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Abstract

Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. 

As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly 

reflect the underlying neural activity. The purpose of this work was to design a data-driven model 

to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal 

choice for this investigation since the bulb circuit is well characterized, allowing for an accurate 

definition of activity patterns in order to train the model. We generated models for both cerebral 

blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The 

results indicate that the spatial accuracy of the activation maps is either significantly improved or 

at worst not significantly different when using the learned models compared to a conventional 

general linear model approach, particularly for BOLD images and activity patterns involving deep 

layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show 

increased agreement when using the learned models, lending more confidence to their accuracy. 

The models presented here could have an immediate impact on studies of the olfactory bulb, but 

perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to 

improve the quality of activation maps calculated using fMRI data.
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 1. Introduction

Non-invasive measures of neural function play a critical role in the field of systems 

neuroscience, particularly in the area of human cognition. Of the available tools, functional 

MRI (fMRI) remains the most popular because of its effective balance between volumetric 

sampling and spatiotemporal resolution (Cohen and Bookheimer, 1994). A number of 

techniques exist for using fMRI to map brain function, each of which measure some 

aspect(s) of the vascular response to the underlying neural activity. Of these methods, blood 

oxygen level dependent (BOLD) contrast is by far the most common because it results from 

neural activity, is relatively easy to implement, and does not require the administration of 

contrast agents.

While the BOLD signal possesses a number of strengths, the complexity of this signal does 

pose significant challenges for accurately mapping the location of neural activity. At least 

three physiological responses are known to significantly contribute to the relative proportion 

of paramagnetic deoxyhemoglobin present in a given voxel, and thus impact the BOLD 

signal. These responses include the cerebral metabolic rate for oxygen, cerebral blood flow, 

and cerebral blood volume (CBV). These individual responses have competing effects on the 

BOLD signal and change dynamically over time with respect to the stimulus onset, and thus 

the largest BOLD signal changes may not co-localize with the actual sites of increased 

neural activity (Kim and Ogawa, 2012). Moreover, the spatial specificity of these responses 

is varied and some large signal changes can be induced by nonspecific processes such as 

draining veins, which negatively impact the accuracy of fMRI-derived activation maps 

(Turner, 2002).

Recently we compared the spatial accuracy of CBV- and BOLD-weighted functional images 

in the rat olfactory bulb (OB), and highlighted some of the limitations in using BOLD to 

perform fMRI experiments (Poplawsky et al., 2015). Given the highly laminar architecture 

in the OB, we were able to devise three unique stimuli to preferentially activate synapses in 

discrete layers of the circuit. Whereas the BOLD response was largest in the outer layers of 

the OB regardless of the stimulation (likely due to deoxyhemoglobin drainage to large 

surface vessels), the CBV response was well-localized to the expected layer in each case.

Given the importance of BOLD fMRI, in particular to human studies that cannot use 

contrast agents, there remains substantial motivation to improve the accuracy of the 

technique through the implementation of novel modeling strategies. In this work, we 

hypothesized that with the sufficient or appropriate context (e.g., distance from the surface, 

baseline T2* weighting, and baseline blood volume information), BOLD data can provide 

significantly improved spatial accuracy for reporting neural activity compared to a 

traditional parametric model approach. To this end, we used a supervised machine learning 

approach to develop a data-driven voxel-wise classifier using fMRI time-series data as the 

input features. We utilized data from the rat OB, where the circuit is well characterized, 

allowing for an accurate definition of expected neural activity to enable this supervised 

learning. This methodology allowed us to identify features that have significantly improved 

the spatial accuracy of fMRI activation maps.
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 2. Materials and Methods

Eight male Sprague Dawley rats (240-422 g) were used for this study. Complete 

methodological details on animal preparation and image acquisition have been previously 

described (Poplawsky et al., 2015).

