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Abstract

Recently, functional network connectivity (FNC, defined as the temporal correlation among 

spatially distant brain networks) has been used to examine the functional organization of brain 

networks in various psychiatric illnesses. Dynamic FNC is a recent extension of the conventional 

FNC analysis that takes into account FNC changes over short periods of time. While such dynamic 

FNC measures may be more informative about various aspects of connectivity, there has been no 

detailed head-to-head comparison of the ability of static and dynamic FNC to perform 

classification in complex mental illnesses. This paper proposes a framework for automatic 

classification of schizophrenia, bipolar and healthy subjects based on their static and dynamic 

FNC features. Also, we compare cross-validated classification performance between static and 

dynamic FNC. Results show that the dynamic FNC significantly outperforms the static FNC in 

terms of predictive accuracy, indicating that features from dynamic FNC have distinct advantages 

over static FNC for classification purposes. Moreover, combining static and dynamic FNC features 

does not significantly improve the classification performance over the dynamic FNC features 

alone, suggesting that static FNC does not add any significant information when combined with 

dynamic FNC for classification purposes. A three-way classification methodology based on static 

and dynamic FNC features discriminates individual subjects into appropriate diagnostic groups 
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with high accuracy. Our proposed classification framework is potentially applicable to additional 

mental disorders.

Keywords

fMRI; resting-state; dynamic functional network connectivity; classification; schizophrenia; 
bipolar

1. Introduction

Functional connectivity (FC) can be quantified using a variety of different neuroimaging 

techniques. A commonly used measure is functional magnetic resonance imaging (fMRI), 

which measures synchronized brain activity via blood oxygenation and infers functional 

interactions among different brain regions (Craddock et al., 2013). FC, defined as temporal 

correlation (or other types of statistical dependency) among spatially distant brain regions 

(Friston, 2002a), has recently been used to examine the functional organization and temporal 

dependencies among these remote brain regions. Different analytic tools have been applied 

to resting-state fMRI data to describe brain functional connectivity. Two widely used FC 

approaches are (i) seed-based analysis (Biswal et al., 1995; Greicius et al., 2003) and (ii) 

purely data-driven methods, such as ICA (Calhoun and Adali, 2012; Calhoun et al., 2001a; 

Calhoun et al., 2009; Damoiseaux et al., 2006; Fox and Raichle, 2007; Hyvärinen and Oja, 

2000). FC can also be investigated at the network level using spatial independent component 

analysis (ICA), and connectivity among spatial components is referred to as functional 

network connectivity (FNC)(Jafri et al., 2008).

The majority of FNC studies are primarily based on the assumption that FNC is stationary 

throughout the entire scan session (or at least stationary during a given task or resting-state 

condition) (Camchong et al., 2011; Greicius, 2008; Meda et al., 2012; Sorg et al., 2013). 

Static FNC analysis overlooks the fact that individual subjects are likely to engage in slightly 

different mental activities at different instances in time (Arieli et al., 1996; Makeig et al., 

2004; Onton and Makeig, 2006). Also evidence of dynamic fluctuation in FC from several 

studies supports the idea of dynamic changes in FC during the experimental period. More 

recently, studies have started utilizing the powerful information contained within the 

temporal features of spontaneous FC of BOLD signals. Connectivity dynamics capture 

uncontrolled but reoccurring patterns of interactions among intrinsic networks during task 

engagement or at rest (Allen et al., 2012; Calhoun et al., 2014; Hutchison et al., 2013; 

Rashid et al., 2014; Sakoğlu et al., 2010). These studies provide results that cannot be 

detected with static functional connectivity analyses.

There is an increasing interest in designing robust and accurate techniques to classify 

subjects into groups using functional imaging data. For example, previous studies showed 

the use of functional connectivity-based features for classification of schizophrenia and 

bipolar patients at the individual level (Arbabshirani et al., 2013b; Shen et al., 2010; Su et 

al., 2013). Shen et al. (2010) used an atlas-based method to extract mean time-courses of 

116 brain regions in the resting-state for both healthy controls and schizophrenia subjects. 

The correlation between these time-courses made the feature vector for each subject. By 
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applying feature selection and dimensionality reduction methods, they reduced the 

dimensionality down to three where they classified patients from controls with a high 

accuracy. Shinkareva et al. (2006) proposed a classification approach for schizophrenia 

patients based on fMRI time-series from the voxels showing between-group temporal 

dissimilarity using leave-one-out cross-validation method. Another study combined both 

structural and functional MRI data for classification of schizophrenia patients and created a 

training set by projecting the high dimensional data onto a lower dimensional space using 

the principle component analysis (PCA), achieving a high classification accuracy (Ford et 

al., 2002a). A recent study performed automatic classification of schizophrenia using both 

structural and functional MRI features, and showed that better classification accuracy could 

be achieved by using both MRI features, compared to using only a single feature (Silva et 

al., 2014). However, only a few studies have focused on classification analyses of both 

schizophrenia and bipolar disorder patients (Arribas et al., 2010; Calhoun et al., 2008b; 

Costafreda et al., 2011). In (Calhoun et al., 2008c), temporal lobe and default mode 

networks were used as features using a leave-one-out cross-validation framework, and 

classified schizophrenia and bipolar patients at individual level. In another classification 

study (Costafreda et al., 2011), a support vector machine (SVM) was applied on the verbal 

fluency task-based patterns of regional brain responses to identify schizophrenia and bipolar 

patients at the individual level. To our best knowledge, no such study has provided a detailed 

comparison of both static and dynamic FNC features in a cross-validated classification 

analysis.

