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Abstract

The delineation of functionally and structurally distinct regions as well as their connectivity can 

provide key knowledge towards understanding the brain’s behaviour and function. 

Cytoarchitecture has long been the gold standard for such parcellation tasks, but has poor 

scalability and cannot be mapped in vivo. Functional and diffusion magnetic resonance imaging 

allow in vivo mapping of brain’s connectivity and the parcellation of the brain based on local 

connectivity information. Several methods have been developed for single subject connectivity 

driven parcellation, but very few have tackled the task of group-wise parcellation, which is 

essential for uncovering group specific behaviours. In this paper, we propose a group-wise 

connectivity-driven parcellation method based on spectral clustering that captures local 

connectivity information at multiple scales and directly enforces correspondences between 

subjects. The method is applied to diffusion Magnetic Resonance Imaging driven parcellation on 

two independent groups of 50 subjects from the Human Connectome Project. Promising 

quantitative and qualitative results in terms of information loss, modality comparisons, group 

consistency and inter-group similarities demonstrate the potential of the method.
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1. Introduction

The delineation and identification of structurally and functionally distinct brain regions has 

been an ongoing and prominent objective for understanding the brain’s function and 

organisation for over a century (Zilles and Amunts, 2010). Traditional approaches have built 

parcellation maps from anatomical microstructure (cytoarchitecture, myeloarchitecture) 

from histological sections of the brain. While there is still no universally accepted 

*Corresponding author. s.parisot@imperial.ac.uk. 

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2017 August 01.

Published in final edited form as:
Neuroimage. 2016 August 01; 136: 68–83. doi:10.1016/j.neuroimage.2016.05.035.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parcellation of the cortex, Brodmann’s cytoarchitectural map (Brodmann and Garey, 2007) 

is arguably the most commonly used reference map. Cytoarchitecture based parcellations are 

unfortunately poorly scalable and cannot be mapped in vivo.

In vivo macro-scale connectivity data provides complementary information to anatomical 

microstructure. Advances in medical imaging such as diffusion (dMRI) and functional 

Magnetic Resonance Imaging (fMRI) have provided means of identifying in vivo structural 

and functional connections within the brain. dMRI allows estimation of structural 

connections within the brain by measuring the anisotropy of the diffusion of water molecules 

in the brain, which is constrained by the white matter’s fibres connecting different regions of 

the gray matter. In constrast to this, fMRI measures the increase of oxygenation due to brain 

activity over a specific time period. Functional connections can be established by evaluating 

the temporal correlation between the fMRI signals in different brain regions.

Cortical areas can be seen as regions in the brain that differ based on microarchitecture (cyto 

or myeloarchitecture), connectivity and function (Eickhoff et al., 2015). In particular, local 

microstructure and connectivity are believed to conjointly enable locally specific 

neurological computations (Passingham et al., 2002), i.e. determine the functionality of a 

region in the brain. As a result, microstructure and connectivity provide partially overlapping 

and complementary information, and are both necessary to study in order to increase our 

understanding of the brain’s organisation. Connectivity-driven parcellation, while not 

providing actual cortical areas on their own, can therefore provide essential information for 

mapping the functions of the brain.

Furthermore, it provides a sensible basis for the construction of brain connectivity networks 

or connectome at the macro-scale, which can provide key knowledge towards understanding 

neurological processes and diseases. Due to the high dimensionality of connectomic data, 

building such connectivity networks requires the parcellation of the cortical surface into 

distinct regions, where each brain region constitutes a node in the network. The most 

commonly used parcellations are random parcellations or cortical folding based 

parcellations (Tzourio-Mazoyer et al., 2002; Destrieux et al., 2010) derived from anatomical 

landmarks. However, those parcels do not necessarily reflect the underlying connectivity of 

the brain and can therefore introduce a bias and a loss of information in the constructed 

network (Sporns, 2011).

Connectome construction and functional or cortical mapping have both motivated the 

development of dMRI and fMRI driven parcellation methods, the aim being to regroup 

regions of the cortical surface that have similar functional or structural connectivity profiles. 

The problem is typically cast as a clustering problem driven by the correlation between 

tractography connectivity profiles or fMRI time series. Several approaches have focused on 

a specific subregion of the brain (Anwander et al., 2007; Johansen-Berg et al., 2004; Jbabdi 

et al., 2009; Mars et al., 2011), which allows the application of common clustering methods 

such as k-means clustering. The problem becomes more complicated when a complete 

cortex parcellation is sought due to the increased dimensionality and noise. Several 

approaches have been considered for fMRI and dMRI-driven parcellation with different 

levels of success: anatomical parcellation refinement (Clarkson et al., 2010), Markov 
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Random Fields (Ryali et al., 2013; Honnorat et al., 2015), and edge detection (Cohen et al., 

2008). However, clustering remains the most natural way of tackling the parcellation task, as 

we are seeking to regroup regions sharing similar connectivity patterns based on pairwise 

affinity. Gaussian Mixture Models (Yeo et al., 2011; Lashkari et al., 2010), Spectral 

clustering (Craddock et al., 2012; Shen et al., 2013) and Hierarchical clustering (Moreno-

Dominguez et al., 2014; Blumensath et al., 2013) have attracted most attention.

When performed independently, finding correspondences between single subject 

parcellations can be a challenge. Indeed, the parcels’ boundaries can be very different from 

one subject to the next, the differences being exacerbated by the influence of noise. Group-

wise parcellation can potentially handle better noisy and locally unreliable individual data 

while at the same time providing an average parcellation representative of the similarities 

between subjects in a group. In addition, building group averages are also essential in order 

to understand group specific connectivity behaviours and disruptions.

Few approaches have tackled the task of finding group-wise parcellations. We can 

distinguish two different kinds of approaches: the first one directly estimates a group 

parcellation from averaging the connectivity data of all subjects (Roca et al., 2010; Clarkson 

et al., 2010), the second approach estimates single-subject parcellations where parcel 

correspondences between subjects are established (Shen et al., 2013; Parisot et al., 2015; 

Arslan et al., 2015). The former is attractive due to its simplicity, but can lead to a loss of 

information and does not yield individual parcellations. The method proposed by Arslan et 

al. (2015) relies on a joint spectral decomposition of the surface mesh with connectivity 

weighted edges. One drawback of this approach is the strong influence of the mesh structure 

on the final parcellation.