 2.1. Olfactory bulb circuit and stimulation paradigms

The OB circuit and stimulation pathways are summarized in Figure 1. Axons from odor 

sensory neurons project through the olfactory nerve layer (ONL) and form excitatory 

synapses with the apical dendrites of mitral cells in the glomerular layer (GL). Mitral cell 

dendrites propagate through the external plexiform layer (EPL) and form dendro-dendritic 

synapses with the apical dendrites of granule cells, whose bodies are located in the granule 

cell layer (GCL). Finally, output from the mitral cell body layer (MCL) exits the bulb via the 

lateral olfactory tract (LOT). To preferentially activate different layers, odor stimulation and 

electrical stimulations of LOT and anterior commissure (AC) were performed during CBV-

weighted (CBVw) and BOLD fMRI. Odor stimulation preferentially evokes neural activity 

in the superficial GL, while LOT and AC electrical stimulations evoke activity in the middle 

EPL and deep GCL, respectively. Extracellular electrophysiological recordings across the 

depth of the bulb were used to confirm that the LOT and AC stimulating electrodes activated 

the EPL and GCL, respectively (Poplawsky et al., 2015).

 2.2. Animal preparation

All experiments were performed after obtaining IACUC approval. Briefly, all rats were 

induced with 5% and maintained with 2% isoflurane gas during surgery. First, tungsten 

stimulating electrodes were located to the left AC and right LOT. Then, the right femoral 

artery and vein were catheterized for physiological monitoring and administration of 5% 

dextrose, anesthetic and contrast agent, respectively. For hemodynamic measurements, 

isoflurane was discontinued and switched to alpha-chloralose (45 mg/kg i.v. induction, 

followed by a continuous 40 mg/kg/h i.v. maintenance). Rats were freely breathing and did 

not require intubation. Hemodynamic recording commenced more than one hour after the 

switch to alpha-chloralose. The mean arterial blood pressure (BP) and heart rate (HR) were 

monitored through the arterial line (MP150, BioPac Systems Inc., Goleta, CA). In addition, 

the rat rectal temperature was maintained at 37 ± 1°C using a warm water circulator and the 

respiratory rate (RR) was recorded with a pneumatic pillow sensor. A 0.9% saline and 5% 

dextrose supplemental fluid was administered intravenously at 1.0 mL/kg/h.

 2.3. Image acquisition

A home-built olfactometer gated by data acquisitions was used for odor stimulation 

(Poplawsky and Kim, 2014). Briefly, a flow of 0.95 L/min medical air and 0.05 L/min O2 

gases was switched between a flask containing 100% mineral oil or 5% amyl acetate in 

mineral oil. These two conditions were switched using solenoid pinch valves controlled by 

the MR acquisition computer. Each condition was delivered through prefilled, dedicated 

lines approximately 5-m long that converged at the rat snout for fast switching between 

conditions. A vacuum at the opposite end of the snout removed the odorant. For AC and 

LOT stimulations, a rectangular pulse train (-200 uA, 200 us pulse width, 40 Hz) was 
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delivered to the implanted monopolar stimulation electrode tips using an isolator (Isoflex, 

AMPI, Israel) equipped with an electrical pulse generator (Master 8, AMPI, Israel).

All MRI experiments were performed on a 9.4-T/31-cm MR system interfaced by a 

DirectDrive console (Agilent Tech, Santa Clara, CA) and an actively shielded gradient coil 

with a 40-G/cm peak gradient strength and 120-μs rise time (Magnex, UK). The head of the 

rat was fixed in a non-magnetic head restraint with a bite bar and ear plugs. A custom-built 

1-cm inner diameter surface coil was positioned dorsal to the olfactory bulb for radio-

frequency excitation and reception. Odor, LOT and AC stimulations were interleaved in a 

block design experiment (120-s off, 64-s on, 120-s off), and this paradigm was repeated for 6 

trials for each contrast. For CBVw fMRI, a 15-mg/kg bolus of Feraheme (ferumoxytol, 

AMAG Pharmaceuticals, MA) was injected following BOLD fMRI. fMRI data were 

acquired at 9.4 T with a compressed-sensing, gradient-recalled echo technique (Zong et al., 

2014), in order to minimize the effects of susceptibility compared to an echo planar imaging 

pulse sequence. Imaging parameters were TR = 125 ms, TE = 8 ms for CBVw and 18 ms for 

BOLD, 110 × 110 μm2 in-plane resolution, 500-μm slice thickness, reduction factor of 4, 

and temporal resolution = 2 s. Five slices with matching spatial location were evaluated for 

both CBVw and BOLD images.

