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Abstract

The question whether our brain pathways adhere to a geometric grid structure has been a popular 

topic of debate in the diffusion imaging and neuroscience society. Wedeen et al. (2012a b) 

proposed that the brain’s white matter is organized like parallel sheets of interwoven pathways. 

Catani et al. (2012) concluded that this grid pattern is most likely an artifact, resulting from 

methodological biases that cause the tractography pathways to cross in orthogonal angles. To date, 

ambiguities in the mathematical conditions for a sheet structure to exist (e.g. its relation to 

orthogonal angles) combined with the lack of extensive quantitative evidence have prevented wide 

acceptance of the hypothesis. In this work, we formalize the relevant terminology and recapitulate 

the condition for a sheet structure to exist. Note that this condition is not related to the presence or 

absence of orthogonal crossing fibers, and that sheet structure is defined formally as a surface 

formed by two sets of interwoven pathways intersecting at arbitrary angles within the surface. To 

quantify the existence of sheet structure, we present a novel framework to compute the sheet 

probability index (SPI), which reflects the presence of sheet structure in discrete orientation data 

(e.g. fiber peaks derived from diffusion MRI). With simulation experiments we investigate the 

effect of spatial resolution, curvature of the fiber pathways, and measurement noise on the ability 

to detect sheet structure. In real diffusion MRI data experiments we can identify various regions 

where the data supports sheet structure (high SPI values), but also areas where the data does not 

support sheet structure (low SPI values) or where no reliable conclusion can be drawn. Several 

areas with high SPI values were found to be consistent across subjects, across multiple data sets 

obtained with different scanners, resolutions, and degrees of diffusion weighting, and across 

various modeling techniques. Under the strong assumption that the diffusion MRI peaks reflect 

true axons, our results would therefore indicate that pathways do not form sheet structures at every 

crossing fiber region but instead at well-defined locations in the brain. With this framework, sheet 

structure location, extent, and orientation could potentially serve as new structural features of brain 
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tissue. The proposed method can be extended to quantify sheet structure in directional data 

obtained with techniques other than diffusion MRI, which is essential for further validation.

1. Introduction

A three-dimensional Manhattan street grid or the intricate streets of Victorian London, 

which configuration reflects our brain’s organization best? This debate added three Science 

publications to the list of diffusion MRI (dMRI) literature (Catani et al., 2012; Wedeen et al., 

2012a; Wedeen et al., 2012b). Wedeen et al. (2012b) analyzed adjacency and crossings 

between cerebral fiber pathways of the brain using dMRI and found that the pathways form 

a 3D grid structure. More specifically, the authors used diffusion spectrum imaging (DSI 

(Callaghan et al., 1990; Wedeen et al., 2005)), which infers information on the diffusion 

probability density function (PDF) by extensively sampling q-space in a Cartesian fashion, 

to reconstruct a so-called path neighborhood with tractography. This path neighborhood can 

be computed by tracking pathways from a small seed region, and subsequently computing 

the paths incident on these paths. It was found that the pathways in such a neighborhood 

cross nearly orthogonally in 2D grid- or sheet-like structures (similar to the “warp and weft 

of a fabric”) that are layered in 3D space “like pages of a book” (Wedeen et al., 2012a; 

Wedeen et al., 2012b). This sheet structure was consistently recognized across species and 

scales, and throughout the white matter.

Catani et al. (2012) suggested that the observed grid pattern is most likely an artifact, 

attributed to the limitations of DSI used in Wedeen et al. (2012b). The authors showed that 

diffusion orientation distribution functions (dODFs) as derived from the DSI-PDFs have 

inherently low angular resolution, and therefore have a limited ability to resolve crossing 

fibers with small angles. They concluded that this bias towards orthogonal angles negatively 

impacts the tractography results in Wedeen et al. (2012b) and inadvertently makes “the grid 

structure of interwoven sheets a very likely configuration” (Catani et al., 2012). By using 

another dMRI technique called spherical deconvolution (SD) (Dell’ Acqua et al., 2007; Dell’ 

Acqua et al., 2010; Tournier et al., 2007), which has a higher angular resolution through the 

direct reconstruction of the fiber ODF (fODF), they were able to show that non-orthogonal 

crossings represent a large percentage of the total crossings in white matter (> 88% in a 

group study of 10 subjects). In addition, Catani et al. noted that the results in Wedeen et al. 

