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Abstract

When faced with a new challenge, we often reflect on related past experiences to guide our 

behavior. The ability to retrieve memories that overlap with current experience, a process known 

as pattern completion, is theorized as a critical function of the hippocampus. Although this view 

has influenced research for decades, there is little empirical support for hippocampal pattern 

completion to individual memory elements and its influence on behavior. We used pattern analysis 

of brain activity measured with functional magnetic resonance imaging to demonstrate that 

specific elements of past experiences are reinstated in the hippocampus, as well as perirhinal 

cortex (PRC), when making decisions about those experiences. Linking neural measures of 

specific memory reinstatement in the hippocampus and PRC to behavior with computational 

modeling revealed that reinstatement predicts the speed of memory-based decisions. Moreover, 

hippocampal activation during retrieval was selectively coupled to regions of occipito-temporal 

cortex that showed content-specific item reinstatement. These results provide evidence for 

hippocampal pattern completion and its role in the mechanisms of decision making.
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Decisions often rely on information that is not immediately available. Whether it is ordering 

an entrée at a favorite restaurant or deciding among treatment options for a medical 

condition, many of our decisions are guided by what we recall from past experience. Most 

research on the neural systems of decision making have focused on perceptual decisions that 

depend on information directly or recently available to the sensory system (Heekeren et al., 

2008). Although such studies have characterized how external sensory information is 

represented and interpreted by the brain to influence behavior (Bogacz et al., 2010; 

Bollimunta et al., 2012; Gold and Shadlen, 2007; Hanks et al., 2014; Heekeren et al., 2008; 

Nienborg and Cumming, 2009), the neural computations that support how we use internally-

generated content from past experiences to guide decision making remain poorly 

understood.

It is well known that our ability to encode and remember past experiences depends critically 

on the medial temporal lobe (MTL) (Eichenbaum, 2004; Squire, 2004). The prominent 

theoretical view (Marr, 1971; McClelland et al., 1995; O’Reilly and Rudy, 2001) proposes 

that successful memory retrieval involves reinstatement of memory representations through 

a process known as pattern completion. Specifically, the hippocampus is thought to act as an 

auto-associative network that reinstates complete memory representations from partial or 

degraded input. It has been further proposed that the content of these reinstated memories 

serve as internally-generated evidence that guides subsequent behavior (Lisman and Grace, 

2005; Norman and O’Reilly, 2003). In the present study, our goal was to test the theoretical 

prediction that during memory-based decision making, specific memory elements are 

reinstated in the human hippocampus and that this reinstatement predicts decisions.

Empirical evidence for hippocampal memory reinstatement and its influence on decision 

making has been established in human electrophysiological studies. This work has 

demonstrated that firing patterns of single neurons in medial temporal lobe selectively code 

for specific contents of memory (Heit et al., 1988) and that reinstatement of these firing 

patterns during retrieval is related to memory performance (Gelbard-Sagiv et al., 2008; Paz 

et al., 2010; Rutishauser et al., 2015). However, such empirical evidence of pattern 

completion in human functional magnetic resonance imaging (fMRI) research has been 

limited. Initial reports focused on differences in process rather than contents of memories, 

inferring pattern completion from a reduction in blood-oxygen-level dependent (BOLD) 

response to repeated presentations of objects and similar lures relative to initial encoding 

(Bakker et al., 2008; Lacy et al., 2011). Such an effect is consistent with pattern completion; 

however, it is unknown whether or not such reduced neural responding reflects 

reinstatement of specific memory elements. fMRI studies have demonstrated that 

hippocampal activation patterns during spatial context encoding exhibit a bias towards 

existing spatial templates, a finding consistent with pattern completion processes (Stokes et 

al., 2015). Further, it has been shown that hippocampal activation patterns during retrieval 
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differentiate between stored event representations (Chadwick et al., 2011, 2010) and are 

consistent with episode-specific templates of activation patterns recorded after encoding and 

retrieval (Wimber et al., 2015). However, these extant findings cannot speak to the central 

tenet of pattern completion: hippocampal activation patterns representing specific memory 

elements are themselves reinstated during decisions that rely on memory.

A second theoretical aspect of pattern completion with limited empirical support is the 

proposal that reinstated mnemonic information in the hippocampus serves as evidence for 

memory-based decision making (Lisman and Grace, 2005; Norman and O’Reilly, 2003). It 

has been demonstrated that successful memory decisions are associated with stronger 

reinstatement signatures in content-specific cortical regions (Bosch et al., 2014; Johnson et 

al., 2009; Kuhl and Chun, 2014; LaRocque et al., 2013; Polyn et al., 2005; Ritchey et al., 

2012; Staresina et al., 2012; Wing et al., 2015). However, the behavioral link between 

memory decisions and hippocampal pattern completion has yet to be observed. Furthermore, 

the link between reinstatement and behavior observed in these studies is based on the 

indirect comparison of cortical reinstatement signatures during successful versus 

unsuccessful memory choices, thus limiting the sensitivity of evaluating the direct influence 

of reinstatement on decision making on a trial-by-trial basis. Recent neuroimaging evidence 

shows that the magnitude of hippocampal activation is linked to memory confidence 

judgments (Leiker and Johnson, 2015; Thakral et al., 2015) and the speed of memory 

decisions (Gordon et al., 2014), with greater retrieval-related activation for higher 

confidence and faster responses. Electrophysiological work in humans has further identified 

single cells within the hippocampus that exhibit firing patterns consistent with a graded 

representation of memory strength and confidence during recognition decisions (Rutishauser 

et al., 2015). However, these studies did not index hippocampal pattern completion per se. 

And, although the single cell finding is a compelling demonstration of hippocampal cells 

representing memory evidence, the kind of information carried by these cells was not item 

specific, and the memory-specific firing patterns were observed in response to perceptual 

information currently available to the participant. The theoretically important question 

remains as to whether or not internally generated hippocampal memory evidence is directly 

related to decisions about the specific mnemonic content.

Here, we sought direct evidence of pattern completion during memory-based decision 

making by indexing reinstatement of the specific components of individual memories from 

patterns of fMRI activation in the human hippocampus and surrounding cortices. 

Participants learned arbitrary associations between pictures of objects and famous faces and 

places before performing a delayed match-to-memory test (Chen et al., 2011), in which 

objects cued memory retrieval of the associated face or place (Figure 1). We used neural 

pattern similarity (Kriegeskorte et al., 2008; Xue et al., 2010) to assess the reinstatement of 

specific people and places during memory retrieval in parahippocampal cortex (PHC) and 

perirhinal cortex (PRC), MTL cortical regions that have demonstrated content-specific 

coding (e.g., LaRocque et al., 2013; Liang et al., 2013; Staresina et al., 2012), and 

hippocampus (Figure 1). Item-specific patterns during retrieval were compared to item-

specific neural patterns recorded during a pre-exposure phase, in which participants viewed 

each item in isolation prior to associative encoding. This approach allowed us to go beyond 

category level decoding of memory reinstatement (Johnson et al., 2009; Polyn et al., 2005), 
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a method that has failed to provide evidence for reinstatement of hippocampal 

representations (Diana et al., 2008; Gordon et al., 2014; cf. Kuhl and Chun, 2014), to assess 

reinstatement of specific memory elements.

Furthermore, we investigated the theoretical proposal that reinstated mnemonic information 

in hippocampus serves as evidence for memory-based decision making (Lisman and Grace, 

2005; Norman and O’Reilly, 2003). To this end, we assessed the link between neural 

reinstatement of specific memory content in MTL subregions, including the hippocampus, 

and decisions about the memory probes with a mathematical model of decision making 

commonly used to assess how perceptual evidence impacts decisions (Ratcliff, 1978). 

Critically, our model-based approach extends beyond correlation methods (e.g., Gordon et 

al., 2014) to test whether or not MTL neural reinstatement signatures are predictive of 

subsequent behavior. Typical approaches to relating brain measures to behavior are largely 

discriminative, focusing on differences in neural activation across known conditions. For 

example, studies that compare neural measures based on successful versus unsuccessful 

memory performance have revealed that cortical reinstatement is stronger for correct than 

incorrect memory decisions (e.g., Kuhl and Chun, 2014). The discriminative approach can 

reveal potentially important neural differences across conditions, but the resulting findings 

are ultimately correlational. In contrast, a generative approach attempts to describe the 

system of interest first and then evaluate the system under different conditions. Such an 

approach is considered generative because the modeled system can generate predictions for 

novel situations (Ng and Jordan, 2002). Here, we take a generative approach by using a 

modeling framework that makes explicit assumptions about how neural information 

available in the MTL influences memory decisions. By doing so, we provide a strong and 

direct test of the hypothesis that internally generated memory evidence in the hippocampus 

predicts mnemonic decision making on a trial-by-trial basis.