 2.4. Region of interest definition

Regions-of-interest (ROIs) were manually drawn on high-resolution, T2-weighted 

anatomical images of individual rats and corresponded to the seven layers previously 

verified with histological staining methods (Poplawsky et al., 2015). Briefly, ROIs were 

drawn on the dorsal ∼2/3 of all five BOLD fMRI slices and the corresponding five CBV 

fMRI slices because the ventral ∼1/3 of slices had a diminished coil sensitivity that caused a 

less reliable layer identification. The surface ROI included the bulb surface, midline and any 

pial vessels identified as signal hypo-intensities, the GL and MCL were defined by the outer 

and inner bands of hypo-intense signal, respectively, and core by the inner-most hyper-

intense band, while the ONL, EPL, and GCL were identified by their spatial relationship to 

these bands.

 2.5. Image preprocessing

Reconstructed images were realigned, linearly detrended and the normalized difference of 

the fMRI series was calculated (baseline image numbers 1-60 and 148-152) using home-

written Matlab code (MathWorks, Natick, MA). Realignment was performed on a run-by-

run basis by co-registering the average fMRI image of each run to the average fMRI image 

of the first run using a rigid-body, three degree-of-freedom transformation (translations in x 

and y-axes, and rotation about the z-axis). The estimated motion parameters for each run 

were then applied to all of the corresponding fMRI time points. Individual trials were 

grouped according to their stimulation type and the corresponding time series were 

concatenated for subsequent analysis. Mean time courses by OB layer and for each 

combination of contrast and stimulation paradigm are shown in Supplementary Figure 1. 

The time courses show signal changes that are time-locked to stimulus delivery, without 

evidence of systematic artifacts that would contaminate the signal.
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 2.6. General linear model (GLM) activation maps

After image preprocessing, maps of percent change were calculated using a general linear 

model (GLM) in the test animals for both CBVw and BOLD images. Each voxel was then 

fitted by a model with two predictors: the stimulation paradigm convolved with the 

canonical hemodynamic response function (HRF) and a constant term. For BOLD data, the 

HRF was given by SPM8 using default parameters (http://www.fil.ion.ucl.ac.uk/spm/), while 

the HRF for the CBVw data was previously described and implemented with in-house 

software (Silva et al., 2007). Percent change maps were computed by taking the ratio of 

these two coefficients at each voxel and then converting to a percent change by subtracting 1 

and multiplying by 100.

 2.7. Learned model (LM) activation maps

The general design of the learned model is to extract features of a given voxel in order to 

classify it as either active or inactive (Figure 2A), while providing the model no explicit 

information about the stimulation. Due to the large number of observations and the large 

feature spaces tested, we used a logistic regression to model our data, which was regularized 

with a penalty on the L2-norm. The model and cost function are given by

where X is the predictor matrix, β are the model coefficients, n is the number of 

observations, y is the defined truth, and λ is the regularization factor. For the regularization 

term of the cost function, the constant term was not included. Each voxel accounted for up to 

three observations in the model (i.e., one observation for each stimulation paradigm), so the 

total number of observations (n) is approximately 2.5 times the number of voxels. The 

reason that not all voxels were included three times is that stimulation of the right LOT will 

only evoke a response in the right bulb, and so the left bulb was excluded for this 

stimulation. The defined truth was given as a binary array which was equal to 1 if that voxel 

was expected to be active given its laminar assignment and stimulation paradigm and 0 

otherwise. For separating active and inactive voxels, the tested features included summary 

time course data from the voxel of interest and its neighbors, the distance of the voxel from 

the surface (DFS), the baseline BOLD image (BOLD0), the baseline CBVw image (CBV0), 

the interaction of these latter features and the time course data, and finally physiological 

conditions (i.e., BP, HR and RR). To reduce the feature space, the summary time course data 

were computed by first averaging over the 6 trials and then by binning the data by a factor of 

