporates 

proton density and machine factors, and αk is the kth excitation FA out of a total of K FAs. 

We also define E1,j = exp(−TRSPGR/T1,j), where T1,j is the spin-lattice relaxation time of the 

jth component.

Similarly, the two-component bSSFP signal in the absence of exchange between components 

is conventionally given by (34)

[2]

where

and

Here, j indicates the short (s) or long (l) T2 species,  represents the bSSFP signal 

amplitude at echo time TE = 0 and incorporates proton density and machine factors, βn is the 

nth excitation FA out of a total of N FAs, and φ = 2π · Δω · TRbSSFP + ϑ, with Δω the off-

resonance frequency of proton pools with the assumption that both proton pools exhibit the 
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same chemical shift, and ϑ the phase increment of the applied radio-frequency (RF) pulse. 

E1,j = exp(−TRbSSFP/T1,j) and E2,j = exp(−TRbSSFP/T2,j), where T2,j is the spin-spin 

relaxation time of the jth component.

In our simulation analyses, the FAs were assumed to be well-calibrated (i.e. B1 = 1) and the 

two proton pools were assumed to be on-resonance (i.e. Δω = 0 Hz), while in the 

experimental analyses, B1 and Δω were calculated using the saturated double angle method 

(S-DAM) (35) and the DESPOT2-FM method (36), respectively, and used as known 

parameters for the calculation of the fs maps, reflecting MWF. Further, in all cases, two 

different bSSFP datasets were obtained with phase increments ϑ equal to 0 or π (bSSFP0 

and bSSFPπ) respectively, corresponding to the usual implementation of mcDESPOT 

(18-24, 26, 32).

2.2. Bayesian Analysis of mcDESPOT

Bayesian analysis can be particularly robust for parameter estimation in models with several 

unknown parameters, especially in the presence of noise (27-31). Unlike NLLS, it does not 

require initial estimates and so is much less susceptible to problems with local minima. 

These characteristics arise fundamentally from the process of marginalization over nuisance 

parameters, defined as those parameters besides the one under current consideration, and are 

independent of the additional fact that Bayesian inference also provides a natural framework 

for the incorporation of prior knowledge when available.

Marginalization results in a considerable computational burden, but provides a posterior 

PDF for each individual parameter. In the case of mcDESPOT, the posterior PDF of fs 

follows form:

[3]

where  is the 

vector of unknown parameters,  is the vector of standard 

deviations, SDs, of the noise, Λ* is equivalent to Λ but without fs and represents the vector 

of nuisance parameters in the determination of fs, P(Λ*) is the product of prior parameter 

distributions for the elements of Λ*, P(S) = ∫ P(Λ*) L(S | Λ) dΛ* is a normalization 

constant,  is the vector of measured signals, each of which is 

itself a vector describing the signal amplitude for each value of FA, and L(S | Λ) is the joint 

likelihood function of S given Λ. Given the independent and identically Gaussian distributed 

elements of S, the joint likelihood function for mcDESPOT is
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where P(S | Λ) is the PDF of S given Λ with obvious subscripting as indicated, the terms of 

the form (S − M) are difference of row vectors S and M across FAs, the superscript T 
indicates transpose operation, and MSPGR and MbSSFP are the row vectors of ideal 

measurement values at different FAs given by Equations 1 and 2, respectively.

Finally, an estimate, f̂s, of the short fraction, fs, can be derived as the first moment of its 

posterior PDF (30) through

[4]

As can be seen from Equations 3 and 4, the estimation of f̂s requires a high dimensional 

integration of its posterior PDF in order to perform a complete marginalization over 

nuisance parameters. One useful technique for reducing the dimensionality of required 

marginalizations is to use a so-called conjugate prior, by which we mean a prior that can be 

coupled with a likelihood function to permit analytic closed form integrals over certain 

nuisance parameters (37). In the following, we describe three different approaches to reduce 

the dimensionality of parameter space for the estimation of fs. The first approach is based on 

data normalization, the second approach on the use of noninformative priors and data 

normalization, and the final approach on the exclusive use of priors that are noninformative.

2.2.1. Approach 1: Normalized data and known standard deviation of noise—If 

sufficiently large background regions are available in the SPGR and bSSFP images, σSPGR, 

 can be estimated with high accuracy and precision (38), avoiding 

the need to marginalize over these variables. Further, we can avoid marginalization over 

 by normalizing both the experimental and theoretical 

signals by their respective mean values calculated over FAs (18, 24, 26, 32): 

Bouhrara and Spencer Page 5

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



. In effect, this further reduces the dimensionality 

of parameter space from 10 to 4. Equation 3 can be rewritten as

Equation 3 can be rewritten as

[5]

where λ* = ( T2,s T2,l T1,s T1,l ) is the vector of the remaining parameters, 

 represent the normalized SDs of the noise. In the 

present study, the number of measurements s much greater than the number of derived 

parameters, so that results are largely independent of reasonable selections of prior 

probabilities (37). We assumed a form of noninformative Jeffreys priors, that is, P(λ*) = 1/

λ* with obvious notation for multiplication of parameter reciprocals (27-28, 39).

2.2.2. Approach 2: Normalized data and unknown standard deviation of noise: 
Jeffreys priors σ—We now describe the analysis for the case in which there is insufficient 

background in the SPGR and bSSFP images to ensure accurate estimation of the noise SD. 

We again assume Jeffreys priors on σ, so that  with the same 
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assumption on λ* as above. Then, using 

, where Γ is the gamma function, 

Equation 3 for the posterior PDF of fs becomes (see Appendix)

[6]

where again, λ* = ( T2,s T2,l T1,s T1,l ). As can be seen from Equation 6, the combination of 

the Jeffreys priors and the Gaussian likelihood functions permitted us to obtain a posterior 

PDF of fs, P(fs | S̃), that is independent of σSPGR, , eliminating the 

need to marginalize over these variables. As in the above, the experimental and the 

theoretical signals were normalized in order to avoid marginalization over 

. Therefore, the dimensionality of the parameter space is 

again reduced from 10 to 4.