In this work, we conducted a classification study of schizophrenia, bipolar and healthy 

subjects using static and dynamic FNC features, as well as combined FNC features from 

both FNC analyses. Several previous studies have shown that schizophrenia and bipolar 

patients can be discriminated at group-level by using the information on dysfunctional 

integration of the brain (Allen et al., 2012; Arbabshirani et al., 2013a; Damaraju et al., 2014; 

Friston, 2002b; Rashid et al., 2014).We hypothesized that disrupted functional integration in 

schizophrenia and bipolar patients as captured by FNC analysis reveal powerful information 

for automatic discriminative analysis at subject-level. We expected some connectivity 

measures to be better captured in a static model and others in a dynamic model (Damaraju et 

al., 2014). Static FNC provides information about the overall mean connectivity and may be 

more optimal for connectivity that is persistent across the entire experiment than a dynamic 

FNC approach. On the other hand, information on local connectivity changes at different 

time windows will be better captured by dynamic FNC. Thus, we hypothesize that both 

static and dynamic FNC methods capture complementary aspects of connectivity, and 

combining static and dynamic FNC features will improve classification performance beyond 

the achievable performance from each type of these features individually. We present 

machine learning techniques to effectively combine these two types of features for accurate 

classification of schizophrenia, bipolar and healthy controls.
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2. Materials and methods

2.1 Participants

Before preprocessing, we had raw resting-state fMRI data from 273 subjects (HC= 135, SZ= 

87 and BP=51). After matching for age, and based on our exclusion criterion (see section 2.3 

for details), we eliminated 114 subjects from the final analysis and had 159 subjects in total. 

We assessed these 159 subjects comprising 61 screened healthy controls [HC, age 35.44 

± 11.57 (range), 28 females], 60 patients diagnosed with schizophrenia or schizoaffective 

disorder (SZ, age 35.85 ± 12.01, 13 females) and 38 bipolar subjects (BP, age 38.96 ± 10.90, 

20 females), matched for age with no significant differences among three groups (age: p= 

0.303, F= 1.2031, DF=(2,156)). Significant differences in sex among three groups were 

found (p= 0.002, = χ2= 11.81, DF=(2,156)). Diagnoses were based on detailed medical and 

psychiatric history, chart reviews, and the Structured Clinical Interview for DSM IV-TR 

Disorders (First et al., 1997). None were acutely ill at the time of scanning. The bipolar 

patients group consisted of a mixture of individuals experiencing psychotic and non-

psychotic symptoms by history.

2.2. Data Acquisition

Resting-state fMRI scans were acquired at the Institute of Living, Hartford, CT, USA on a 

3T Siemens Allegra head-only scanner with 40mT/m gradients and a quadrature head coil. 

T2* - weighted functional images were acquired using gradient echo planar imaging (EPI) 

method with repetition time (TR)=1.5 s, echo time (TE)=27ms, field of view=24 cm, 

acquisition matrix 64×64, flip angle=70 degrees, voxel size=3.75mm×3,75mm×4mm, slice 

thickness=4 mm, gap=1 mm, number of slices=29, 210 frames and ascending acquisition. 

Subjects were instructed to keep their eyes open, look at a fixation cross on a monitor 

display and to rest quietly during the scan session.

2.3 Data Pre-processing

Functional images were pre-processed using an automated pipeline based around SPM 5 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5). Pre-processing included the removal of 

the first four image volumes to avoid T1 equilibration effects, realignment using INRIalign 

(http://www-sop.inria.fr/epidaure/Collaborations/IRMf/INRIAlign.html), slice-timing 

correction using the middle slice as the reference frame, spatial normalization into Montreal 

Neurological Institute (MNI) space (http://www.mni.mcgill.ca/), reslicing to 3 mm × 3 mm 

× 3 mm voxels, and smoothing with a Gaussian kernel (FWHM = 5 mm). Voxel timeseries 

were z-scored to normalize variance across space, minimizing possible bias in subsequent 

variance-based data reduction steps (Allen et al., 2012).

In order to limit the impact of motion we excluded from analysis subject data with a 

maximum translation of >2 mm or with signal-to-fluctuation-noise ratio (SFNR) <275. The 

final 159 subjects comprised of patient and control groups were age matched (matched age 

ranging from 17 years to 65 years).

Also, to analyze if there is any systematic difference in motion across the three groups, we 

have computed the mean framewise displacement (FD) (calculated as the total absolute 
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displacement in all dimensions) for 159 subjects. Results from one-way ANOVA showed 

significant group differences in mean FD groups (P-value=0.0369). However, three outliers 

were identified from the healthy group (subjects with high mean FD values (mean 

FD>1mm.) After removing these three outliers, we checked for mean FD group differences, 

and found no significant group difference (p-value=0.3172). Additional post-processing 

steps were taken to mitigate against residual motion effects as described in section 2.4.