4 in the time dimension to create an effective resolution of 8 s. Time courses were further 

normalized by dividing by the maximum absolute value in the time series. Then a given time 

course was summarized by the mean and standard deviation during the baseline period, 
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while the remaining time course was provided in full to the model for fitting. To compute 

DFS, we calculated the cumulative sum of an OB mask following erosion after each 

iteration. BOLD0 and CBV0 images were computed by taking the average image over the 

entire pre-stimulus time window. Taken together, these images provide the model with 

information about baseline T2* relaxation parameters and baseline blood volume. Two 

further steps were taken to provide the model more flexibility. First, we tested the 

interactions between DFS, BOLD0, CBV0 and the time course summary data, allowing the 

model to account for changes in the time course related to these features. Second, we 

included the square and the square root of the DFS, BOLD0 and CBV0 features in order to 

better model any nonlinearity, if present. Prior to model fitting, each feature was normalized 

to have a mean of zero and standard deviation of one.

A flow diagram of the fitting, cross-validation, and testing is shown in Figure 2B. Functional 

MRI data from three animals were used in the training set, then data from a fourth animal 

were used for the refinement and final selection of models, and data from four more animals 

were used for final model evaluation. This process was completed twice, once each for 

CBVw and BOLD fMRI data. Model features and regularization factors were varied and 

each candidate model was evaluated by computing recall in the cross validation animal. A 

voxel was considered active if the model reported a probability greater than 0.5. Then recall 

was computed as TP/(TP+FN) where TP is true positives and FN is false negatives. Model 

evaluation began with the simplest model (single voxel time course data), and at each 

iteration of testing, the added features were retained for future testing if recall in the cross 

validation data was improved. The set of all candidate models is described in Table 1. For 

each set of features, we also tested 11 regularization factors including 0 and 2n for n equal to 

1 through 10. The model that maximized recall was chosen for final evaluation in the test 

animals. To further evaluate this model we also computed precision, which is given by 

TP/(TP+FP) where FP are false positives.

Once the final models were selected for each image contrast, we estimated the relative 

contribution of the features to the measured recall and precision in the test data set. This 

estimation was performed by fitting a new set of models, where each model had a subset of 

features excluded. For example, to investigate the impact of DFS, a new model was 

computed excluding DFS, nonlinear transformations of those data, and interactions between 

these values and the time course data. A similar procedure was repeated for BOLD0, and 

CBV0, and physiological data.

 2.8. Statistical analyses

The resulting activation maps were evaluated in the test data set according to two criteria: 1. 

accuracy with respect to the expected site of activation; and 2. agreement between CBVw 

and BOLD activation maps. First, we computed the activation maps for all three stimuli, and 

summarized the laminar distribution of activation by computing the average image value in 

each OB layer and then normalizing by the maximum value. This calculation was performed 

separately for each animal in the test set, and then the mean across animals was computed. 

To test for accuracy in activation with respect to OB layer, we computed a Dice coefficient 

for each activation map comparing two binary maps: A) a map equal to 1 in the layer with 
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expected activity and 0 otherwise; and B) a map equal to 1 for the n largest image values 

where n is equal to the number of nonzero voxels in map A. The Dice coefficient is given by 

. This Dice coefficient was computed for the GLM and Learned Model (LM). To 

test for agreement between the CBVw and BOLD activation maps, we computed the spatial 

correlation between these maps for each stimulation paradigm. Finally, to test for accuracy 

in activation with respect to intralaminar glomerular organization, we computed the spatial 

correlation between CBVw and BOLD activation maps in the glomerular layer during odor 

stimulation. These correlations were tested for both GLM and LM activation maps. 

Differences between the GLM and LM maps were then tested with paired T-tests with 

P<0.05 considered significant. We report uncorrected p values since the uncorrected values 

are more conservative than false discovery rate corrected values.

