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Abstract

Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a 

range of organs. Lack of sleep has severe health-related consequences affecting whole-body 

functioning, yet no other organ is as severely affected as the brain. The neurophysiological 

mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic 

changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from 

regular daily variability. To this end, we obtained functional magnetic resonance imaging data 

from 60 young, adult male participants, scanned in the morning and evening of the same day and 

again the following morning. 41 participants underwent total sleep deprivation before the third 
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scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered 

the connectivity of several resting-state networks, including dorsal attention, default mode, and 

hippocampal networks. Multivariate classification based on connectivity profiles predicted 

deprivation state with high accuracy, corroborating the robustness of the findings on an individual 

level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were 

reverted by sleep (control group) – a pattern which did not occur after deprivation. We conclude 

that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional 

connectome.

Keywords

Sleep deprivation; fMRI-based connectivity; circadian variability; machine learning

1 Introduction

Although we spend roughly one third of our lives sleeping, the neurobiological mechanisms 

of sleep and sleep deprivation remain poorly understood. Whereas the quality, intensity and 

functions of sleep vary across species (Siegel, 2008), the almost universal presence of some 

form of sleep behaviour strongly promotes sleep as an evolutionary conserved phenomenon 

of immense implications (Cirelli and Tononi, 2008). Lack of sleep has been associated with 

a long list of health-related and cognitive consequences which can only be compensated 

with sleep itself (Rogers et al., 2003). Although sleep deprivation affects whole-body 

functioning, it is evident that no other organ is as severely affected as the brain (Cirelli and 

Tononi, 2008).

Not only is sleep essential to consolidate memory acquired prior to sleep (Walker and 

Stickgold, 2004), but it is also needed to prepare the brain for acquiring next-day’s 

memories (Yoo et al., 2007). In line with these important roles of sleep in memory functions, 

a single night of sleep deprivation has been shown to perturb functional connectivity in 

hippocampal circuits (Yoo et al., 2007). Furthermore, sleep deprivation is associated with 

mood alterations and biased emotional appraisal (Anderson and Platten, 2011). Recent 

imaging data illustrated disturbed functional connectivity in amygdala circuits, particularly 

connections between amygdala and executive control regions (dorsolateral prefrontal, 

anterior cingulate, inferior frontal; Shao et al., 2014), and increased connectivity between the 

dorsal nexus and dorsolateral prefrontal cortex, thereby suggesting a mechanism for the 

putative therapeutic utility in depression (Bosch et al., 2013). Importantly, emotional effects 

of sleep deprivation are not only associated with altered response patterns to negative stimuli 

but also enhanced reactivity toward pleasure-evoking stimuli (Gujar et al., 2011). Apart from 

its impact on memory and emotional processing, sleep deprivation strongly affects vigilance 

and attentional capacities (Lim and Dinges, 2008), likely in parts originating from decreased 

activation and altered patterns of connectivity of the attention and salience networks of the 

brain (Ma et al., 2014). In line with the notion that lack of sleep affects patterns of large-

scale brain connectivity, sleep deprivation was found to reduce the frequently reported anti-

correlation between the task-positive dorsal attention network (DAN) and the default-mode 
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network (DMN) in addition to diminished within-DMN connectivity (De Havas et al., 2012; 

Yeo et al., 2015).

With this body of literature associating sleep deprivation with pronounced connectivity 

changes throughout the brain, it is important to distinguish connectivity changes that appear 

solely due to deprivation from those that appear due to morning-to-evening or morning-to-

morning variability. Previous results suggest that, in the context of memory retrieval, 

functional connectivity of medio-temporal regions changes during a regular day from local 

within-regional connections to global across-regional connections (Shannon et al., 2013). 

These findings clearly emphasize the need to account for diurnal variability when studying 

sleep deprivation. Furthermore, imaging studies on sleep deprivation often lack a control 

group.

Thus, to help us understand the alterations inflicted on the functional organization of the 

brain by lack of sleep, we estimated patterns of large-scale between-network resting-state 

brain connectivity using fMRI data obtained at three time points: In the morning after a 

regular night’s sleep, in the evening of the same day and the next morning after a night of 

total sleep deprivation. We included a control group that had another night of regular sleep 

between the evening and the second morning. Furthermore, we included behavioural 

assessments of vigilance and visual attention in a subgroup. This 2 group x 3 time points 

design allowed us to directly assess and differentiate diurnal variability from the effects of 

sleep deprivation. In order to assess the robustness and predictability of network alterations, 

we combined data-driven definitions of brain network nodes, large-scale network modelling 

by means of regularized partial correlations, and multivariate machine-learning techniques 

with cross-validation and permutation testing. Finally, we employed an automated wake and 

sleep staging using a previously validated connectivity-based classifier (Tagliazucchi and 

Laufs, 2014) to assess wakefulness probabilities based on connectivity profiles.