We also tested the key hypothesis that reinstatement in the hippocampus is linked to 

reinstatement in cortex (Ciocchi et al., 2015; Tanaka et al., 2014). It has been demonstrated 

that the magnitude of hippocampal BOLD activation during both encoding and retrieval 

scales with reinstatement signatures in neocortex (Gordon et al., 2014; Horner et al., 2015; 

Ritchey et al., 2012; Wing et al., 2015). Such findings suggest that the hippocampus plays 

an important role in the re-experiencing of mnemonic content by influencing cortical 

reinstatement. We extend this work by asking whether or not regions of the hippocampus 

and the surrounding cortex that demonstrate item-specific reinstatement are functionally 

coupled to regions of occipito-temporal cortex (OTC) that selectively reinstate specific 

mnemonic content. Such a functional link would suggest that not only is item-specific 

memory evidence reinstated in the hippocampus, but that the same underlying neural 

substrate is also communicating with regions of neocortex that demonstrate item-specific 

reinstatement.

Materials and Methods

Participants

Twenty-five volunteers (15 females, mean age 20.2 years old, ranging from 18 to 29 years) 

participated in the experiment; one participant was excluded from analysis due to a failure in 
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the button-response recording device and an additional participant was removed from further 

analysis due to substantial head motion. All subjects were right handed, had normal or 

corrected-to-normal vision, and were compensated $75 for participating.

Materials

Eight color images of famous faces (Oprah Winfrey, Taylor Swift, Meghan Fox, Julia 

Roberts, Barack Obama, Steve Martin, Owen Wilson, and Morgan Freeman) and famous 

places (Mount Fuji, Florida Everglades, Yosemite National Park, Monument Valley, Eiffel 

Tower, Las Vegas Strip, Taj Mahal, and London Bridge) as well as eighty-eight color 

images of everyday objects were used in the experiment (Figure 1A). Face and object 

images consisted of a cropped face or object placed on a white background. All stimuli were 

sized to 300 × 300 pixels. Eight independent raters provided visual distinctiveness ratings 

for a set of 30 famous faces and places. The four most visually distinctive female and male 

faces and four most visually distinctive natural and man-made places were selected for the 

experiment.

Task Procedure

After an initial screening and consent in accordance with the University of Texas 

Institutional Review Board, participants were instructed on the pre-exposure, associative 

learning, and delayed match to memory (DMTM) tasks. Participants then performed all 

three tasks in the MRI scanner by viewing visual stimuli back-projected onto a screen 

through a mirror attached onto the head coil. Foam pads were used to minimize head 

motion. Stimulus presentation and timing was performed using custom scripts written in 

Matlab (Mathworks) and Psychtoolbox (www.psychtoolbox.org) on an Apple Mac Pro 

computer running OS X 10.7.

Pre-exposure Phase—During the pre-exposure, participants were instructed to respond 

as quickly as possible when a centrally-located fixation cross changed color to blue or 

yellow by pressing one of two buttons on a MRI-compatible button box. On each trial, a 

face, place, or object image was presented for 1s along with a black fixation cross (Figure 

1C). After a random delay (250–750ms) from image and fixation onset, the fixation cross 

changed color to blue or yellow. After 1s had elapsed from the onset of the image and 

fixation cross, a blank screen was presented for 3–6s. Participants were instructed to respond 

only to the fixation cross color change and that the image stimuli were irrelevant to the task. 

Trials were presented in a mixed design with blocks of eight trials consisting of stimuli from 

the same visual category (faces, places, and objects). Within a block, trials were randomly 

jittered with an average trial duration of 5.5s and a range of 4–7s. Each of the eight famous 

faces and places and eight objects were presented twice across a pre-exposure run. Five 

fixation blocks, each lasting 15s, were presented interleaved with the stimulus blocks. Each 

run lasted 341s, and participants completed four runs. The entire pre-exposure phase lasted 

approximately twenty-five minutes.

Associative Learning Phase—Each of the eight famous faces and places were paired 

with five objects for a total of eighty pairs. These pairings were randomly selected across 

participants. Participants performed repetitions of study and test blocks to learn the paired 
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associates. Although participants performed the associative learning phase in the scanner, 

we did not collect fMRI data for this experimental phase. On each trial of a study block, a 

face-object or place-object stimulus pair was presented for 3.5s followed by 0.5s of fixation 

(Figure 1C). The stimulus images were presented at the same time as the object image. The 

object image appeared 8.1° to the left of the screen center, and the face/place image 8.1° to 

the right of the screen center. Labels for the faces/places and objects were presented in 

black, 32-point, Helvetica text below the images. Each image subtended 7.3° × 7.3° of 

visual space. Participants were instructed to view and attempt to remember the pairs. All 80 

pairs were shown in random order during a study block.

After study, participants were tested on the eighty paired associates. On each test trial, an 

object stimulus from one of the pairs was presented above three faces or places, with one 

face/place being the correct paired associate and two faces/places from different pairs 

serving as lures. Lures were always from the same category as the correct face or place. 

Participants responded by pressing one of three buttons on a MRI button box to indicate 

which of the three face/place stimuli was associated with the object. Test trials were self-

paced with a 1s feedback screen that presented the object along with the correct face/place. 

Test trials were separated by a 500ms fixation. All 80 pairs were tested in random order. 

After each test block, the average accuracy was calculated across the test trials for that 

block. If the test accuracy was greater than or equal to 85%, participants moved onto the 

delayed match to memory task phase. Otherwise, participants repeated the study and test 

blocks with different randomized trial orders.

Delayed match to memory (DMTM) task—The test phase consisted of trials of a 

delayed match to memory task. In contrast to the widely-used delayed match to sample task, 

in which a stimulus is presented and held in working memory through a delay period before 

a match decision is made to a probe stimulus, the delayed match to memory task requires 

cued retrieval from long-term memory during the delay period. On each trial of the DMTM 

phase, an object from one of the eighty pairs encoded during the associative learning phase 

was presented as a memory cue for 1s followed by a 9s blank screen. After the 9s delay, a 

memory probe was presented that was either the correct face/place paired associate (a match 

trial) or a different face/place associated with a different object (a mismatch trial). The probe 

stimulus was presented for 1s before presentation of a 3s fixation (Figure 1C). Participants 

were instructed to respond whether or not the probe stimulus was an associative match or 

mismatch to the object cue by pressing one of two buttons on a MRI compatible button box. 

Participants were also instructed to respond within 1s of the probe onset. A strict response 

deadline was used to encourage memory retrieval of the associated face/place during the 

delay period. Each run of the DMTM phase consisted of sixteen trials. Across these sixteen 

trials, each of the eight famous faces and places was a retrieval target, half of which were 

match trials and the other half mismatch trials. Across five runs all objects from the eighty 

learned pairs were presented as a cue. Null fixation events with durations of 2–8s sampled 

from a truncated exponential distribution for a total of 72s were randomly intermixed 

between trials throughout each run to maximize the efficiency of the trial order. Each run 

lasted 294s with the entire memory test phase lasting approximately thirty minutes.
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MRI data acquisition

Whole-brain imaging data were acquired on a 3.0T Siemens Skyra system at the University 

of Texas at Austin Imaging Research Center. A high-resolution T1-weighted MPRAGE 

structural volume (TR = 1.9s, TE = 2.43ms, flip angle = 9°, FOV = 256mm, matrix = 

256×256, voxel dimensions = 1mm isotropic) was acquired for coregistration and 

parcellation. Functional images were acquired using a T2*-weighted multiband accelerated 

EPI pulse sequence (TR = 1s, TE = 30ms, flip angle = 62°, FOV = 220mm, matrix = 

110×110, slice t hickness = 2mm, multiband factor = 4) allowing for whole brain coverage 

with 2mm isotropic voxels.

MRI data preprocessing and statistical analysis

MRI data were preprocessed and analyzed using FSL 5.0 (Smith et al., 2004) and custom 

Python routines. Functional images were realigned to the first volume of the fourth run from 

the preprocessing phase to correct for motion, spatially smoothed using a 4mm full-width-

half-maximum Gaussian kernel, high-pass filtered (128s), and detrended to remove linear 

trends within each run. Functional images were registered to the MPRAGE structural 

volume using Advanced Normalization Tools (ANTS, version 1.9; Avants et al., 2011). All 

analyses were performed in the native space of each participant.