For display, the set of 4 activation maps were averaged following normalization of all 

animals to the first using SPM8, using the anatomical images as the reference images. These 

mean images were then thresholded to display the n largest values in the activation map, 

where n was chosen to have the same number of nonzero voxels as the binary map of 

expected activity. Unthresholded mean activation maps are also included in the 

Supplementary material.

 3. Results

 3.1. Model selection

Precision and recall measured in the cross-validation set are summarized in Figure 3 with the 

selected models indicated by white circles. For the CBVw images, the best performance was 

obtained with Feature Set 14 (see Table 1 for full list of features in this set) and 

regularization factor λ=2. The recall in the test set was 0.202 ± 0.186 (mean ± standard 

deviation, n=4) and the precision was 0.398 ± 0.086. For the BOLD images, recall was 

maximized by Feature Set 12 (Table 1) and regularization factor λ=4. The recall in the test 

set was 0.186 ± 0.073 (mean ± standard deviation, n=4) and the precision was 0.410 

± 0.026. The relative contribution of these features to the observed recall and precision in the 

test set is summarized in Table 2, which displays the mean recall and precision across test 

animals normalized by the mean values provided by the full model. The largest reductions in 

performance occurred when leaving out features related to the baseline CBVw and BOLD 

images. In general, the performance of the CBVw model was more resistant to losing 

features compared to the BOLD model.

 3.2. Activation maps in the test set

As previously described, GLM analysis of CBVw images provides a fairly accurate set of 

activation maps where the measured activity is largely in the expected layers (Fig. 4, bottom-

left panel). When using the LM to map activity, the laminar specificity appears slightly 

improved, as particularly evidenced by improved separation between the laminar profiles 

seen in the bottom graph (Fig. 4, bottom-right panel). The difference between the GLM and 

LM activation maps is more pronounced in the BOLD images. The GLM activation maps 

indicate maximum activation in the superficial GL regardless of the stimulation paradigm 
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(Fig. 5, bottom-left panel). By comparison, the activation maps shown in the bottom-right 

panel of Figure 5 show increased laminar specificity, which is particularly evident during 

LOT and AC stimulations.

The spatial accuracy of these maps is summarized in Figure 6. In this graph, we computed 

the Dice coefficient between the ROI where activity was expected and a thresholded 

activation map. The threshold was chosen in each case so these two binary masks had the 

same number of nonzero voxels. This coefficient was computed for CBVw (Fig. 6A) and 

BOLD (Fig. 6B) data using both the GLM and LM approaches. The overlap was either 

statistically not different or significantly improved using the LM approach, particularly in 

deeper layers (*p<0.05, paired T-test).

 3.3. Comparison of CBVw and BOLD activation maps

Previously we reported that activation maps computed from CBVw and BOLD images are 

not in strong agreement in the OB (Poplawsky and Kim, 2014), decreasing confidence in the 

spatial accuracy of these maps. Here we made two comparisons between the CBVw and 

BOLD maps, using both the GLM and the LM, which are summarized in Figure 6. In Figure 

6C, we computed the Pearson correlation between CBVw and BOLD activation maps for 

each modeling method and each stimulation paradigm. In each case, the correlation between 

the maps improves when using the LM to compute activation. Finally, glomeruli within the 

GL have unique, concentration-dependent preferences for specific odors, and therefore a 

unique pattern of activity within the GL can be elicited both by different odorants (Johnson 

et al., 2002; Johnson et al., 1998), as well as different concentrations of those odorants 

(Rubin and Katz, 1999). Therefore, as the pattern of activity within the GL during odor 

stimulation is expected to be biologically relevant, we computed the Pearson correlation of 

the activation maps within this layer and under this condition. The result, shown in Figure 

6D, once again demonstrates improved agreement between the CBVw and BOLD activation 

maps when using the LM.