2 Materials and Methods

2.1 Sample and ethical approval

We included 60 male, healthy participants and assigned them either to the deprived group 
(N=41, mean age: 21.8 years, SD= 2.4, range 18-26) or control group (N=19, mean age: 

22.7 year, SD= 2.2, range 19-26). The groups did not differ in age (t=1.4, p=.16). Before 

study inclusion, all subjects were screened for current and previous psychiatric and somatic 

illnesses, either by a medical doctor (TE or NZ) or a student in the final year of medical 

school (PØP). Exclusion criteria were any history of sleep disorder, neurological or other 

chronic and acute somatic disorder, including infections, psychiatric illness, alcohol or drug 

use disorder, previous head injury with loss of consciousness for more than one minute, 

metallic implants, and previous or current use of psychotropic drugs. Participants reported 

an average sleep duration of 7.4 ± 1.0 hours per night the week prior to the study, 7.6 ± 0.9 

hours per night the month prior to the study, and 6.6 ± 1.2 hours the night before the first 

scanning using a self-reporting questionnaire. The self-reported sleep durations of the 

participants the last week and month are consistent with average sleep duration in a recently 

published self-reporting-based sleep duration study of young Norwegian adults (Hayley et 

al., 2015). The sleep duration estimates did not differ between the two groups (all p>.71). 
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Self-reported sleep duration the night before the study was significantly shorter than the self-

reported average sleep duration per night the last month in both groups (p<.001). 

Furthermore, the control group reported an average sleep duration of 6.1 ± 0.9 hours in the 

night before the third scan, which is significantly shorter than their reported sleep duration 

the last month (p<.05).

Appropriate ethical approval was obtained and all procedures were in line with the 

declaration of Helsinki. All participants signed informed consent prior to enrolment.

2.2 Study protocol

From each participant, we collected resting state fMRI scans at three time points (TP): TP1 

(first morning after normal sleep), TP2 (evening after a regular day of waking) and TP3 

(next morning). While TP1 and TP2 were similar for all participants in terms of waking 

length, TP3 differed between groups. Participants of the control group went home after TP2 

and came back at TP3 after another night of regular sleep. In contrast, participants of the 

deprivation group were kept awake the entire night, continuously monitored by a research 

assistant. To control for light exposure, participants of the deprivation group stayed in the 

same room with constant, normal light intensity between TP2 and TP3. The room had no 

windows, measured approximately 5 x 4 meters, had chairs and a table, and a TV set. During 

the night, participants of this group were playing video games, watching movies, reading 

books, and talking with the research assistant. Independent of group assignment, all 

participants had to refrain from any consumption of caffeine or energy drinks and had no 

exercise between TP1 and TP3.

Scan times were adjusted to the participants’ usual sleep-wake cycles. Average scan times 

per time point were 8:15AM (SD: 37min) for TP1 (across groups), 10:05PM (SD: 44min) 

for TP2 (across groups) and for TP3 average scan times were 6:47AM (SD: 27min) for the 

sleep deprivation group and 8:03AM (SD: 56min) for the control group. For the morning 

scans, participants came to the scanning facilities immediately after waking up.

In order to explore the effects of sleep deprivation on attentional functions and vigilance, 

and its associations with large-scale brain network connectivity changes, subjects performed 

the attention network task (ANT; (Fan et al., 2002)) at each session, directly after MRI 

acquisition. ANT yields reaction time (RT) measures in three different conditions by 

flankering target stimuli with congruent, incongruent or neutral stimuli, thereby altering the 

difficulty of the task (neutral < congruent < incongruent). Since we were mainly interested 

in vigilance and attentional lapses as markers of sleep deprivation (Lim and Dinges, 2008), 

we primarily targeted the inter-individual variability in reaction time (IIV-RT), known to 

increase substantially with tiredness (Corfitsen, 1994), defined as the coefficient of variation 

in response time across all correct trials across conditions. In addition, we investigated 

changes in mean reaction time in addition to the conflict, orienting and alerting scores based 

on differences in mean reaction times between conditions (Fan et al., 2002; Westlye et al., 

2011). Both IIV-RT and reaction times were assessed within and across the 3 ANT flanker 

conditions (congruent, incongruent and neutral).
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Furthermore, we assessed subjective sleepiness using the self-reported Karolinska 

Sleepiness Scale (KSS; (Akerstedt and Gillberg, 1990)), a nine-point Likert-type scale 

ranging from “Extremely alert” (score = 1) to “extremely sleepy, fighting sleep” (score = 9). 

The KSS was administered immediately after the ANT. IIV-RT and KSS data was available 

for N=39 subjects (all 19 controls, 20 of the deprived group).

