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Abstract

Classification models are becoming useful tools for finding patterns in neuroimaging data sets that 

are not observable to the naked eye. Many of these models are applied to discriminating clinical 

groups such as schizophrenic patients from healthy controls or from patients with bipolar disorder. 

A more nuanced model might be to discriminate between levels of personality traits. Here, as a 

proof-of-concept, we take an initial step toward developing prediction models to differentiate 

individuals based on a personality disorder: psychopathy. We included three groups of adolescent 

participants: incarcerated youth with elevated psychopathic traits (i.e., callous and unemotional 

traits and conduct disordered traits; n = 71), incarcerated youth with low psychopathic traits (n 
=72), and non-incarcerated youth as healthy controls (n = 21). Support vector machine (SVM) 

learning models were developed to separate these groups using an out-of-sample cross-validation 

method on voxel-based morphometry (VBM) data. Regions-of-interest from the paralimbic 

system, identified in an independent forensic sample, were successful in differentiating youth 

groups. Models seeking to classify incarcerated individuals to have high or low psychopathic traits 

achieved 69.23% overall accuracy. As expected, accuracy increased in models differentiating 

healthy controls from individuals with high psychopathic traits (82.61%) and low psychopathic 

traits (80.65%). Here we have laid the foundation for using neural correlates of personality traits to 

identify group membership within and beyond psychopathy. This is only the first step, of many, 
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toward prediction models using neural measures as a proxy for personality traits. As these methods 

are improved, prediction models with neural measures of personality traits could have far-reaching 

impact on diagnosis, treatment, and prediction of future behavior.
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1.0 Introduction

Finding patterns in large and sometimes noisy datasets with classification models has 

become more common. Internet search engines, facial recognition software, and exploring 

big data are all examples of classification models used to identify patterns in data. As these 

models become more and more accurate, researchers seek to develop models predicting a 

specific outcome for a single participant. Considering the complexity and difficult nature of 

such an endeavor, it may take years for science to develop the theoretically possible highly 

accurate prediction models of a single participant. Prediction at the level of an individual 

may be most useful in a few areas with heterogeneous and co-morbid clinical diagnoses. 

Here we take an initial step toward fine-tuning prediction models with the purpose of 

affecting positive, individual outcomes.

As several classification models have become more and more prevalent, accuracy in 

distinguishing groups of individuals has increased. Models discriminating healthy subjects 

from patients with severe mental illnesses have demonstrated promise, including 

schizophrenia (Arbabshirani et al., 2013; Schnack et al., 2014; Silva et al., 2014; Sui et al., 

2009; Yang et al., 2010a), bipolar disorder (Schnack et al., 2014), psychosis (Arribas et al., 

2010; Calhoun et al., 2008; Sun et al., 2009), and Huntington’s Disease (Rizk-Jackson et al., 

2011). Also, models have been used to predict brain maturation (Dosenbach et al., 2010), 

substance use (Fan et al., 2006; Pariyadath et al., 2014; Zhang et al., 2005), and substance 

use outcomes (Marhe et al., 2013; Steele et al., 2014). Clinical diagnosis such as depression 

(Habes et al., 2013) and obsessive compulsive symptoms (Weygandt et al., 2012a; Weygandt 

et al., 2012b) have also been successfully differentiated with prediction models. Each of 

these prediction models were designed to reduce subjectivity in distinguishing groups by 

including neuroimaging, genetics, and/or clinical assessment data. In many cases, these 

models are developed to distinguish between groups that are quite different from each other. 

A more nuanced discrimination between individuals would be to distinguish individuals on 

their severity of a specific personality trait or cluster of traits. This is challenging because 

personality traits often overlap with one another and with other comorbid conditions. 

Nevertheless, identifying neural correlates of a personality trait could prove more sensitive 

to differentiating individuals on that trait compared to using other proxy assessments, like 

self-report or expert-rater assessments.

A well-known and thoroughly examined personality trait is psychopathy, a serious 

personality disorder characterized by affective and behavioral symptoms. Just less than one 

percent of the general population is estimated to meet the established clinical criteria for 
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psychopathy, though the rate increases to 15-25% in incarcerated settings (Hare, 2003). 

Hare’s Psychopathy Checklist-Revised (PCL-R; (Hare, 2003)) is the most common and 

validated instrument for assessing psychopathic traits in adult forensic settings. Identifying 

individuals with elevated psychopathic traits may be most beneficial in helping to assign 

treatments options that are effective (Caldwell, 2011; Caldwell et al., 2007) and not 

counterproductive (Rice and Harris, 1997). Psychopathic traits, known as callous and 

unemotional traits and conduct disordered traits (CU/CD) in youth, is most commonly 

assessed in juvenile forensic populations using the Hare Psychopath Checklist: Youth 

Version (PCL:YV (Forth et al., 2003), a downward extension of the adult Hare PCL-R. 

Research has shown that the PCL-YV identifies youth at the highest risk of committing 

serious and violent crimes as adolescents and/or adults (Davidson et al., 2000; Hawkins et 

al., 1998; Hawkins et al., 2000). Psychopathic traits, at least at low to moderate levels, 

detected early in life often decrease naturally (Frick et al., 2003; Lee et al., 2009; Lynam et 

al., 2007). However, for a subsample of youth with elevated psychopathic traits, the disorder 

appears to remain stable across development (Blonigen et al., 2006; Frick et al., 2003; 

Lynam et al., 2007; Obradovic et al., 2007) and are referred to as being on the “life-course 

persistent” trajectory (Moffitt, 1993). Identifying risk factors specific to individuals with a 

life-course persistent trajectory could become useful when assigning treatment or potential 

long-term risk.