2.2.3. Approach 3: Non-normalized data and unknown standard deviations of 
the noise: NIG priors on M0 and σ—Normalization with respect to the mean of the 

measured data as described above may introduce a bias due to the potential propagation of 

uncertainties in these mean values due to noise, especially in the case of a limited number of 

measurements. To overcome this potential limitation, we also address the case of non-

normalized data with unknown noise SD using conjugate priors that permit closed-form 

solutions. For this, conjugate normal-inverse-Gamma distributions, NIG(M0, M2), on M0 

and σ, given by

were taken as priors (40). Thus, our prior distributions were given by

where N(0 | Vσ2) is a normal distribution over M0 with zero mean and variance Vσ2 , with V 
= δ/(g gT), where g represents the vector of theoretical signal measurements and δ is a scale 

parameter, with large δ indicating a minimally-informative prior. IG(σ2 | α, β) is an inverse 

Gamma prior on σ2 with shape parameter α and scale parameter β, with small values of α 

and β indicating a minimally-informative prior. A detailed description of the NIG prior can 

be found in (30, 40-41). The combination of the NIG prior distributions with their 

corresponding Gaussian likelihood functions allows one to obtain a closed form of 
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marginalized joint likelihood function, L(S | λ), which is explicitly independent of M0 and σ 

through

where λ = (f2 T2,s T2,l T1,s T1,l ), 

 C is a 

proportionality constant that depends only on α, β, δ, K and N and is independent of 

, where Ma and Mb 

were defined in Equation 2. Therefore, the posterior PDF of fs given by Equation 3 can be 

rewritten as

[7]

where, again, λ* = ( T2,s T2,l T1,s T1,l ). As can be seen from Equation 7, this third approach 

also permits reduction of the dimensionality of the parameter space from 10 to 4.

2.3. Bayesian Monte Carlo Analysis of mcDESPOT

Although the dimensionality of the parameter space is considerably reduced using the 

Bayesian analyses described above, the estimation of fs still requires a four dimensional 

integration of the posterior PDF defined in Equation 4, as indicated in Equations 5-7. This 

remains an intractable high dimensional integration requiring extensive computational time. 

To overcome this difficulty, rather than standard fully sampled integrations, we explored the 

use of standard Monte Carlo (MC) integration (42). In brief, MC integration is performed by 

averaging the values of the integrand, the posterior PDF defined in Equation 5, over a large 

random set, M, of parameter combinations. By assuming random sampling from a uniform 

PDF on a grid defined over the integration parameter ranges, the posterior PDF of fs can be 

approximated as

[8]

where V is a volume constant. In the following, we will refer to this method as Bayesian 

Monte Carlo (BMC).
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3. MATERIALS and METHODS

3.1. Simulation Analysis

3.1.1. Input Parameters, Parameter Bounds, and SNR Definition—The following 

input parameters were used for all simulations: TRSPGR = TRbSSFP = 6.5 ms, αSPGR = [2 4 6 

8 10 12 14 16 18 20]°, βbSSFP = [2 6 14 22 30 38 46 54 62 70]°, with two bSSFP datasets 

generated with RF phase increments of 0 or π. The limits of the parameter search space for 

the SRC-NLLS algorithm were: 0 ≤ fs ≤ 1, 2 ms ≤ T2,s ≤ 45 ms, 45 ms ≤ T2,l ≤ 200 ms, 100 

ms ≤ T1,s ≤ 700 ms and 700 ms ≤ T1,l ≤ 3000 ms. These values were also used as limits of 

the integrals needed in the fully sampled Bayesian marginalization (Eqs. 5-7) and as ranges 

for the random sampling needed in the BMC integration (Eq. 8). Details of the SRC-NLLS 

algorithm can be found in (25-26). Briefly, for each iteration, 20,000 random samples were 

generated within the specified parameter bounds. The 50 solutions with the lowest least-

squares residuals (LSR) were used to construct the bounds of the next iteration. Iterations 

were terminated after convergence was achieved, defined as a relative difference between the 

minimum and maximum values of all parameters of less than 1%, or after 30 iterations.

Zero-mean Gaussian white noise of SD σ was added to simulated signals in order to 

investigate results across a range of SNR, defined as SNR = M0 / σ, where M0 represents the 

signal amplitude at TE = 0 ms. All numerical calculations were performed with MATLAB 

(MathWorks, Natick, MA, USA).

3.1.2. Comparisons of the BMC and Fully Sampled Integrations—Input parameter 

values of T2,s = 15 ms, T2,l = 100 ms, T1,s = 450 ms and T1,l = 1800 ms were used in the 

following analyses, and were selected based on values obtained in human brain studies 

(10-12, 14-16, 18-21).

Determination of the optimal total number of samples for the BMC integration: In 

order to define a value for the number of random samples, M, used in the BMC integration 

(Eq. 8) that maximizes integration accuracy in the determination of fs while maintaining 

reduced computational time, estimations of fs were performed for different values of M 
between 10 and 100,000. Analyses were performed for an input fs value of 0.15 and two 

SNR values of 500 and 2000. For each combination of SNR and M, results are presented as 

the mean-squared-error, MSE, that incorporates information about both bias and dispersion 

(38). MSE was calculated as the difference between the true value, fs, used in generating the 

MR signal, and estimated values, , obtained using BMC integration, according to

[9]

where R, the total number of noise realizations, was fixed at R = 1001. Analyses were 

performed for all three Bayesian-based approaches described above.