2.3 MRI data collection

MRI scans were obtained from a Philips Achieva 3.0T scanner (Philips Healthcare, The 

Netherlands) with an 8-channel head coil at Oslo University Hospital. We acquired structural 

MRI with a T1-weighted 3D turbo field echo sequence (TFE; TR: 6.7 ms; TE: 3.1 ms; FA: 

8°; voxel size: 1x1x1.2 mm; slices: 170; FOV: 256 mm2) and functional MRI data with a 

T2*-weighted 2D gradient echo planar imaging sequence (EPI) with 200 volumes (TR: 2.5 

s; TE: 30 ms; FA: 80°; voxel size: 2.625x2.625x3 mm; slices: 45). Participants were 

instructed to keep their eyes open and focus on a fixation cross during the scan.

2.4 MRI processing and network estimation

We used the FMRI Expert Analysis Tool (FEAT) from the FMRIB Software Library (FSL, 

(Smith et al., 2004)) to analyse fMRI data. The processing pipeline included spatial 

smoothing (FWHM=6 mm), high-pass filtering (100 s), motion correction (MCFLIRT) and 

single-session independent component analysis (ICA) using MELODIC (Beckmann and 

Smith, 2004). We used FIX (ICA-based Xnoisefier (Salimi-Khorshidi et al., 2014), recently 

verified for its reliability (Pruim et al., 2015)) to identify and remove noise components on 

an individual level using a machine learning approach (custom training data set for Philips 

scanner, threshold: 20). Influence of motion on the reported results was carefully 

investigated and is addressed in the results section. Next, we extracted brain masks from the 

T1-weighted images using automated brain segmentation in Freesurfer (Fischl et al., 2002). 

These were used for registration to standard coordinate space using FLIRT (Jenkinson and 

Smith, 2001) with boundary-based registration (BBR, (Greve and Fischl, 2009)) and FNIRT 

(Andersson et al., 2010). After registration, we ran an independent component analysis using 

a novel group-PCA approach for large data sets (Smith et al., 2014) in MELODIC including 

all scans with 40 components requested. We chose a model order of 40 components as it 

provides a good balance between adequate spatial segmentation and sufficiently low number 

of components, the latter known to decrease the risk of false positives (Abou Elseoud et al., 

2011). SI-Figure 1 provides an overview of all components. Next, for each subject we 

computed individual time series and component spatial maps using dual regression (Filippini 

et al., 2009). Based on the spatial distribution of the component maps and/or the frequency 

spectrum of the components’ time series, we identified five classical noise components and 

regressed the time-series from these five out of the remaining components. Next, we 

identified another eight components of which spatial maps were not corresponding to any 

interpretable neuronal origin or were outside the mask, and these were therefore not 

included in further analyses. The remaining 27 clean components constituted the nodes in 

subsequent network analyses, whereas the corresponding 351 time series partial correlations 

between each component pairs formed the edges (connections) of the full network. For each 

subject, we estimated these networks using L1-regularized partial correlations with a lambda 

of 0.025 in FSLNets (Smith et al., 2011). In addition, we compared the results to a novel 
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method that automatically estimates regularization strength on the individual subject level 

following the Ledoit & Wolf theorem (Ledoit and Wolf, 2003). Recent studies suggested 

influence of vigilance and sleep deprivation on the global fMRI signal (Wong et al., 2013; 

Yeo et al., 2015) indicating that under certain conditions a global signal regression (GSR) 

may be beneficial (Yeo et al., 2015). Here, we did not regress out the global signal, as global 

signal regression likely decreases the signal to noise ratio (Pruim et al., 2015). Rather, we 

used regularized partial correlation matrices to infer connectivity, known to be relatively 

unaffected by global signal (Smith et al., 2011).

2.5 Machine learning

We performed several classification tasks using the 351 edges from the above described 

networks (27 components) as features in a regularized linear discriminant analysis classifier 

(rLDA; Friedman, 1989; Schäfer and Strimmer, 2005)), similar to the methods applied in 

Alnaes et al. (2015) and Kaufmann et al. (2015). Among the advantages of rLDA compared 

to other classification techniques is that it does not rely on an external feature selection 

procedures (this is taken care of by the regularisation) and that it is fast and efficient. The 

regularization parameter was optimized from the training data following the analytical 

procedure by Ledoit and Wolf (2003) and described in Schäfer and Strimmer (2005). First, 

we classified time points within groups based on edgewise connectivity strength utilizing 

leave-one-out (LOO) cross validation procedures. Next, we further tested the specificity of 

features by training a classifier on the deprived group and testing it on the control group, and 

vice versa. In addition, we used binary classification within groups to assess if the third 

session is more similar to the first or second session, by training a classifier on TP1 and TP2 

and testing it on TP3. Finally, we assessed morning-to-evening effects on functional 

connectivity by merging participants of both groups into one sample since conditions were 

identical between groups for TP1 and TP2 and utilized LOO in a binary classification task 

(TP1 vs. TP2). In all classification tasks, significance was assessed based on permutation 

tests across 10000 iterations, each randomly permuting assignment to the three time points 

within subjects.