Individuals with elevated psychopathic traits, young and old, have exhibited cognitive and 

structural deficits originating in paralimbic areas (Kiehl, 2006). A growing body of literature 

supports this paralimbic hypothesis suggesting individuals with elevated psychopathic traits 

exhibit aberrant structure (specifically reduced grey matter volume and density) and function 

in many regions: anterior cingulate cortex (ACC), bilateral amygdala, bilateral hippocampus, 

medial orbitofrontal cortex (mOFC), bilateral orbitofrontal cortex (OFC), bilateral 

parahippocampus, posterior cingulate cortex (PCC), & bilateral temporal pole (Figure 1). 

Adults and youth with elevated psychopathic traits exhibit similar paralimbic neural 

dysfunction (Blair, 2006; Budhani and Blair, 2005; Cope et al., 2014; Ermer et al., 2012; 

Ermer et al., 2013; Harenski et al., 2014; Kiehl, 2006; Lockwood et al., 2013; Marsh et al., 

2008; Motzkin et al., 2011; Raine et al., 2003). Deficits appear to be specific to the 

orbitofrontal cortex (Budhani and Blair, 2005; Cope et al., 2014; Ermer et al., 2013), insula 

(Lockwood et al., 2013), amygdala (Harenski et al., 2014; Marsh et al., 2008), PCC (Ermer 

et al., 2013), parahippocampal gyrus (Ermer et al., 2013), and ACC (Cope et al., 2014; 

Ermer et al., 2013; Marsh et al., 2008).

Well-established structural differences have been identified between adults and youth with 

and without elevated psychopathic or CU/CD traits. A combination of these structural 

differences may prove more sensitive to differentiating individuals with and without elevated 

psychopathic traits than other measures. Therefore, as a proof-of-concept, we develop 

prediction models with well-established a-priori regions of interest (ROI) of structural data 

alone to identify levels of psychopathic traits by comparing incarcerated individuals with 

elevated psychopathic traits, incarcerated individuals with low psychopathic traits, and 

healthy controls. If successful, a framework will be established to identify neural correlates 

of many personality traits. Potentially, neural measures of personality traits could yield 
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precise measures of the trait and therefore be practically useful in assessing that trait at an 

individual level.

Support vector machine (SVM) learning models are developed to separate groups with an 

out-of-sample cross-validation method. In these models, we use voxel-based morphometry 

(VBM) data extracted from paralimbic regions of interest (Ermer et al., 2013; Kiehl, 2006) 

known to be aberrant in individuals with elevated psychopathic traits. It is hypothesized 

prediction models will be able to differentiate groups using only the VBM ROIs. Once there 

is evidence that simple VBM ROI analyses are sufficient to separate groups, more 

sophisticated methods will be employed to refine future prediction models. Predicting levels 

of psychopathic traits in an individual with precision could have far-reaching impact on 

diagnosis of other personality traits, treatment, and potential future behavior.

2.0 Methods

2.1 Participants

These data were drawn from the National Institute of Mental Health (NIMH)-funded 

SouthWest Advanced Neuroimaging Cohort, Youth Sample (SWANC-Y), collected between 

June, 2007, and March, 2011, from ongoing research studies at a maximum-security youth 

detention facility in New Mexico. The present study reports on a subsample of these 

participants (all males; n = 143) for whom structural MRI and the Hare Psychopath 

Checklist: Youth Version (PCL: YV) (Forth et al., 2003) data were available (mean age = 

17.29 years, standard deviation(SD) = 1.19). Using NIH racial and ethnic classification, 19% 

of the sample self-identified as White, 21% as Black/African American, 6% as American 

Indian, 36% as Other, 56% as Hispanic, 38% as not Hispanic, and 17% chose not to 

respond. The sample was primarily (89%) right handed. We selected individuals who scored 

at or above the clinical threshold of 30 on the PCL: YV (n = 71; mean = 32.78; SD = 2.23; 

range 30-38) and at or below 20 (n = 72; mean = 16.25; SD = 3.46; range 2-20). In addition, 

we report data from male healthy adolescent non-offender healthy controls drawn from the 

community (n = 21; mean age = 17.52 years, SD = 2.53). Using NIH racial and ethnic 

classification, 47.62% of the sample self-identified as White, 14.29% as Asian, 38.10% as 

Other, 38.10% as Hispanic, and 61.90% as not Hispanic. The healthy sample was primarily 

(91%) right handed.

This research was approved by the University of New Mexico Health Sciences Center 

Human Research Review Committee and all individuals volunteered to participate after 

providing written informed consent (if >= 18 years or age) or after providing written 

informed assent and parent/guardian written informed consent (if < 18 years of age). 

Participation did not affect institutional status (e.g., security level, privileges, parole, or 

release date). Individuals were excluded from participation if they had a history of seizures, 

epilepsy, psychosis, traumatic brain injury (TBI), other major medical problems, or failed to 

show fluency in English at or above a grade four reading level.
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2.2 Assessments

Trained researchers administered assessments to each participant. These assessments 

included a measure of psychopathy (PCL: YV), intelligence quotient (IQ), and a TBI 

questionnaire. All offenders were assessed for psychopathy (i.e., callous and unemotional 

traits and impulsive/antisocial behaviors) using the expert-rater Psychopathy Checklist: 

Youth Version (Forth et al., 2003). The PCL: YV assessment includes a review of 

institutional records and a semi-structured interview that reviews individuals’ school, family, 

work, and criminal histories, and their interpersonal and emotional skills. Individuals are 

scored on 20 items that measure personality traits and behaviors characteristic of 

psychopathy. Scores range from 0 to 40. The accepted diagnostic cutoff for psychopathy is 

30 and above (Hare, 2003). Psychopathy includes interpersonal and affective traits, such as 

glibness, shallow affect, callousness, and lacking guilt and remorse (Factor 1) and lifestyle 

and antisocial traits, such as impulsivity, irresponsibility, and poor behavioral controls 

(Factor 2). The PCL: YV was not administered in the healthy sample.