Comparison of the BMC and fully sampled integrations: The BMC (Eq. 8) and fully 

sampled (Eq. 5) integration techniques for the estimation of fs were compared for fs values 
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of 0.05, 0.15 and 0.3 at SNR values of 500, 1000 and 2000. For each SNR and fs 

combination, BMC integration was performed with M = 20,000, which was determined to be 

an optimal value from the analysis described above. Results are presented as the mean, SD, 

and mean relative error, MRE, in estimated fs values over 1001 noise realizations. The MRE 

were calculated as the difference between estimated values obtained using fully sampled, 

, integrations through

[10]

where R is the total number of noise realizations. MRE was used instead of MSE, as defined 

above, in order to assess relative error for different values of fs. Extensive simulations 

demonstrated that the three Bayesian approaches showed very similar performance, so that 

results for the comparison of BMC and fully sampled integrations are shown for the first 

approach only (Eq. 5).

3.1.3. Comparison of the SRC Algorithm and the BMC Approaches—
Comparison of the SRC- and BMC-mcDESPOT methods for the estimation of fs were 

evaluated using numerical simulations. The first evaluation was performed for different fs 

values of 0.05, 0.1, 0.15, 0.2, 0.3 and 0.5 at SNR values of 500, 1000 and 2000, where the 

other underlying input parameters were fixed at T2,s = 15 ms, T2,l = 100 ms, T1,s = 450 ms 

and T1,l = 1800 ms. The second evaluation was performed by fixing the fs and SNR values to 

0.15 and 500, respectively, and exploring several values of the remaining parameters, with 

T2,s = (10, 15, 20, 25) ms, T2,l = (70, 100, 110, 150) ms, T1,s = (300, 400, 450, 550) ms and 

T1,l = (1400, 1800, 2000, 2500) ms.

For each parameter combination and SNR, the performance of each method was evaluated 

by calculating the relative bias, relative dispersion and relative root-mean-squared-error, 

RMSE, in the estimation of fs (43). The relative bias, a measure of accuracy, was defined as

[11]

where  and R is the total number of noise realizations, R = 1001. The 

relative dispersion, a measure of precision, was defined as

[12]

and finally the RMSE, a measure including both precision and accuracy (38), was defined as 

the root-square of the sum of the squared relative bias of the estimator and its relative 

variance by the expression
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[13]

3.1.4. Energy Surface and Posterior PDF Analyses—For NLLS, including SRC-

NLLS, the least-squares energy surface structure defines in part the reliability of parameter 

fits. In contrast, for Bayesian analysis, reliability of estimates are defined by the derived 

posterior PDFs. Therefore, to characterize the SRC-NLLS analysis, minimum LSR (MLSR) 

was calculated as a function of fs by fixing fs to a given value and varying all other 

parameters. The LSR was calculated over the entire combined multidimensional range of 

these other parameters for each fixed value of fs, with the minimum calculated LSR 

designated as the MLSR. This process was repeated for different fixed values of fs (24). For 

the BMC analyses, the posterior PDF of fs was calculated by fixing fs to a given value and 

marginalizing over all remaining parameters as described above. This process was again 

repeated for different fixed values of fs. In both cases, the signal was generated with 

underlying input parameters of T2,s = 15 ms, T2,l = 100 ms, T1,s = 450 ms and T1,l = 1800 

ms, with noise added as described above. All analyses were performed for fs values of 0.15 

and 0.3 and with SNR of 500.

3.2. Experimental Analysis

3.2.1. Data Acquisition—All MRI experiments were performed on a 3T whole body 

MRI Philips system (Achieva, Best, The Netherlands) using the internal quadrature body 

coil for transmission and an eight-channel phased-array head coil for reception. Data were 

collected from the brain of a 23 year-old healthy female, from whom written informed 

consent was obtained prior to participation. All examinations were performed with approval 

of the local institutional review board.

Three separate sets of acquisition and reconstruction parameters were used to generate 

mcDESPOT data with a range of SNR and spatial resolution (SR). We selected oblique 

imaging slices that contained well-recognized and well-represented white and grey matter, 

as well as clear delineation of ventricles. The oblique slice package was centered on a plane 

roughly 4 cm superior to the external auditory meatus. In the SNRHigh protocol, that with the 

highest SNR, all SPGR and bSSFP datasets were acquired with 4 signal averages (SA) and 

with SR = 1 × 1 × 3 mm3, and then reconstructed to SR = 0.45 × 0.45 × 3 mm3. In the 

SNRIntermediate protocol, with intermediate SNR datasets, SPGR and bSSFP datasets were 

acquired with 1 SA and SR = 1 × 1 × 3 mm3, reconstructed to SR = 0.45 × 0.45 × 3 mm3. In 

the SNRLow protocol, with the lowest SNR, SPGR and bSSFP datasets were acquired with 1 

SA and SR = 1 × 1 × 1 mm3 and reconstructed to SR = 0.45 × 0.45 × 1 mm3. For each of 

these three protocols, the 3D SPGR images were acquired with FAs αSPGR = [2 4 6 8 10 12 

14 16 18 20]°, with TESPGR = 1.6 ms and TRSPGR = 6.6 ms, while the 3D bSSFP images 

were acquired with FAs βbSSFP = [2 6 14 22 30 38 46 54 62 70]°, with TEbSSFP = 3.3 ms and 

TRbSSFP = 6.6 ms. For all datasets, the bSSFP images were acquired twice, once with Δω = 

0 Hz (i.e. bSSFPπ) and once with Δω = 1/(2 * TR) = 76 Hz (i.e. bSSFP0), with, in both 

cases, ϑ = π. All images were obtained with field of view (FOV) = 200 × 200 × 9 mm3. 
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Further, SPGR and bSSFP images with a null FA were acquired for each protocol and used 

to estimate the noise SD needed for BMC1.