(2012b) are mainly qualitative and that dMRI-based pathways cannot be equated to true 

axons.

Wedeen et al. (2012a) rebutted the technical concerns regarding DSI and claimed to find 

further support for the sheet-structure theory in classic degeneration studies. In addition, 

they agreed that non-orthogonal angle crossings do exist, and stated that Catani et al. did not 

address the main finding of their study: the existence of sheet structure. This structure “does 

not depend on fiber orthogonality or the absence thereof” and the authors stated that “there 

are no mechanisms known whereby technical limitations will create it as an artifact” 

(Wedeen et al., 2012a).

This debate has gained a lot of attention from the diffusion and neuroscience communities. 

While still considered controversial by many, the existence of sheet structure could have 
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significant impact on models of structural and functional brain connectivity, embryogenesis, 

and development. It could for example play an important role in axonal path-finding during 

embryogenesis by guiding growing fibers, thereby greatly reducing the complexity of such 

processes (Wedeen et al., 2012b). The prevalence and geometry of sheet structures in the 

brain can potentially also be a novel feature to characterize brain structure, complementing 

the wide range of existing microstructural and geometrical measures (e.g. (Assaf et al., 

2008; Astola et al., 2011; Dell’acqua et al., 2013; Fieremans et al., 2011; Leemans et al., 

2006; Raffelt et al., 2012; Savadjiev et al., 2012; Tax et al., 2012; Zhang et al., 2012)).

To date, however, there is no general consensus on the degree to which sheet structure is 

present in the brain. The lack of a clear exposition of the relevant mathematical concepts 

may have contributed to this ongoing debate. In particular, there still exist ambiguities 

regarding the exact definition of a sheet structure, the conditions for it to exist, and its 

relation to orthogonal angles. In addition, the evidence for the existence of sheet structure 

was mainly qualitative, and no extensive quantitative analysis was performed so far. In this 

work, we first formalize the terminology to clarify the definition of sheet structure as 

proposed by Wedeen et al. (2012b) and the condition for its existence; this is done in Section 

2. Subsequently, we propose a robust method to compute a sheet probability index (SPI), 

which indicates to what extent the data supports a sheet structure, in Section 3.1 and 3.2. An 

intuitive way to visualize the SPI throughout the brain is described in Section 3.3. We 

evaluate this method with simulations and real dMRI data sets as described in Sections 3.4 

and 4. Finally, we use the proposed method to investigate and discuss some of the claims 

made in Wedeen et al. (2012a b) and Catani et al. (2012) in Sections 4 and 5. Note that even 

though we use dMRI data here to investigate the existence of sheet structure, our approach 

can be extended to compute the SPI in other types of directional data such as polarized-light 

imaging data (Axer et al., 2001). Preliminary results of this work have been presented at the 

ISMRM (Tax et al., 2014a) and the BASP workshop (Tax et al., 2015).

2. Theory

In this Section, we present the theoretical background that is required to understand some of 

the key mathematical concepts in relation to the investigation of the brain’s sheet structure. 

In Section 2.1, we present a definition of sheet structure in terms of integral curves of vector 

fields, and in Section 2.2, we discuss the relevant measure used to assess the presence of this 

sheet structure, i.e. the Lie bracket. In Section 2.3, we explain the Frobenius theorem, which 

formalizes the necessary and sufficient condition for the sheet structure to exist. Note that 

we adopt a rather informal mathematical language and omit technical definitions and proofs 

to make the main concepts accessible to a broader audience. We refer to Appendix A for a 

list of symbols and Appendix B for a more formal summary.

2.1 Definition of sheet structure

Several definitions and interpretations of ‘sheets’ in the brain exist in the literature 

(Kindlmann et al., 2007; Schultz et al., 2010; Vilanova et al., 2004; Yushkevich et al., 2008; 

Zhang et al., 2003). Some major white matter tracts resemble a thin sheet-like structure by 

itself: well-known examples are the corona radiata and the corpus callosum. Such single-
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fiber-direction sheets have typically been represented by a sheet-like skeleton (Smith et al., 

2006) or a surface (Yushkevich et al., 2008). In contrast, crossing or intertwining-fiber sheets 
as proposed by Wedeen et al. (2012b) (hereafter shortened to sheets) are not segregated 

structures, but are composed of two tracts that cross each other on the same surface in 

certain regions along their trajectories. As a result, tubular-shaped tracts can in theory still 

form sheets at locations where they intersect with other structures. Here, we focus on the 

latter definition of sheet structure and on how such sheets can be detected in directional data 

where two structures cross.