Full-scale IQ was estimated from the Vocabulary and Matrix Reasoning subtests of the 

Wechsler Adult Intelligence Scale (Ryan et al., 1999; Wechsler, 1997) for participants older 

than 16 years of age and from the Wechsler Intelligence Scale for Children-Fourth Edition 

(Sattler and Dumont, 2004; Wechsler, 2003) for participants younger than 16 years of age. 

IQ estimates were unavailable for n = 16 incarcerated participants (mean = 90.02; SD = 

13.40) and n = 1 for the healthy group (mean = 110.55; SD = 16.73). A post-head injury 

symptoms questionnaire (King et al., 1995) was administered to evaluate history of 

traumatic brain injury (TBI). No participant experience a TBI with significant loss of 

consciousness.

2.3 MRI Acquisition

High-resolution T1-weighted structural MRI scans were acquired on the Mind Research 

Network Siemens 1.5T Avanto mobile scanner, stationed at the detention facility (for 

offenders) or The Mind Research Network (for healthy controls), using a multi-echo 

MPRAGE pulse sequence (repetition time = 2530 ms, echo times = 1.64 ms, 3.50 ms, 5.36 

ms, 7.22 ms, inversion time = 1100 ms, flip angle = 7°, slice thickness = 1.3 mm, matrix size 

= 256 × 256) yielding 128 sagittal slices with an in-plane resolution of 1.0 mm × 1.0 mm. 

Data were pre-processed and analyzed using Statistical Parametric Mapping software 

(SPM12; Wellcome Department of Cognitive Neurology, London, UK; http://

www.fil.ion.ucl.ac.uk/spm) and VBM. T1 images were manually inspected by an operator 

blind to subject identity and realigned to ensure proper spatial normalization. Images were 

spatially normalized to the SPM12 T1 Montreal Neurological Institute (MNI) template, 

segmented into grey matter, white matter, and cerebrospinal fluid. Both volume and density 

were extracted for analyses. A Jacobian modulation was performed to preserve total volume 

(Ashburner and Friston, 2000, 2005). A nonlinear transformation without Jacobian 

determinants was performed on unmodulated images to extract grey matter density 

(Ashburner and Friston, 2000, 2005). Modulated and unmodulated images were resampled 

to 2 × 2 × 2 mm and smoothed with a 10 mm full-width at half-maximum (FWHM) 

Gaussian kernel. Voxels with a grey matter value of < 0.15 were excluded in order to remove 

possible edge effects between grey matter and white matter.
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Thirteen regions of interest (ROI) were extracted to represent paralimbic regions using the 

AAL Wake Forest University Pick Atlas Toolbox in SPM12. Reduced grey matter in 

paralimbic regions have been shown in individuals with elevated psychopathic traits (Ermer 

et al., 2013; Kiehl, 2006). The thirteen regions include: ACC, bilateral amygdala, bilateral 

hippocampus, mOFC, bilateral OFC, bilateral parahippocampus, PCC, & bilateral temporal 

pole (Figure 1). Mean grey matter volume and density were extracted for each participant 

within each of these thirteen regions. These data were then used in predicting group 

membership (high scoring individuals, low scoring individuals, or healthy controls) in an 

out-of-sample cross-validated support vector machine learning classifier.

2.4 Support Vector Machine (SVM) Learning Classification

SVM were used to test nonlinear combinations of variables in identifying individuals as 

scoring high on the PCL: YV (30 and above), low on the PCL: YV (20 and below), or a 

healthy control. Measures of overall performance, sensitivity, and specificity were calculated 

for each SVM model. SVMs are especially beneficial when data classes are heterogeneous 

with few training samples (Melgani and Bruzzone, 2004). This binary classifier finds a 

hyperplane that maximizes the margin between two classes. Participants were classified 

using two nested leave-one-out cross-validations. Within each iteration, one participant is 

selected as the testing sample and the rest as training samples (first leave-one-out). To select 

the best parameter for the SVM classifier, a grid search was performed over parameters C 

and σ. C is the value of the box constraint for the soft margin and σ is the scaling factor of 

the radial basis function (RBF) kernel. Values for C were in this set [C=2−2, 2−1.5…26] and 

values for σ were in this set [σ=2−2, 2−1.5…24]. The classification rate was measured for 

each parameter set using another leave-one-out validation inside the training set. The best C 

and σ were identified by the model that produced the greatest combination of sensitivity and 

specificity. After selecting the best parameter, the left out testing sample was classified. 

Matlab version 7.12.0 (R2011a) was used to implement the svmtrain and svmclassify 

functions and a Gaussian RBF kernel to develop these classification models. Within each 

model, the variables were z-scored to standardize across the variable set. This procedure 

(using two nested leave-one-out) avoids any use of testing data in model selection or model 

training, which is crucial in any classification problem. This method has been used 

successfully with other datasets in our laboratory (Cope et al., 2014; Steele et al., 2015; 

Steele et al., 2014). There is a potential concern with over-fitting these models by included 

to many models with insufficient participants. Models differentiating healthy controls from 

incarcerated samples have the potential of over-fitting considering this is our smallest group 

with n = 21. Over-fitting may inflate accuracy in these models though this should not be a 

concern in the primary models of interest, classifying the two incarcerated samples which 

each include more than 70 participants.