Regions of interest

The hippocampus and subregions of MTL cortex (PRC and PHC) were delineated by hand 

on the 1mm Montreal Neurological Institute (MNI) template brain (Figure 1B) by an expert 

trained to segment MTL and hippocampus. Given the established functional differences in 

lateral versus medial subregions of entorhinal cortex (ERC; e.g., Knierim et al., 2014) and 

the limited resolution of fMRI, we excluded ERC from our analyses. The segmentations 

were validated by two other expert raters and have been used in previous published studies 

(Schlichting and Preston, 2014; Schlichting et al., 2015). PRC was defined as the lateral and 

medial wall of the collateral sulcus and a 3mm wide transition zone between PHC and PRC 

was excluded from both regions. Hippocampal, PHC, and PRC ROIs were reverse-

normalized to each individual’s functional space using ANTS. Specifically, a nonlinear 

transformation was calculated from the MNI template brain to each participant’s T1-

weighted MPRAGE volume. This warp was then concatenated with the MPRAGE to 

functional space transformation calculated using ANTS. Finally, the concatenated 

transformation was applied to the anatomical MTL ROIs to move each ROI into each 

participant’s functional space. See the Supplemental Materials for methods and findings 

from an exploratory analyses of hippocampal subfields DG/CA2,3 and CA1.

A region of interest including occipito-temporal cortex (OTC) was constructed from an 

automated cortical segmentation performed with Freesurfer, version 5.3 (Fischl et al., 2002). 

Specifically, the Freesurfer cortical segmentation was performed on each participant’s T1-

weighted MPRAGE volume and all cortical regions contained within occipito-temporal 

cortex, but excluding medial temporal lobe cortex, were added to an OTC ROI that was 

specific to each participant. The OTC ROIs was transformed to each participant’s functional 

space using ANTS.
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Pattern classification analysis

The goal of the classification analysis was to assess the extent to which category-level 

information (face vs. place) was reinstated in different MTL subregions during memory 

retrieval (Figure 3). Pattern classification analyses were implemented using PyMVPA 

(Hanke et al., 2009) and custom Python routines. All classification analyses were conducted 

on preprocessed and spatially smoothed functional data. The decision to perform 

multivariate analyses on spatially smoothed data is consistent with recent studies employing 

MVPA in the MTL (Kuhl and Chun, 2014; e.g., Schapiro et al., 2012) and demonstrations 

that smoothing does not result in information loss (Kamitani and Sawahata, 2010; Op de 

Beeck, 2010). A linear support vector machine (SVM) classifier was trained to discriminate 

neural activation patterns of faces, places, objects, and fixation acquired during the pre-

exposure phase. Each trial in the pre-exposure phase was labeled according to the stimulus 

category that was presented during the trial. To account for the hemodynamic lag, the fMRI 

data was time shifted by 4 seconds.

First, the classifier was evaluated for each of the MTL ROIs (PRC, PHC, and hippocampus) 

with a leave-one-out 4-fold cross-validation using the pre-exposure phase’s four functional 

runs. Classifiers were trained to predict face, scene, object, and fixation blocks during the 

pre-exposure phase. All four categories were included in the classifier to isolate the four 

sources of potential information in neural patterns during the DMTM phase. By including 

both objects and fixation in the classifier, the delay period information associated with 

perceptual processing of the cue object and the fixation point was accounted for in the 

classifier evidences for those two categories. With this experimentally irrelevant variance 

accounted for, the classifier evidences for face and scene categories during the DMTM delay 

period was less biased and more accurately reflected category information reinstated through 

memory retrieval. Classifier performance during the pre-exposure phase was assessed by 

taking the average accuracy across the cross-validation folds within each participant, then 

evaluating whether or not across the participant’s classification accuracy was significantly 

greater than chance levels (25% chance accuracy with four classes) according to a Bayesian 

Estimation Supersedes the t-Test procedure (BEST; Kruschke, 2012).

BEST is a hierarchical Bayesian version of the traditional t-test that estimates the t-test 

statistic through a Markov-Chain Monte Carlo (MCMC) sampling method. The BEST 

procedure is a generalization of the Student t-test such that the specific form of the t 

distribution (defined by the mean, standard deviation, and shape parameter) used by the test 

is estimated from the data through MCMC methods. Instead of assuming normally-

distributed data (i.e., setting the shape parameter equal to ∞) as is the case with traditional t-

tests, the MCMC method estimates all three parameters of the t distribution defined by the 

data and provides a valid test between groups of data even when the data is not normally 

distributed. As the name of the test implies, the BEST procedure is a generalization of the 

traditional t-test and is a statistically superior method for evaluating means from group data 

(Kruschke, 2012). All BEST tests conducted in the current work consisted of 10,000 MCMC 

samples with the first 1,000 samples discarded for burn-in. A BEST analysis provides a 

distribution of credible values of the test statistic summarized in the form of 95% highest 

density interval (HDI) that is akin to a 95% confidence interval from traditional t-test 
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methods. Although the results of a BEST analysis are best summarized by the 95% HDI, we 

also calculated a P statistic that corresponds to the proportion of the sampling posterior 

probability distribution that falls below each test’s chance level (i.e., P is an analogue to a p 

value from traditional null hypothesis testing methods). Additionally, all reported P values 

are corrected to control for false discovery rate with α = 0.05. All three ROIs showed greater 

than chance accuracy (all P < 0.0001) at decoding the four stimulus classes during the pre-

exposure phase (PHC: mean = 32.9%, HDI = [31.5%, 34.3%]; PRC: mean = 28.7%, HDI = 

[27.2%, 29.7%]; hippocampus: mean = 27.3%, HDI = [26.2%, 28.3%]).

To further test the reliability of the pre-exposure MVPA classifiers, we ran randomization 

tests on all of the classifiers to empirically define chance levels. To perform these tests, we 

reran the classification analysis, but shuffled labels on the test data in each of the cross 

validation folds. This analysis was repeated 1000 times for each participant to create a null 

distribution of classifier accuracies. For each participant and each ROI, a p value was 

calculated that corresponded to the proportion of the null distribution accuracies that were 

greater than the observed accuracy. These p values were converted to z values with the 

inverse cumulative normal distribution and evaluated across participants with a one-sample 

BEST test. Both PHC and PRC classifiers showed significantly greater accuracies than a 

baseline z value of 1.65 (corresponding to a p value of 0.05; PHC: mean = 3.475, HDI = 

[2.562, 4.498], P < 0.0001; PRC: mean = 2.945, HDI = [1.954, 3.944], P = 0.0074). In 

contrast, accuracy of the hippocampus classifier across participants was not significantly 

greater than the randomization test null distributions (mean = 2.166, HDI = [1.188, 2.962], P 

= 0.159). Thus, whereas classifiers trained on pre-exposure data in PHC and PRC accurately 

classified above empirically defined chance levels, hippocampal classifiers did not. As such, 

subsequent classification analyses were restricted to PHC and PRC.

After assessing classifier performance during the pre-exposure phase, a SVM classifier was 

trained on all data from the pre-exposure phase for each ROI and used to predict evidence 

for face and place information during the delay period of the DMTM trials. This analysis 

was limited to correct trials. To account for the hemodynamic lag, the trained classifier was 

applied to data acquired at time points 4–7s during the delay period of the DMTM trials (i.e., 

the dataset was time shifted by 4s). This range was selected a priori to capture the peak of 

the hemodynamic response to the delay period. Probability estimates for the face and place 

labels were extracted from the SVM classifier and used to index the amount of classifier 

evidence for the two categories at each time point during the tested range. Each evidence 

estimate was averaged across the time points within a trial, relabeled as correct versus 

incorrect category according to the retrieval category of the trial, and averaged across 

memory test trials for each participant (Figure 3). Finally, the difference in classifier 

evidence for correct versus incorrect category was evaluated across participants with a 

paired t-test based on the BEST procedure (Kruschke, 2012), with separate tests for memory 

test trials with face and place retrieval targets. For these particular tests, a mean paired 

difference was considered significant if the 95% HDI did not include zero. We have 

included a P statistic in the Results section that corresponds to the proportion of the 

sampling posterior probability distribution of mean differences that fell below zero. Finally, 

regional interactions between regions demonstrating significant category reinstatement were 
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assessed with an analysis of variance that compared factors of region, retrieval category, and 

classifier category evidence.

Multivariate pattern similarity

The goal of the similarity analysis was to assess the extent that item-level information was 

reinstated in different MTL subregions during memory retrieval (Figure 4). In contrast to 

classification techniques that are used to decode activation patterns associated with 

relatively small number of stimulus classes or conditions, pattern similarity methods allow 

one to evaluate activation patterns at the level of single events or stimuli. For example, 

instead of training a classifier to dissociate activation patterns for places and faces, as is the 

case with classification methods, pattern similarity methods can measure the degree that an 

activation pattern associated with a single trial of retrieving the Taj Mahal is similar to 

activation patterns associated with viewing the Taj Mahal versus other places. Pattern 

similarity methods offer a greater sensitivity in detecting between individual experimental 

events than is afforded by multivariate classification.