Consider a set of vectors at each position of the brain M ⊂ ℝ3, which can for example be 

obtained from the dODF or fODF using any dMRI reconstruction technique. With 

streamline tractography one integrates a smooth three dimensional vector field V defined on 

a subset NV ⊂ M, generating streamlines (or integral curves) ΦV (s, p)1 (with s denoting arc 

length and p = ΦV (0, p) the initial spatial position), such that for all p ∈ NV the following 

integrability holds (Fig. 1a):

[1]

Here, Vp ∈ ℝ3 denotes the vector at position p. This idea of integrability can potentially be 

extended to two vector fields V and W: an integral surface S ⊂ NV ∩ NW called the sheet 
structure is defined as the surface S whose tangent plane at p is parallel to the plane spanned 

by Vp and Wp for all p ∈ S, see Fig. 1b. The requirements for such a surface to exist are 

formalized in the Frobenius theorem, which states that the vector fields V and W should 

interact in a ‘nice’ way according to their Lie bracket.

2.2 The Lie bracket

The Lie bracket, a mathematical concept from differential topology, is a bilinear operator on 

two vector fields V and W and defines a third vector field denoted by [V, W]. Intuitively, the 

Lie bracket at a given location p can be understood as the deviation from p when trying to 

move around in a small loop along the integral curves of V and W with p as the starting 

position (Fig. 2). Such a loop consists of four ‘legs’ (i.e., a quadrilateral) and starts at point p 

by following the integral curve 2 along V for some distance s. After arriving at point 

 (the end point of the first leg of the loop), one continues along the vector field W for 

the same distance s. From the resulting end point of this second leg , where ∘ is 

the symbol used to indicate the concatenation operation, one moves ‘backwards’, along the 

integral curves of −V and −W in order, again along each leg with the same distance s. The 

end point of this loop is then written as  or with the following 

shorthand notation

1Here we adopt the flow operator notation ΦV to represent the streamlines, which has advantages over traditional notation in the 
remaining Theory sections.

2For notational convenience, we use the flow operator  if we are considering streamlines of a fixed arc length s.
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[2]

In other words, αp is the curve that comprises the end points of all loops starting in the point 

p (see Fig. 2a for a schematic overview). For a specific value of s, the difference vector Rp 

(also called the closure) is then defined as

[3]

The formal definition of the Lie bracket (Misner et al., 1973; Spivak, 1979) in p, [V, W]p, 

follows from the Taylor expansion  (where αp(0) = 

p and , and where prime denotes differentiation with respect to s) and taking the 

limit

[4]

See Appendix B for details. At this point we remark that by choosing s sufficiently small, 

there is a linear relationship between the Lie bracket and the closure (we will use this 

relation in Section 3.1.3).

2.3 The Frobenius theorem

The requirement for a sheet structure to exist can be understood intuitively by following the 

line of thinking in the previous section, and is depicted in Fig. 2c and d. The Lie bracket was 

introduced as the local deviation from p after a small flow over V and W, and if these vector 

fields are tangent to a sheet in a neighborhood of p then the end point αp(s) of this flow must 

lie on the sheet structure as well (Fig. 2c). In the limit of smaller and smaller loop sizes this 

leads to the Frobenius theorem (Lang, 1995; Spivak, 1979), which tells us that two vector 

fields V and W form a sheet structure in a neighborhood of point p if and only if the Lie 

bracket [V, W]p lies in the plane spanned by Vp and Wp, cf. Fig. 2d. As a comparison, Fig. 

2b shows the case (corresponding to Fig. 2a) in which the vector fields V and W do not form 

a sheet structure.

In practice we can check this condition by examining the component of [V, W]p normal to 

Vp and Wp, the normal component of the Lie bracket (Wedeen et al., 2012b). We do this by 

computing the orthogonal projection of the vector [V, W]p onto the outer product Vp × Wp 

(normalized):

[5]
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The sheet structure S is then given by the set of all points p ∈ NV ∩ NW where . 