Four support vector machine models were computed comparing each group: 1) Volume 

measures from 13 ROIs; 2) Density measures from 13 ROIs; 3) Volume and Density 

measures from 13 ROIs each; 4) age and IQ measure. For the first three models, grey matter 

volume and density were extracted for each participant within each of the 13 ROIs from 

paralimbic areas (Figure 1). These thirteen regions have been identified as being related to 

psychopathy (Kiehl, 2006), specifically an adolescent sample (Ermer et al., 2013) so as to 
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avoid biasing the classifier and artificially inflating the ability of brain regions to 

discriminate groups. Age and IQ measures were used in the final model. Accuracy of these 

models was confirmed with permutation tests. These tests were calculated by randomizing 

the labels (i.e., group membership as high or low PCL: YV or healthy control) 1000 times 

and calculating classification measures within each iteration. When randomizing the labels, 

the ratio of classes constant was held constant. By calculating the proportion of times (of the 

1000 iterations) where the measures were greater than our original classification measures, 

p-values reflecting the stability of our classification models were calculated. The first three 

models comprehensively test whether structural volume and or density measures alone are 

sufficient in identifying high vs low scoring PCL: YV individuals. Additionally, these three 

models were used to identify high scoring PCL: YV individuals from healthy controls and 

low scoring PCL: YV individuals from healthy controls. The fourth model tests how well 

simple clinical measures perform in identifying group membership thus giving context to the 

relative performance of the first three models.

3.0 Results

3.1 High vs Low Scoring PCL: YV Individuals

Two-tailed t-tests were computed to test group differences in age and IQ. High scoring 

individuals (mean = 16.96, SD = 1.20) were slightly younger than low scoring individuals 

(mean = 17.62, SD = 1.09; t(141) = 3.44, p < .001). The two groups were not different on 

the IQ measures (high: mean = 88.41, SD = 14.36; low: mean = 91.67, SD = 12.26; t(125) = 

1.38, p = .172). Supplemental Table 1 includes demographic information by group and 

comparisons among groups.

To evaluate nonlinear combinations of these variables predicting PCL: YV groups, four 

SVM models were computed (Table 1). Several of these models successfully predicted 

group membership at the individual level. Numerically, the best model using brain measures 

included both volume and density measures producing an overall accuracy of 69.23% 

(permutation generated p-value = .024). Importantly, this model successfully predicted 

participants in the high (70.42%) and low (68.06%) group relatively well. This was the best 

model overall outperforming the simpler model that included only age and IQ.

One-tailed t-tests examined whether less grey matter volume and density would be found in 

high scoring individuals compared to low scoring individuals (Table 2; See Supplemental 

Table 2 for mean and standard deviations for extracted volume and density measures). False 

discovery rate (FDR) corrections were applied and reported below (Benjamini and 

Hockberg, 1995; Yekutieli and Benjamini, 1997). Volume was significantly reduced in the 

high scoring group, relative to the low scoring group in the right temporal pole, t(141) = 

2.96, p = .026.. Marginal reductions were also found in the right parahippocampus, t(141) = 

1.86, p = .074, PCC, t(141) = 2.09, p = .062, left temporal pole, t(141) = 2.34, p = .065. 

Density measures did not differ between groups.
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3.3 High Scoring PCL: YV Individuals vs Healthy Controls

Two-tailed t-tests were computed to test group differences in age and IQ. High scoring 

individuals (mean = 16.96, SD = 1.20) did not differ from the healthy controls (mean = 

17.52, SD = 2.53; t(90) = 1.41, p = .162). IQ was significantly lower in the high scoring 

individuals (mean = 88.41, SD = 14.36) compared to the healthy controls (mean = 110.55, 

SD = 16.73; t(82) = 5.78, p < .001).

To evaluate nonlinear combinations of these variables predicting high scoring PCL: YV 

individuals and healthy controls, three SVM models were computed (Table 3). Several of 

these models successfully predicted group membership at the individual level. Numerically, 

the best model using brain measures included density measures and produced an overall 

accuracy of 82.61% (permutation generated p-value = .007). Importantly, this model 

successfully predicted participants in the low (83.10%) and healthy control (80.95%) group 

relatively well. The best model overall, was the fourth model that included only age and IQ, 

which produced an overall accuracy of 83.70% (permutation generated p-value = .003). 

Importantly, this model successfully predicted participants in the low (85.92%) and healthy 

control (76.19%) group better than the model that only included brain measures.

One-tailed t-tests were computed testing whether less grey matter volume and density would 

be measured in high scoring individuals compared to healthy controls (Table 2; See 

Supplemental Table 2 for mean and standard deviations for extracted volume and density 

measures). FDR corrections were applied and reported below (Benjamini and Hockberg, 

1995; Yekutieli and Benjamini, 1997). Volume was significantly reduced in the high scoring 

group, relative to healthy controls, in all ROIs except the left amygdala, right 

parahippocampus, and PCC where it was marginally reduced. Density was significantly 

reduced in the high scoring group, relative to healthy controls, in all ROIs except the right 

hippocampus were it was marginally reduced.

3.3 Low Scoring PCL: YV Individuals vs Healthy Controls

Two-tailed t-tests were computed to test group differences in age and IQ. Similar ages were 

measured between low scoring individuals (mean = 17.62, SD = 1.09) and healthy controls 

(mean = 17.52, SD = 2.53; t(91) = 0.27, p = .790). IQ was significantly lower in the low 

scoring individuals (mean = 91.67, SD = 12.26) compared to the healthy controls (mean = 

110.55, SD = 16.73; t(81) = 5.47, p < .001).