2.4 Group ICA and Post-processing

Imaging data were decomposed into functional networks using a group-level spatial 

independent component analysis (ICA) (Calhoun and Adali, 2012; Calhoun et al., 2001a). 

Group ICA was performed using the GIFT toolbox (http://mialab.mrn.org/software/gift/). In 

order to obtain functional parcellation, we used a high model order ICA (number of 

components, C=100) to decompose the functionally homogeneous cortical and subcortical 

regions exhibiting temporally coherent activity (Abou-Elseoud et al., 2010; Kiviniemi et al., 

2009; Smith et al., 2009). In the subject-specific data reduction principle component analysis 

(PCA) step, 120 principal components were retained (retaining > 99% of the variance of the 

data). Group data reduction retained C= 100 PCs using the expectation-maximization (EM) 

algorithm as implemented in the GIFT toolbox (Calhoun et al., In Press). The Infomax ICA 

algorithm was repeated 20 times in ICASSO and the resulting components were clustered to 

estimate the reliability of the decomposition (Himberg et al., 2004). Subject-specific spatial 

maps (SMs) and time-courses (TCs) were estimated using the GICA1 back-reconstruction 

method based on PCA compression and projection (Calhoun et al., 2001b; Erhardt et al., 

2011).

Additional post-processing steps including linear, quadratic and cubic detrending, multiple 

regression of the six realignment parameters and their temporal derivatives, interpolation of 

detected outliers, and low-pass filtering with a high frequency cutoff of 0.15 Hz were 

applied to the component TCs in order to remove trends associated with scanner drift and 

movement-related artifacts. We detected outliers based on the median absolute deviation, as 

implemented in 3D DESPIKE (http://afni.nimh.nih.gov/afni). Outliers were replaced with 

the best estimate using a third-order spline fit to the clean portions of the TCs. As a final 

step in post-processing, we normalized the variance of each TC, thus covariance matrices 

(below) correspond to correlation matrices.

2.5 FNC Estimation

2.5.1 Static FNC Estimation—The static FNC (SFNC) for each subject was estimated 

from the TC matrix, as the C×C sample covariance matrix.

2.5.2 Dynamic FNC Estimation—In addition to the standard FNC analyses, we 

computed correlations between ICN time-courses using a sliding temporal window (Tukey 

window) having a width of 33 seconds (22 times of TR); sliding in steps of 1 TR), resulting 

in W=180 windows to capture the variability in connectivity. To characterize the full 

covariance matrix, we estimated covariance from the regularized precision matrix or the 

inverse covariance matrix (Smith et al., 2011). Following the graphical LASSO method of 

(Friedman et al., 2008), we placed a penalty on the L1 norm of the precision matrix to 
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promote sparsity. The regularization parameter lambda was optimized separately for each 

subject by evaluating the log-likelihood of unseen data (windowed covariance matrices from 

the same subject) in a cross-validation framework. Final dynamic FNC (DFNC) estimates 

for each window were concatenated to form a C×C×W array representing the changes in 

covariance (correlation) between components as a function of time.

2.6 Classification Framework

We evaluated the classification performance for static FNC, dynamic FNC and a 

combination of both static and dynamic FNC (see Fig.2 for illustration of the proposed 

approaches). Our main focus was to extract reliable features from the FNC matrices and 

apply proposed classification methods, rather than investigating the performance on different 

classifiers. For all of the FNC-based classification approaches, we used a linear support 

vector machine (SVM) classifier to evaluate the classification performance. Also, to obtain 

the 10 groups in 10-fold cross-validation, one split was performed and those same folds 

were used for static, dynamic and combined classification approaches

2.6.1 Static FNC Approach—In order to reduce the dimensionality and extract reliable 

features from this high-dimensional feature vector, we used the double input symmetric 

relevance (DISR) method (Meyer and Bontempi, 2006) during the cross-validation step. 

DISR is a mutual information based method which is designed to extract features by finding 

a combination of variables that can return more information on the output class than the sum 

of the information returned by each of the variables taken individually. For classification 

using SFNC features, the DISR method was run once per cross-validation fold. We used a 

10-fold cross-validation strategy for estimating the generalization error of the proposed 

classifier. The details on the feature selection process using DISR are given in the 

supplementary Figure S1 and supplementary section S1. In each cross-validation run, 100 

features were selected using the DISR method from the training samples. A linear SVM 

classifier was then trained using the features from training data and then tested on held out 

testing samples (the same 100 features were selected from the testing data).

Algorithm 1

classification based on static FNC features

1 Estimate static FNC matrices for all the subjects using corresponding ICA time-courses.

2 Define the 10-fold cross validation groups as GHC, GSZ and GBP by first performing a single split of the data 
into 10 folds, where each fold comprises 6 subjects from the healthy control group, 6 subjects from the 
schizophrenia group and 4 subjects from the bipolar group. These subjects form the testing set (16 testing 
subjects at each iteration). The remaining subjects comprised the training set for each iteration. Note that, 
this step is same for all classification algorithms.

3 For dimensionality reduction and feature selection, apply double input symmetric relevance (DISR) method 
and select the top 100 static FNC features (FDISR).

4 Using the selected FDISR features, train a linear SVM classifier.

5 With the left out testing subjects in step 2, build the testing set and select those identified FDISR features 
using the DISR method.