In this in-vivo study, the SNR was defined as (44-45)

where L = 8 is the total number of channels of the phased-array head coil and S̄
SPGR(αSPGR 

= 8°)2 was calculated as the square of the mean signal from all regions in the SPGR image 

obtained with αSPGR = 8° corresponding to the maximum signal image in the regions over 

which the MWF maps were calculated (See Data Analysis section). In addition, 

 is the noise SD calculated through 

 is the mean of 

the squared pixel intensity values calculated from a large region in the SPGR image obtained 

with αSPGR = 0° (44). The SNRHigh , SNRIntermediate and SNRLow values calculated for each 

protocol described above were ~90, ~40 and ~25, respectively.

For the B1 calibration needed for mcDESPOT (32), the S-DAM method (35) was used. Two 

3D images with excitation FAs of 70° and 140° were acquired, with SR = 2 × 2 × 3 mm3, 

and then reconstructed to SR = 0.45 × 0.45 × 3 mm3 for both SNRHigh and SNRIntermediate 

protocols, or to SR = 0.45 × 0.45 × 1 mm3 for SNRLow protocol. The other acquisition 

parameters were: FOV = 200 × 200 × 9 mm3, TES-DAM = 1.73 ms and TRS-DAM = 1538 ms.

3.2.2 Data Analysis—Images from each of the three mcDESPOT datasets with different 

SNR and SR, as described above, were analyzed on a voxel-wise basis. First, the S-DAM 

datasets were used to generate B1 maps. These were then used to generate T1 maps through 

a fit of the SPGR data as a function of FAs to a functional form incorporating only a single 

underlying component. Similarly, T2 and Δω * TR maps were then generated according to 

the DESPOT2-FM method (36) by fitting the bSSFP datasets as a function of FA to a single 

component form of the signal, using the voxel-wise B1 and T1 values obtained as outlined 

above. Finally, the Δω * TR and B1 maps, combined with the SPGR and bSSFP datasets, 

were used to generate fs maps reflecting MWF (18-23).

For each mcDESPOT dataset, MWF maps were generated using the SRC-NLLS algorithm 

and the BMC approaches as described above. To correspond to actual practice (24, 26, 46), 

the boundary conditions for the SRC-NLLS algorithm were set to 0 ≤ fs ≤ 0.6, 2 ms ≤ T2,s ≤ 

45 ms, 75 ms ≤ T2,l ≤ 200 ms, 100 ms ≤ T1,s ≤ 700 ms and 700 ms ≤ T1,l ≤ 3000 ms. The 

same boundary conditions were used as sampling ranges for BMC. Further, manual 

segmentation was performed to eliminate ventricles and non-brain regions of the images, 

with statistical analyses and MWF maps generated for the remaining regions of interest. The 

statistical analyses, consisting of calculations of the mean, SD, and coefficient of variation, 

CoV, for the pixel-wise estimate of MWF, were performed on three different image regions 

as indicated in Figure 9. The first region encompasses the frontal lobes, the second region 
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encloses the temporal lobes, and the third region encloses the occipital lobes. For each 

region, all the statistical analyses were calculated from pixels with MWF > 1% defined from 

the MWF maps generated using BMC3 approach. Finally, MLSR and posterior PDF 

analyses were performed on a single voxel from data obtained with the SNRLow dataset as 

described in the Simulation Analysis section above.

4. RESULTS

4.1. Simulation Analysis Results

The effect of varying the number of random samples used in BMC integration
—Figure 1 shows the MSE, as defined in Equation 9, for estimation of the short fraction, fs, 

as a function of the total number of samples, M, used in the BMC integration (Eq. 8). 

Results are presented for SNR values of 500 and 2000 using the three different BMC 

approaches described in the Materials and Methods section. For each of the three and for 

both values of SNR, the MSE decreased with increasing M, as expected. However, minimal 

further decrease in MSE as a function of M was seen for M ≃ 6000 for SNR = 500, and for 

M ≃ 10000 for SNR = 2000, indicating that, as expected, higher SNR permits further 

refinement of the accuracy of the integration through use of additional sampled points.

Accuracy of fs determination as a function of SNR for BMC compared to fully 
sampled integration—Figure 2 shows the mean, SD and MRE, as defined in Equation 

10, for the estimation of fs calculated over 1001 noise realizations using fully sampled (Eq. 

5) or BMC (Eq. 8) integration for three different fs and SNR combinations. As is evident, 

BMC integration provides results that are virtually indistinguishable from those obtained 

with the fully sampled integration. In spite of the large number of randomly sampled points 

used for BMC integration, processing time was reduced to a few minutes from the several 

hours required for the fully sampled integration.

Comparison of the accuracy of SRC-NLLS and BMC—Figure 3 shows the relative 

bias, dispersion and RMSE in the estimation of fs for several combinations of SNR and true 

input fs values. As expected, relative bias, dispersion and RMSE decreased with increasing 

SNR or fs values in all cases. Comparing the methods, the BMC approaches demonstrated a 

substantial reduction of relative bias, dispersion and RMSE compared to the SRC-NLLS 

algorithm, especially at low-to-moderate SNR (i.e. SNR < 2000). However, at high SNR, the 

SRC-NLLS was able to perform, overall, almost as well as the BMC, especially for fs ≥ 

0.15, that is, with more equal component fractions. In addition, at low SNR (i.e. SNR < 

1000), BMC3 showed a slight overall decrease in relative bias, dispersion and RMSE 

compared to BMC1 and BMC2. Using average values over all parameter combinations as a 

benchmark for performance, the averaged values for relative bias were 18/4/4/4%, for 

relative dispersion 44/24/25/24% and for RMSE 48/24/25/24% for SRC-NLLS, BMC1, 

BMC2 and BMC3, respectively, indicating the superior performance of BMC analysis. For 