To evaluate nonlinear combinations of these variables predicting low scoring PCL: YV 

individuals and healthy controls, three SVM models were computed (Table 4). Several of 

these models successfully predicted group membership at the individual level. Numerically, 

the best model using brain measures included density measures and produced an overall 

accuracy of 80.65% (permutation generated p-value = .011). Importantly, this model 

successfully predicted participants in the low (83.33%) and healthy control (71.43%) group 

relatively well. The best model overall, was the fourth model that included only age and IQ, 

which produced an overall accuracy of 83.87% (permutation generated p-value = .004). 

Importantly, this model successfully predicted participants in the low (83.33%) and healthy 

control (85.71%) group better than the model that only included brain measures.
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One-tailed t-tests were computed testing whether less grey matter volume and density would 

be measured in low scoring individuals compared to healthy controls (Table 2; See 

Supplemental Table 2 for mean and standard deviations for extracted volume and density 

measures). FDR corrections were applied and reported below (Benjamini and Hockberg, 

1995; Yekutieli and Benjamini, 1997). Volume was significantly or marginally reduced in 

the low scoring group, relative to healthy controls, in all ROIs accept the left amygdala, right 

amygdala, left hippocampus, mOFC, left OFC, right parahippocampus, and PCC. Density 

was significantly or marginally reduced in the low scoring group, relative to healthy 

controls, in all ROIs accept the right hippocampus.

4.0 Discussion

Support vector machine (SVM) learning models were developed to separate groups of youth 

with and without elevated psychopathic traits and healthy controls. Groups were 

successfully differentiated using an out-of-sample cross-validation method and voxel-based 

morphometry (VBM) data extracted from paralimbic regions of interest (Ermer et al., 2013; 

Kiehl, 2006) previously shown to be aberrant in adults with elevated psychopathic traits. 

Predicting levels of personality traits in an individual with precision could have far-reaching 

impact on diagnosis, treatment, and prediction of future behavior. This proof-of-concept was 

successful in suggesting neural measures of personality traits, beyond psychopathy, could be 

used to differentiate groups of interest.

SVM prediction models differentiated high and low scoring PCL: YV individuals. The 

model with most stable predictions was one implementing grey matter volume measures 

(overall accuracy 69.23%; mean of all models = 67.02%, SD of all models = 2.78%). These 

SVM models highlight that although there were few significant volume and density 

measures between groups, prediction models were able to separate groups. These models 

should prove very useful in future attempts to delineate individuals with high or low levels 

of a personality trait using only structural measures. More research is warranted to generate 

better performing models considering the suggested threshold for clinically useful models is 

80% accuracy (Savitz et al., 2013). The effects presented here are just below the 80% 

threshold; nonetheless, there is a promising future for experiments to obtain the proposed 

necessary accuracy.

As expected, SVM prediction models performed very well at distinguishing healthy controls 

from incarcerated individuals, regardless of psychopathic traits. These models were slightly 

more accurate in differentiating healthy controls from individuals with low psychopathic 

traits (overall accuracy 83.87%; mean of all models = 79.21%, SD of all models = 2.86%) 

than high psychopathic traits (overall accuracy 82.61%; mean of all models = 76.63%, SD of 

all models = 4.99%). In each case, however, the positive predictive value was relatively low. 

This is likely due to the unequal number of participants in each group considering only 21 

healthy controls were available to compare to the incarcerated samples. It should also be 

noted that both incarcerated samples exhibited nearly universal reductions in grey matter and 

density relative to the healthy control sample. These differences proved to be relatively small 

numerically; however, suggesting the multivariate classifier used here may be most 

appropriate at differentiating groups with these small numerical differences. As such, 
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prediction models were successful in differentiating individuals with and without elevated 

psychopathic traits from healthy controls.

4.1 Potential Application

Models such as those developed here could have real-world application. For example, risk 

assessment in the legal system seeks to predict whether an individual will or will not re-

offend. Subjective clinical predictions of future arrest have been shown to be highly 

inaccurate (Monahan, 1981). Subsequent research using empirically derived static (e.g., age, 

sex, criminal history) and dynamic (e.g., impulsivity, drug use, social support) risk factors 

have led to significant improvements in predicting future antisocial behavior (Douglas et al., 

2002; Harris et al., 1993; Yang et al., 2010b). One of the strongest and most widely studied 

risk factors for recidivism is impulsivity or behavioral disinhibition (Harris et al., 1993; 

Yang et al., 2010b). Impulsivity, in this context, is defined as the persistent lack of restraint 

and consideration of future consequences (Harris et al., 1993). Recent work from our group 

has identified neural activity associated with the ACC and impulsivity to predicted 

subsequent rearrest better than behavioral variables (Aharoni et al., 2014; Aharoni et al., 

2013; Steele et al., 2015). By combining all known risk factors, including structural, 

functional, and clinical assessment measures, risk assessment predictions may develop into 

precise measures at an individual level. Identifying individuals at greatest risk, especially at 

an early age, should provide the maximum benefit with recent development of targeted 

interventions (Caldwell, 2011; Caldwell et al., 2007). These interventions could augment the 

life-course persistent trajectory toward a more positive outcome. Also, adding neural 

measures to risk assessments could benefit the legal system by adding information and 

precision. This would allow judges to be more informed when making life-changing 

decisions for individuals in the criminal justice system. These decisions are currently being 

made with information identified to be useful in risk assessments such as gender, age, IQ, 

impulsivity, and psychopathic traits (Harris et al., 1993). Some argue our understanding of 

MRI is not sufficient for applications affecting decisions in the criminal justice system (c.f., 

lie detection (Rusconi and Mitchener-Nissen, 2013) though, as we have discussed previously 

(Aharoni et al., 2013; Steele et al., 2015), accurate predictions of future behavior of 

incarcerated individuals has proven elusive when relying on expert opinions and clinical 

assessments. Here, we suggest neural correlates of personality traits, structural measures 

(c.f. (Pardini et al., 2014)), and functional measures (c.f., (Aharoni et al., 2013; Steele et al., 

2015)) could increase precision in legal risk assessment models while replication and 

extension of these findings is essential.