6 Classify the subjects in the testing set using the trained classifiers and record the classification performance.

1 Return to step 3 and repeat step 3 through step 6 in order to iterate over all cross-validation folds.
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2.6.2 Dynamic FNC Approach—For classification using the dynamic FNC matrix, we 

also used a 10-fold cross-validation for estimating the generalization error. In each cross-

validation run, we performed group-wise k-means clustering on dynamic FNC matrix from 

the training samples. For each of the three groups, we obtained 5 cluster centroids or states. 

We then grouped these states together and formed a regression matrix with 15 states in total. 

We call these 15 states the feature states. Note that at each time point the FNC matrix is 

assumed to be a linear combination of these states. Then for each FNC time point, we 

regressed out the dynamic FNC matrix against these 15 feature states and obtained the 

corresponding regression coefficients. We used the mean of these regression coefficients and 

finalized 15 features for each subject for classification. Details on dynamic feature selection 

method are provided in the supplementary section S2 and supplementary Figure S2. A linear 

SVM was then trained using the training features and then tested on held out testing 

samples.

Algorithm 2

Classification based on dynamic FNC features

1 Estimate dynamic FNC matrices for all the subjects using a windowed FNC approach (Allen et al., 
2012; Calhoun et al., 2014; Rashid et al., 2014)

2 Define the 10-fold cross validation groups as GHC, GSZ and GBP by first performing a single split of 
the data into 10 folds, where each fold comprises 6 subjects from the healthy control group, 6 subjects 
from the schizophrenia group and 4 subjects from the bipolar group. These subjects form the testing 
set (16 testing subjects at each iteration). The remaining subjects comprised the training set for each 
iteration. Note that, this step is same for all classification algorithms.

3 Apply group-wise k-means clustering to the windowed FNC matrices of the training groups. Based on 
the elbow criterion, select the optimum number of cluster centroids per group (dynamic connectivity 
states). In our dynamic FNC analysis the optimum number of cluster centroids was 5 per group.

4 Form a regression matrix, Rgroups×centroids with these group-specific cluster centroids.

5 Regress out the windowed FNC matrices at each time points using the regression matrix. Record the 
beta coefficients, β, at each time window. In our analysis, we estimated and saved 15 β coefficients for 
each time window.

6 Compute the mean β coefficients for all the time windows for each subject. In our analysis, we have 
15 mean β coefficients for each subject. These mean β coefficients are the dynamic FNC features, 
FeatdFNC, for the classification analysis.

7 Using these FeatdFNC features, train a linear support vector machine (SVM) classifier.

8 With the left out subjects in step 2, build the testing set and select the testing features by computing 
mean β coefficients using the same approach as training data.

9 Classify the testing subjects using the trained classifiers and record the classification performance.

10 Return to step 3 and repeat step 3 through step 9 to iterate over all of the cross-validation folds.

2.6.3 Combined Static and Dynamic FNC Approach—For the combined static and 

dynamic FNC approach, 100 features from static FNC feature vector after dimensionality 

reduction (as mentioned above in static FNC approach section), and 15 beta coefficient 

features from the dynamic FNC after regression against the states (obtained similar way as 

mentioned in dynamic FNC approach section) were used for classification purpose. Also 

SVM classifiers and a 10-fold cross-validation strategy were applied in a similar way as 

mentioned above for other two classification approaches.
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Algorithm 3

Classification based on both static and dynamic FNC features

1 Estimate both static and dynamic FNC matrices for all the subjects as mentioned in algorithm 1 and 
algorithm 2.

2 Define the 10-fold cross validation groups as GHC, GSZ and GBP by first performing a single split of 
the data into 10 folds, where each fold comprises 6 subjects from the healthy control group, 6 subjects 
from the schizophrenia group and 4 subjects from the bipolar group. These subjects form the testing 
set (16 testing subjects at each iteration). The remaining subjects comprised the training set for each 
iteration. Note that, this step is same for all classification algorithms.

3 To select static FNC features for the training set, follow these steps:

i. For dimensionality reduction and feature selection, apply double input symmetric 
relevance (DISR) method on the static FNC of the training set and select top 100 static 
FNC features, FeatsFNC.

To select dynamic FNC features for the training set, follow these steps:

i. Apply group-wise k-means clustering to the windowed FNC matrices of the training 
groups. Based on elbow criterion, select the optimum number of cluster centroids per 
group (dynamic connectivity states). In our dynamic FNC analysis the optimum 
number of cluster centroids was 5 per group.

ii. Form a regression matrix, Rgroups × centroids with these group-specific cluster centroids.

iii. Regress out the windowed FNC matrices at each time points using the regression 
matrix. Record the beta coefficients, β, at each time window. In our analysis, we have 
recorded 15 β coefficients for each time window.

iv. Compute the mean β coefficients for all the time windows for each subject. In our 
analysis, we have 15 mean β coefficients for each subject. These mean β coefficients 
are the dynamic FNC features, FeatdFNC, for the classification analysis.