Pattern similarity analyses were implemented using PyMVPA (Hanke et al., 2009) and 

custom Python routines. First, activation patterns for visual and memory-related responses in 

each of the ROIs for each of the eight famous faces and places were estimated using an 

event-specific univariate general linear model (GLM) approach employing the least squares 

single (LSS) method (Mumford et al., 2012; Xue et al., 2010). In contrast to the 

classification approach that leverages the variance in neural patterns to learn voxel weights 

that best discriminate conditions, pattern similarity analyses require stable estimates of 

neural representations for the conditions of interest. In the current study, the condition of 

interest was at the level of specific items. Thus, we took a GLM approach to model stable 

estimates of visual and memory-related neural patterns for each of the eight famous faces 

and places. For each pre-exposure run, separate GLMs were conducted for each of the eight 

faces and places, such that each GLM included one regressor for the face or place modeled 

as 1s boxcar convolved with a canonical hemodynamic response function (HRF), separate 

regressors for the remaining events collapsed according to the event categories (e.g., face, 

place, object, and fixation) that were also convolved with a HRF, and nuisance regressors 

that included six head motion parameters. These individual GLMs resulted in voxelwise 

parameter estimates to each of the stimuli. The resulting beta values consisted of four 

visually-evoked activation patterns across the runs for each of the eight faces and places. A 

similar GLM approach was conducted on the DMTM functional data to extract memory 

retrieval-based activation patterns for the faces and places. Specifically, for each DMTM 

functional run, separate GLMs were conducted for the individual trials such that each GLM 

included a single regressor for the current trial modeled as a 9s boxcar convolved with a 

canonical HRF, separate regressors that combined the remaining events according to 

category and match condition (face match, face mismatch, place match, and place 

mismatch), and nuisance regressors that included six head motion parameters. These GLMs 

resulted in voxelwise parameter estimates of activation related to retrieving each of the faces 

and places. The resulting beta values consisted of five memory-retrieval activation patterns 

across the runs for each of the eight faces and places. In total, we estimated four visually-
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evoked and five retrieval-based activation activation patterns for each of the eight faces and 

places.

The pre-exposure and DMTM test activation patterns were used to characterize the degree of 

item-specific information reinstated within the ROIs during memory retrieval (Figure 4). 

Pearson correlations were computed to assess the similarity between DMTM test patterns of 

retrieving an item and pre-exposure patterns of viewing that same item (e.g., retrieving Taj 

Mahal and viewing Taj Mahal, self similarity) or viewing other items within the same 

category (retrieving Taj Mahal and viewing Eiffel Tower, category similarity). Self 

similarity and category similarity values were calculated for every DMTM test trial for each 

participant in the hippocampus, PRC, and PHC. For the hippocampal regions demonstrating 

an item reinstatement effect, we performed follow up exploratory analyses in CA subfields 

(see Supplemental Materials). Correlation coefficients were Fisher transformed to more 

closely conform to the assumptions of normality underlying standard statistical tests.

To assess the degree of item-level reinstatement within each ROI, we compared average self 

versus category similarity across participants for face and scene retrieval trials separately. 

Only correct trials with response times faster than or equal to 1000ms were included in the 

participant averages. Given the visual nature of the materials and the implementation of the 

analysis, which emphasizes visual similarity, we expected that right hemisphere might be 

more likely to demonstrate item reinstatement effects (Glosser et al., 1995; Golby et al., 

2001). We therefore first assessed differences in the similarity measures between left and 

right hemispheres for each ROI by conducting an analysis of variance that included factors 

of hemisphere (left vs. right), retrieval target (face vs. place), and similarity (self vs. 

category). If an ROI showed a significant interaction that included hemisphere, subsequent 

analyses analyzed the ROI separated by hemisphere; otherwise, similarity measures were 

collapsed across hemisphere. Pairwise comparisons between self and category similarity 

were conducted with BEST t-tests. Reported BEST P values are corrected to control for 

false discovery rate with an alpha = 0.05. Regional interactions between MTL regions 

showing item reinstatement were evaluated with an analysis of variance that compared 

factors of region, retrieval category, and similarity level. Any item reinstatement effects 

found in the hippocampus were followed up with exploratory pattern similarity analyses in 

subfield CA1 and the combined subfields DG/CA2,3 (see Supplemental Materials).

Additionally, we identified regions in occipito-temporal cortices (OTC) that showed item-

level reinstatement with a searchlight analysis extension of the pattern similarity approach. 

This analysis was performed as part of the connectivity analysis described in the next 

section. Specifically, we targeted OTC regions that selectively coded for items from one 

category (face or place) more than the other to assess the functional connectivity between 

stimulus representation regions and MTL regions associated with item reinstatement. We 

used a searchlight approach due to the relatively large volume of OTC. The spatial 

sensitivity of a searchlight approach allowed us to identify only those regions across all of 

OTC that reinstated item information during memory retrieval. The same pattern similarity 

analysis performed within the anatomically-defined MTL ROIs described previously was 

employed for the searchlight analysis with the following exceptions. For each searchlight 

sphere (radius = 3 voxels), an item reinstatement index was calculated by subtracting the 
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category similarity from the item similarity. This item reinstatement index was compared to 

a null distribution of reinstatement indices calculated from randomly shuffled trial orderings. 

This permutation test was conducted for each searchlight sphere resulting in a probability 

map.

The searchlight analysis was conducted separately for face and place item reinstatement 

measures and was restricted to occipito-temporal cortex as defined by Freesurfer anatomical 

parcellations. The resulting probability maps were converted to z-scores. For group analysis, 

the z-scored maps were normalized to MNI space and voxelwise nonparametric permutation 

testing (5000 permutations) was performed using FSL Randomise (Winkler et al., 2014) to 

compare face and place item reinstatement. The resulting statistical maps were voxelwise 

thresholded at p = 0.01 and cluster corrected at p = 0.05 which corresponded to a cluster 

extent threshold of greater than 29 voxels as determined by AFNI 3dClustSim (estimated 

smoothness of FWHM = 6.27). Significant face and place item reinstatement clusters are 

reported in Table 1 and were used to create ROI masks for the connectivity analysis 

described next (Figure 5A).

Functional connectivity analysis

We assessed the functional coupling (Rissman et al., 2004) between MTL regions showing 

item-level reinstatement and item-reinstatement regions in OTC identified in the pattern 

similarity searchlight analysis described in the previous section (Figure 5). For each trial, 

average delay-period activation within these face and place reinstatement regions, as well as 

the MTL ROIs exhibiting item reinstatement (right hippocampus and left PRC, see 

Supplemental Materials for right CA1), were extracted from the event-specific univariate 

GLM described in the pattern similarity analysis section (Figure 5A). For each participant, 

we estimated the degree of connectivity between the MTL ROIs and OTC face and place 

reinstatement regions separately for face and place retrieval trials using robust regression 

(Figure 5B). Connectivity differences across different retrieval conditions (see Figure 5C) 

were assessed with a repeated measure analysis of variance of retrieval type (face vs. place) 

and OTC reinstatement region (face vs. place). In particular, we looked for a significant 

interaction as evidence of connectivity modulated by retrieval type. We also performed 

paired comparisons within each MTL ROI for connectivity with OTC face and place 

reinstatement regions for each retrieval condition separately using the BEST methods 

described previously.

Diffusion modeling analysis

One key theoretical claim of pattern completion is that the mnemonic content reinstated in 

the hippocampus serves as evidence for memory based decisions. We sought to evaluate this 

prediction by linking our pattern similarity measure of item reinstatement to participants’ 

match/mismatch decisions with a computational model of decision making. Specifically, we 

fit participants’ choice behavior in the DMTM task with variants of the drift diffusion model 

(Ratcliff, 1978) that were differently informed by the neural item reinstatement measure. By 

doing so, we evaluated whether or not the fidelity of internally generated item reinstatement 

predicts how quickly responses to the retrieved memory are made on a trial-by-trial basis. 

This analysis extends beyond correlation methods (e.g., Gordon et al., 2014) by assessing 
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the role of item reinstatement within a computational framework of memory-based decision 

making.

The DDM posits that decisions are made by sequentially sampling noisy evidence. Over 

time, this evidence accumulates towards a threshold. Once the threshold is reached, the 

response associated with the threshold is made. With this conceptualization, the DDM is 

able to account for both response probabilities and response time distributions. The DDM is 

based on three core parameters: drift rate v – the rate of evidence accumulation, threshold a 

– the distance between the starting point of the evidence and the decision thresholds, and 

non-decision time t – the time required for perceptual encoding and motor response 

execution. These parameters uniquely affect predictions for response probabilities and 

response time distributions. Typical applications of the DDM seek to decompose effects of 

experimental conditions on choice behavior onto one or more of the DDM parameters to 

gain insight into the latent mechanisms of decision making (Ratcliff and Rouder, 1998). 

Here, we used the DDM to investigate if and how the neural measure of item reinstatement 

predicts, for every trial, response choice and speed.