Shen et al. (2013) proposed an iterative method for fMRI driven parcellation that alternates 

between the estimation of a group parcellation and minimising the differences between 

single subject parcellations and the group in the spectral domain. The method requires an 

initialisation which influences the run time as well as the obtained parcellations and implies 

spatial alignment between subjects.

Group-wise parcellation tasks strongly depend on the alignment of connectomic data 

between subjects. Unless they are specifically coupled to an actual registration task, 

parcellation methods require an anatomical alignment of brain surfaces (typically volumetric 

or cortical folding based alignment). While this provides a rough alignment of the 

connectomic data, it does not imply that it is registered locally. This fact must be taken into 

account when seeking correspondences between subjects and when evaluating the 

similarities between different subjects’ parcellations.

In this paper, we propose a group-wise parcellation method that is inspired by the concept of 

co-segmentation in computer vision (Kim et al., 2012). We simultaneously estimate coherent 

parcellations across resolutions and subjects through a spectral clustering formulation. For 

each subject, we capture connectivity boundaries at different resolutions through the 

construction of a set of high resolution parcellations. Correspondences between the different 

resolutions and subjects are enforced through links between subjects and parcellations 
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resolutions that are based on localisation and connectivity similarity. The common 

parcellation is then estimated through a joint decomposition of the global affinity matrix that 

encodes intra-subject affinities and inter-subjects connections. The proposed method was 

introduced in Parisot et al. (2015). Here, we extend the method through a refined estimation 

of inter-subjects links that makes the method more robust to the quality of the registration of 

the connectomic data. We present an extended experimental evaluation of the parcellation 

method, notably through comparisons to cytoarchitectonic and fMRI data. We apply the 

method on diffusion MR data from two groups of 50 subjects. Qualitative and quantitative 

experiments show a good reproducibility between the two groups as well as strong local 

similarities with Brodmann, myelin and task activation maps. The fundamental issues and 

implications associated with connectivity driven parcellation and tractography are then 

discussed on the basis of these results.

2. Material and Methods

The proposed method is summarised in Fig. 1. In this section, we first detail the dataset and 

preprocessing steps used, followed by the construction of a multi-resolution base 

parcellation. Edges between the base parcellation resolutions and subjects are then 

introduced. They are constructed based on overlap on the original surface mesh and 

similarities in connectivity respectively. Finally, we describe the quantitative measures used 

for evaluation.

2.1. Notations

We summarise here the notations used throughout the paper for increased clarity. We refer to 

the cortical surface of a subject Si as a mesh ℳ = { , ℰ}. Nv is the number of vertices and 

K is the number of sought parcels. Vertices on the mesh are referred to as v ∈ . The 

cortical surface is parcellated into a set of L high resolution parcellations. A supervertex Vs 

at scale s ∈ [1, L] refers to a whole parcel (an ensemble of vertices). The number of 

supervertices or parcels at scale s is Ns.

χSi is the structural connectivity matrix of subject Si obtained from tractography, of size Nv 

× Nv. We call χSi(v) the row of the connectivity matrix at vertex v.  is the affinity matrix 

of subject Si at scale s, of size Ns × Ns. It is computed by averaging the values of of χSi 

associated with vertices in the same supervertex and by computing the correlation between 

the rows of this low resolution connectivity matrix. WSi is concatenation of the affinity 

matrices  and is introduced in section 2.3. Its size is (Σs Ns) × (Σs Ns). Similarly to χSi, 

we call WSi(Vs) the row of the affinity matrix at supervertex Vs.

XSi is the parcellation matrix of a subject Si, introduced in section 2.4 and of size (Σs Ns) × 

K.  is the constraint matrix of subject Si between the supervertex parcellation scales s 
and s + 1 introduced in section 2.4. Its size is Ns+1 × Ns. CSi is the concatenation of the 

resolution wise constraint matrices. Finally, W, C and X are the concatenations of the 

affinity, constraint and parcellation matrices for all subjects in the group. D is the degree 

matrix of W, i.e. the diagonal matrix which contains the sum of each row of W at the 

corresponding row.
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2.2. Dataset and Preprocessing

We perform our experiments on 100 subjects randomly selected from the 500 subjects 

release (November 2014) of the Human Connectome Project1 (HCP) database. We randomly 

separate the database in two distinct groups of 50 subjects each and test the method 

independently on the two groups.

The structural and diffusion data have been preprocessed following the HCP’s minimal 

preprocessing pipelines (Glasser et al., 2013). The cortical surface is represented as a 

triangular mesh made of 32k nodes ℳ = { , ℰ}, where the nodes have a 2mm spacing. 

represents the set of Nv = 32k nodes, while ℰ describes the connections or edges between 

neighbouring nodes. An essential preprocessing stage to our approach is the registration of 

all cortices to a common reference space. We are using here the HCP’s provided registration, 

which registers the sulcal depth information of all surfaces following an MRF based method 

(Robinson et al., 2014). This yields matching mesh nodes across all subjects.

The diffusion MR images have been acquired using a multi-shell approach, with three shells 

at b-values 1000, 2000, and 3000 s/mm2 and 90 gradient directions per shell. The 

tractography matrix is obtained from the preprocessed dMRI data using FSL’s bedpostX and 

probtrackX methods (Behrens et al., 2007; Jbabdi et al., 2012). The former estimates the 

orientation of the fibres passing through each voxel of the brain volume while the second 

performs probabilistic tractography based on the estimated fibre orientations. The 

probabilistic tracking is done on the native mesh (before registration) representing the gray/

white matter interface. 5000 streamlines are seeded from each of the surface vertices and the 

obtained tractography matrix records the number of streamlines that reached the rest of the 

mesh.