Note that this condition does not involve the presence of orthogonal angles.

3. Materials and methods

We can examine the existence of sheet structure by 1) estimating the integral curves and 

loops in Eq. [2], 2) estimating the Lie bracket based on Eq. [4], and 3) extracting the normal 

component of the estimated Lie bracket (Eq. [5]) as an indicator of sheet structure. Note that 

we can perform these computations for every pair of vector fields in a neighborhood. 

However, the definitions in Section 2 assume separate, continuous, and smooth unit vector 

fields, while our input data is a (possibly incomplete) set of unsorted vectors per discrete 

position, perturbed by noise and generally without consistent sign attributes (e.g. when 

derived from the dODF or fODF). These issues greatly challenge the actual computation of a 

Lie bracket.

In Section 3.1 we describe the approach to compute the discrete Lie bracket, inspired by the 

qualitative reconstruction of path neighborhoods in Wedeen et al., 2012a. Our method can 

deal with noisy vector fields and addresses the problem of sorting vectors in a neighborhood 

of a point p. In Section 3.2 we further address the issue of noise by deriving a sheet 
probability index (SPI) from multiple computations of the discrete Lie bracket of a pair of 

vector fields per point. In Section 3.3 we define the sheet tensor, which allows us to 

visualize the Lie bracket for every pair of vector fields. Finally, in Section 3.4 we describe 

the simulated and acquired MRI data used for the experiments.

3.1 The discrete Lie bracket

We propose here to calculate a discrete Lie bracket by approximating the integral curves in 

Eq. [2] with tractography (Tax et al., 2015; Tax et al., 2014a; Wedeen et al., 2014), and by 

computing a large number of loops with configurations as in Fig. 1a. The tractography 

process and averaging of multiple loop configurations implicitly and partially deals with 

noise in the Lie bracket computation.

Similar to conventional tractography, we have to make the assertion that each vector is an 

element of a smooth vector field. Whereas conventional tractography looks for the vector 

that aligns most with the incoming direction to propagate a tract, here we have to keep track 

of the whole frame of vectors (defined as all vectors at a point) during tracking to be able to 

switch between different vector fields in a loop. In Section 3.1.1 we describe the clustering 

of frames (the process of assigning vectors to specific vector fields), which takes care of 

both the sorting and of possible sign inconsistencies in the vector data. In Section 3.1.2 we 

outline the frame tractography that performs clustering during tract propagation. Finally, the 

estimation of the Lie bracket is discussed in Section 3.1.3.

3.1.1 Clustering of frames—The purpose of frame clustering is to assign each vector of 

a frame at a given position to a vector field (Fig. 3). To this end, the frame is compared to an 

already clustered frame (an ordered set of vectors) at a nearby position. The vectors of the 

non-clustered frame are matched (permuted) such that the total angle between pairs of 

vectors is minimized. The frame clustering algorithm can be found in Appendix C1.
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3.1.2 Frame tractography—Given a step size Δh and a discrete distance h (assuming arc 

length parameterization), we can approximate the flow along a vector field X ∈ {U, V, …} 

with streamline tractography (Mori and van Zijl, 2002). The algorithm explained in 

Appendix C2 is similar to other deterministic tractography algorithms, but keeps track of the 

vector fields defined in the neighborhood. Note that we use nearest neighbor interpolation 

unless stated otherwise. From here on, approximations are marked by a circumflex, i.e., 

denotes the approximate flow along X for a distance h, corresponding to the true flow .

3.1.3 The closure and the Lie bracket—To calculate the discrete Lie bracket we 

reconstruct approximate flow loops, which can be used to obtain estimates R̂
p of the 

difference vectors Rp. In practice, we will compute difference vectors for a large number of 

loops with several configurations (i.e., variations on Eq. [2], see Appendix B). More 

concretely, given a point p we will consider the set of difference vector estimates {R̂
1, R̂

2, 

R ̂
3} resulting from the following loop configurations (Fig. 4):

[6]

Here, h1 and h2 are the flow distances along the integral curves of V and W, respectively. We 

choose h1, h2 ∈ {−hmax, −hmax + Δh, −hmax + 2Δh, …, −Δh, Δh, …, hmax}, where hmax is 

the maximum distance (a parameter in our algorithm). Note that we thus sample all four 

‘quadrants’ surrounding point p. The reconstruction of a loop for computation of the 

difference vector estimate R̂
1 in Eq. [2] (the other difference vectors are computed in a 

similar manner) is described by the algorithm outlined in Appendix C3.