The DDM analysis was implemented with the Hierarchical Drift Diffusion Model toolbox 

(HDDM version 0.5.3; Wiecki et al., 2013). HDDM performs hierarchical Bayesian 

parameter estimation for the DDM using Markov-Chain Monte Carlo (MCMC) sampling 

methods. By doing so, the HDDM allows for simultaneous estimation of participant and 

group parameters such that participant parameters are sampled from group distributions, 

multiple parameters to be estimated for different conditions, and the estimation of trial-by-

trial effects from external variables (e.g., neural measures) on different DDM parameters.

We fit a family of DDM variants to participant behavior, with different model variants 

representing different hypotheses about how neural item reinstatement influences decision 

making (Figure 6). First, we calculated a trial-by-trial item reinstatement score by 

subtracting the category from the item similarity values as computed in the neural pattern 

similarity analyses described previously. To remove the potential confound of trial-by-trial 

BOLD activation on choice behavior within each ROI, overall BOLD response within each 

ROI was computed for each trial and regressed out of the trial-by-trial item reinstatement 

score. We then used this modified item reinstatement score in the DDM analyses. 

Specifically, in separate models, we estimated the relationship between trial-by-trial item 

reinstatement in MTL regions showing evidence for item reinstatement, as well as OTC 

regions identified in the searchlight analysis, and the three core DDM parameters. This 

relationship was modeled as a linear effect between item reinstatement and a DDM 

parameter. Thus, the result of one model fit was two regression coefficients that describe the 

linear relationship between the neural measure of item reinstatement and the DDM 

parameter for match and mismatch trials.

For example, fitting a model with item reinstatement linked to drift rate (Figure 6A) results 

in linear regression coefficients that characterize the effect of item reinstatement on drift rate 

separately for match and mismatch trials. Positive valued coefficients would indicate that a 

higher item reinstatement is associated with a higher drift rate. Negative valued coefficients 

would indicate that higher item reinstatement is associated with a lower drift rate. Because 

Mack and Preston Page 13

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameter estimation in the HDDM is implemented in a hierarchical Bayesian framework 

with MCMC sampling, a distribution of regression coefficients is estimated for any one 

model fit (Figure 6B). To assess the linear effect of item reinstatement on the model 

parameters, we calculated a P statistic that quantified the proportion of the regression 

coefficient distribution that was less than zero. P values less than 0.05 were considered 

statistically significant. Separate models were fit to behavior associated with face and place 

retrieval trials, and all three DDM parameters (v, a, t) were free to vary across match and 

mismatch conditions.

All models were estimated with 30,000 MCMC samples with the first 10,000 samples 

discarded for burn-in. We assessed model fits with two analyses. First, model convergence 

was evaluated with the Gelman-Rubin R-hat statistic computed over three independently 

estimated chains of each model. All parameters in all models had a R-hat less than 1.1, 

suggesting the chains of MCMC sampling reached convergence. Second, we performed 

model comparison by calculating a deviance information criterion (DIC) measure for each 

model. Critically, we compared the item reinstatement models to baseline DDM models that 

did not include effects of item reinstatement. An item reinstatement model was considered 

as representing a meaningful relationship between behavior and item reinstatement if the 

model provided a better fit (smaller DIC value) than the corresponding baseline model 

(Table 2). If more than one item reinstatement model provided a better fit than the baseline 

model, the item reinstatement model with the smaller DIC value was selected as the winning 

model.

Results

Behavioral performance

For the pair encoding phase, learning performance was defined as the average number of 

correct responses during each test block. A criterion of 85% accuracy was used to determine 

when to move on to the DMTM phase. Of the 23 participants, 10 reached the learning 

criterion after one study-test repetition, 11 after two study-test repetitions, and 2 after three 

study-test repetitions.

For the DMTM phase, memory performance in each of the four conditions (face match, face 

mismatch, place match, and place mismatch) was measured with the mean probability of a 

correct response and the median response times for correct responses (Figure 2). Trials were 

excluded from all analyses if no response was provided (1.1% of all trials) or if the trial 

response time was greater than 1000ms (5.1% of all trials). An analysis of variance of 

probability of correct responses that included the factors of probe match (match vs. 

mismatch) and retrieval category (face vs. place) revealed a significant effect of retrieval 

category (F1,22 = 4.34, p = 0.049, ηp
2 = 0.165), but no effect of probe match (F1,22 = 0.576, 

p = 0.456, ηp
2 = 0.026) nor an interaction (F1,22 = 0.167, p = 0.687, ηp

2 = 0.008). A similar 

analysis of variance conducted on response times revealed significant main effects of probe 

match (F1,22 = 15.793, p = 0.0006, ηp
2 = 0.418) and retrieval category (F1,22 = 78.661, p = 

1×10−8, ηp
2 = 0.781), but no interaction (F1,22 = 0.197, p = 0.661, ηp

2 = 0.009). Thus, 

participants were overall more accurate and faster in responding to associative pairs that 
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included faces relative to places, as well as faster to respond when the probe item matched 

relative to mismatched the face or place paired with the cue object.

Category reinstatement in the MTL

We first targeted evidence of category reinstatement with a commonly-used decoding 

approach (e.g., Kuhl and Chun, 2014; Zeithamova et al., 2012). Separate classifiers were 

trained on fMRI data from the pre-exposure phase for each bilateral MTL ROI (PHC, PRC, 

and hippocampus) to dissociate neural patterns for the four stimulus categories: objects, 

faces, places, and fixation. Only classifiers trained on PHC and PRC pre-exposure data 

showed above chance classification. Hippocampus did not differentiate category information 

during pre-exposure, thus this region was excluded from subsequent classification analyses 

for the DMTM test phase. The trained PHC and PRC classifiers were then applied to data 

recorded during the DMTM test phase to predict evidence for face and place information 

during the delay period of the DMTM trials (Figure 3A). This analysis was restricted to 

correct DMTM trials. There was a difference in category reinstatement across MTL cortex 

as revealed by an analysis of variance that showed a significant interaction of region × 

stimulus category × retrieval category (F1,22 = 29.18, p = 0.00002, ηp
2 = 0.57). Within PRC 

(Figure 3B), we found category-specific evidence of face reinstatement (μdiff = 0.0162, 95% 

HDI = [0.0051, 0.0281], P = 0.002), but not place reinstatement (μdiff = 0.00158, 95% HDI 

= [−0.012, 0.015], P = 0.41). Within PHC, we found evidence of place reinstatement (μdiff = 

0.0414, 95% HDI = [0.0197, 0.0653], P < 0.0001), and a trending effect for face 

reinstatement (μdiff = 0.011, 95% HDI = [−0.0014, 0.024], P = 0.076).

Item reinstatement in the MTL

We next targeted the specific item-level contents of memory by comparing memory-based 

activation patterns within the hippocampus and surrounding cortex to visually-evoked 

activation patterns with neural pattern similarity analyses. Specifically, the degree of item-

specific reinstatement was measured by correlating activation patterns present during 

retrieval of a specific face or place in DMTM trials with the corresponding activation 

patterns present when viewing that face or place prior to associative learning (Figure 4A). 

This self similarity measure was compared to a category similarity measure defined as the 

correlation between memory retrieval patterns for the faces and places and pre-exposure 

patterns for other items within the same stimulus class.

First, we assessed differences in the similarity measures between left and right hemispheres 

for each ROI by conducting an analysis of variance that included factors of hemisphere (left 

vs. right), retrieval target (face vs. place), and similarity (self vs. category). Given the visual 

nature of the experimental materials and the established laterality effects for stimulus 

modality in MTL (Glosser et al., 1995; Golby et al., 2001), we expected differences across 

hemispheres. If an ROI showed a significant interaction that included hemisphere, 

subsequent analyses analyzed the ROI separated by hemisphere; otherwise, similarity 

measures were collapsed across hemisphere. Both PRC and hippocampus showed significant 

interactions with hemisphere (PRC: hemisphere × target × similarity - F1,22 = 9.87, p = 

0.0044, ηp
2 = 0.291; hippocampus: hemisphere × target - F1,22 = 7.42, p = 0.0012, ηp

2 = 
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0.25), thus corresponding ROIs in left and right hemispheres for these regions were analyzed 

separately.

Within right hippocampus (Figure 4C), we found evidence of item-specific reinstatement as 

indicated by a main effect of item versus category similarity (F1,22 = 6.99, p = 0.015, ηp
2 = 

0.241). Paired BEST comparisons revealed this main effect was driven by item 

reinstatement for places (μdiff = 0.0085, 95% HDI = [0.0002, 0.017], P = 0.024), but not 

faces (μdiff = 0.0044, 95% HDI = [−0.006, 0.0143], P = 0.184). Left hippocampus showed 

no significant item reinstatement effects (p > 0.16). In MTL cortex, only left PRC showed 

evidence of item-specific reinstatement as revealed by an interaction of similarity and 

retrieval target (F1,22 = 5.41, p = 0.029, ηp
2 = 0.184). Paired BEST comparisons indicated 

significant reinstatement for faces (μdiff = 0.0099, 95% HDI = [0.0002, 0.02], P = 0.022), but 

not places (μdiff = −0.001, 95% HDI = [−0.0112, 0.0092], P = 0.86). An analysis of variance 

assessing regional differences in reinstatement between right hippocampus and left PRC 

showed no significant interactions with region (all Fs < 1). Right PRC and bilateral PHC did 

not show evidence of item reinstatement (all Fs < 1). See the Supplemental Materials for an 

exploratory item reinstatement analysis of CA subfields in right hippocampus.