2.6 Automated sleep staging

We performed prediction of wake/sleep stages based on fMRI data using the procedures 

described in (Tagliazucchi and Laufs, 2014). Briefly, we extracted the time series from the 

mean BOLD signals of regions of interest defined by the Automated Anatomical Labeling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002). Whereas we used ICA based networks for all 

other analyses, using AAL-based parcellation allowed us to directly apply the support vector 

machine classifier trained on carefully sleep-staged samples (Tagliazucchi and Laufs, 2014). 

Using a sliding window of 2 minutes on the continuous fMRI time series, the classifier 

classified each data point into either wakefulness, N1, N2 or N3 sleep without the need for 

EEG data. To minimize the probability that our main classification results (section 2.5) were 

driven by sleep, we excluded TRs based on sleep probability and reran the classification of 

TPs. Sleep stage classification output at each TR indicated if the last 2 minutes were most 

likely awake, N1, N2 or N3. First, we identified all TRs per scan that were classified as N1, 

N2 or N3 sleep. Next, we applied three different exclusion criteria. The full 2 minutes prior 

to the identified TRs were excluded, if the decision indicated sleep for at least 30s, 60s or 

Kaufmann et al. Page 6

Neuroimage. Author manuscript; available in PMC 2019 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



90s in a row respectively (12, 24 and 36 TRs, with sleep staging based on 48 TRs). Next, if 

the remaining TRs in either of the three time points comprised less than 3 minutes of scan 

duration, the whole subject was excluded to avoid unreliable network estimations. Finally, 

for the remaining subjects with long enough scan duration of TRs classified as awake we 

computed the networks.

2.7 Univariate network analysis and alpha adjustment

We assessed the effects of sleep deprivation on between-node connectivity using repeated 

measures analysis of variance (ANOVA) on each network edge, as well as post-hoc 

independent-sample t-tests. We adjusted the 5% alpha level using false discovery rate (FDR) 

for each test separately with a false discovery rate level q=0.05 and a threshold based on the 

assumption of independence or positive dependence (Nichols, 2009; Nichols and Hayasaka, 

2003). For transparency, we report raw p-values. In addition, we associated subjective 

sleepiness ratings and IIV-RT with edgewise connectivity strength across time points using 

repeated measures correlations (Bland and Altman, 1995).

2.8 Motion as a potential confounder of results

Whereas we cleaned the raw individual fMRI data using the machine-learning based 

cleaning tool FIX (Salimi-Khorshidi et al., 2014), to ensure that potentially retaining motion 

confounds could not explain the main effects on connectivity, we also tested if the effects 

remained when including estimated relative motion as a covariate in the repeated measures 

analysis. We used linear mixed effects modelling in SPSS (IBM SPSS Inc.) and included 

motion as a covariate with first-order, autoregressive covariance matrix (AR1).

3 Results

3.1 Effects of sleep deprivation on reaction time and subjective sleepiness

Sleep deprivation strongly affected reaction time measures and subjective sleepiness. IIV-RT 

displayed a significant group x time interaction (F(2,74)=9.74, p<.0002) due to increased 

IIV-RT at TP3 in the deprived group (t=2.8, p<.008, Figure 1A). IIV-RT at TP1 and TP2 did 

not differ between groups (both p>.3). Similarly, mean RT decreased from TP1 to TP2 and 

in the control group further at TP3, yet despite such potential training effects sleep 

deprivation strongly affected mean RT, yielding higher mean RT at TP3 for the deprived 

group than at TP1 (t=2.45, p=.02; Figure 1B). These patterns of deprivation effects were also 

present within each of the three ANT flanker conditions alone (SI-Figure 2), with group 

differences at TP3 being largest for congruent and incongruent conditions (IIV-RT: t=2.91, 

p=.006, t=2.84, p=.007, t=1.86, p=.07 for congruent, incongruent and neutral respectively; 

mean RT: t=2.58, p=.01, t=2.34, p=.025, t=2.10, p=.04). In line with the global effects on 

RT, no effect of sleep deprivation on any of the three ANT component scores (alerting, 

orienting and conflict) was found (all p>.35; SI-Figure 3).