One issue associated with tractography, especially with probabilistic tractography, is the bias 

towards short range connections. Indeed, long range connections are weakened or even 

missed due to the accumulation of uncertainty along the tract. As a result, there can be a 

strong discrepancy between the short and long range connectivity strengths even though the 

actual connections have the same strength. This can have a strong impact on the obtained 

parcellation. This issue is often accounted for by thresholding the shortest fibres (Roca et al., 

2009). However, the value of this threshold is typically decided heuristically and it is very 

difficult to estimate what threshold value yields an appropriate representation of the 

connectivity between vertices of the mesh. Another approach, which we adopt here, is to 

compute the element-wise log transform of the tractography matrix (Jbabdi et al., 2009; 

Moreno-Dominguez et al., 2014). The log transform reduces the dynamic range of fibre 

counts and therefore reduces the strong discrepancy between short range connections fibre 

counts and the long range ones. This parameter free option greatly reduces the bias towards 

short connections while not losing any information from a thresholding process. This 

approach remains a suboptimal way of handling tractography’s bias with respect to the 

lengths of the connections. Investigating a more principled approach approach that is 

integrated in the tractography process (Girard et al., 2014) would yield more accurate 

1Human Connectome Project Database, https://db.humanconnectome.org/
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results. It is however, a difficult challenge for tractography that is beyond the scope of this 

paper.

In the remainder of this paper, we call χSi the log-transformed tractography matrix of a 

subject Si and χSi(v) the row of this matrix corresponding to the mesh node v (i.e. the 

vertex’s connectivity profile).

2.3. Supervertex Parcellation

The first step of our multi-scale approach is the construction of a set of high resolution 

parcellations where all vertices in the same parcel are highly correlated. The objective of this 

step is two-fold: first, the aim is to reduce the noise and high dimensionality of the data at 

the vertex level. Second, through the construction of this multi-scale parcellation, we aim to 

capture local connectivity information at different resolutions. This objective relates to the 

work of Mota et al. (2014), where the authors aim to derive statistics that are coherent across 

a set of random parcellations. Our aim is slightly different here though, as we aim to identify 

consistent parcel boundaries rather than parcel-wise information. Due to the similarity of 

this parcellation concept with the superpixel approach (Achanta et al., 2012), we refer to 

those highly correlated parcels as supervertices in the remainder of this paper.

In order to construct each supervertex level - or resolution -, we are inspired by the work of 

Peyré and Cohen (2004) who employ the Fast Marching algorithm to evaluate feature 

weighted geodesic distances on surface meshes. In our case, minimising a correlation 

weighted geodesic distance with respect to a super-vertex centre allows the construction of 

spatially contiguous parcels that agree with the correlation information. While the most 

straightforward option would be to follow the SLIC superpixel methodology (Achanta et al., 

2012), the Fast Marching approach allows the construction of spatially contiguous 

supervertices without having to tune a parameter that relatively weights contiguity and 

connectivity. Indeed, the Fast marching method allows integration of connectivity 

information in the computation of the geodesic distance.

Considering a seed vertex v0 (which will be the centre of the supervertex), we seek to 

compute the geodesic distance d(v0, v) = U (v) from that vertex to the all remaining nodes v 
∈ . This problem can be cast as a front propagation problem, where U follows the Eikonal 

equation ||▽U||F = 1. Here, F is the so-called speed function that characterises the front 

propagation and allows to control the evolution of the front with a specific feature. We 

design the speed function so that the front propagates faster towards regions that have highly 

correlated connectivity profiles:

(1)

Where ρ(., .) is the Pearson’s correlation coefficient and μ is a weighting parameter.

The correlation weighted geodesic distance can be computed for each seed by solving the 

aforementioned Eikonal equation using the Fast Marching algorithm (Sethian, 1996).
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Next, we build our supervertex map through an iterative process. Given a set of Ns seeds 

uniformly sampled on the cortical surface, we first assign all the remaining nodes to a 

supervertex by minimising their geodesic distance to all seeds. The supervertex centre is 

then recomputed as the node that has the highest average correlation with the rest of the 

nodes in the supervertex. This process is then repeated until convergence. We construct three 

supervertex parcellations at three different resolutions for Ns = {3000, 2000, 1000}. The 

supervertex parcellation scheme is illustrated in Fig. 2, while an example base parcellation is 

shown in Fig. 3.

Each supervertex parcellation level is associated with a Ns × Ns merged connectivity matrix 

that is computed by averaging the fibre counts in the tractography matrix of the vertices 

within the same supervertex. The correlation between the rows of this merged tractography 

matrix yields the affinity matrix WSi that will drive our spectral clustering based parcellation 

approach. Spatial contiguity of the parcellations is later enforced by removing edges (i.e. 

entries in WSi) between supervertices that are not immediate neighbours.

2.4. Single-subject Parcellation

The multi-scale supervertex parcellation captures connectivity information at different 

resolutions. We seek to exploit this knowledge in order to recover a coherent parcellation for 

a given subject Si across all resolutions. This can be done by constructing inter-resolution 

edges between supervertices that are embedded in a constraint matrix. In the spectral 

clustering framework, this forces connected supervertices to be assigned to the same cluster.

A supervertex Vs at a given scale s is connected to the supervertex Vs+1 at the coarser scale s 
+ 1 that shares the largest amount of vertices on the original mesh. The strength of the edge 

is set as the amount of overlap between both supervertices so that the strongest 

correspondences in terms of parcel assignments are enforced to supervertices in the most 

similar locations. The inter-resolution edges are therefore written as follows:

(2)

Where |Vs| is the number of vertices in the supervertex Vs. The construction of inter-

resolutions links is illustrated in Fig. 4.

These links allow simultaneous clustering of the three base parcellation levels into a 

coherent K clusters parcellation represented at different levels of precision (based on the size 

of the supervertices). This is done following the multi-scale normalised cut method (Yu and 

Shi, 2003). In this setting, we seek to recover for each scale s a N × K parcellation matrix 

that describes the cluster assignments of the supervertices:

(3)
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All resolutions can then be parcellated simultaneously by concatenating all parcellation and 

affinity matrices into global multi-scale parcellation and affinity matrices:

(4)

Here Wi is the merged affinity matrix associated with the resolution level i. Coherence of the 

parcellations between the different resolutions is enforced by the inter-resolution links that 

are encoded in the following constraint matrix:

(5)

Here IN is the N × N identity matrix.

This matrix controls the obtained parcellation over all scales through an imposed constraint 

on the parcellation matrix:

(6)

Spectral decomposition of the multi-scale affinity matrix WSi subject to equation 6 yields a 

parcellation that captures variations in connectivity profiles at different scales. At each 

resolution, the supervertices are assigned to a particular parcel. This results in parcellations 

at different degrees of precisions in terms of boundaries, depending on the supervertex 

resolution.