MTL connectivity with item reinstatement regions in occipito-temporal cortex

We next examined the key theoretical component of pattern completion that the 

hippocampus guides reinstatement in behaviorally-relevant cortical regions (Marr, 1971). 

We used a functional connectivity approach (Rissman et al., 2004) to examine the coupling 

between hippocampal processes and task-related cortical regions during retrieval. We 

identified regions throughout occipito-temporal cortex (OTC) that exhibited item-specific 

reinstatement exclusively for faces or places with a searchlight analysis extension of the 

item reinstatement analysis (Table 1 and Figure 5A). Average delay-period activation within 

these face and place reinstatement regions, as well as right hippocampus and left PRC, were 

extracted for each correct trial. We estimated the degree of correlation between the MTL 

ROIs and face/place reinstatement regions separately for correct face and place retrieval 

trials (Figure 5B). We found that the connectivity pattern between right hippocampus and 

face and place reinstatement regions (Figure 5C) was modulated by the type of retrieval 

such that there was greater coupling with face regions during face retrieval and place regions 

during place retrieval (F1,22 = 11.56, p = 0.0026, ηp
2 = 0.344; see Supplemental Materials 

for exploratory analysis with right CA1). In contrast, left PRC connectivity was not 

modulated by retrieval (F1,22 = 0.038, p = 0.85, ηp
2 = 0.002).

Modeling the influence of item reinstatement on decision making

We next sought to assess the behavioral significance of reinstated hippocampal and PRC 

patterns, specifically testing the hypothesis that reinstated episodic information in 

hippocampal and PRC patterns serves as the critical evidence for memory-based decision 

making. We fit participants’ choice behavior to the memory probe with the drift diffusion 

model (DDM). The DDM simultaneously accounts for response choices and times across 

different experimental conditions by operationally defining decision making as an evidence 

accumulation process (Ratcliff, 1978). We linked the neural signatures of item reinstatement 
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in right hippocampus and left PRC to the computational mechanisms of decision making in 

the DDM (Figure 6A and Table 2).

Specifically, on a trial-by-trial basis, we estimated in separate models the degree that item-

specific neural reinstatement predicted evidence accumulation, decision threshold, or non-

decision time for match and mismatch probe decisions in the DMTM task using Bayesian 

parameter estimation (Wiecki et al., 2013). We found that item-specific reinstatement in 

right hippocampus significantly predicted the rate of evidence accumulation to matching 

place probes on a trial-by-trial basis (baseline model: DIC = −400.12; hippocampus model: 

DIC = −406.32, Pmatch = 0.021; Figure 6B). The relationship between hippocampal 

reinstatement and evidence accumulation was such that reinstating more place-specific 

information led to faster evidence accumulation, resulting in faster response times. This 

relationship was not present for mismatching place probes (Pmismatchs > 0.4). Item-specific 

reinstatement in PRC also showed a relationship to evidence accumulation, with greater 

reinstatement of face-specific information leading to faster accumulation as a general effect 

across both match and mismatch probes (baseline model: DIC = −843.09; PRC model: DIC 

= −852.02, P = 0.024). See the Supplemental Materials for additional analyses of the 

relationship between hippocampal reinstatement and response times (Figure S1), the 

generative nature of the neurally-informed DDM results (Figure S2), and an exploratory 

analysis with right CA1.

We also tested item reinstatement in the OTC regions identified in the searchlight analysis 

(see Table 1) using the DDM framework. However, none of models that included trial-by-

trial reinstatement from OTC place reinstatement regions fit better than the baseline scene 

model (DICs > −395). One model including reinstatement from a face region in left lingual 

gyrus as a factor on drift rate did fit slightly better than the face baseline model (DIC = 

−845.44); however, the regression coefficient between item reinstatement and drift rate was 

not significant (Ps > 0.2). All other models including OTC face reinstatement regions did 

not fit better than the baseline model (DICs > −843). Although accuracy was near ceiling in 

the DMTM task, thereby limiting the DDM models to accounting mostly for differences in 

response time distributions, these results suggest a trial-by-trial link between the fidelity of 

reinstated memories in the MTL and decisions about the specific contents of those 

memories.

Discussion

Taken together, our results suggest that the specific contents of episodic memories are 

reinstated in the activation patterns of hippocampal subfields and subregions of MTL cortex. 

In particular, our findings that reinstated neural patterns in the hippocampus contain item-

level information are consistent with computational theories that point specifically to CA3 

and CA1 as critical for reinstating complete memory representations from partial sensory 

input through pattern completion (Marr, 1971; Norman and O’Reilly, 2003; Rolls, 2013).

Importantly, our study extends beyond the existing evidence for hippocampal pattern 

completion from rodent and human studies that rely on representations of spatial locations 

(Kyle et al., 2015; Leutgeb et al., 2007; Miller et al., 2013; Neunuebel and Knierim, 2014; 
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Stokes et al., 2015). In particular, such work has been limited in demonstrating the link 

between hippocampal-based spatial codes and choice behavior. It has been shown that single 

unit place cell responses can predict direction choices made by rodents in maze tasks 

(Pastalkova et al., 2008; Singer et al., 2013); however, these findings are not based on 

pattern completion processes per se. One recent rodent study measured both CA3 input from 

DG and CA3 output, finding direct evidence for pattern completion processes in CA3, but 

without a link to behavior (Neunuebel and Knierim, 2014). Finally, none of this research has 

indexed specific memory content beyond spatial locations (i.e., place fields). By linking a 

continuous neural measure of memory to a prominent mathematical model of decision 

making, our results provide support for theories of hippocampal function that link retrieval 

of specific memory elements to reinstatement of hippocampal representations that 

themselves are critical for subsequent decisions (Lisman and Grace, 2005; Marr, 1971; 

Norman and O’Reilly, 2003; O’Reilly and Rudy, 2001; Rolls, 2013).

Evidence of memory reinstatement in human hippocampus has been limited to 

electrophysiological studies of epilepsy patients (e.g., Gelbard-Sagiv et al., 2008; Paz et al., 

2010; Rutishauser et al., 2015). By recording single cells within the hippocampus, it has 

been demonstrated that a subset of cells show item-specific selectivity during visual 

presentation (Quiroga et al., 2007, 2005), and that selective firing for specific episodes 

during memory encoding reoccurred during free recall of the same episodes (Gelbard-Sagiv 

et al., 2008). Furthermore, the strength of episodic encoding in single hippocampal cells, 

measured as a correlation in temporal patterns of encoding-related firing rates, has been 

shown to predict subsequent recall performance (Paz et al., 2010). Single cell firing patterns 

in the hippocampus have also been tied to memory decisions during retrieval, with evidence 

that a subset of hippocampal cells fire proportionally to graded responses of memory 

strength and confidence (Rutishauser et al., 2015). This work offers compelling 

demonstrations of hippocampal memory reinstatement with links to behavior, yet such 

findings are limited to characterizing the reinstatement signatures of single cells. Moreover, 

although this work suggest some hippocampal cells represent memory information that is 

correlated with decision making, the existing findings are limited to a general level of 

memory information and cannot speak to item-specific pattern completion.

In contrast to electrophysiological studies, fMRI-based findings in support of memory 

reinstatement in the hippocampus are considerably lacking. One recent fMRI study found 

evidence for reinstatement of specific memories in hippocampus (Wimber et al., 2015). 

However, that finding does not address the critical questions set forth in the current study: 

reinstatement of specific memory contents and their impact on decisions. In particular, the 

fact that reinstatement in that study was measured by comparing retrieval patterns to 

episode-specific templates acquired after both encoding and retrieval necessarily reflects 

retrieval of entire experiences rather than individual event elements. Thus, similar to other 

studies (Chadwick et al., 2014, 2010), the Wimber et al. (2015) study measured the 

distinctiveness of individual composite events during retrieval, but not retrieval of the 

individual memory contents themselves, which is the critical theoretical prediction of pattern 

completion. More importantly, they failed to link episode-specific hippocampal patterns to 

behavior, which is the second key theoretical test. In the current study, by comparing 
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reinstated memory representations to visual representations recorded before associative 

learning, we provide fundamental evidence that hippocampus and perirhinal cortex uniquely 

reinstate the specific contents of episodic memories. We not only relate this reinstatement to 

behavior, but also use reinstatement to make trial-by-trial predictions about decisions in a 

generative fashion.