4 Combine both FeatsFNC and FeatdFNC features for the training set, FeatsFNC+dFNC

5 Using these FeatsFNC+dFNC features, train a linear support vector machine (SVM) classifier.

6 With the left out subjects in step 2, build the testing set and select the testing features as follows:

a. select same FsFNC features using DISR method as mentioned for the training data.

b. select FdFNC features by computing mean β coefficients using the same approach as 
training data.

c. Combine these FsFNC and FdFNC features for the testing set

7 Classify the testing subjects using the trained classifiers and record the classification performance.

8 Return to step 3 and repeat step 3 through step 7 to iterate over all of the cross-validation folds.

3. Results

3.1 Intrinsic Connectivity Networks

ICA was successfully used to decompose the functionally homogeneous cortical and 

subcortical regions with temporally coherent activity. Out of the 100 components obtained, 

we characterized 49 components as intrinsic connectivity networks (ICNs) that depicted 

peak cluster locations in gray matter with minimal overlap with white matter, ventricles and 

edges of the brain and also exhibit higher low frequency temporal activity. We used the time-

courses of these 49 ICNs to compute static and dynamic FNC matrices. The spatial maps of 

49 ICNs identified with group ICA are shown in Figure 1. Intrinsic connectivity networks 

are grouped by their anatomical and functional properties, which include the following: sub-

cortical (SC), auditory (AUD), visual (VIS), sensorimotor (SM), cognitive control (CC), 

default mode (DM) and cerebellar (CB) components. The observed ICN networks are very 
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similar to those found in previous studies with low model order ICA (Calhoun et al., 2008a) 

as well as high model order ICA (Allen et al., 2011; Kiviniemi et al., 2009; Smith et al., 

2009).

3.2 Static FNC Features Estimation

For the static FNC classification algorithm, first we computed the pair-wise correlation 

(covariance) between the time-courses of 49 ICNs for each subject. Thus, for static FNC, 

each subject has a feature vector containing 49C2=1176 elements, resulting in a high-

dimensional FNC matrix for all the subjects (subject×FNC=159×1176). Out of these 1176 

static FNC features, we then extracted top 100 contributing pair-wise correlations or static 

FNC features between ICNs using DISR. Figure 3 highlights the top 15 contributing features 

used from HC, SZ and BP groups for classification analysis using static FNC as well as the 

group differences among these features across three groups (for simplicity we are only 

showing top 15 static FNC features). Both positive and negative connectivity between these 

top components were found. This figure summarizes the connectivity strengths between the 

top component pairs, by dividing them into brain networks as mentioned in section 3.1. 

Here, static FNC component pairs that showed connectivity differences across groups 

(Figure 3(b)) include connectivity between putamen and inferior occipital gyrus (IOG), 

inferior temporal gyrus (ITG) and supramarginal gyrus, (SmG)), inferior frontal gyrus (IFG) 

and superior parietal lobule (SPL), interior parietal lobule (IPL) and middle cingulate cortex 

(MCC), lingual gyrus (LG) and supplementary motor area (SMA), insula and calcarine, and 

IOG and postcentral gyrus. Also, detailed information for each spatial map such as regions 

of activation, Brodmann area, volume and peak activation t-value and coordinates for top 15 

components are provided in table 3.

3.3 Dynamic FNC Features Estimation

For dynamic FNC analysis, we first applied the sliding-window approach (Allen et al., 2012; 

Rashid et al., 2014) and computed the pair-wise correlation between the time-courses of 49 

ICNs at each dynamic window (see section 2.5), resulting into a dynamic FNC matrix, 

(subject×time×FNC =159×180×1176). As mentioned in section 2.7.2, we then obtained the 

dynamic FNC features by regressing out the dynamic FNC matrix against the feature states 

(formed by the regression matrix) at each FNC time point, and computing the mean beta 

coefficients for each subject. For more details on dynamic FNC feature selection method, 

see supplementary section S2 and Figure S2.

The k-means clustering was applied and 5 centroids were obtained for each of the HC, SZ 

and BP groups at each CV run. For each of the groups and for each of the 5 dynamic states, 

we computed the correlation between dynamic states. These group-wise centroids almost 

always showed very high correlations across all the CV runs. Supplementary Table S1 

provides the mean correlation for each of the dynamic states computed across 10 CV runs.

Figure 4 displays the training and testing dynamic FNC features. In figure 4A (top), the 

group-wise mean training beta coefficients and figure 4A (right) the bar plot showing group-

wise mean training features (summary of the information provided in figure 4A (bottom)) 

for 15 feature states have been presented. While the plot on the top of figure 4 is showing the 
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actual values, the bar plots are showing these information in an average sense. Recall that, 

we combined the 5 dynamic states for each group and formed a regression matrix with a 

total of 15 states (feature states) for all three groups. Based on the formation of our 

regression matrix, HC group is expected to dominate between state 1 and state 5 in terms of 

dFNC feature values. Similarly we expect the SZ and BP groups to show dominating dFNC 

feature values between state 6 and state 10, and between state 11 and state 15, respectively. 

We will also refer to the states ranging from 1 to 5 as HC feature states, 6 to 10 as SZ feature 

states, and 11 to 15 as BP feature states.