A limitation of the proposed multi-scale parcellation is the absence of correspondences 

between subjects, which is essential if one is aiming to identify group specific connectivity 

features. Parcel boundaries can substantially vary across subjects, due to noise and 

anatomical differences. Group-wise parcellation can provide parcellations that are more 

robust with respect to locally unreliable data on the subject level, while at the same time 

ensuring that correspondences are enforced across subjects.

2.5. Group-wise Parcellation

It is straightforward to rewrite the N models (one per subject) into a joint optimisation 

problem. This can be done very easily by concatenating all the subjects’ affinity and inter-

scale constraint matrices, which results in the estimation of a joint parcellation matrix 

defined as follows:
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(7)

while the joint affinity and constraint matrix can be defined as:

(8)

In this setting however, all the subjects’ parcellations are estimated independently and no 

correspondences are enforced. Obtaining a meaningful matching parcellation across subjects 

requires the definition of inter-subject connections that describe which regions should be 

assigned to the same label.

For this task, we cannot solely rely on the cortical surface registration for two reasons. First, 

anatomical/sulcal alignment does not imply that structural connections are registered as 

well, i.e. connectivity patterns can differ locally across subjects. The same parcellation 

should not be imposed on subjects who have different local connectivity profiles. Second, 

the registration itself is likely imperfect, and local errors could affect the structural 

correspondences between subjects. For those reasons, direct vertex to vertex comparisons 

across subjects are not reliable enough to obtain meaningful matches. Carrying comparisons 

on the supervertex scale (Parisot et al., 2015) can decrease the impact of a poor alignment. 

However, the connections remain subpar and biased with anatomical information since our 

data is only aligned in terms of cortical folding. These possible errors and biases are likely to 

get stronger if we increase the resolution of our supervertex parcellations as we get closer to 

a vertex to vertex comparison set up.

We are tackling these issues with a two-fold approach. When seeking to match a supervertex 

 in subject Si (supervertex belonging to the coarsest resolution) with a supervertex in 

another subject Sj, we first follow the approach in Parisot et al. (2015) and find the 

supervertex  that has the highest overlap (in terms of number of original mesh vertices) 

with . We then consider all the supervertices that are immediate neighbours of  and 

seek the one with the most similar connectivity pattern with the rest of the brain. As 

connectivity profiles can differ from one brain to the next, we do not directly compare the 

connections across the brain, but the correlation of connectivity profiles of one supervertex 

with all the others. In other words, we compare if two supervertices are similar in terms of 

connectivity to the same cortical regions, even though the actual connectivity profiles of 

these supervertices can differ.
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Inter-subject edges are created between the matched supervertices  and  and 

weighted as the correlation between the low dimensional merged connectivity profiles 

associated with each supervertex:

(9)

Here α is a weighting parameter that controls the influence of the inter-subjects weights and 

ρ(.) is the Pearson’s correlation coefficient. Weighting the edges with the correlation 

between the matched supervertices allows control of how similar two parcellations are 

expected to be locally, based on the similarity of the two subjects’ underlying data.

The inter-subject anatomical and connectivity variability is further accounted for by limiting 

the connection between subjects to the coarsest supervertex parcellation resolution. This 

allows more differences between parcellations at the higher resolution (i.e. parcellations that 

are more faithful to the subject’s connectivity information) while at the same time ensuring 

correspondences between the parcellations.

The inter-subject edges are incorporated in the framework by updating the group-wise 

affinity matrix (Eq. 8) as follows:

(10)

2.6. Optimisation

The next step is the joint spectral decomposition of this affinity matrix subject to the inter-

layer constraints to recover the group’s parcellation matrix. The group-wise parcellation can 

be recovered by optimising the following multi-scale normalised cut objective criterion:

(11)

(12)

(13)
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(14)

This problem is unfortunately NP-complete, but a near global-optimal solution can be 

estimated in a two-step approach (Cour et al., 2005). The first step is to solve the relaxed 

continuous problem Z* derived from problem 11. This is done using the Rayleigh-Ritz 

theorem (Yu and Shi, 2004) by computation and normalisation of the K largest eigenvector 

of a matrix QPQ, defined as:

(15)

Matrix P is the normalised affinity matrix obtained by multiplication with the degree matrix 

D of W. Q is the so-called projector matrix, that ensures we are seeking a solution that 

respects constraint 14.

The second optimisation step consists of discretising the global solution of Z* (Yu and Shi, 

2003) so as to find the closest solution to the relaxed problem that satisfies the discrete 

problem.

The group average parcellation can then be obtained from the individual subjects 

parcellation through majority voting. Our objective using the simple majority voting 

approach is to identify which brain regions are in agreement between subjects, i.e. to find the 

regions that best summarise the similarities between subjects.

2.7. Evaluation: Quantitative Measures

The evaluation of brain parcellation tasks is a challenge in itself since there is no ground 

truth to compare to. In order to provide a quantitative evaluation of our approach, we 

compute measures that intuitively should be characteristic of a good parcellation.

2.7.1. Information Loss—Our first objective is to obtain parcellations that represent the 

data as well as possible. A parcel’s average connectivity profile should be as close as 

possible to all the connectivity profiles of the vertices within the parcel. We evaluate the 

faithfulness of our parcellations to the data by evaluating the information that is lost by 

approximating the vertices’ connectivity profiles with the parcels’ averages. This is done by 

creating a Nv × Nv matrix χav from the merged connectivity matrix, by assigning the same 

merged profile to all vertices in the same parcel (see Fig. 5). We then compute the Kullback-

Leibler Divergence (KLD) between this matrix and the original tractography matrix χ that 

are normalised to be probability mass functions. The KLD measures how much information 

is lost by approximating the tractography matrix χ with χav. A low KLD therefore 

corresponds to a faithful parcellation.

2.7.2. Silhouette Index—We further evaluate the quality of our clustering using the 

Silhouette index (Rousseeuw, 1987), which is a commonly used cluster validity measure. It 
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has notably been used several times for evaluation of brain parcellations (Craddock et al., 

2012; Eickhoff et al., 2014). The Silhouette index computes for each vertex a score of 

confidence with respect to its cluster assignment.

(16)

Here a(v) is the average dissimilarity between v and all vertices within the same parcel. b(v) 

is the average dissimilarity between v and all elements in the cluster that has the highest 

similarity. The Silhouette index takes values between −1 and 1, where −1 suggests that the 

vertex has been misclassified. A value close to zero suggest that the vertex is equally similar 

to two different clusters. Here, we define the dissimilarity between vertices as the opposite 

of the correlation matrix.