We observed behaviorally relevant content-specific reinstatement in the hippocampus and 

PRC. This finding is consistent with proposals that the hippocampus, PRC, and PHC play 

unique roles in encoding and retrieval depending on the content of memories (e.g., Bird and 

Burgess, 2008; Diana et al., 2007). For example, the observation that reinstatement of 

specific faces in PRC influenced memory decisions converges with prior studies of lesion 

patients that suggest a selective role for PRC in processing faces (Mundy et al., 2013). 

Similar research has also implicated the hippocampus in spatial processing with 

hippocampal lesions leading to deficits in place but not face processing (Bird and Burgess, 

2008). Such a functional role for hippocampus is consistent with our findings of item-

reinstatement in the hippocampus guiding memory decisions for places.

PHC is also known to be content-selective, with a preference for processing places (Diana et 

al., 2007). A recent study with a pattern similarity approach similar to the current study 

found evidence of episode-specific reinstatement of place images in PHC, but not the 

hippocampus (Staresina et al., 2012). However, PHC is known to code for scene 

subcategories (Walther et al., 2009) and the restricted set of four place images each 

representative of disparate place categories (home, office, city, and nature) used in this work 

suggests these findings could be due to reinstatement of place subcategory rather than 

episode-specific information. Such an interpretation is consistent with our findings of 

category, but not item reinstatement in PHC. Although the current study is limited to eight 

place images, we selected famous landmarks that were not representative of separate place 

subcategories to better target item rather that category representations.

The relationship between the item-level reinstatement and category-level decoding findings 

within individual regions also has important implications for the nature of memory 

representations in each region. Significant category-level reinstatement in PRC and PHC 

suggests MTL cortical representations are categorically organized such that items from the 

same category are represented in similar parts of the network, resulting in functional 

memory modules (Diana et al., 2008; Huffman and Stark, 2014; LaRocque et al., 2013; 

Liang et al., 2013). This finding stands in clear contrast to the lack of category reinstatement 

in the hippocampus. The failure of prior decoding approaches to identify hippocampal 

reinstatement may be due to the relatively category-agnostic nature of the hippocampus such 

that items from the same category are uniquely represented (Huffman and Stark, 2014; Kuhl 

and Chun, 2014; LaRocque et al., 2013; Liang et al., 2013).

Hippocampal coding is generally thought to be sparse in nature, a theoretical position with 

much empirical support (Quiroga et al., 2008; Waydo et al., 2006). Although several fMRI-

based studies, in addition to the current study, have successfully measured episodic-specific 

neural representations in the hippocampus (Bonnici et al., 2012; Chadwick et al., 2014, 

2010; Hassabis et al., 2009; Wimber et al., 2015), the sparse representations of the 
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hippocampus are a high methodological hurdle for BOLD-based empirical investigations 

and may have been a limiting factor in previous attempts to uncover item-specific 

reinstatement signatures in the hippocampus. An additional factor to consider is that our 

study included relatively more associative pair training (average of 3.5 presentations of each 

pair during training across participants) compared to previous studies potentially leading to 

stronger representations. It may be that more training during encoding is required to observe 

BOLD-based signatures of hippocampal item reinstatement. However, the extensive 

associative pair training and the intentional nature of the encoding demands during training 

is a limitation of the current study; such strong associative representations may have been 

observable with fMRI methods, but may involve more learning related rather than episodic 

memory related processes. Nonetheless, the findings in the current study suggest that 

whereas a hierarchy of category and item-specific information is represented in PRC, 

hippocampal representations code for the specific contents of memories in a non-modular 

fashion.

By targeting MTL and OTC regions that exhibit item-specific reinstatement, we were able to 

uncover a hippocampal-OTC network that demonstrated connectivity patterns that are 

modulated by current retrieval demands. This finding is consistent with recent rodent studies 

employing optogenetics to examine functional coupling between hippocampus and 

behaviorally-relevant cortical regions. In one such study, cortical neurons active during fear 

conditioning failed to reactivate when CA1 neurons were silenced during retrieval (Tanaka 

et al., 2014). Moreover, another study found that CA1 neurons exhibited distinct projections 

to different target brain areas depending on the type of task performed by the animal 

(Ciocchi et al., 2015). One recent human fMRI study examined the connectivity between the 

hippocampus and MTL cortex with dynamic causal modeling, finding that hippocampal 

activation mediates successful retrieval of associative information from content-specific 

regions of MTL (Staresina et al., 2013). The hippocampus has also been implicated in 

several fMRI studies examining cortical reinstatement. Hippocampal activation during both 

encoding and retrieval scales with task (Leiker and Johnson, 2015), category (Gordon et al., 

2014; Horner et al., 2015) and item (Ritchey et al., 2012; Wing et al., 2015) reinstatement 

signatures in neocortex. In particular, Ritchey et al. (2012) found a relationship between 

hippocampal univariate activation and the degree of encoding-retrieval pattern similarity in 

cortical regions, consistent with the notion that hippocampus mediates memory 

reinstatement in cortex. However, because the same visual input was present at both 

encoding and retrieval, it is unknown whether their findings are related to reinstatement 

processes or to perceptual processes acting on the same visual input during both encoding 

and retrieval.

The current findings build upon and extend these previous results by demonstrating that 

during retrieval, hippocampus is preferentially coupled with OTC regions that reinstate 

item-level representations of memory content. It should be noted that the current 

connectivity findings are limited by their correlative nature; specifically, the task-dependent 

correlation between hippocampal and OTC neural activity cannot be used to infer the 

existence or directionality of a causal relationship between the brain regions (Friston, 2011). 

However, the current findings, together with the existing literature, are consistent with the 

theoretical proposal that the hippocampus plays an important role in the re-experiencing of 
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mnemonic content through cortical reinstatement and may route behaviorally-relevant 

information to task-specific cortical areas during memory retrieval.

It is worth noting that although the current work has focused on reinstatement as arising 

from pattern completion, pattern separation is also functionally tied to memory 

reinstatement. In particular, overlapping experiences that share content must be encoded in 

orthogonal representations in order to retrieve distinct memory traces of these experiences 

(Marr, 1971; Norman and O’Reilly, 2003; O’Reilly and Rudy, 2001). This separation 

process is driven by competition between incoming sensory information from the current 

experience and reinstated information from related previously encoded memories (Hulbert 

and Norman, 2014; Norman and O’Reilly, 2003; O’Reilly and Rudy, 2001). The current 

study was designed to target reinstatement signatures arising from pattern completion 

processes. The object cues during the DMTM task provided partial information for 

retrieving the correctly paired face or place associate through pattern completion. It is likely 

that pattern separation was involved both during encoding of the paired associates and 

potentially influenced what information was available during retrieval (Kyle et al., 2015). 

However, the specificity of the item reinstatement signatures we observed during retrieval is 

consistent with a “filling in” of item-specific mnemonic information through pattern 

completion. Future studies could extend these findings by parametrically varying the 

degradation or similarity between a cue and the associative memory (e.g., Bakker et al., 

2008; Kirwan and Stark, 2007) to characterize how degraded cues lead to reinstatement of 

item specific information through pattern completion.

The present findings provide a critical demonstration for the theorized role of reinstated 

hippocampal representations in mnemonic decision making (Lisman and Grace, 2005; 

Norman and O’Reilly, 2003), while further revealing important information about the 

organization of the underlying mnemonic codes. Theoretical accounts posit that reinstated 

representations in CA3 and CA1 act as predictions about present events derived from past 

knowledge. Limited support for this proposal is found in existing neuroimaging work that 

suggests the magnitude of hippocampal activation during retrieval is correlated with the 

speed of memory decisions (Gordon et al., 2014) and confidence judgments (Leiker and 

Johnson, 2015; Thakral et al., 2015). In the current study, we provided a direct test of the 

role of the hippocampus in memory retrieval by linking trial-by-trial item reinstatement 

signatures to the accumulation of evidence in a computational model of memory-based 

decisions. Indeed, the computational modeling analysis showed that the fidelity of reinstated 

item-level representations is directly predictive of the speed of memory decisions. The 

relationship between reinstatement and behavior was specific to MTL-based item 

reinstatement; reinstatement in occipito-temporal regions was not predictive of mnemonic 

decisions. Mechanistically, these findings are consistent with a memory-based decision 

process whereby the memory evidence internally generated during retrieval in the 

hippocampus and perirhinal cortex is compared to the sensory input of the probe stimulus. 

The fidelity of the memory evidence influences this comparison such that more evidence 

leads to fast accumulation of decision evidence towards a match/mismatch response.

It is interesting to note that although the DDM has been leveraged more recently as a model 

of perceptual decision making (Ratcliff and Rouder, 1998), its original conception was an 
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account of memory retrieval that linked internally-generated information to the 

accumulation of evidence for memory-based decisions (Ratcliff, 1978). Our results bridge 

brain measures and behavior to ground this classic theory’s mechanisms in neural evidence 

and show that internally generated content from past experiences guides decision making. 