4.2 Limitations

A few limitations should be considered before applying what is described here to additional 

samples or individuals. First, we selected a few a-priori ROIs in our examination. Though 

these ROIs were selected based on areas known to be structurally or functionally aberrant in 

individuals with elevated psychopathic traits (Blair, 2006; Budhani and Blair, 2005; Cope et 

al., 2014; Ermer et al., 2012; Ermer et al., 2013; Harenski et al., 2014; Kiehl, 2006; 

Lockwood et al., 2013; Marsh et al., 2008; Motzkin et al., 2011; Raine et al., 2003), there 

could be additional ROIs that should be explored. Using data driven approaches, such as 

independent component analysis (ICA; (Calhoun et al., 2001; Caprihan et al., 2011; Xu et 
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al., 2009)) may prove to be more biologically valid, as we discuss in the future direction 

section below.

A second limitation is that the differences found between healthy controls and the 

individuals with and without elevated psychopathic traits may be due to something other 

than psychopathic traits. This is highlighted by the fact that the two incarcerated samples 

only differed on a few volume and density measures within ROIs; although, healthy controls 

and incarcerated samples were significantly different in many of the a-priori ROIs. The 

healthy controls were different in IQ and demographic characteristics from the two 

incarcerated samples. However, prediction models including only age and IQ measures were 

not as successful in differentiating individuals scoring high or low in psychopathy as models 

that included only brain measures. The greatest difference between groups is likely the levels 

of psychopathic traits considering most community samples score below 3 on the PCL-

screening version. (Coid et al., 2009; Farrington, 2006; Neumann and Hare, 2008). Our 

community sample had no history of arrests, thus we are confident the community healthy 

control group all scored very low on psychopathic traits. Overall, it seems unlikely measures 

other than psychopathic traits were more influential in the prediction models. However, there 

is a potential for over-fitting of these models considering only n = 21 healthy controls were 

available for these classification models. Therefore, we suggest caution when interpreting or 

applying these two prediction models before replication.

Third, collecting and analyzing imaging data is likely more expensive than acquiring clinical 

assessment data. In the future it may be possible to develop neuro-prediction models that 

supplant classic risk instruments using structural MRI measures. Indeed, a single MRI scan 

could prove to be more cost effective than administering hours of clinical assessments. We 

present here a roadmap for predicting other personality traits toward a goal of replacing 

several clinical assessments with a single MRI scan.

A final limitation could be a lack of real-world application for the models developed here. 

As discussed above, this was a proof-of-concept that previously identified neural correlates 

of a personality trait could then be used to differentiate high and low scoring individuals in 

an independent sample. We have succeeded in the first step of this endeavor and the next few 

steps will be discussed below. Once a few additional steps are completed, we believe strong 

prediction models, at the level of the individual, will be possible.

4.3 Future Directions

Considering the models and results presented here, some intriguing future examinations are 

possible. Though the VBM measures of grey matter volume and density are often used, 

additional measures may yield more specific neural correlates useful in differentiating 

groups. Two methods in particular should be tested next. First, ICA of structural data (often 

referred to as source-based morphometry (SBM)) is a method to extract independent 

structures from the structural data (Calhoun et al., 2001; Caprihan et al., 2011; Xu et al., 

2009). This method may be useful in identifying biologically valid structures that are both 

independent and useful in differentiating individuals on a spectrum within a specific 

personality trait. Second, FreeSurfer software suite (Dale et al., 1999); http://

surfer.nmr.mgh.harvard.edu) is an automated atlas-based method of extracting volumetric 
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and cortical thickness measures using structural MRI data. FreeSurfer volumetric and 

cortical thickness measurements could be more representative of grey matter and therefore 

more sensitive to group differences. Future explorations using these more time-consuming 

and advanced methods beyond VBM could be useful in developing stronger prediction 

models than what is presented here.

More sophisticated analysis methods could be employed to better differentiate individuals on 

personality traits. The steps outlined here and using SBM or FreeSurfer to extract neural 

measures could help identify neural correlates of many personality traits in the future. As we 

have found previously, neural measure of error-processing and impulsivity are better 

predictors of future outcomes than the clinical assessment measures of impulsivity (Aharoni 

et al., 2013; Steele et al., 2015; Steele et al., 2014). This is highly suggestive neural 

correlates of personality trails could be validated to be as good, or better, at predicting future 

events than clinical assessments alone. Also, with the current analysis methodology, it is 

difficult to identify which variables are most useful in the classification. We interpret 

differences between groups in volume and density identified with t-tests to be most useful in 

the classification but it is likely that a combination of differences across variables is most 

useful in classification. Future analyses techniques could implement sophisticated methods 

to identify unique contributions from each variable toward classification to further out 

understanding on individual contributions.

Finally, the steps carried out here to differentiate individuals exhibiting high and low 

psychopathic traits could be applied to other personality traits. There are additional 

personality traits where differentiating clinical and subclinical levels could be beneficial. 

These benefits include accurately identifying which treatment (individual, group, or 

psychopharmacological) would be most effective, which individuals may benefit from 

treatment, which individuals pose the greatest risk to themselves or others, and potentially 

identifying an individual in need of treatment but does not necessarily meet current clinical 

cut-offs. By developing better models to be applied at the individual level, these, and many, 

other potential benefits are possible.