Furthermore, a repeated measures ANOVA on subjective sleepiness scales yielded a 

significant group x time interaction (F(2,74)=30.53, p<1e-09), indicating higher scores for 

the deprived group at TP3 (t=7.2, p<.1e-07, Figure 1C).
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3.2 Effects of sleep deprivation on functional brain connectivity

Sleep deprivation robustly affected functional brain network connectivity. Within the 

deprived group, multivariate classification of time points yielded accuracy significantly 

above chance across sessions (morning: 73.2%, p<.0001; evening 53.7%, p<.0015; next 

morning (deprived): 85.4%, p<.0001). Figure 2A (upper row) depicts the resulting confusion 

matrix illustrating that the deprived session is almost never mistaken for a morning session 

and a morning session almost never for a deprived session (all p<.002), i.e. brain 

connectivity following sleep deprivation is distinct from the non-deprived state. The 

uncertainty clearly lies in the evening condition, with biases toward the morning session. A 

similar classification task within the control group was expected to result in low 

classification performance, since conditions at TP1 and TP3 were similar (both scans 

performed in the morning after regular sleep). Indeed, the resulting accuracies were not 

above chance (Figure 2A, lower row).

We further tested the specificity of the features across groups. With a classifier trained on the 

deprived group, sessions of the control group were least often classified as being deprived 

(Figure 2B, upper row). As expected, training the classifier on the control group did not 

result in accuracies above chance for the deprived group, except for classification of TP1 

(lower row).

Finally, in a binary classification task we assessed if the third session is more similar to the 

first or second session. Within the deprived group, TP3 was clearly classified as being 

evening-like (90.2%, p<.0001) rather than morning-like (9.8%, p<.0001, Figure 2C, upper 

row). In contrast, within the control group, the third session was equally classified as either 

morning (47%) or evening (53%, Figure 2C, lower row).

The above reported classification results indicated robust differences in connectivity profiles 

between the deprived and non-deprived state. We further assessed which edges were mostly 

affected using edge-wise repeated measures ANOVA and post-hoc independent-sample t-

tests on each edge of the functional connectivity matrices. 17 out of 351 edges showed a 

significant group x time interaction at FDR level (p=.0023; SI-Table 1 for F statistics), 

involving default mode, dorsal attention, frontal, visual, auditory and motor networks as well 

as amygdala, hippocampus and the cerebellum. Figure 3 depicts the locality of significantly 

altered connection grouped by their functional units. Post-hoc t-tests revealed no significant 

difference between groups at the first morning scan, and no significant difference between 

groups in the evening for any of the 17 edges showing group by time interactions, which 

were all due to group differences at the second morning (SI-Table 1). A few edges indicated 

nominal (non-significant after corrections for multiple comparisons) differences at TP1 and 

TP2, yet the strongest effect was always seen at TP3.

As depicted in Figure 4, edge connectivity in 13 of 17 edges shifted toward more positive 

correlations following deprivation (above diagonal in Figure 4) and only four of 17 edges 

shifted toward more negative correlations (IC 1-8, 11-27, 16-17, 16-22; below the diagonal 

in Figure 4). These four edges increased magnitude of negative correlations whereas five 

other edges showed reduced magnitude of negative correlations (IC 2-9, 2-16, 4-12, 10-18, 

14-27; four of them involving the DMN, including a DMN-DAN edge IC 2-9). The 
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remainder showed positive correlations at TP3, with five of them flipping the sign from 

negative to positive correlations (IC 3-9, 3-10, 4-5, 7-12, 13-16) and three edges increasing 

magnitude of positive correlations (IC 1-10, 5-14, 12-19).

Figure 5 illustrates the temporal connectivity patterns of the two visual-DAN edges, recently 

shown to be particularly sensitive to attentional load level (Alnaes et al., 2015), showing 

remarkable overlap with the behavioural profiles of attentional vigilance and subjective 

sleepiness (Figure 1). This overlap was corroborated by significant edgewise repeated 

measures correlations (Bland and Altman, 1995). Functional connectivity in five of the 17 

edges, including the visual-DAN edge IC 1-8, was significantly (FDR) correlated with IIV-

RT (IC 1-8, 2-16, 3-10, 4-12, 11-27; SI-Table 2) and connectivity in six of the 17 edges, 

including both visual-DAN edges, was significantly correlated with mean-RT (IC 1-8, 2-16, 

3-9, 3-10, 4-12, 11-27; SI-Table 3). Furthermore, connectivity in ten of the 17 edges was 

significantly associated with sleepiness ratings (IC 1-8, 1-10, 2-16, 3-10, 4-5, 4-12, 7-12, 

13-16, 16-17, 16-22; SI-Table 4). Note that these repeated measures correlations corroborate 

the strength of effects at TP3, but do not necessarily imply a simple link between brain 

connectivity and vigilance and sleepiness, as correlations vanished when testing within time 

points or within the control group.