 4. Discussion

In this study, we used a supervised machine learning approach to design a model that 

provides fMRI activation maps with improved spatial accuracy with respect to the 

underlying neural activity in the rat olfactory bulb. Particularly when considering BOLD 

fMRI data, the activation maps produced by the learned model are fundamentally different 

than those produced by a common general linear model approach due to the flexibility 

afforded by the model's feature space. The results indicate that the investigated feature space 

can provide at least partial separation of active and inactive voxels in the rat OB, and also 

that the results are well-generalizable to data outside the training set. Interestingly, the 

learned models produced activation maps with improved agreement between CBVw and 

BOLD data, both across the entire activation map (Fig. 6C), and within the glomerular layer 

during odor stimulation compared to the GLM (Fig. 6D). These observations imply that the 

learned model inherently improved the spatial accuracy for not only inter-laminar BOLD 

responses, but also for intra-laminar responses, which were not overtly specified in the 

Murphy et al. Page 8

Neuroimage. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model. This point demonstrates the potential to apply a similar approach in cortical systems, 

where the goal is to accurately map the location of neural activity within the cortical plane.

The improvements in spatial accuracy afforded by the learned models were greater for 

BOLD data compared to CBVw data, and also for deeper layers of activity compared to 

more superficial layers. We think these trends are driven by the relative accuracy of the 

GLM activation maps, which performed better using CBVw data and for more superficial 

activity, in turn allowing less room for the learned models to improve the results. However, it 

may also be true that the learned models perform particularly well in regions with low 

baseline blood volume, particularly for BOLD data. In indirect support of this latter point, 

baseline BOLD and CBVw images were the largest contributors to sensitivity of the models 

(Table 2), with these baseline images providing the model with information about T2* 

relaxation and baseline blood volume. In contrast to the BOLD model, the CBVw learned 

model was more resistant to losing features. This result is expected given that the CBVw 

GLM activation maps agree well with the expected pattern of neural activity (Poplawsky et 

al., 2015). The accuracy of CBVw images is thought to arise from this contrast's 

insensitivity to certain nonspecific responses including draining veins, which likely do not 

dilate in response to neural activity (Kim et al., 2007; Lee et al., 2001), and large pial 

arteries, where the signal is diminished due to the susceptibility effects generated by the 

contrast agent (Kim et al., 2013). With these points in mind, one might speculate that in 

order to achieve improved agreement with the CBVw data, the BOLD learned model is 

detecting features that are also more sensitive to responses in these more specific, small 

vessels. Further experimental validation is necessary to test this hypothesis.

This type of application of machine learning to fMRI data is somewhat novel compared to 

other applications seen in the literature. Much of this previous work is focused on multi-

voxel pattern analysis (Norman et al., 2006). In this type of analysis each voxel in an fMRI 

image acts as a feature in a model that predicts, for example, whether that sample in time 

occurred during a stimulus or at rest (LaConte et al., 2005). This type of analysis has even 

been used to estimate an image that is shown to the participant while measuring neural 

activity via fMRI (Cox and Savoy, 2003; Nishimoto et al., 2011). These studies are 

impressive demonstrations of the depth of information that can be extracted from fMRI data. 

However, our work has a fundamentally different goal, which was to use the fMRI time 

series data in order to classify the probability that a given voxel was active. In this way, the 

learned model represents an early step toward improved circuit mapping using fMRI data. 

Previous work by Song et al. has investigated similarly structured models, where the features 

are extracted from each voxel's time course in order to classify it as active or inactive (Song 

et al., 2016; Song and Wyrwicz, 2009). The major difference between their work and ours is 

the nature of these features. Whereas previous literature has summarized the time course by 

computing features such as the cross correlation function between the time course data and 

stimulation paradigm, our work provides the model with more freedom by including the 

entire time course and its interaction with supplementary contextual information. While our 

approach is computationally more expensive, and thus limits the complexity of the model 

that can be fit in a reasonable time, this more general approach is necessary to achieve 

activation maps that are fundamentally different from those obtained by a traditional 

parametric model approach.
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As this work represents an early step toward the use of learned models to more accurately 

map neural activity from fMRI data, this study does have some limitations that will be the 

source of future investigations. A limitation related to the underlying data is that certain 

confounding factors, such as signal-to-noise ratio (SNR), may make it difficult to draw 

direct comparisons between the CBVw and BOLD data. However, we believe it is unlikely 

that differences in SNR can systematically bias our results. First, any SNR-related effects 

will be mitigated by our exclusion of the ventral 1/3 of the bulb. Second, as mentioned in our 

previous manuscript, SNR is lowest at the surface of the bulb and increases with laminar 

depth (Poplawsky et al., 2015). This trend in SNR opposes the trend in amplitude of the 

evoked signal change, where the largest signal changes are observed closer to the surface 