4.4 Conclusion

We have laid the foundation for using neural correlates of personality traits in identifying 

group membership for that personality trait. This proof-of-concept was possible with simple 

VBM measures and with more sophisticated measures (e.g., SBM and FreeSurfer) these 

models could be fine-tuned to capture groups more thoroughly. The models were applied 

here to psychopathy but could move beyond psychopathy to broaden the application of this 

type of prediction model. As highlighted here, many real-world applications of these models 

are possible. Primarily, neural correlates of personality traits may become valid predictors of 

future behavior and be used to assign individuals to specialized treatments. In each case, 

positive long-term outcomes would be expected at an individual level. This is only the first 

step, of many, toward prediction models using neural measures as a proxy for personality 

traits.
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Highlights

- SVM prediction models used neural correlates of a psychopathic traits

- SVM of VBM differentiated individuals with and without elevated 

psychopathic traits

- SVM of VBM differentiated individuals with psychopathic traits and 

healthy controls

- Additional personality measures could be used to aid in diagnosis and 

treatment
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Figure 1. 
Thirteen regions of interest masks used in the analyses are presented (ACC, bilateral 

Amygdala, bilateral Hippocampus, mOFC, bilateral OFC, bilateral Parahippocampus, PCC, 

and bilateral Temporal Pole).
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Table 1

Support vector machine analyses grey matter volume and density predicting high vs low PCL: YV group

All Volume
ROIs

All Density
ROIs

All Volume
and Density

ROIs

Age and IQ

Overall
Classification

Rate
67.13% 62.94% 69.23% 65.03%

Specificity 68.06% 69.44% 68.06% 76.39%

Sensitivity 66.20% 56.34% 70.42% 53.52%

Positive
Predictive

Value
67.14% 64.52% 68.49% 69.09%

Negative
Predictive

Value
67.12% 61.71% 70.00% 62.50%

Note: Four support vector machine (SVM) models predicting PCL: YV groups (30 and above vs 20 and below) were computed individually for 
measures of grey matter volume and density. Separate SVM models were calculated for all 13 ROIs (Models 1 & 2) as well as combining volume 
and density measures in the same SVM model (Model 3). Finally, age and IQ were included alone in a SVM (Model 4). Specificity is the measure 
of how well the model identified individuals in the low PCL: YV group and sensitivity is the measure of how well the model identified individuals 
in the high PCL: YV group. Positive predictive value represents the ratio of individuals who were identified to be in the low PCL: YV group to 
combined individuals identified correctly and incorrectly to be in the low PCL: YV group. Negative predictive value represents the ratio of 
individuals who were identified to be in the high PCL: YV group to combined individuals identified correctly and incorrectly to be in the high PCL: 
YV group. The C and σ identified for models 1 through 4 were: Model 1) C = 32.00, σ = 11.31; Model 2) C = 45,25, σ = 2.83; Model 3) C = 2.00, 
σ = 2.00; Model 4) C = 1.00, σ = 1.00. Permutation p-values related to the overall classification accuracy were calculated for each model: Model 1) 
p = .017; Model 2) p = .098; Model 3) p = .024; Model 4) p = .045.
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Table 2

One-tailed t-tests comparing grey matter volume and density between groups

a.

Volume High vs Low
PCL: YV groups

High PCL: YV group
vs Healthy Controls

Low PCL: YV group
vs Healthy Controls

ACC t(141) = 0.30, p = .384 t(90) = 1.76, p = .049* t(91) = 2.30, p = .052^

Left amygdala t(141) = 1.44, p = .198 t(90) = 1.83, p = .051^ t(91) = 1.02, p = .184

Right amygdala t(141) = 1.44, p = .165 t(90) = 2.15, p = .037* t(91) = 1.36, p = .116

Left hippocampus t(141) = 1.08, p = .262 t(90) = 2.08, p = .033* t(91) = 1.55, p = .102

Right hippocampus t(141) = 0.99, p = .235 t(90) = 2.36, p = .026* t(91) = 1.94, p = .073^

mOFC t(141) = 1.02, p = .250 t(90) = 2.15, p = .032* t(91) = 1.69, p = .102

Left OFC t(141) = 0.83, p = .241 t(90) = 1.73, p = .047* t(91) = 1.49, p = .101

Right OFC t(141) = 0.95, p = .222 t(90) = 2.49, p = .023* t(91) = 2.22, p = .046*

Left parahippocampus t(141) = 0.55, p = .314 t(90) = 3.00, p = .009** t(91) = 2.79, p = .020*

Right parahippocampus t(141) = 1.86, p = .074^ t(90) = 1.79, p = .051^ t(91) = 0.75, p = .248

PCC t(141) = 2.09, p = .062^ t(90) = 1.32, p = .095^ t(91) = 0.01, p = .494

Left temporal pole t(141) = 2.34, p = .065^ t(90) = 4.34, p < .013* t(91) = 3.02, p = .013*

Right temporal pole t(141) = 2.96, p = .026* t(90) = 3.46, p < .007** t(91) = 1.67, p = .091^

b.