SNR = 500, the mean computation times over several noise realizations for the calculation of 

fs using a 2.4 GHz computer for SRC-NLLS and for each of the BMC were ~0.6 ms and 

~1.7 ms, respectively, with the computation time for the three BMC analyses being 

essentially identical.
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Figure 4 shows the relative bias, dispersion and RMSE in the estimation of fs using SRC-

NLLS and BMC analyses. Results were obtained by fixing the fs and SNR values to 0.15 

and 500, respectively, and varying the values of the remaining, nuisance, parameters. In all 

cases, the relative dispersion and RMSE of estimated fs values varied minimally with respect 

to the values of the nuisance parameters. Although the variation in relative bias was greater, 

it nevertheless remained relatively small for all BMC methods, between 2% and 13%, as 

compared to the SRC-NLLS, for which bias ranged between 12% and 44%. These results 

showed that the undesired dependence on the derived value of fs on nuisance parameters is 

considerably attenuated through use of Bayesian marginalization. For all parameter 

combinations investigated, the Bayesian approaches demonstrated substantially reduced 

relative bias, dispersion and RMSE as compared to the SRC-NLLS algorithm. We found 

values for relative bias of 32/5/5/4%, for relative dispersion 69/30/31/28%, and for RMSE 

76/30/32/28% for the SRC-NLLS, BMC1, BMC2 and BMC3, respectively, again indicating 

the substantial improvement in the quality of estimates of fs through use of BMC integration.

Reliability measures of estimates of fs for SRC-NLLS and BMC—Figure 5 shows 

the histogram of fs estimates obtained from 1001 noise realizations using SRC-NLLS and 

BMC analyses (top row), and the MLSR and posterior PDF for fs obtained for a single noise 

realization as a function of fs (middle and bottom rows, respectively). Results were obtained 

from signals generated with SNR = 500. It is clear from the histograms that the bias and 

dispersion in fs estimates were much greater for SRC-NLLS than for the BMC. The MLSR 

and posterior PDF illustrations indicate the underlying basis for the superior performance of 

the Bayesian methods as compared to SRC-NLLS. As is readily seen, the MLSR curves for 

fs exhibit an extensive flat region extending on either side of the true input fs values. In 

contrast, the posterior PDF of fs is sharply peaked around the true input fs value.

4.2. Experimental Analysis Results

B1 and off-resonance frequency, Δω, mapping from noisy images—Figure 6 

shows representative bSSFP and SPGR images and corresponding calculated B1 and Δω * 

TR maps for each of the three SNR protocol acquisitions. The impact of SNR is readily 

seen, with small anatomic structures, such as blood vessels and white-grey matter 

boundaries, increasingly obscured for decreasing SNR. Nevertheless, for each of the three 

levels of SNR, high quality B1 and Δω * TR parameter maps were derived through a mono-

component fit. Further, the calculated B1 and Δω * TR maps clearly demonstrate the spatial 

extent and the degree of RF inhomogeneity and off-resonance effects, respectively.

Qualitative and quantitative comparison of MWF maps derived using SRC-
NLLS and BMC as a function of SNR—Figure 7 shows fs parameter maps, reflecting 

MWF, derived from the in-vivo brain images obtained with the SNRHigh, SNRIntermediate and 

SNRLow protocols using SRC-NLLS, and BMC1, BMC2, and BMC3 analyses. At SNRHigh, 

all methods performed well, but with superior performance demonstrated with BMC2 and 

BMC3 as compared to BMC1 and SRC-NLLS. This is evidenced by the much more 

homogenous MWF maps for BMC2 and BMC3. For the lower SNR datasets (Figs. 7-8), 

both SRC-NLLS and BMC1 results show substantial random variation in estimated MWF in 

several image regions, while BMC2 and BMC3 performed similarly and produced much 
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higher quality MWF maps. This is clearly seen from Figure 8 showing MWF calculated 

from different slices of the SNRLow dataset. To examine this quantitatively, the mean, SD 

and CoV of the estimates of MWF were calculated for three different brain regions 

corresponding to the frontal, temporal and occipital lobes, as shown in Fig 9. In each case, 

although the mean values varied little with decreasing SNR, both SD and CoV increased 

with decreasing SNR. The results clearly indicate the superior overall performance of BMC2 

and BMC3 as compared to BMC1 and SRC-NLLS.

Reliability measures of estimates of MWF for SRC-NLLS and BMC—Figure 10 

shows the MLSR obtained through SRC-NLLS and the Bayesian posterior PDF of MWF as 

a function of MWF, that is, of fs, for the SNRLow brain data shown in Figure 7. As is readily 

seen, the MLSR curve for MWF exhibits an extensive flat region. In contrast, the posterior 

PDF of MWF is peaked around a unique MWF value. These results correspond to the 

simulation results shown in Figure 5.

5. DISCUSSION

5.1. BMC vs. SRC-NLLS

We investigated three different implementations of Bayesian probability analyses for the 

estimation of the short-T2 fraction, fs, representing MWF, from the two-component 

mcDESPOT signal model. BMC1 uses normalization by average signal amplitude, and 

assumes that noise can be accurately estimated from signal-free regions of the image. BMC2 

likewise uses average amplitude normalization, but incorporates a full treatment of noise as 

an unknown variable through marginalization. BMC3, the most general approach, does not 

use amplitude normalization and incorporates marginalization over both noise and signal 

amplitude.