(especially true of BOLD). Finally, the main metric that this work is trying to address is the 

spatial accuracy of the functional maps. While we would expect a low SNR to impact the 

sensitivity of the activation maps, we would not expect it to systematically bias the location 

of the activation. The main limitation with respect to the model is its dependence on an 

assumed spatial pattern of activity. While a supervised approach may be well suited in the 

well-characterized olfactory bulb circuit, this type of approach is less suited for more 

complex cortical circuits and with stimuli/tasks that will elicit unknown patterns of activity. 

Also, the olfactory bulb represents a unique circuitry within the brain (Oswald and Urban, 

2012; Shepherd, 1972), making this type of approach more difficult to apply in cortical 

systems. Nonetheless, we believe this study represents an important demonstration of data-

driven models for improved spatial accuracy using fMRI data, particularly for images with 

BOLD contrast. In particular, this model may be immediately useful for studies in the rat 

OB. Furthermore, the feature space developed in this study should be also suitable or easily 

adapted to model activity in other brain systems. To train the model in other systems, the 

ground truth must simply be replaced, perhaps with electrophysiological measurements.

In conclusion, we used a supervised learning algorithm to develop a data-driven model in the 

rat OB to predict the probability a voxel was active based upon its fMRI time course data 

and supplementary MRI-based features (distance from the bulb surface, baseline BOLD 

intensity, and baseline CBV-weighted intensity). These models provided activation maps 

with spatial accuracy that was either improved or not significantly different from GLM-

based maps (Poplawsky et al., 2015), both for CBVw and BOLD data. The models also 

produced activation maps with improved agreement between CBVw and BOLD data, both 

across the entire image and within the glomerular layer during odor stimulation. Taken 

together, this study demonstrates the potential for data-driven models to produce improved 

activation maps for mapping neural activity as compared to the models predominantly used 

in the literature. Based on these results, several future directions merit further investigation, 

including the identification of features that can improve the model and a determination of 

how well similar models generalize to the rest of the brain.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We applied machine learning to compute activation maps in the rat olfactory 

bulb.

• Results from learned models were compared to results from general linear 

models.

• Spatial accuracy of activation maps was significantly improved with learned 

models.

• CBV and BOLD activation maps showed increased agreement using 

learned models.
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Figure 1. 
Schematic diagram of the olfactory bulb circuit and expected pattern of synaptic activity 

elicited by each stimulation paradigm. Odor stimulation first activates synapses in the 

glomerular layer (GL). Electrical stimulation of the lateral olfactory tract (LOT) stimulates 

primarily synapses in the external plexiform layer (EPL) via antidromic activation of 

dendro-dendritic synapses in that layer. Electrical stimulation of the anterior commissure 

(AC) primarily stimulates synapses in the granule cell layer (GCL) via orthodromic 

activation of the AC fibers.
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Figure 2. 
A. An illustration describing the construction of the predictor matrix. Each row contains the 

time course data and contextual information from one voxel, while the ground truth is a 

binary array equal to 1 if the voxel is expected to be active for a given layer assignment and 

stimulation paradigm or equal to 0 otherwise. B. Flow diagram outlining how the eight 

animals were used for training, cross-validation, and statistical testing.
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Figure 3. 
Summary of precision and recall for all tested models in the cross-validation data set. Each 

matrix displays the precision or recall for every candidate model, where the models were 

varied by altering the regularization and feature space. The optimum model was selected by 

maximizing recall, which is indicated by white circles in the matrices.
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Figure 4. 
Mean activation maps and line profiles (n=4 animals) calculated using CBVw test data and 

either a general linear model (GLM) or the learned model (LM). Top: Each row of images 

shows the mean activation maps for one of the three stimulation paradigms overlaid on the 

mean anatomical image, with the five slices arranged from anterior to posterior positions. 