From Figure 4A (top), we can see that the HC group shows dominating mean beta values 

(i.e. more dynamic FNC feature values) for the HC feature states, and nearly zero for all 

other feature states. The bar plot in Figure 4A (bottom) also confirms this trend where the 

mean beta value of the HC group for the HC feature states is 1.26 and nearly zero for the SZ 

and BP feature states. It was expected that the SZ group would show dominating feature 

values in SZ feature states, and nearly zero values for other feature states. However, the SZ 

group shows a mean of 0.39 in HC feature states, 1.12 in SZ feature states, and negative 

−0.56 in BP feature states. Also in the bar plot, BP group shows a mean beta value of 1.16 in 

BP feature states.

Similar trends for mean dFNC features in the testing set were found, and shown in Figure 

4(B). Here, from the bar plots, HC group shows a mean beta value of 1.26 in HC feature 

states and nearly zero value otherwise. Similarly, the SZ group showed a mean feature value 

of 0.18 for the HC feature states, 1.2 for the SZ feature states, and −0.24 for the BP feature 

states. Also, the BP group shows a mean beta value of 0.05 for the HC feature states, −0.02 

for the SZ feature states, and 1.15 for the BP feature states.

3.4 Classification Framework

To determine the chance levels (supplementary Figure S3 and supplementary section S3) for 

individual classifier accuracy, we performed 300-run permutation tests. Our results show 

that, for classifiers using SFNC, DFNC and combined FNC features, the average accuracy is 

around 35% (SFNC=34.88%, DFNC=34.56% and Combined=34.82%), with p-values 

<0.005 for all three chance levels.

Table.1 shows the confusion matrices for proposed classification approaches using static, 

dynamic and combined FNC features. Also, using the confusion matrices we computed: 

overall classification accuracy, group-wise sensitivity, specificity, positive predictive value 

(PPV) and negative predictive value (NPV) with Wilson’s binomial 95% confidence interval 

(Wilson, 1927) (Table.2 and Figure 5). The p-values obtained using the proportion tests (see 

supplementary section S4 for details) among all classifiers and all statistical measures are 

reported in Table S2.

The static FNC approach shows an overall classification accuracy of 59.12% and confidence 

interval of [51.05, 66.84]. The dynamic FNC approach showed an overall classification 

accuracy of 84.28% and confidence interval of [77.67, 89.56]. The combined static and 

dynamic FNC approach showed an overall accuracy of 88.68% and confidence interval of 

[82.7, 93.15]. The results from the proportion tests for comparing different classifiers 
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showed significant difference between static FNC and dynamic FNC (p-value=3.229 ×10−6), 

and static FNC and combined FNC (p-value=8.653 ×10−8) in terms of overall accuracy. 

However, no significant difference was found between dynamic FNC and combined FNC 

approaches ((p-value=0.541), suggesting that that static FNC does not add any additional 

information when combined with dynamic FNC for classification purposes. The results from 

statistical significance levels among three classifiers for these statistical measures are 

provided in Figure 5 and supplementary Table S2..

Also, to analyze if the systematic difference in motion (as mentioned in section 2.3) across 

the three groups (total 159 subjects) has significant contribution to the classification 

performance, we removed the three outliers (mean FD>1mm), and performed the 

classification analyses (static FNC, dynamic FNC and combined static and dynamic FNC 

approaches). The new classification results with 156 subjects (Table S3) were very similar to 

the original classification results. Our follow-up analyses show that the contributions of 

motion to the classification accuracy are 0.15% for SFNC, 0.31% for DFNC and 1.51% for 

combined FNC approaches.

4. Discussion

Our results suggest that, classification using dynamic FNC and static+dynamic FNC features 

significantly outperforms classification using static FNC features (p=3. 229×10−6 and 

p=8.653×10−8, respectively, for overall accuracy). This is also supported by non-

overlapping confidence intervals (static FNC: ([51 67]; dynamic FNC: [78 90]; combined 

FNC: [83 93]). Several group-wise statistical measures (sensitivity, specificity, PPV and 

NPV) also showed that both dynamic FNC and static+dynamic FNC statistically 

outperformed static FNC measures. However, classification using dynamic FNC and static

+dynamic FNC features didn’t show significant statistical differences in classification 

performance (p=0.541 for overall accuracy). Also, none of the group-wise measures showed 

statistical significance between dynamic FNC and static+dynamic FNC.

This study shows that using static and dynamic connectivity features we can reliably 

discriminate HC, SZ and BP at the individual subject-level. Previous studies showed group-

level discrimination of schizophrenia and bipolar disorder from healthy control subjects by 

using disconnected FNC properties in these patient groups. Using FNC approaches, these 

studies have identified disrupted connectivity patterns in schizophrenia and bipolar patients 

during rest and task in several brain regions (Arbabshirani et al., 2013a; Calhoun et al., 

2014; Hutchison et al., 2013; Rashid et al., 2014) Also our previous work reported disrupted 

connectivity in several dynamic states for schizophrenia and bipolar patients (Rashid et al., 

2014).

Dynamic FNC provides the information about how the connectivity changes over time, 

rather than representing the mean functional connectivity (Calhoun et al., 2014). It provides 

the local functional connectivity at each time window. This is likely capturing important 

information that is missed in static FNC approach and indeed, the dynamic FNC approach 

provides the higher overall accuracy rate compared to the static FNC approach. Moreover, 

when both static and dynamic FNC features were combined, the classification approach 
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achieved slight but not statistically significant improvement on overall accuracy rate, 

suggesting that static FNC features don’t add any significant information when combined 

with the dynamic FNC features for classification purposed.