Moreover, our approach opens the door to answering long-standing questions about memory 

function at the resolution of individual memories in healthy individuals. For instance, how 

do specific memories emerge over learning experiences? When are the details of the past 

forgotten versus successfully consolidated into robust memory networks? How are the 

specific elements of memories flexibly integrated to create new knowledge? The current 

study also paves the way towards a unified computational approach in which the neural 

representations supporting our memories are quantitatively linked to the formal mechanisms 

that underlie decision making.
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Highlights

• Neural pattern similarity reveals item-specific rather than category neural 

coding

• Item-specific memories are reinstated in the hippocampus and PRC during 

retrieval

• Hippocampus functionally coupled with occipito-temporal cortex during 

retrieval

• The fidelity of item reinstatement predicts subsequent memory-based decisions
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Figure 1. 
Schematic of experimental task and depiction of brain regions of interest (ROIs). (A) Eight 

famous face and eight famous place images were used as stimuli in the experiment. (B) 
Analyses were conducted in MTL subregions: PHC (light blue), PRC (yellow), and the 

hippocampus (red). (C) The experiment consisted of three phases. In the pre-exposure 

phase, participants viewed images of faces, places, objects, and fixation points in isolation. 

During the pair learning phase, participants learned to criterion eighty paired associates 

consisting of a common real-world object and either a famous face or place through 

repetitions of first studying all pairs followed 3AFC tests on associate memory. Finally, 

participants were tested on each of the eighty pairs during a delayed match-to-memory 

(DMTM) test. Each test trial consisted of: an object cue (1s), a delay period (9s), a probe 

face or place (1s) followed by an inter-trial interval (5–11s, mean 7.5s). The probe item was 

either the correct paired associate (a match) or a same-category foil drawn from another pair 

(a mismatch). Participants indicated match or mismatch status with a button response.
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Figure 2. 
Behavioral performance in the delayed match-to-memory (DMTM) test. Average 

probability correct (left plot) and median correct response times (right plot) are depicted for 

face and place retrieval trials where the probe was either a match (dark) or mismatch (light). 

Error bars represent 95% confidence intervals of the mean.

Mack and Preston Page 29

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Schematic of category-level reinstatement decoding analysis and results in PHC and PRC. 

(A) For each ROI, a linear SVM pattern classifier was first trained on activation patterns 

acquired during the pre-exposure phase. The classifier was trained to discriminate patterns 

associated with faces and places and then applied to the data acquired during the delay 

period of the DMTM trials. Probability estimates for the face and place labels were extracted 

from the SVM classifier and used to index the amount of classifier evidence for the two 

categories. Finally, the evidence was relabeled as correct versus incorrect category 

according to the retrieval category of the trial (in the depicted example, scene would be the 

correct category). (B) Category-specific reinstatement was observed in MTL cortex, with 

PRC showing significantly more face than place evidence during face retrieval and PHC 
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showing significantly more place than face evidence during place retrieval. The 

hippocampus showed no evidence for category reinstatement (see Methods). Error bars 

represent 95% high density intervals of the paired BEST comparisons between correct and 

incorrect category classifier evidence. Significant paired differences (p < 0.05) are noted 

with asterisks (*).
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Figure 4. 
Schematic of item reinstatement neural pattern similarity analyses and results for each of the 

ROIs. (A) Within each ROI (perirhinal cortex is depicted in the figure and inset), the pattern 

of neural activation was extracted for every trial, here represented as a matrix grid. (B) Item-

level reinstatement was measured by calculating the similarity between activation patterns 

during DMTM trials for specific faces and places and activation patterns of viewing the 

same face or place during the pre-exposure phase (rself) relative to activation patterns of 

viewing other within-category items (rcategory). (C) Item reinstatement similarity analysis 

results. For each ROI, self (darker bars) versus category (lighter bars) similarity is plotted 

for face (blue) and place (green) retrieval trials. Both hippocampus and PRC showed 

significant differences across hemispheres, thus left and right ROIs within these regions 

were considered separately. Right hippocampus and left PRC showed item-level 

reinstatement for place and face retrieval, respectively. Error bars represent 95% confidence 

intervals of the means. Asterisks (*) note significant paired comparisons of self greater than 

category similarity corrected for false discovery rate (α = 0.05).
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Figure 5. 
Schematic of the functional connectivity analysis and the results for right hippocampus and 

left PRC. (A) Trial-by-trial average activation was extracted from the three MTL ROIs 

(hippocampus is shown in red on the right) and regions within occipito-temporal cortex 

(OTC) that exhibited item-reinstatement signatures exclusively for faces or places (face 

regions shown in dark gray, place regions in white; see Table 1 for a list of all OTC item 

reinstatement regions). (B) Functional connectivity between the three MTL ROIs and OTC 

reinstatement regions was assessed with robust regression for face and place retrieval trials 

separately. In the depicted example, average activation within the right hippocampus (red 

line) correlates more with average activation in OTC place reinstatement regions (dotted 

line) during place (top plot) than face retrieval trials (bottom plot). (C) Results for each 

MTL ROI are plotted in separate graphs that depict average connectivity to OTC regions 

exhibiting face (darker colors) and place (lighter colors) reinstatement during face (blue) and 

place (green) retrieval trials. Error bars represent the 95% confidence intervals of the 

interaction between retrieval type and OTC region. Significant interactions are noted with a 

tensor symbol, and significant pairwise BEST comparisons with an asterisk.
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Figure 6. 
Schematic of the drift diffusion modeling (DDM) analysis and the results for right 

hippocampus, right CA1, and left PRC. (A) An item-level reinstatement index was 

calculated on a trial-by-trial basis by taking the difference between the self and category 

similarity on each trial (rs-rc). This trial-by-trial item reinstatement index was then entered in 

a DDM analysis of response choices and times to the probe stimulus. Specifically, the item 

reinstatement index was modeled as a linear effect on the drift rate (v) parameter of the 

DDM, thereby influencing the rate of evidence accumulation. For example, the top trial 

depicts a situation where reinstatement of the place associated with the boot, Taj Mahal, is 

high. This results in a faster accumulation of evidence and a shorter response time. When 

item reinstatement is low, as depicted in the bottom trial, evidence accumulates gradually 

and the response time is longer. (B) The plotted distributions represent the Bayesian 

posterior densities of the interaction of drift rate and item reinstatement for right 

hippocampus (left), right CA1 (middle) and left PRC (right). Higher item reinstatement in 

right hippocampus and CA1 increased drift rates on place match trials (solid green), but had 

no effect on place mismatch trials (dotted green). Item reinstatement in left PRC showed a 

main effect of facilitation on drift rates for both match and mismatch face trials (blue lines).
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Table 1

Item reinstatement regions in occipito-temporal cortices. Regions were identified from the paired comparison 

of face versus place reinstatement with a voxelwise threshold of p = 0.01 and cluster extent threshold of p = 

0.05 (extent greater than 29 voxels). In the table, clusters that survived correction are described by their 

corresponding region (region), the number of voxels in the cluster (voxels), the t value of the peak voxel in the 

cluster (t value), and the location of the peak voxel in MNI coordinates (location).

region voxels t value location (x, y, z)

face regions

 left lingual gyrus 87 3.49 −24, −54, −2

 right middle temporal 49 2.84 62, −8, −16

 left temporal pole 49 3.24 −50, 6, −40

scene regions

 left lateral occipital 727 5.44 −16, −94, 8

 right lateral occipital 566 3.77 36, −76, 6

89 3.6 44, −80, −10

 left ventral temporal 143 3.31 −44, −22, −18
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Table 2

Drift diffusion model (DDM) results. Separate models that included trial-by-trial effects of item reinstatement 

from the three regions that showed significant item reinstatement in the pattern similarity analysis (right 

hippocampus and left PRC) on the three core DDM parameters (drift rate v, threshold a, and nondecision time 

t) were fit and compared to baseline models with no item reinstatement effects (top row). In the table, models 

are labeled according to their reinstatement-parameter relationship (e.g., the v ~ rhipp model included an effect 

of hippocampal item reinstatement on drift rate v). Behavior from face (left two columns) and place (right two 

columns) retrieval conditions were fit in separate models. Rows in bold text note item reinstatement models 

with a significantly better account of the behavior data than the corresponding baseline models.

face retrieval trials DIC place retrieval trials DIC

baseline model −843.09 baseline model −400.12

v ~ rhipp −842.47 v ~ rhipp −406.32

a ~ rhipp −844.74 a ~ rhipp −387.15

t ~ rhipp −830.79 t ~ rhipp −399.13

v ~ rPRC −853.02 v ~ rPRC −393.14

a ~ rPRC −844.25 a ~ rPRC −400.79

t ~ rPRC −848.36 t ~ rPRC −399.93
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