We evaluated the performance of these implementations numerically over wide ranges of 

SNR and underlying input parameter values, and experimentally from MR imaging data of 

human brain obtained through use of three different protocols reflecting different noise 

levels and spatial resolutions. The accuracy and precision in the estimation of fs (or MWF) 

obtained with each of the three BMC analyses were systematically compared to those 

obtained using the SRC-NLLS algorithm, conventionally used for parameter estimation from 

mcDESPOT. Overall, we found greatly improved accuracy and precision in the estimation of 

fs, that is MWF, using the BMC as compared to the SRC-NLLS, especially at lower-to-

moderate SNRs (Figs. 3-4 and 7-9). This may be attributable to several facts. First, in 

contrast to SRC-NLLS, noise SD was either explicitly (BMC1) or implicitly (BMC2 and 

BMC3) incorporated into the BMC approaches. In addition, in the Bayesian analyses, the 

parameter of interest, fs (or MWF), is estimated independently through marginalization over 

all values of the remaining nuisance parameters. This is in contrast to the SRC-NLLS 

algorithm in which all unknown parameters are estimated simultaneously. This leads to 

potential difficulties with local minima, especially in higher-dimensional problems (24). 

Fundamentally, this arises from the multiple compensating degrees of freedom available 

through the various parameters, so that different parameter combinations can result in 
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nearly-equivalent LSR. This is reflected in the flattening of the energy surface of MLSR 

(Figs. 5 and 10) seen with increasing model complexity (24).

Our results are in agreement with the previous work of Neil and Bretthorst (27) and 

Bouhrara et al. (31) which showed improved accuracy and precision in the estimation of the 

diffusion and transverse relaxation parameters, respectively, from two-component signal 

models through use of Bayesian-based approaches compared to NLLS-based methods. In 

addition, the Bayesian analysis that we have outlined is widely applicable and has great 

potential to improve the quality of derived MWF from other MRI techniques, such as 

gradient recalled echo- or other steady state-based analyses (47-49, 50).

In the present work, we based our analysis on the conventional SPGR and bSSFP signal 

models (Eqs. 1-2) incorporated into mcDESPOT. These models ignore the transverse signal 

decay that occurs during the time between the preceding pulse and the echo formation in 

SPGR, and underestimates the bSSFP signal by neglecting the fact that echo formation 

occurs at a time TRbSSFP/2, rather than TRbSSFP, after the pulse that precedes acquisition. 

This neglect of finite TE effects can introduces bias in parameter estimates, especially for 

data obtained with relatively long TEs (24, 51). However, the focus of the present work was 

to analyze the mcDESPOT method as usually implemented.

5.2. BMC Analysis

Our simulations showed that the performance of the three BMC methods investigated here 

were very similar with, in general, a slightly improved accuracy and precision found using 

BMC3 (Figs. 3-4). We attribute this to the fact that, unlike BMC3, BMC1 and BMC2 use 

normalization with respect to the mean amplitude of noisy data. Errors in the calculation of 

this mean due to noise may introduce a bias in the derivation of the remaining signal 

parameters, including fs (or MWF), especially in the case of a limited number of 

measurements. In our study, the mean amplitude was calculated over a large number of data 

points, so that the improved accuracy and precision using BMC3 was marginal.

In this work, all priors were taken as noninformative in order to avoid introducing biases into 

the derived posterior PDF. In addition, the likelihood functions were the dominant terms in 

the posterior PDFs, so that use of conjugate priors also resulted in negligible bias, as seen 

from our results. These results motivate investigation of other forms of prior probabilities, 

such as spatial priors (30), which may further reduce the dispersion seen in the derived 

MWF maps at low SNR (Figs. 7-8).

Comparison of the three BMC methods was performed under the assumption that the correct 

values of σSPGR, σbSSFP0 and σbSSFPπ, needed for BMC1, are known precisely in the 

numerical simulations. However, the quality of the estimate of fs, that is, MWF, will depend 

upon the quality of the estimates . Simulation analysis 

(Table 1) indicates that, as expected, moderate errors (≤ 20%) in the estimated values of 

noise parameters, such as would be the case for estimation from large background regions of 

the images (38, 52), have a negligible impact on parameter estimates. Further, the in-vivo 
analyses highlighted the limited performance of BMC1 due to the lack of spatial invariance 

of the noise (Fig. 11), likely due to the correlation between the channels of the phased-array 
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coil. This spatial variation of noise may explain the inferiority of parameter estimates from 

BMC1 as compared to BMC2 and BMC3 for the in-vivo analyses (Fig. 7-9). This problem 

may be addressed through use of techniques that consider the non-uniformity of noise (53).

In this work, we assumed a Gaussian noise distribution. This allowed us to obtain closed 

form expressions for marginalized likelihood functions, thereby reducing the required 

integrations. However, it is well-known that the noise in magnitude MR images can be 

described by a Gaussian distribution only for SNR >~ 3 (43, 54), which is therefore a 

required approximation for the applicability of our specific results. However, the extension 

of BMC1 to the case of Rician or, more generally, non-central-chi distributed noise, as is 

appropriate for multiple receive coils (44-45), is straightforward through appropriate 

modification of the likelihood function given by Equation 4. In contrast, application of 

BMC2 and BMC3 as implemented here for non-Gaussian noise would require construction 

of appropriate priors to permit derivation of closed form expressions for marginalized 

likelihood functions. Lacking this, the required integrations could, in principle, be performed 

numerically.

BMC integration allows a considerable reduction in processing time as compared to fully 

sampled integration. In our work, we used random sampling over a uniform grid to compute 

the posterior PDF of fs , that is, MWF. Careful selection of M, the number of sampled points 

used in the BMC integration, was required, given the expected slow rate of convergence of 

only  (41-42); we found that M ≃ 20,000 samples led to an extremely accurate results 

(Fig. 2). Other strategies may be preferred to the BMC integrations performed here, in 

accordance with the comment of Jaynes: "Whenever there is a randomized way of doing 

something, there is a non-randomized way which yields better results, but requires more 

thinking" (55). Indeed, other sampling strategies such as stratified sampling or Markov 

Chain MC may prove to be more efficient for calculating the posterior PDF of fs (or MWF) 

when high-dimensional marginalization is required, as is the case here.