2.7.3. Group Consistency—We evaluate the quality of our group-wise constraint 

through a group consistency measure that is inspired by the Minimum Description Length 

principle (Rissanen, 1978). After a group parcellation, we compute an average connectivity 

matrix by averaging all subjects’ merged connectivity matrices. The group average is then 

compared to each individual subject’s connectivity matrix, the idea being that the distance 

should be minimal if the average is representative of all subjects. The measure we compute 

is the Sum of Absolute Differences (SAD) between the normalised connectivity matrices. 

Normalisation allows fair comparisons across varying numbers of parcels. In addition, this 

measure has the potential to identify outliers within a group that will strongly differ from the 

group average.

2.7.4. Overlap Between Parcellations—Parcels are quantitatively compared and 

matched using the measure of spatial overlap proposed in Bohland et al. (2009). This 

measure is non symmetric, and evaluates the proportion of one region i that is contained in 

another region j. We refer to ri and rj as the ensembles describing the vertices that belong to 

regions i and j respectively. The similarity measure Pij is then defined as:

(17)

where |r| is the number of voxels in ensemble r. When applied on different subjects, this 

measure relies on the vertex correspondences obtained from the sulcal registration. A 

symmetric measure is also defined as .

We match two parcellations by selecting the parcels that have the highest similarity scores. It 

should be noted that several parcels can be matched to the same one and therefore merged 

into a larger parcel. We use the symmetric measure O as a measure of overlap for 

quantitative evaluation. This is more flexible than the commonly used Dice Similarity 

Coefficient as it does not search for perfect overlap but also for inclusion of a parcel in 
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another. Furthermore, this approach allows to compare parcellations with a very different 

number of parcels, which can be very useful when comparing to other methods and 

modalities.

2.7.5. Bayesian Information Criterion—The proposed measurements used to evaluate 

single subject parcellations cannot be used for comparing group parcellations since our 

group-wise parcellation is not directly derived from a joint connectivity matrix. We compute 

instead the Bayesian Information Criterion (BIC) as described in Thirion et al. (2014) for 

evaluating group-wise parcellations.

We evaluate how well the parcellations agree with the underlying brain structure by 

comparing to task fMRI activation maps. Each vertex is associated with the concatenated 

task activation maps of all subjects within the group considered. The signal y(concatenated 

activation maps) within each parcel is modelled using a probabilistic model as:

(18)

Here, μ is the average signal within a parcel, X is a known matrix that identify which subject 

the vertex value corresponds to. The estimation of the parameters (μ, σ1, σ2) is carried out in 

each parcel using the Expectation Maximisation algorithm. Parameters σ1 and σ2 

respectively express the variance within and between subjects. The BIC criterion then 

evaluates the goodness of fit by penalising the negative log likelihood by the complexity of 

the model (number of parcels).

3. Results

3.1. Parameter Selection

The parameter μ for the construction of the supervertices is set heuristically to 3. The 

parameter α that control the strength of the connections between the subjects has a more 

important impact on the obtained parcellation. α should be high enough to impose 

consistency between subjects but also allow local differences between them to remain 

faithful to the underlying data. Furthermore, isolated supervertices tend to appear when α is 

too high.

We make use of the KLD and SAD measures to optimise the parameters as they provide 

complementary information. We compute the KLD to make sure the parcellation remains 

faithful to the data, while the SAD evaluates if group consistency is imposed. We optimise α 
on one group of 50 subjects for both hemispheres. We compute the KLD and SAD for 20 to 

250 parcels and α ranging from 0.01 to 3.5.

The first observation is that the measures follow what is expected intuitively with respect to 

the number of parcels: the KLD decreases with the number of parcels. This is expected since 

a high resolution reduces the amount of averaging necessary during the construction of the 

merged matrix. In contrast, the SAD progressively increases with the number of parcels. 
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This is due to the fact that more anatomical differences are conserved when the resolution 

increases.

As shown in Fig. 6, both measures follow similar trends, sharply decreasing when increasing 

α, then stabilising or slowly increasing. The strong improvement of the measures at low α 
values can be explained by the fact that parcellations are not imposed to be similar if the 

connections are too weak, as a result, the number of parcels selected is spread across all 

subjects, resulting in very low parcellation resolutions for all subjects. This increases the 

value of the KLD (low resolution) and the value of the SAD (no agreement imposed 

between subjects).

The SAD measure has a tendency to increase after reaching a minimum. Isolated 

supervertices tend to appear when the correspondences between subjects are set too high, 

which decreases the quality of the parcellation. We essentially seek parcellations that are 

faithful to the underlying connectivity data while preventing the appearance of isolated 

supervertices. Therefore, we select for each parcellation resolution the optimal value of α as 

the closest value that both stabilises the KL divergence and minimises the SAD. We observe 

for both hemispheres that the value of α has to be increased regularly with the number of 

parcels (Fig. 7).

All our remaining experiments are carried out on our second group of 50 subjects that have 

not used for parameter optimisation with the optimal value of α.

3.2. Methods comparison

After parameter optimisation, we perform the group-wise parcellation scheme on our second 

group. The first observation, as shown in Fig. 8, is that we obtain parcellations that have 

direct correspondences yet remain subject specific (i.e. the shape and location of parcels can 

differ from one subject to the next). Isolated supervertices may appear, which can be due to 

links that are too strong or too numerous.

The proposed group-wise method was then quantitatively compared to gyral (Destrieux et 

al., 2010) and random (Poisson disk sampling) parcellations, as well as connectivity driven 

parcellations from k-means, hierarchical and spectral clustering (Sec. 2.4 and normalised 

cuts (Craddock et al., 2012)). Hierarchical clustering is performed using the spatially 

constrained linkage method as described in Moreno-Dominguez et al. (2014). We are using 

the average linkage method as we have observed that it yields the best quantitative results. 

This has also been observed by Moreno-Dominguez et al. (2014) for dMRI driven 

parcellation. All clustering methods are initialised from the finest supervertex resolution so 

as to reduce the impact of noise. Hierarchical and spectral clustering methods are spatially 

constrained (we only preserve neighbouring connections) to obtain contiguous parcels. The 

spatial contiguity of k-means clusterings is artificially enforced by only keeping the 

connections with the 10 closest neighbours. This yielded compact parcels of similar sizes. 