Density High vs Low
PCL: YV groups

High PCL: YV group
vs Healthy Controls

Low PCL: YV group
vs Healthy Controls

ACC t(141) = 0.47, p = .413 t(90) = 3.33, p < .013* t(91) = 3.35, p < .013*

Left amygdala t(141) = 0.68, p = .542 t(90) = 2.75, p = .006** t(91) = 3.35, p < .007**

Right amygdala t(141) = 0.88, p = .618 t(90) = 2.94, p = .003** t(91) = 2.51, p = .010*

Left hippocampus t(141) = 0.16, p = .476 t(90) = 2.20, p = .020* t(91) = 1.85, p = .044*

Right hippocampus t(141) = 0.57, p = .463 t(90) = 1.63, p = .053^ t(91) = 1.22, p = .112

mOFC t(141) = 0.49, p = .387 t(90) = 4.12, p < .007** t(91) = 4.35, p < .004**

Left OFC t(141) = 0.60, p = .509 t(90) = 4.96, p < .004** t(91) = 4.81, p < .003*

Right OFC t(141) = 0.16, p = .439 t(90) = 2.20, p = .018* t(91) = 1.85, p = .040*

Left parahippocampus t(141) = 0.73, p = .606 t(90) = 4.89, p < .003** t(91) = 5.38, p < .003**

Right parahippocampus t(141) = 0.54, p = .425 t(90) = 4.17, p < .003** t(91) = 4.21, p < .002**

PCC t(141) = 1.03, p = .663 t(90) = 1.91, p = .033* t(91) = 1.37, p = .095^

Left temporal pole t(141) = 1.30, p = .637 t(90) = 6.27, p < .002** t(91) = 5.70, p < .002**

Right temporal pole t(141) = 1.44, p = .988 t(90) = 5.73, p < .002** t(91) = 4.98, p < .002**

Note. One-tailed independent samples t-tests between groups are presented for each ROI. Tests of differences in volume are reported in table 4a and 
tests of differences in density are reported in table 4b. All differences between high and low PCL: YV groups are due to reduced grey matter 
volume or density in the high PCL: YV group, compared to the low PCL: YV group. All differences in comparisons with healthy controls are due 
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to reduced grey matter volume or density in the PCL: YV group, compared to healthy controls. All p-values have been corrected with false-
discovery rate correction for multiple comparisons (Benjamini and Hockberg, 1995; Yekutieli and Benjamini, 1997).

^
p < .10

*
p < .05;

**
p < .01.
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Table 3

Support vector machine analyses grey matter volume and density predicting high PCL: YV group vs healthy 

controls

All Volume
ROIs

All Density
ROIs

All Volume
and Density

ROIs

Age and IQ

Overall
Classification

Rate
70.65% 82.61% 78.26% 83.70%

Specificity 73.24% 83.10% 77.46% 85.92%

Sensitivity 61.90% 80.95% 80.95% 76.19%

Positive
Predictive

Value
40.62% 58.62% 51.52% 61.54%

Negative
Predictive

Value
86.67% 93.65% 93.22% 92.42%

Note: Four support vector machine (SVM) models predicting high PCL: YV group (30 and above) and healthy controls were computed individually 
for measures of grey matter volume and density. Separate SVM models were calculated for all 13 ROIs (Models 1 & 2) as well as combining 
volume and density measures in the same SVM model (Models 3). Finally, age and IQ were included alone in a SVM (Model 4). Specificity is the 
measure of how well the model identified individuals in the high PCL: YV group and sensitivity is the measure of how well the model identified 
healthy control individuals. Positive predictive value represents the ratio of individuals who were identified to be in the high PCL: YV group to 
combined individuals identified correctly and incorrectly to be in the high PCL: YV group. Negative predictive value represents the ratio of 
individuals who were identified to be healthy controls to combined individuals identified correctly and incorrectly to be healthy controls. The C and 
σ identified for models 1 through 4 were: Model 1) C = 64.00, σ = 11.31; Model 2) C = 64.00, σ = 8.00; Model 3) C = 2.83, σ = 11.31; Model 4) C 
= 0.25, σ = 0.77. Permutation p-values related to the overall classification accuracy were calculated for each model: Model 1) p = .213; Model 2) p 
= .007; Model 3) p = .042; Model 4) p = .003.
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Table 4

Support vector machine analyses grey matter volume and density predicting low PCL: YV group vs healthy 

controls

All Volume
ROIs

All Density
ROIs

All Volume
and Density

ROIs

Age and IQ

Overall
Classification

Rate
76.34% 80.65% 79.57% 83.87%

Specificity 83.33% 83.33% 80.56% 83.33%

Sensitivity 52.38% 71.43% 76.19% 85.71%

Positive
Predictive

Value
47.83% 55.56% 53.33% 60.00%

Negative
Predictive

Value
85.71% 90.91% 92.06% 95.24%

Note: Four support vector machine (SVM) models predicting low PCL: YV group (20 and below) and healthy controls were computed individually 
for measures of grey matter volume and density. Separate SVM models were calculated for all 13 ROIs (Models 1 & 2) as well as combining 
volume and density measures in the same SVM model (Model 3). Finally, age and IQ were included alone in a SVM (Model 4). Specificity is the 
measure of how well the model identified individuals in the low PCL: YV group and sensitivity is the measure of how well the model identified 
healthy control individuals. Positive predictive value represents the ratio of individuals who were identified to be in the low PCL: YV group to 
combined individuals identified correctly and incorrectly to be in the low PCL: YV group. Negative predictive value represents the ratio of 
individuals who were identified to be healthy controls to combined individuals identified correctly and incorrectly to be healthy controls. The C and 
σ identified for models 1 through 4 were: Model 1) C = 32.00, σ = 4.00; Model 2) C = 64.00, σ = 8.00; Model 3) C = 22.63, σ = 16.00; Model 4) C 
= 5.66, σ = 5.66. Permutation p-values related to the overall classification accuracy were calculated for each model: Model 1) p = .055; Model 2) p 
= .011; Model 3) p = .021; Model 4) p = .004.
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