When all difference vectors are estimated, we can compute an estimate of the Lie bracket 

 with a simple linear least squares fit corresponding to Eq. [4]

[7]

Here, R is a K × 3 matrix with the difference vectors R̂, H is a K × 1 matrix with the 

products of the used h1 and h2 for the corresponding difference vector, β is a 1 × 3 matrix 

with the Lie bracket components , and ε is a K × 3 matrix with errors, where K is the 

total number of difference vectors. The errors ε are assumed to be normally distributed. The 

normal component of the estimated Lie bracket follows from Eq. [5]. In practice, we only 

compute  when the number of successfully estimated loops and corresponding 

difference vectors exceeds a minimum threshold.
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3.2 Sheet probability index

The algorithm described in Section 3.1 allows us to compute estimates of the Lie bracket 

normal component  for every combination of vectors at every position in the brain, and 

according to the Frobenius theorem (Section 2.3) a combination of vector fields supports the 

sheet conjecture if . Due to the occurrence of noise, however, the sheet-constraint is 

rarely exactly fulfilled, and a single estimate does not provide information on its variability. 

This makes it difficult to quantify to what degree the local structure effectively resembles a 

sheet.

Ideally, repeated MRI acquisitions could be used to approximate the variance of the 

estimated Lie bracket normal component. By assuming a normal distribution (in practice 

verified using a Shapiro-Wilks test) with data-derived mean μ and standard deviation σ, we 

can calculate the integral probability Pλ inside the region [−λ, λ] (where we can tune the 

parameter λ) for the estimated distribution N(μ, σ2). Pλ produces a value that lies between 0 

and 1 which we coin the sheet probability index (SPI) of the local sheet structure. Choosing 

a higher value for λ means the SPI is less sensitive to small deviations from zero. In practice 

it is often difficult to acquire a large number of repeated dMRI sets, so we consider residual 

bootstraps as an alternative (see Section 3.4.2.3).

The introduction of the SPI does not only address the issue of noise, but it also makes the 

interpretation of the Lie bracket normal component much more intuitive. A high value for 

the SPI corresponds to a high likelihood of sheet structure (  is likely close to 0), while 

a low value indicates that there are significant deviations from sheet structure (  likely 

differs significantly from 0).

3.3 Sheet tensors

Investigation of consistent sheet structures in a spatial neighborhood asks for an appropriate 

way to visualize the SPI throughout the brain. The SPI can be computed for every pair of 

vector fields, i.e., n vector fields generate  SPI’s. In this work we propose to visualize 

the local sheet structure throughout the brain by means of a sheet tensor. Given a pair of 

vector fields V and W, the sheet tensor at location p is defined as

[8]

Here β1 denotes the largest eigenvalue of the tensor ( ) and ⊗ denotes tensor 

product. The sheet tensor can then be represented by an ellipsoid whose third eigenvector is 

normal to the span of V and W, and which defines the color of the ellipsoid in the well-

known RGB scheme (normal in left-right direction gives a red tensor, normal in inferior-

superior direction gives a blue tensor, and normal in anterior-posterior direction gives a 

green tensor) (Zhang et al., 2006b). Furthermore, the size of the ellipsoid is determined by 
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the SPI, where a larger SPI gives larger ellipsoids, and the division by β1 fixes the largest 

semi-axis of the ellipsoid for a given SPI. The shape represents the angle between V and W. 

Fig. 5 shows sheet tensors for different angles and different SPI. The sheet tensor allows us 

to visualize the SPI for every pair of vector fields at a given location, and can thus also 

reveal crossing sheets.

3.4 Data

We will evaluate our framework with different types of data: analytical vector fields, dMRI 

simulations, and real dMRI data. These test data sets increase in degree of complexity, 

allowing us to investigate different aspects of the implemented methodology.