Poisson Disk Sampling generates regions of approximately equal size by ensuring that two 

region centres are not closer than a given threshold which controls the number of obtained 

parcels. For single subject parcellations, correspondences between the different parcellations 

have to be established to compute the SAD. The matching is suboptimal since boundaries 
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can be very different across subjects. This biases the values of the SAD but also highlights 

the main issue associated with single-subject parcellations which is the difficulty to find 

correspondences between subjects.

We compute the KLD, SAD and Silhouette index for all methods. Figure 9 shows boxplots 

of the measures for all methods and subjects in the group. We observe that spectral methods 

tend to show better performance for all measurements and that the group-wise approach 

yields very similar KL values as the single subject approach. In other words, the obtained 

parcellations remain as faithful to the data despite the group constraint while achieving the 

best results in terms of group consistency. The same behaviour can be observed for 

Silhouette index computations.

Interestingly, k-means clustering yields the best performance for KLD measurements, but 

the lowest score amongst connectivity driven methods for both Silhouette index and SAD. 

On the one hand, the different spatial constraint (keeping the 10 closest neighbours rather 

than the nearest neighbour) could allow to construct parcellations that follow connectivity 

patterns more precisely. On the other hand, this limited constraint yields irregular clusters 

that are sensitive to noise, which reduces the quality of the parcellation and its 

reproducibility. This assumption is supported by the low performances obtained for the 

Silhouette index and SAD (quality of clustering and group consistency). Furthermore, we 

also observe an increase in performance for all measurements using our multi-scale 

approach compared to Normalised cuts. This highlights the added value of using multiple 

scales for the parcellation task. The gap in performance is particularly striking for Silhouette 

index computations.

Since the surfaces have been registered based on sulcal information, we expect strong 

similarities between subjects regarding the gyral parcellation. This is confirmed by the low 

values of the SAD, which are on par with the ones obtained from the group-wise 

parcellation. The performance in terms of information loss and cluster validity indices is on 

the other hand the worst across all methods.

3.3. Inter-modality Comparisons

We then compared the boundaries of our parcellations with myelin maps, Brodmann’s areas 

and fMRI task activation maps. All modalities are obtained from the HCP dataset (myelin, 

Brodmann) Glasser et al. (2013) or using the HCP processing scripts (task fMRI). Myelin 

maps are calculated as the ratio of T1-weighted and T2-weighted MRI (Glasser and Van 

Essen, 2011). The Brodmann parcellation was mapped onto the Conte69 brain surface atlas 

(Van Essen et al., 2012). It was then mapped onto each subject’s surface using the cortical 

folding driven registration’s deformation field.

The task fMRI data is preprocessed following the HCP preprocessing pipelines (gradient 

unwarping, motion and distortion correction, registration to the MNI space and projection to 

the cortical surface). Task activation maps are then obtained using standard FSL tools 

(FEAT) that use general linear modelling to construct activation maps (Barch et al., 2013). 

The analysis is carried out across sessions (single subject activation maps) and then across 

subjects (group-wise activation map).
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Observations are made on the group average level, as well as the individual subject level. 

Our aim is to show that we obtain sensible average maps as well as faithful individual maps. 

All modalities provide complementary information, and therefore a complete match cannot 

be expected in any of the cases. However, we can expect local correlation between our parcel 

boundaries and other modalities.

For all resolutions, we observe strong correspondences between our parcels’ boundaries and 

strong variations of myelination, specifically in the motor areas, both on the average map 

and the single subject level. This is illustrated in Fig. 11 for randomly selected subjects and 

the average maps.

Furthermore, single subject parcellations appear to have similar boundaries with 

Brodmann’s cytoarchitectonic motor areas (BA 1, 2, 3a–b, 4a–b and 6). Quantitative 

comparisons are proposed on the basis of the atlas concordance measure of Bohland et al. 

(2009). For all parcellation resolutions, we compute the overlap O between all Brodmann 

areas and our parcels. Due to the small size of these regions, areas BA 1, 3 and 4 are merged 

into a single parcel. We compare the quantitative results obtained with the other considered 

parcellation methods (spectral, hierarchical and random). In particular, random parcellations 

show how our results relate to chance. Figure 10 shows boxplots of the average overlap 

scores over all subjects for all resolutions, Fig. 11 shows visual examples of the overlap for 

different subjects, while Fig. 12 shows a spatial comparison to random parcellations overlap 

scores. On average over all parcellation resolutions, we obtain very good overlap 

measurements with the motor areas (BA 1–6), and outperform other methods. Interestingly, 

we observe that good overlap scores are only obtained around the motor area for all 

connectivity driven methods. The fact that results can be significantly lower than the overlap 

with random parcellations for all subjects and methods in some areas could suggest that 

either the structural connectivity differs with cytoarchitecture, or that the Brodmann map and 

structural connectivity data are not properly registered.

Our average parcellation is also compared to the composite parcellation proposed in Van 

Essen et al. (2012) where each region is derived from reliable local parcellations. Parcels are 

derived from different modalities such as cytoarchitecture and rhetinotopy. Given the size of 

most regions, we compare the parcellation to a high resolution connectivity driven 

parcellation (200 regions). Visual comparisons are shown in Fig. 11c and comparisons with 

the performance of random parcellations are shown in Fig. 12b. Here again, we compute 

overlap scores between our group average and the composite parcellation and compare it to 

the performance of random parcellations. We again obtain good performance around the 

motor area, and worse results in other regions, notably around the visual cortex. In addition 

to data quality and disagreement of dMRI with other modalities, these results could be 

linked to the size of the groups used to build the composite and group parcellations, which 

could be too small to fully correspond. Another explanation could be that some regions have 

too much inter-subject variability and cannot be summarised properly without a dMRI 

driven registration step.

Task activations are only compared on the group level due to the fact that individual task 

activation maps can be very noisy. We are therefore only comparing our average parcellation 
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to average activation maps. Visual comparisons are proposed in Fig. 13 between the 

boundary of our average parcellations and activation maps for different tasks.

3.4. Group-wise Parcellation Evaluation

While a set of 50 subjects remains limited, group parcellations at this level should start 

showing consistency across different groups and are less sensitive to inter-subject variability. 

We evaluate the reproducibility between two different groups by comparing our average 

parcellations obtained from our two groups of 50 subjects. The average parcellations are 

computed through majority voting from all 50 individual parcellations, while the average 

connectivity map is simply the average of all subjects’ merged connectivity maps.