3.3 Automated sleep staging from fMRI data to assess wakefulness probabilities

Next, we detected patterns of wakefulness and non-REM sleep stages 1-3 in the continuous 

fMRI data, using a recently published and validated pre-trained classifier (Tagliazucchi and 

Laufs, 2014). Figure 6 depicts the wakefulness/sleep probabilities as a function of recording 

time for each group and session. While there was no difference between groups at TP1 and 

TP2, wakefulness probabilities decreased and sleep probabilities increased at TP3 in the 

deprived group. We investigated if our main classification results (Figure 2) could 

potentially be driven by sleep, as indicated by the automated sleep classification. 

Independent of the exclusion criteria applied (Methods section 2.6), we retained similar 

classification results (SI-Figures 5-7).

3.4 Connectivity differences between morning and evening

Finally, we assessed morning-to-evening effects on functional connectivity in the merged 

sample in a binary classification task (TP1 vs. TP2). We classified time points at high 

accuracies with 76.7% of morning sessions being correctly identified as morning (p<.0001), 

and 65.0% of evenings correctly identified as evening (p<.004, Figure 2D).

We further assessed diurnal connectivity alterations using edge-wise paired-sample t-tests. 

Figure 7 compares t-statistics between the two groups. For the deprived group, the t-statistic 

representing the difference between TP1 and TP2 was positively correlated to the t-statistic 

representing the difference between TP2 and TP3 (r=0.23, p<1e-05). Similar correlation in 

the control group flipped the sign (r=-0.43, p<1e-16). The regression slopes were 

significantly different (t=8.49, p<.05) between the two groups.

As can be seen from the magnitude of t-values in Figure 7, diurnal connectivity alterations 

were weak compared to deprivation induced alterations. When tested within groups 

separately, no diurnal alterations survived FDR correction. As t-statistics for TP1 vs. TP2 
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across all edges were significantly correlated between groups (r=0.24, p<1e-05) and as 

conditions were identical for both groups at TP1 and TP2, we also merged groups. In the 

merged sample, diurnal connectivity alterations in six edges survived FDR correction 

(visual-insula/cingulum: IC 3-15, t=3.8, p=4e-04; DMN-hippocampus/amygdala: IC 10-19, 

t=3.9, p=3e-04; auditory/speech-frontal: IC 12-16, t=4.6, p=3e-05; frontal-sensorimotor: IC 

18-20, t=3.8, p=4e-04; within-auditory/speech: IC 7-12, t=-3.8, p=4e-04; DAN-auditory/

speech: IC 9-26, t=-4.2, p=1e-04).

3.5 Motion as a potential confounder of results

The deprived group showed significantly more motion (defined as the average root mean 

square of the displacement from one frame to its previous frame) at TP3 compared to TP1 

(t=-6.2, p<.0001) and TP2 (t=-4.8, p<.0001) whereas time points of the control group did not 

differ in motion (all p>.6). However, group x time interaction effects in all of the 17 edges 

remained significant when accounting for mean estimated motion in linear mixed effects 

models.

4 Discussion

4.1 Brain connectivity robustly altered by lack of sleep

Utilizing a combination of univariate statistics and machine learning, we have demonstrated 

widespread and robust functional connectivity alterations following sleep deprivation and 

assessed how these alterations integrate with regular diurnal variability. Sleep deprivation 

reduced attentional vigilance, as expected, and we identified a set of 17 brain network 

connections showing significant group x time interactions of brain connectivity alterations. 

Furthermore, a comparison of morning-to-evening connectivity alterations to alterations 

between evening and next morning suggests that sleep reverted diurnal connectivity changes 

whereas sleep deprivation did not show this effect, thereby potentially indicating the impact 

of sleep on diurnal connectivity alterations.

A few previous studies have investigated connectivity alterations following sleep deprivation 

(e.g., Bosch et al., 2013; De Havas et al., 2012; Shao et al., 2014; Yeo et al., 2015; Yoo et al., 

2007), yet the lack of a control group or evening scans has made it difficult to distinguish 

deprivation induced effects from morning-to-evening and morning-to-morning variability. 

With classification of time points, we first showed that connectivity profiles following sleep 

deprivation yield significant classification accuracies, largely outperforming those based on 

regular morning/evening profiles. Next, studying edge-wise group x time interactions, we 

identified 17 edges showing significant effects of sleep deprivation on connectivity, 

involving DMN, DAN, frontal, visual, SMA, auditory/speech, amygdala/hippocampus and 

cerebellar networks.