3.4.1 Analytical vector field simulations—We define three vector fields that are 

tangent to a sphere with radius ρ (U and V are tangent to the upper hemisphere, W is tangent 

to the lower hemisphere, see Fig. 6a):

[9]

Here  and  (with i = 1,2), and x = (x1, x2, x3) denotes 

Cartesian coordinates. The integral curves of these vector fields have constant curvature κ = 

1/ρ.

Vector fields U and V form a sheet, so that 

. U and W generally do not form a sheet, 

and the normal component of the Lie bracket [U, W]p at p ∈ {x ∈ ℝ3|(x1)2 + (x2)2 < ρ2, x1 ≠ 

0, x2 ≠ 0} is given by

[10]

A plot of  as a function of x1 and ρ is shown in Fig. 6b, where we take x2 = −x1 so 

that  is generally larger than zero. By evaluating Lie bracket estimates along these 

lines x2 = −x1 for fixed curvature κ, we can evaluate the performance of the algorithm as a 

function of the magnitude of the Lie bracket normal component. By varying ρ we can 

similarly evaluate our Lie bracket estimates as a function of the curvature of the integral 

curves. Note that these combinations of vector fields generally cross in non-orthogonal 

angles.

The vector fields are discretized by sampling them on a Cartesian grid with period δ 
(corresponding to the voxel size). We add noise to the discrete vector fields (Nn noise 
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iterations) by drawing random samples of a Watson distribution (Chen et al., 2015; Mardia 

and Jupp, 2009) with probability density function

[11]

Here,  is the Kummer function (Mardia and Jupp, 2009), Ṽq denotes the 

perturbed vector at location q, and k > 0 is a concentration parameter (here referred to as the 

‘SNR level’, higher k results in lower perturbation).

3.4.2 Diffusion MRI data

3.4.2.1 Simulations: dMRI signals were simulated using a ZeppelinStickDot model (Ferizi 

et al., 2014) with the fiber direction defined by the noise free vector fields described in the 

previous section. Nn noise iterations were generated using the Rician distribution. We 

simulate two types of datasets: single shell datasets with 90 directions and b = 3000 s/mm2 

suitable for SD, and Cartesian sampled datasets with 514 directions (maximum b-value of 

10000 s/mm2) and one b = 0 s/mm2 point suitable for DSI (protocol corresponds to the 

MGH HCP DSI data, see section 3.4.2.2).

3.4.2.2 Real data: We use different dMRI data sets with varying spatial and angular 

resolutions, diffusion weightings, and sampling schemes to investigate our framework: 1) the 

b = 3000 s/mm2 shell with 90 diffusion directions of three subjects of the WU-Minn Human 

Connectome Project (HCP) with an isotropic voxel size of 1.25 mm (Glasser et al., 2013; 

Sotiropoulos et al., 2013; Van Essen et al., 2013); 2) the b = 3000 s/mm2 shell with 500 

diffusion directions of the MASSIVE database with an isotropic voxel size of 2.5 mm 
(Froeling et al., 2016); 3) the separate shells (b = {1000, 3000, 5000, 10000} s/mm2 with 

{64, 64, 128, 256} directions) of one subject of the MGH HCP with an isotropic voxel size 

of 1.5 mm (Setsompop et al., 2013); and 4) a Cartesian sampled data set (514 directions) 

with b-values up to 10000 s/mm2 of the MGH-USC HCP with an isotropic voxel size of 2 

mm (http://www.humanconnectomeproject.org/data/inventory/).

3.4.2.3 Processing: Data sampled on a single shell was processed using constrained 

spherical deconvolution (CSD, lmax = 8) (Tournier et al., 2007) in ExploreDTI (Leemans et 

al., 2009). The response function for the simulated data was generated from the 

ZeppelinStickDot model, and the response function for real data was computed using 

recursive calibration (Tax et al., 2014b). Peaks were extracted using a Newton optimization 

algorithm (Jeurissen et al., 2011) with an fODF peak threshold of 0.1, and a maximum 

number of 3 peaks. To compute the SPI, we used the Nn noise iterations for simulated data, 

and generated Nb residual bootstrap realizations for simulated and real dMRI data from a 

single set of noisy measurements (Jeurissen et al., 2013). The peaks extracted from the 

different bootstrap realizations were clustered using the method described in Section 3.1.1, 

taking the peaks extracted from the original data as reference frames.
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Cartesian sampled data was analyzed using the DSI model (Wedeen et al., 2005), which was 

reconstructed with Diffusion ToolKit (DTK) using default settings (Wang et al., 2007). The 

algorithm readily provides a set of peaks at each position, obtained from the local maxima of 

a roughly uniform sampling (181 points) of a hemisphere, from which we take at most 3 

vectors per position based on the dODF magnitude. No bootstrapping could be performed, 

so in this case only one Lie bracket was computed for every pair of vector fields.