We computed the overlap between our different parcels after matching them, as well as the 

SAD in order to compare the built connectivity networks. Those values are compared to the 

ones obtained between two independent single subject parcellations and the overlap between 

two subjects parcellated within the same group. The evolution of the overlap with respect to 

the number of clusters is shown in Fig. 14.

After matching the parcels, we also computed the SAD between the two average maps. As 

expected, the value tends to increase with the number of parcels and are lower than the intra 

group SAD scores. However, we consistently obtain better values than the one obtained 

between spectral individual parcellations (where the matching process is identical) and, as 

illustrated in Fig. 15, very similar connectivity maps at low resolutions. Figure 16 shows 

how reproducible two regions are within the same group on average over all resolutions. We 

observe a similarity between reproducible regions between the two hemispheres.

Our group-wise parcellations from the second group (not used for parameter optimisation) 

are also quantitatively compared the group-wise parcellations obtained using common 

clustering methods (k-means, hierarchical (using the average linkage method) and spectral 

clustering (normalised cuts and our multi-scale approach)) on the average connectivity 

matrix. For all clustering tasks, the affinity matrix driving the clustering is the Pearson’s 

correlation co-efficient between the average connectivity profiles over all 50 subjects in the 

group. We do not compare to other group averages from single-subject methods here since 

the differences between single-subject parcellations are too high to construct a meaningful 

average map. Methods are compared quantitatively using the BIC criterion (sec. 2.7.5). The 

same task fMRI contrasts as the ones proposed in Thirion et al. (2014) are considered here: 

the faces-shape contrast of the emotional protocol, the punish-reward contrast of the 

gambling protocol, the math-story contrast of the language protocol, the left foot-average 

and left hand-average contrasts of the motor protocol, the match-relation contrast of the 

relational protocol, the theory of mind-random contrast of the social protocol and the two 

back-zero back contrast of the working memory protocol.

Results are shown in Fig. 17 for both hemispheres and all resolutions considered (20 to 250 

parcels). We can see that the spectral methods yield the best results (lower values are better) 

for both hemispheres and most resolutions. Our group-wise approach tends to yield better 

results at the highest resolutions, which could be linked to the fact that the lack of 

Parisot et al. Page 17

Neuroimage. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



registration between dMRI connectivity networks (which will impact the average 

connectivity matrix) has a stronger impact when more precision is required.

We also visualise the average intra and inter-subjects variance parameters of the model (σ1 

and σ2 respectively) in Fig. 18. All methods have similar behaviour: the intra-subject 

variance monotonously decreases with the number of parcels, while the inter-subject 

variance follows the opposite trend. A similar behaviour was observed in Thirion et al. 

(2014). All methods appear to have similar variances, with hierarchical and k-means 

clustering having the largest inter-subject variance and intra-subject variance respectively.

4. Discussion

In this paper, we proposed a connectivity-driven parcellation method inspired from the 

concept of cosegmentation. The proposed method simultaneously estimates subject specific 

parcellations that have direct correspondences across subjects. Quantitative and qualitative 

experiments show that group consistency does not reduce the quality of the parcellation on 

the subject level. Furthermore, the comparison between two independent groups shows that 

we can obtain a good reproducibility despite a relatively small sample size.

Our comparisons with myelin maps, task fMRI and cytoarchitecture show that we obtain 

parcel boundaries that reflect other modalities, especially in the motor area where we 

observe strong similarities. Inter modality comparisons should however be considered 

carefully. First, all different modalities are obtained after a series of processing steps where 

several errors could be introduced (cortical folding based registration, volume to surface 

projection, segmentation...). Furthermore, it is still unclear how much these modalities 

interact and how similar they are expected to be. Therefore, complete agreement is not to be 

expected. In particular, we have observed that all dMRI driven parcellations we considered 

are generally performing worse than random parcellations in terms of overlap with 

Brodmann areas that are not in the motor area. There are several facts that can explain this 

phenomenon. The Brodmann maps are obtained from a single subject, then projected onto 

an atlas, which is then registered to the single subjects based on cortical folding. The 

registration process is based on sulcal depth, which focuses strongly on the motor area 

where the folding patterns are more consistent between subjects. The observation that dMRI 

driven parcellations are performing worse than chance suggests that Brodmann areas’ 

boundaries are not properly aligned with the dMRI data. This is very likely to be the case for 

subjects that have very different folding patterns with respect to the reference surface. The 

fact that our comparisons are favourable in the motor area supports this theory. Other 

possible explanations could be that dMRI locally disagrees with cytoarchitectural 

boundaries, or that the dMRI processing steps and noise have introduced some errors that do 

not allow to recover these boundaries.

More generally, several facts associated with dMRI driven parcellations should be kept in 

mind when looking at the interpretability of parcellations or aiming at comparing them with 

different modalities (rs-fMRI parcellations for instance). dMRI and tractography represent 

the current best way of representing the physical connections in the brain in vivo. Parcels 

can therefore naturally be biologically interpreted as regions that are directly connected to 
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the brain in a similar way. Because of this, dMRI is expected to be more robust and 

interpretable for longitudinal (ageing or development) connectome analysis than resting-

state fMRI for instance, whose biological interpretation is not as natural (Eickhoff et al., 

2015).

Nevertheless, the connections inferred from dMRI processing and tractography have to be 

considered carefully and put in perspective. The connections are obtained from the indirect 

measurement of the diffusion of water molecules in the brain. Processing the data and 

inferring the tracts is a tremendous problem in itself, and many aspects remain problematic. 

Large fibre bundles are often predominant, while crossing and kissing fibres are often 

difficult to differentiate. Long range connection can also often be missed, due to a growing 

uncertainty along the tract. This makes tractography data prone to false negatives 

(interestingly, rs-fMRI is on the contrary prone to false positives). Another difficulty is to 

precisely determine the origin of the tracts, tractography having been observed to have a bias 

with ending tracts in gyri (Van Essen et al., 2013; Ng et al., 2013), this could notably affect 

the location of parcel boundaries and should be remembered when comparing parcellations 

to other modalities for instance. Despite these encountered difficulties, dMRI remains the 

best way of evaluating the physical tracts in vivo. While the obtained tracts could not be 

completely accurate, the evaluated similarity between connectivity profiles could still be 

correct (Knösche and Tittgemeyer, 2011), leading to accurate parcellations.