5.3. SRC-NLLS Analysis

The SRC algorithm as applied here and in the conventional implementation of mcDESPOT 

is a particular implementation of NLLS. Our results indicate that SRC-NLLS provides 

accurate and precise estimates of fs, that is, MWF, from high SNR datasets (Figs. 3-4 and 

7-9), in agreement with previous studies (24, 26). Further, unlike BMC, in which all 

parameters except the one under consideration are subject to marginalization, SRC-NLLS 

provides a rapid estimate of all unknown parameters simultaneously with modest 

computational requirements. Using SRC-NLLS, the mean ± SD of estimated values of T2,s, 

T2,l, T1,s and T1,l obtained from SNRHigh protocol data were 17 ± 10 ms, 81 ± 13 ms, 641 

± 53 ms, and 2127 ± 229 ms, respectively. Those values are in good agreement with values 

reported in the literature (46, 56). However, as has been previously pointed out (46), some of 

those parameters may exhibit unreasonable values in certain circumstances, such as upon the 

incorporation of chemical exchange into the formalism. This further highlights the potential 

for BMC-mcDESPOT to improve upon existing higher-dimensional analyses.

Furthermore, as with any least squares-based algorithm, the accuracy of the SRC-NNLS 

algorithm is limited by the presence of local minima and flat LSR energy surfaces (24); this 
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greatly reduces the quality of parameter estimates at low-to-moderate SNR (Figs. 3-5 and 

7-9). These considerations may represent an important limitation in the application of SRC-

NLLS to mcDESPOT parameter estimates in the setting of modest SNR, including high-

resolution whole-brain studies and studies limited by patient compliance.

5.4. mcDESPOT Analysis

We analyzed the mcDESPOT signal model without exchange for two reasons. First and 

foremost, the most basic form of mcDESPOT still requires a fit of five unknown parameters 

using SRC-NLLS or, with Bayesian analysis, marginalization over four nuisance parameters. 

Further, a recent study showed that the incorporation of two-site exchange has a minimal 

effect on estimated MWF values (46), which is the main parameter of interest. However, the 

extension of the BMC to incorporate exchange is straightforward. In addition, to correspond 

to the conventional analysis of mcDESPOT, we neglected the effects of MT between free 

water protons and macromolecules, inherent to all steady-state measurements on biological 

systems (57). However, in a recent study, Liu et al. (50) developed a new method termed 

mcRISE to account for MT effects through incorporation of a macromolecular proton pool 

in exchange with mcDESPOT water pools. It has been shown that MT effects have notable 

impact on derived short fraction estimate in human knee cartilage corresponding, 

presumably, to proteoglycan water fraction. On the other hand, Zhang et al. (56) compared 

mcDESPOT measurements obtained using long or short RF pulses, which result in differing 

amounts of MT. The results indicated that the extracted MWF values are relatively 

insensitive to changes in MT. Further work, including the application of the mcRISE 

approach to brain analysis, is required to further understand the impact of MT on MWF.

Of note is the fact that a recent in-vivo study indicated that MWF values derived from 

mcDESPOT were substantially greater than those derived from a CPMG analysis (46). This 

was attributed to fact that mcDESPOT and CPMG are influenced to substantially different 

degrees by the experimental and physiological effects that cause received signals to deviate 

from ideal models (24, 46). These effects include diffusion, exchange, off-resonance effects, 

magnetization transfer, J-coupling, spin locking, internal gradients, magnetization spoiling 

and noise. The importance of these effects in a particular experiment will depend upon both 

the specifics of the sample or subject under investigation and the details of the pulse 

sequence, including the selection of parameters such as TE, TR, FAs, and gradient durations 

and amplitudes. Given the substantial differences between conventional SRC-NLLS and 

BMC analysis of mcDESPOT, and what we believe to be the substantially improved 

accuracy of the latter, it is not unexpected that our results for MWF would differ from 

published values. Indeed, the derived MWF estimates using BMC2 and BMC3 were 

somewhat slightly lower than those derived using SRC-NLLS. Nevertheless, our in-vivo 
results were, overall, consistent with values reported in the literature (18-21, 32, 46, 56).

6. CONCLUSIONS

Estimation of MWF in the human brain from mcDESPOT was markedly improved through 

use of Bayesian analysis, especially at low-to-moderate SNR. We found that Bayesian 

approaches that incorporated marginalization over noise, designated BMC2 and BMC3, 
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demonstrated superior accuracy and precision in parameter estimation as compared to SRC-

NLLS or a Bayesian method, BMC1, that incorporates naive estimation of noise assuming 

spatially-invariant noise. These results will be of significance for high resolution whole-

brain MWF mapping. Further, BMC-mcDESPOT can readily be extended to incorporate 

exchange between pools and to other tissues, including, for example, the estimation of the 

proteoglycan-associated water fraction in cartilage (58-59).
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7. APPENDIX

Given an i.i.d sequence of measurements {S} of normal random variables having mean μ 
and standard deviation σ, the Gaussian likelihood function, L(S | μ, σ), of {S} is given by

where R is the total length of the sequence of measurements. Assuming a Jeffreys prior on σ, 

that is, P(σ) ∝ 1/σ, the marginalized likelihood function over σ is given by

[A.1]

Using the following change of variables:  and y = σ2 , Equation A.1 becomes

[A.2]

where a (R + 2).