More specifically, connectivity of the dorsal attention network with visual areas was 

strengthened following sleep deprivation (IC 1-8 and 3-9). Connectivity profiles in one of 

these edges (IC 1-8, Figure 5) were significantly correlated with profiles of attentional 

vigilance, as measured using ANT (Figure 1A). These repeated measures correlations do not 

necessarily imply a deprivation-independent association between brain connectivity and 
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attentional vigilance, as they were not observed when testing within time points or within 

the control group. However, they fit well the recent report on increased DAN-visual 

connectivity related to increased attentional effort (Alnaes et al., 2015). Furthermore, 

replicating previous findings (De Havas et al., 2012; Yeo et al., 2015), the anti-correlation 

between DAN and DMN decreased after sleep deprivation. In addition, connectivity 

alterations involving the DMN included edges to visual and frontal networks, whereas, 

irrespective of earlier findings, within-DMN alterations were not present among the group x 

time interactions. A recent study suggested that the strength in alteration of visual-DMN 

connections may depend on subjects’ vulnerability to sleep deprivation (Yeo et al., 2015). 

This may well be supported by our data, as the edge yielding the strongest interaction effect 

was visual-DMN (IC 3-10), thereby indicating particularly strong impact of sleep 

deprivation. Among the frontal networks, one within-network connection between the left 

and right fronto-parietal network was significantly strengthened following deprivation, 

whereas other altered frontal connections linked to SMA, cerebellar and auditory/speech 

networks. Finally, the auditory/speech network showed several altered connections, one 

within-auditory, one to the fronto-parietal network and one to hippocampus/amygdala. These 

novel results match well with recent reports of impaired auditory processing following 24h 

of sleep deprivation (Liberalesso et al., 2012).

Although diurnal connectivity alterations were weaker than deprivation-induced alterations, 

we significantly discriminated between morning and evening connectivity profiles. These 

findings add to a growing body of evidence indicating that changes in functional brain 

connectivity can occur within hours of prolonged wakefulness (Park et al., 2012; Shannon et 

al., 2013). Our results indicate that diurnal connectivity alterations are reverted after sleep, a 

pattern that only appeared in the control group. These results emphasise the importance of 

accounting for regular diurnal variability when studying sleep deprivation (e.g. by 

employing studies with deprivation durations of 36 hours). Furthermore, by suggesting an 

important role of time-of-day on brain connectivity, they have potentially important 

implications for a range of applications, including a potential bias in scientific studies when 

group assignments are not balanced for time-of-day, and provide important information for 

researchers designing longitudinal studies. Diurnal changes after a day of waking could 

either be related to circadian rhythms or to waking-related homeostatic processes. To further 

disentangle these mechanisms, future research would benefit from increasing the number of 

scans during the day, both before and after sleep deprivation, and to sleep deprive until the 

following evening.

4.2 Limitations

As for any study on sleep deprivation, it is difficult to assess the degree to which effects 

reflect compensatory mechanisms. Clearly, an edge could be altered as a direct consequence 

of deprivation or due to compensation of deprivation, e.g. related to increased effort to stay 

awake. We chose to incorporate a uniform sample of young males, as there is recent 

evidence that compensatory effects in the brain following sleep deprivation are more 

pronounced among the elderly (Almklov et al., 2014). Consequently, age and gender should 

not confound the results in this study and compensatory effects are likely kept low. Yet 

future research could make use of the age-related increase in compensatory effects to 
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distinguish between compensatory and non-compensatory deprivation-induced connectivity 

alterations. Furthermore, assessment of sleep behaviour in our study relies on self-reports, 

which may yield less accurate measures than objective measures of sleep behaviour based on 

polysomnography or actigraphy. Future studies may employ such methods to verify sleep 

duration both before and during similar experiments. Due to the scanning schedule, 

participants of the control group reported significantly less sleep than usual between TP2 

and TP3 (average: 6.1 ± 0.9 hours). Should the decreased sleep duration have induced any 

bias, it is however likely that this study underestimates (rather than overestimates) the true 

size of sleep deprivation effects.

In addition, due to the absence of eye tracking or EEG during scanning we cannot fully rule 

out confounds by brief periods of sleep, especially considering recent research indicating 

drifts between wakefulness and sleep during resting state MRI recordings, even in the non-

deprived state (Tagliazucchi and Laufs, 2014). However, we have made great efforts to 

account for this lack by applying a multivariate connectivity-based wake and non-REM 

sleep classifier for fMRI data (Tagliazucchi and Laufs, 2014). We found increased sleep 

probabilities in the deprived group at TP3. Note that the sleep staging classifier has not been 

trained on data collected during sleep deprivation, and it can only select between “awake-

like” and “sleep-like”. Therefore, classification of sleep does not necessarily imply true 

sleep, and an alternative explanation is that sleep deprived wakefulness shares connectivity 

features with sleep to such an extent that true wake periods are classified as sleep. Also, the 

fact that all subjects specifically reported that they had not fallen asleep during the fMRI and 

that N2/N3 sleep – both classified repeatedly in our data – are unlikely to occur in an eight-

minute scan, increases the uncertainty in the automated sleep classification. Lastly, the 

classification algorithm pertains to probabilities of one class versus another, and the results 

should not be interpreted as deterministic. However, even when excluding time series snips 

or whole subjects with high sleep probabilities as indicated by the automated algorithm 

based on connectivity features, we retained the reported patterns of classification of time 

points, strongly supporting that the high accuracies in classifying the sleep deprived state are 

not purely driven by sleep.