One drawback of spectral clustering approaches is the tendency to create similarly sized 

parcels. This size bias could explain why the quality of the correspondences with 

cytoarchitectonic regions and task activation maps varies from one resolution to the next. 

Indeed, it is possible that some transitions in connectivity can only be captured at specific 

resolutions or degrees of precision. This phenomenon could prevent from determining an 

optimal number of parcels as specific boundaries could be identified at specific resolutions. 

For this reason, the main objective of our evaluation was not to find an optimal number of 

parcels but rather to compare our approach at a given resolution with others. A possible way 

of exploiting this hierarchy of parcellations would be to combine the parcellations obtained 

at different resolutions, or identifying the most reliable boundaries over all resolutions. 

Another issue associated with the hierarchical and spectral clustering method considered 

here is the imposed spatial constraint to obtain spatially contiguous parcels: on the one hand, 

only connections between neighbouring vertices are kept, which can lose critical 

information. On the other hand, parcel can be subject to noise and irregular, as observed with 

k-means clustering results.

One of the main advantages of using a group-wise parcellation method is the possibility to 

perform direct comparisons between subjects as well as groups (gender, age or diseased base 

groups). At the single subject level, this allows to estimate which brain regions are the most 

consistent (inter-subject variability), while the group level enables to evaluate the 

fundamental differences in connectivity and function between two different groups. This 

could provide information about the impact of a disease on the brain for instance. One big 

challenge would be to identify whether the differences are due to noise and processing errors 

or actual biological differences. Comparing one subject to the group could be a way of 

identifying if a region in a specific subject is governed by noise. Our method reduces the 
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influence of noise and registration errors by finding local correspondences at a coarse 

supervertex parcellation level and carrying a neighbourhood search. This setting is better 

suited for identification of similarities between subjects when working at the subject level. 

Group differences can then be considered as noise should be strongly reduced at the group 

level.

A natural extension of the method would be to run it on much larger groups in order to 

evaluate the reproducibility and obtain parcellations that are truly independent from inter-

subject variability. Consequently we could estimate more reliably the global differences 

between different kinds of groups. A further exploration of the parameter space on a larger 

group would also allow a better design of the inter-subject edges. Finally, inter-modality 

comparisons could be performed by applying the method to resting state fMRI. Comparing 

or combining dMRI and rs-fMRI driven parcellations could enable to identify functionally 

specialised regions more accurately than by using a single modality.
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Figure 1. 
Overview of the group-wise parcellation method. Each subject Si is associated with a 

connectivity matrix χSi that drives the construction of a multi-scale base parcellation. Intra-

subject edges (between base parcellation resolutions) and inter-subject edges (between all 

pairs of subjects at the coarsest parcellation resolution) are built to allow a common spectral 

decomposition of the affinity matrix (Pearson’s correlation between the tractography 

connectivity profiles).
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Figure 2. 
Overview of the supervertex parcellation method. After initialisation with a uniformly 

sampled set of seeds, we alternate until convergence between minimising the geodesic 

distance of all nodes to the seeds to obtain the parcellation, and reevaluating the seeds.
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Figure 3. 
Visual example of the three resolutions of the supervertex parcellation.
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Figure 4. 
Illustration of the inter-resolutions links. Connections links are constructed between two 

supervertices at the different resolutions if they share vertices on the original mesh. The 

strength of the edge is established by the number of shared vertices.
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Figure 5. 
Illustration of the merging process in order to build a merged connectivity matrix and the Nv 

× Nv matrix.
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Figure 6. 
Evolution of the KLD (a) and SAD (b) value of α for the right hemisphere.
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Figure 7. 
Evolution of the optimal value of α for both hemispheres.
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Figure 8. 
Visual example of single subject parcellations obtained from the group-wise scheme (100 

parcels). Identical colours between different subjects indicate corresponding parcels (there is 

no inter-hemispheric matching).
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Figure 9. 
Boxplots of the values of the KLD (a), SAD (b) and Silhouette index (c) for all parcellation 

methods.
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Figure 10. 
Boxplots of the average overlap over all subjects between our parcels and Brodmann areas 

for all computed resolutions. (a) left hemisphere, (b) right hemisphere.
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Figure 11. 
Visual examples of the overlap between our parcels’ boundaries (black lines) and Brodmann 

areas (a,b), myelin maps (d–f), the composite parcellation Van Essen et al. (2012) (c) for two 

randomly selected subjects and the group average map.
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Figure 12. 
Comparison of the performance of the group-wise parcellation w.r.t random parcellations for 

(a) the Brodmann map and (b) the composite parcellation Van Essen et al. (2012). Values 

higher than zero (red to yellow) have a higher overlap than random parcellations, worse 

overlaps are shown in blue. (a) For each parcel, we count the number of times a parcel 

overlaps better (+1) or worse (−1) for all subjects and parcellation resolutions. (b) Overlaps 

are compared for 200 parcels, and averaged over the 50 random parcellations. Yellow and 

cyan parcels have an overlap difference of more than 20 % between both parcellations, other 

cases are shown in red and blue.
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Figure 13. 
Visual examples of the correspondences between average task activation maps and our 

average parcels’ boundaries for a group of 50 subjects.
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Figure 14. 
Quantitative evaluation of the group consistency, compared to the intra-group consistency 

(obtained from a group-wise parcellation) and the inter-group consistency (obtained from 

single subject parcellations).
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Figure 15. 
Visualisation of the absolute difference between connectivity networks: (a, b) difference 

between the networks obtained for two subjects using single subject parcellation (a), and 

group-wise parcellation (b); (c) difference between the average networks for the two 

different groups tested. The circle represents the parcels on the cortical surface, connections 

are the edges connecting the parcels. The edges and their thickness correspond to the 

difference in connectivity strength (probtrackX fibre count) between the compared networks. 

The different colours are used here for visualisation purposes to differentiate the edges.
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Figure 16. 
Local overlap between the two group averages, averaged over all resolutions.
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Figure 17. 
Comparison of group-wise parcellation methods using Bayesian Information Criterion 

scores for both hemispheres. Lower values correspond to better scores.
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Figure 18. 
Comparison of the intra and inter-subject model variance between group-wise parcellation 

methods both hemispheres.
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