Finally, using , where and Γ is the 

gamma function, the marginalized likelihood function given by Equation A.2 becomes

[A.3]
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which is independent of σ.
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Highlights

• We propose a significantly improved technique for estimating myelin water 

fraction in human brain using magnetic resonance imaging

• The proposed procedure is based on Bayesian analysis of the mcDESPOT signal 

model

• Detailed simulations and in-vivo studies indicate the superiority of this Bayesian 

approach as compared to conventional approach based on least-squares 

estimates

• These results will substantially improve the quality of high-resolution whole-

brain mapping of myelination in human brain
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Figure 1. 
MSE (Eq. 9) in the estimation of the short fraction, fs, as a function of the total number of 

random samples, M, used in the BMC integration. Results are presented for two different 

SNR values, 500 and 2000, using the three different BMC approaches described in the text 

(cf. "Bayesian Analysis of mcDESPOT" section). The other underlying input parameters 

were fixed to values of T2,s = 15 ms, T2,l = 100 ms, T1,s = 450 ms and T1,l = 1800 ms.
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Figure 2. 
Mean and standard deviation (top row), and MRE (bottom row) of fs estimated over 1001 

noise realizations obtained using fully sampled (Eq. 5) and BMC (Eq. 8) integrations for 

different SNR and fs values. The other underlying input parameters were fixed to values of 

T2,s = 15 ms, T2,l = 100 ms, T1,s = 450 ms and T1,l = 1800 ms.
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Figure 3. 
Relative bias, dispersion and RMSE in the estimation of fs using the SRC-NLLS algorithm 

and the three BMC approaches. Results are presented for several combinations of SNR and 

fs values. The other underlying input parameters were fixed to values of T2,s = 15 ms, T2,l = 

100 ms, T1,s = 450 ms and T1,l = 1800 ms.
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Figure 4. 
Relative bias, dispersion and RMSE in the estimation of fs using the SRC-NLLS algorithm 

and the three BMC approaches. Results were obtained by fixing the fs and SNR values to 

0.15 and 500, respectively, and varying the values of the remaining parameters. Values used 

were T2,s = (10, 15, 20, 25) ms, T2,l = (70, 100, 110, 150) ms, T1,s = (350, 400, 450, 550) ms 

and T1,l = (1400, 1800, 2000, 2500) ms.
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Figure 5. 
Top row: The histogram of fs estimates obtained from 1001 noise realizations using the 

SRC-NLLS algorithm and BMC. Middle row: Minimum least squares residual (MLSR) of fs 

as a function of fs for a single noise realization. Bottom row: The normalized posterior 

probability density function (PDF) of fs as a function of fs obtained using BMC for a single 

noise realization. Normalization was performed with respect to the maximum value of each 

corresponding posterior PDF. In each case, the vertical red line indicates the true input value 

of fs. Results are presented for data generated with SNR of 500 and for two true input fs 

values of 0.15 (left column) and 0.3 (right column). The other underlying input parameters 

were fixed to T2,s = 15 ms, T2,l = 100 ms, T1,s = 450 ms and T1,l = 1800 ms.
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Figure 6. 
Representative examples of axial bSSFP and SPGR weighted-images and the corresponding 

B1 and Δω * TR maps calculated using S-DAM and DESPOT2-FM, respectively. Results are 

presented for each of the three protocols described in the text (see "Materials and Methods"). 

SNRHigh (≃ 90) represents the highest SNR datasets, SNRIntermediate (≃ 40) represents the 

intermediate SNR datasets, and SNRLow (≃ 25) represents the lowest SNR datasets.
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Figure 7. 
Representative fs maps, reflecting the spatial distribution of MWF, derived from in-vivo 

brain images using the SRC-NLLS algorithm and the three BMC approaches described in 

the text. MWF maps were derived from the SNRHigh (≃ 90), SNRIntermediate (≃ 40) and 

SNRLow (≃ 25) datasets as described in the text.
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Figure 8. 
MWF maps derived from in-vivo brain images using the SRC-NLLS algorithm and the three 

BMC approaches described in the text. MWF maps were derived for different slices from the 

SNRLow (≃ 25) datasets.
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Figure 9. 
Left column: means and standard deviations of estimates of fs, reflecting MWF, calculated in 

the three brain regions indicated in the above illustration from the SNRHigh (≃ 90), 

SNRIntermediate (≃ 40),and SNRLow (≃ 25) protocols. In each case, results obtained from 

SRC-NLLS and the three BMC approaches described in the text are presented. Right 

column: the corresponding coefficients of variation (CoV).
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Figure 10. 
Minimum least squares residual (MLSR) of fs, representing MWF, as a function of fs, and 

the normalized posterior probability density function (PDF) of fs as a function of fs obtained 

using the three BMC methods. Results were obtained from a single voxel from datasets 

obtained with SNRLow (≃ 25). Normalization was performed with respect to the maximum 

value for each posterior PDF.
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Figure 11. 
Examples of magnitude noise images obtained using the SPGR and bSSFP sequences with 

null FA. As can clearly be seen, noise exhibited substantial spatial variation.
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Table 1

Effect of error in σ on the degree of bias, calculated as ΔBias = |Bias (exact σ) - Bias (estimated σ)| and on the 

degree of variation, calculated as ΔDispersion = |Dispersion (exact σ) - Dispersion (estimated σ)| in estimated 

fs using the BMC 1 approach. Results were obtained from 1001 noise realizations for three representative 

SNRs and for assumed errors in the estimation of σ of 10% and 20% and 50%. The underlying input 

parameters were fixed at fs = 0.15, T2,s = 15 ms, T2,l = 100 ms, T1,s = 450 ms and T1,l = 1800 ms. As 

indicated, ΔBias and ΔDispersion were negligible for moderate errors (≤ 20%) in σ.

Error (%) 10 20 50

SNR 500 1000 2000 500 1000 2000 500 1000 2000

ΔBias (%) 4 0 0 5 1 1 7 4 3

ΔDispersion (%) 3 2 1 6 4 2 10 8 5
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