In our classification approach using static FNC, top static FNC features show group 

differences in both connectivity strength (greater or weaker connectivity) and directionality 

of connectivity (positively or negatively connected). Note that, in this study we did not 

perform any univariate test between component pairs to investigate significant group 

differences. Our static classifier differentiates the subjects at a multivariate level by 

considering the whole pattern from static features.

From Figure 3, the component pairs that show differences in the directionality of 

connectivity between control and patient groups include inferior frontal gyrus (IFG: frontal 

component) and right superior parietal lobule (SPL; parietal component) (controls showing 

positive connectivity and both patient groups showing negative connectivity), left inferior 

parietal lobule (IPL; parietal component) and right middle cingulate cortex (R-MCC, 

default-mode component) (controls showing positive connectivity and both patient groups 

showing negative connectivity), lingual gyrus (LG; occipital component) and right 

supplementary motor area (SMA, frontal component) (controls showing positive 

connectivity and both patient groups showing negative connectivity), and left inferior 

temporal gyrus (ITG; temporal component) and left supramarginal gyrus (SmG; parietal 

component) (controls showing negative connectivity and both patient groups showing 

positive connectivity).

Another top component in Figure 3 that differentiated BP from HC and SZ groups is 

putamen tail and left inferior occipital gyrus (IOG; occipital component) (HC and SZ 

showing positive connectivity and BP showing negative connectivity). Other component 

pairs that showed differences in connectivity strength across groups include insula (temporal 

component) and right calcarine gyrus (HC showing greater connectivity, SZ showing weaker 

connectivity, and BP showing the weakest connectivity), and MOG and right calcarine gyrus 

(both patient groups showing greater connectivity than control group).

Note that, the temporal lobe has consistently been shown to play an important role in 

discriminating between healthy control subjects and patients with schizophrenia and bipolar 

disorder (Altshuler et al., 2000; Calhoun et al., 2008c; Johnstone et al., 1989). Previous 

functional connectivity studies also showed abnormal fronto-temporal functional 

connectivity in schizophrenia (Ford et al., 2002b; Spoletini et al., 2009; Wolf et al., 2007). 

However, to further link the findings to prior literature and speculate about how connectivity 

in these top features relates to SZ symptoms, information such symptom profiles for SZ 

patients are required.

Interestingly, in the dynamic FNC classification approach, SZ shows dominating feature 

values for the non-SZ feature states (Figure 4). This supports the overlapping findings of the 

SZ group with both HC and BP groups. Our dynamic FNC approach was able to utilize this 

characteristic of the SZ group to reliably differentiate them from the HC and BP groups.
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Figure 6 shows the 15 dynamic states averaged across 10-fold runs. These dynamic states 

show distinct patterns such as default mode network showing strong positive within-network 

correlation and negative between-network correlation with auditory, sensorimotor and 

cognitive control (state 1 and 5), negative correlation between sub-cortical and auditory, 

visual and sensorimotor networks (state 3). Among these dynamic states, several similar 

states were found in the previous studies. For example, similar dynamic states as states 1, 3 

and 5 were found in (Allen et al., 2013; Damaraju et al., 2014).

Note that, the 15 dynamic states in Figure 6, which had played a significant role while 

obtaining dynamic features, were not the features that were used by the classifier (that is, the 

differences in pairwise correlation across different states and different groups were not used 

as dynamic features, rather the states were used as regression matrix while obtaining 

dynamic features or beta coefficients). In the higher dimensional space, our classifier 

separated the patterns from these 15 states, and computed the fitness score or beta 

coefficients.

5. Limitations and Future Directions

There are several methodological and experimental limitations associated with sliding-

window analysis method and result interpretations. One issue for sliding-window analysis is 

the choice of appropriate window size. Is has been reported in (Sakoğlu et al., 2010) that the 

ideal window size should be able to estimate FC variability, capture lowest frequencies of 

interest in the signal, and detect interesting short-term effects. Our dynamic FNC approach 

was based on an empirically validated fixed sliding-window of 22TRs (33sec) similar to that 

used in (Allen et al., 2012).Evaluation of changes across variety of window lengths 

performed using separate windows (Cribben et al., 2012) and comparisons with time-

frequency approaches which do not require windowing at all (Yaesoubi et al., 2015) will be 

interesting to examine in future work.

It is very difficult to make comparisons between different automatic classification 

approaches of mental disorders, as there are several limitations and considerations associated 

with these studies. Factors such as study size, MRI scanner parameters, nature of extracted 

features, type of classifier, medication and disease severity in the patient group effects the 

classification frameworks. Also, without standard training and testing datasets, comparison 

of different approaches based only on the classification accuracy rate becomes highly 

ambiguous. It would be interesting to compare classification performance for diagnosis 

using the DSM criteria versus a Biotype-style approach as promoted in the BSNIP study 

(Clementz et al., 2015; Keshavan et al., 2013), where biological features are used as the 

initial classifier to derive new diagnostic entities not based on traditional clinical 

classifications of mental illness.