Finally, our results are based on networks derived from an independent component analysis 

across all scans, which could bias the results due to unbalanced group sizes. We preferred to 

have all scans represented in the decomposition to the alternative of basing the analysis on 

fewer subjects or time points only. Future studies may be able to benefit from ongoing 

developments to increase the reliability and therefore also the sensitivity of brain 

connectivity estimates, both related to data acquisition and analysis (Smith, 2012).

4.3 Conclusion

The present results underline the major impact of sleep deprivation on the functional human 

brain connectome, particularly alterations in the dorsal attention, default mode, visual, 

frontal, auditory, cerebellar, motor and hippocampal networks. The effects proved robust on 

the single-subject level, as verified using cross-validated classification procedures and 

permutation testing. Finally, our analyses indicated that morning-to-evening connectivity 

alterations are reverted after sleep – a pattern that did not occur after deprivation.
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Figure 1. Sleep deprivation results in higher reaction time variability and increased reaction 
times.
TP1: first morning, TP2: evening, TP3: second morning. (A) Coefficient of variation in 

reaction time. (B) Mean reaction times (C) Self-reported subjective sleepiness obtained from 

the Karolinska Sleepiness Scale (Akerstedt and Gillberg, 1990).
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Figure 2. Functional connectivity based classification of morning, evening and sleep deprivation 
scanning sessions.
The figure illustrates confusion matrices from various classification tasks. Significance was 

assessed based on permutation testing across 10000 iterations, each randomly permuting 

assignment to the three time points within subjects. (A) Within-group classifications of the 

three time points. (B) Classification of the three time points with classifiers trained on data 

from one group and tested on data from the other group. (C) Classification of TP3 with 

classifiers trained on TP1 and TP2. This allows to assess if TP3 is more similar to TP1 or 

TP2. (D) Classification of TP1 and TP2 in the merged sample (N=60, morning-to-evening 

variability, independent of sleep deprivation). SI-Figure 4 depicts similar classification 

patterns for networks based on partial correlations with automatic optimization of 

regularization strength on the single subject level.
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Figure 3. Sleep deprivation altered brain connectivity in a range of functional network units.
The figure illustrates the 17 edges showing a significant group x time interaction effect in 

connectivity (due to deprivation at TP3), grouped by their functional sub-networks. The 

width of a link in each circular plot reflects the strength of the group x time interaction effect 

(ηpartial2 effect size). Each circular plot highlights the significant connections of one sub-

network only, comprising default mode (red), dorsal attention (green), frontal (yellow), 

visual (blue), SMA (magenta), auditory/speech (purple), amygdala/hippocampus (orange) 

and cerebellum (cyan). The spatial maps of the 19 involved nodes (independent components) 

are shown on top. For surface-maps of all components, see SI-Figure 1. TP1: first morning, 

TP2: evening, TP3: second morning.
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Figure 4. Scatter plots of connectivity strength between TP1 and TP3 show a drift in connectivity 
strength following sleep deprivation.
The figure presents the 17 edges showing a group x time interaction (corresponding to figure 

3). Colour indicates connectivity at TP2 and the white line indicates the diagonal. TP1: first 

morning, TP2: evening, TP3: second morning.
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Figure 5. Temporal connectivity profiles of the two visual-DAN edges show a remarkable overlap 
with the profiles of attentional vigilance and subjective sleepiness (Figure 1).
Connectivity strength of IC 1-8 was significantly associated with IIV-RT and KSS scores. 

Connectivity strength of IC 3-9 was significantly correlated with mean RT in the ANT task 

(performed outside of scanner). TP1: first morning, TP2: evening, TP3: second morning.
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Figure 6. Prediction of wakefulness and sleep stages (N1, N2 and N3) based on the connectivity 
profiles of the continuous fMRI data showed increased sleep probability at TP3 in the deprived 
group.
We used the classifier from Tagliazucchi and Laufs (2014).
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Figure 7. Correlation of the t-statistics reflecting morning-to-evening variability (TP1 vs. TP2) to 
t-statistics reflecting evening-to-next-morning variability (TP2 vs. TP3) indicated the impact of 
sleep on diurnal connectivity alterations (sign flip of the regression slope).
Least square regression lines are depicted in red. Colour indicates t-statistics for TP1 vs. 

TP3. TP1: first morning, TP2: evening, TP3: second morning
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