4. Results

The results for analytical vector field simulations are presented in Section 4.1, for dMRI 

simulations in Section 4.2, and for real dMRI data in Section 4.3.

4.1 Analytical vector field simulations

With the analytical vector fields we will systematically investigate different aspects of the 

Lie bracket implementation: the influence of discretization (the finite voxel size δ), the noise 

(different settings of the concentration parameter k), the curvature κ (by varying ρ), and the 

Lie bracket magnitude. We use nearest-neighbor interpolation of the vector fields and Nn = 

50 noise iterations here.

4.1.1 The influence of spatial resolution and noise—Fig. 7 shows results for 

different voxel sizes δ = {0.5, 1, 2} mm (a–c), different settings for hmax (rows) and different 

SNR levels k (the concentration parameter in Eq. [11], higher k indicates lower 

perturbation). Here we consider a relatively simple case: since we know which vector 

belongs to which vector field, we skip the clustering step and show results that are not 

affected by clustering errors. We set the curvature κ = 1/ρ = 1/26 mm−1 and estimate the 

normal component of the Lie bracket at p = (10, −10,0) to have a Lie bracket magnitude 

significantly deviating from zero for the given radius ρ.

Each plot shows the mean and range of the estimates  in the case of sheet (green, 

) and non-sheet (red, ). The range becomes smaller 

with higher k (the noiseless case k = ∞ is also plotted) in all cases. The precision of the 

estimates increases with increasing hmax (smaller error bars), and the accuracy increases for 

hmax = 3 voxels compared to hmax = 1 voxel, but remains similar when further increasing to 

hmax = 5 voxels. We can see that hmax = 1 voxel is generally too low to obtain a reasonable 

accuracy and precision, and to distinguish sheet from non-sheet. The precision is similar for 

approximately the same hmax in mm (see for example the approximately equal error bars in 

the cases hmax = 3 voxels, δ = 1 mm and hmax = 5 voxels, δ = 0.5 mm).

4.1.2 The influence of the Lie bracket normal component magnitude—Fig. 8a 

shows the mean and range of the estimates  for different points p = (x1, −x1, 0), where 

the Lie bracket normal component magnitude  (non-sheet) varies while the curvature 

remains constant at κ = 1/26 mm−1.  (sheet) is evaluated at the same points for 

reference. We set k = 350, δ = 1 mm, and hmax = 5 voxels. Here and in further analyses, we 
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apply clustering of the vector fields as described in Section 3.1.1 (using the known vector 

fields as prior information gave similar results, not shown here).

The estimates  correspond very well to the true  for all p in both the sheet and 

non-sheet case. The range of the estimates remains relatively constant for all cases. The 

sheet-case can be distinguished from the non-sheet-case for .

4.1.3 The influence of curvature—Fig. 8b shows the mean and range of the estimates 

 for different curvatures κ−1 = [8, 13, 18, 23, 28, 33], where we keep the Lie bracket 

normal component magnitude  (non-sheet) constant by evaluating at different points 

p = (x1, −x1, 0) (obtained by solving Eq. [10]).  (sheet) is evaluated at the same 

points for reference. We set k = 350, δ = 1 mm, and hmax = 5 voxels.

The accuracy and precision of the estimates do not seem to depend heavily on the curvature 

at the considered SNR level and scale, since both the mean and range of the estimates 

remain relatively constant. We evaluated radii as small as 8 mm, which starts to approximate 

cortical folding radii. We note here that to detect even smaller radii, a smaller voxel size is 

required in order to have enough neighborhood information to probe the structure.

4.2 Diffusion MRI simulations

With the diffusion MRI simulations we will investigate more realistic noise scenarios (i.e. 

we can simulate realistic noise on the actual dMRI images instead of perturbing vectors), the 

influence of the interpolation technique (nearest neighbor vs fODF interpolation), and the 

influence of dMRI reconstruction technique (CSD vs DSI). In addition, we will explore the 

effect of using bootstraps instead of real noise iterations for the calculation of the sheet 

probability index. We use Nn = Nb = 50 noise iterations/bootstrap realizations here.