The activation maps are thresholded such that the largest n values are shown, where n was 

chosen to have the same number of nonzero voxels as the number of voxels in the expected 

layer of activity. Unthresholded maps are shown in Supplemtary Figure 2. Dashed lines 

indicate the outer and inner boundaries of GL and the outer boundary of MCL. Bottom: 

Summary plot showing the mean percent change or probability active in each layer for each 

stimulation paradigm following normalization by the maximum value and then averaging 

across animals.
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Figure 5. 
Mean activation maps and line profiles (n=4 animals) calculated using BOLD test data and 

either a general linear model (GLM) or the learned model (LM). Top: Each row of images 

shows the mean activation maps for one of the three stimulation paradigms overlaid on the 

mean anatomical image, with the five slices arranged from anterior to posterior positions. 

The activation maps are thresholded such that the largest n values are shown, where n was 

chosen to have the same number of nonzero voxels as the number of voxels in the expected 

layer of activity. Unthresholded maps are shown in Supplemtary Figure 3. Dashed lines 

indicate the outer and inner boundaries of GL and the outer boundary of MCL. Bottom: 

Summary plot showing the mean percent change or probability active in each layer for each 

stimulation paradigm following normalization by the maximum value and then averaging 

across animals.
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Figure 6. 
On the left are Dice coefficients comparing maps of the expected layer of activity and the 

thresholded activation maps for each stimulation paradigm using the general linear model 

(GLM) and learned model (LM), both for CBVw data (A) and BOLD data (B). Graphs on 

the right summarize the agreement in activation maps between CBVw and BOLD data, 

using either the GLM or LM. Graph C shows the Pearson correlation between CBVw and 

BOLD activation maps using the entire image. Graph D shows the Pearson correlation 

between CBVw and BOLD activation maps only within the glomerular layer during the odor 

stimulation. All bars and error bars represent the mean ± standard deviation (n=4 rats). 

Differences between the GLM and LM were tested by a paired T-test (*p<0.05)
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Table 1

List of all candidate feature sets.

Number of Features

Feature set Features (not counting constant)

1 Time course 25

2 Feature set 1 (FS1) + time course of neighbors 225

3 FS2 + distance from surface (DFS) 226

4 FS3 + DFS*FS2 451

5 FS4 + DFS2 + DFS2*FS2 + DFS1/2 + DFS1/2*FS2 903

6 FS5 + BOLD0 904

7 FS6 + BOLD0*FS2 1129

8 FS7 + BOLD0
2 + BOLD0

2*FS2 + BOLD0
1/2 + BOLD0

1/2*FS2 1581

9 FS8 + CBV0 1582

10 FS9 + CBV0*FS2 1807

11 FS10 + CBV0
2 + CBV0

2*FS2 + CBV0
1/2 + CBV0

1/2*FS2 2259

12 FS11 + HR 2287

13 FS11 + BP 2287

14 FS11 + RR 2287

15 FS11 + HR + BP 2315

16 FS11 + HR + RR 2315

17 FS11 + BP + RR 2315
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Table 2

Summary of relative model performance while excluding specified portions of the feature set.

CBVw BOLD

Normalized recall Normalized precision Normalized recall Normalized precision

Full model 100.00% 100.00% 100.00% 100.00%

Leave out physiology 103.65% 93.31% 89.30% 100.74%

Leave out Distance To Surface 87.13% 96.33% 87.37% 90.39%

Leave out Baseline BOLD 93.10% 105.64% 89.59% 106.52%

Leave out Baseline CBV 88.37% 101.59% 69.28% 95.08%

Leave out Baseline BOLD and CBV 68.72% 107.08% 44.56% 100.11%

Time course only (voxel plus neighbors) 48.43% 105.89% 6.39% 63.55%
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