Also, potential factors such as awareness or subject’s anxiety level at the scanner were not 

available for our subjects. These factors could potentially contribute to effectively 

differential groups given that both awareness and anxiety are known to affect patterns of 

brain. Thus, the factors may be important and should be investigated in future studies, in 

order to fully interpret the results.
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In this study we showed that both resting state static and dynamic FNC features could be 

successfully used for automatic discrimination between three groups including healthy 

controls, schizophrenia patients and bipolar patients. To the best of our knowledge this the 

first study using resting-state dynamic FNC features as well as combined static and dynamic 

FNC features to classify schizophrenia and bipolar patients. Here we separated the data into 

training and testing dataset during the cross-validation folds. Our approach has some bias as 

the whole dataset was first processed together, group ICA was performed together, and the 

FNCs were computed together. To resolve this issue, separate training and testing 

preprocessing, group ICA analysis and FNC computation is recommended. In an ideal case, 

the test data should be locked in during the whole training process. However, ICA is 

unaware of the class labels, and we are not using test class labels anywhere in the pipeline. 

Thus, performing a single ICA on the whole dataset doesn’t potentially bias the 

classification results. Also, given that we were interested primarily in a comparison of static, 

dynamic, and combined connectivity features, and all used the same input, this should have 

little to no impact on our results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Performed classification using features from both static and dynamic 

functional network connectivity changes in schizophrenia and bipolar 

disorder during rest

• A three-way classification methodology based on static and dynamic FNC 

features discriminates individual subjects into appropriate diagnostic groups 

with high accuracy.

• Classification using dynamic connectivity features has significantly higher 

predictive accuracy than static FNC.

• Combining static and dynamic FNC features does not significantly improve 

the classification performance over the dynamic FNC features alone, 

suggesting that static FNC does not add significant information when 

combined with dynamic FNC for classification purposes.
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Figure 1. Thresholded group mean spatial maps of 49 ICNs
Thresholded Spatial maps showing 49 independent components that were characterized as 

intrinsic connectivity networks (ICNs) that depicted peak cluster locations in gray matter 

with minimal overlap with white matter, ventricles and edges of the brain and also exhibit 

higher low frequency temporal activity.
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Figure 2. An overview of proposed classification approach
Group independent component analysis (ICA) is used to decomposed resting-state data from 

159 subjects into 100 components, 49 of which are identified as intrinsic connectivity 

networks (ICNs). GICA1 back-reconstruction method is used to estimate the subject specific 

spatial maps (SMs) and time courses (TCs). Static FC between components is estimated as 

the covariance of TCs, and used as features for classification. For classification using 

dynamic FNC features, dynamic FC is estimated as the series of regularized covariance 

matrices from windowed portions of each subject’s component TCs and then the matrices 

are aggregated across subjects. For combined approach, features from both static and 

dynamic FNC were used. Here, T: time, V: voxel, Yi = raw resting fMRI data, C = ICA 

components, i: subject index, Si: spatial maps, Ri: time-courses.
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Figure 3. 
Connectograms showing top 15 static FNC features. (a) Group-wise Top 15 static FNC 

features obtained using DISR method for healthy control (HC), schizophrenia (SZ) and 

bipolar (BP) groups. (b) Difference in 15 static FNC features among the three groups using 

two-sample t-tests (not corrected for multiple comparisons). All of the component labels 

indicate the brain region with peak amplitude and should be considered as bilateral 

activation unless mentioned as left (L) or right (R). CB: cerebellum, SMA: supplementary 

motor area, SmFG: superior middle frontal gyrus, IFG: inferior frontal gyrus, R-MCC: right 

middle cingulate cortex, SmG: supramarginal gyrus, IPL: inferior parietal lobule, SPL: 

superior parietal lobule, LG: lingual gyrus, IOG: inferior occipital gyrus, MOG: middle 

occipital gyrus, STG: superior temporal gyrus, ITG: inferior temporal gyrus, MTG: middle 

temporal gyrus. See Table 3 for more detailed information on each intrinsic connectivity 

network (ICN).
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Figure 4. Features for dynamic FNC classification approach
(A.) Mean training dynamic FNC features with their standard error are shown for all groups 

in the feature states The bar graph is showing how the mean beta values or the dynamic FNC 

training features behave for each group across all connectivity states in an average sense (B.) 

Mean testing dynamic FNC features with their standard error are shown for all groups in the 

feature states. The bar graph is showing how the mean beta values or the dynamic FNC 

testing features behave for each group across all connectivity states in an average sense
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Figure 5. Performance evaluation of proposed classification approaches
Bar plots showing group-wise sensitivity, specificity and overall accuracy for static, dynamic 

and combined classification approaches. Bar plots showing group-wise performance 

evaluations on sensitivity, specificity and overall accuracy for static, dynamic and combined 

classification approaches with 95% confidence intervals and p-values indicating significant 

differences (when exist) for all the statistical measures.
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Figure 6. Dynamic states for three groups
Centroids or the dynamic states obtained from k-means clustering for three groups, averaged 

across all 10 cross-validation folds. Here, intrinsic connectivity networks are grouped as: 

sub-cortical (SC), auditory (AUD), visual (VIS), sensorimotor (SM), cognitive control (CC), 

default mode (DM) and cerebellar (CB) components.
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