4.2.1 The influence of noise and interpolation—Here, we extract fODFs and peak 

directions using CSD from the single shell simulated data. Fig. 9a shows the mean and range 

of the normal component of the Lie bracket for different settings of hmax (rows) and 

different SNR. We set the curvature κ = 1/ρ = 1/26 mm−1, voxel size δ = 1 mm, and evaluate 

 at p = (10, −10,0). We use nearest-neighbor interpolation here, supplemental Fig. S1 

shows the same results with linear interpolation on the fODF spherical harmonic 

coefficients.

Similar to the vector field simulations in Fig. 7, the range of the estimates becomes smaller 

with higher SNR (the noiseless case is also plotted) and the precision increases with 

increasing hmax. Nearest neighbor interpolation and fODF interpolation give similar results 

in terms of both the accuracy and precision of the estimates for higher SNR (≥ 20). We 

hypothesize that a large number of loops reduces the influence of error propagation along a 

tract, and ‘smooth out’ some interpolation errors. For an SNR of 10, however, we found that 

1 or 2 outliers cause the large range in Fig. 9a at hmax = 3 voxels. This does not occur when 

using fODF interpolation (Fig. S1), but the mean of the estimates still corresponds very well 
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to the true value in both cases. For the sake of computational time and cost we use nearest 

neighbor interpolation in the following.

4.2.2 The influence of dMRI technique: CSD vs DSI—In Fig. 9b, we extracted 

diffusion ODFs and peak directions using DSI from the Cartesian sampled simulated data. It 

shows the mean and range of  for different settings of hmax (rows) and different SNR. 

We set the curvature κ = 1/ρ = 1/26 mm−1, voxel size δ = 1 mm, and evaluate  at p = 

(10, −10,0).

The mean of the estimates with DSI is in good agreement with the true values. For SNR > 

10, the Lie bracket estimates from CSD are more precise than the estimates resulting from 

DSI (smaller error bars, most obvious at hmax = 3 voxels), even though the simulated CSD 

datasets have over five times fewer measurements (90 vs 514) and a lower diffusion 

weighting (maximum b = 3000 s/mm2 compared to b = 10000 s/mm2).

4.2.3 Sheet probability index—Here, we used the peak directions resulting from CSD 

on the single shell simulated data. Fig. 10 shows the mean and range of the estimates 

and the SPI Pλ for different points p = (x1, −x1, 0) to vary the Lie bracket normal component 

magnitude .  is evaluated at the same points for reference. We set SNR = 20, 

δ = 1 mm, κ = 1/26 mm−1 and hmax = 5 voxels.

The estimates  reflect the true  well for all x1 in both the sheet- and the non-sheet 

case for the noise iterations. At x1 = 11 the paths start to come in the vicinity of the vector 

field edge where the vector fields of the non-sheet pair make angles much smaller than the 

resolving power of CSD, this has a stronger effect on the bootstraps than on the noise 

iterations (hence the deviation). Overall the bootstraps prove good alternatives to real noise 

iterations. Pλ decreases in the non-sheet case when the true  deviates more from zero.

4.3 Diffusion MRI real data

In this section we present SPI and sheet tensor maps for real diffusion MRI data (we use Nb 

= 20 bootstrap realizations if not mentioned otherwise). In Section 4.3.1 we explain the 

interpretation of these maps and their relation to the Lie bracket by means of an example 

data set, and in Section 4.3.2 we investigate inter-subject variability. In the remaining 

Sections 4.3.3, 4.3.4, and 4.3.5, we consider the influence spatial resolution, diffusion 

weighting, and dMRI technique, respectively.

4.3.1 Sheet probability index—Fig. 11a (left) shows Lie bracket normal component 

estimates of the two largest fODF peaks in a single slice of a WU-Minn HCP dataset. An FA 

color map of the same slice is shown for reference in Fig. 11b. Dark blue areas indicate 

, red areas , and light blue/green/yellow areas  close to zero. The 

order of magnitude of  is in agreement with our simulations. Three areas are 

highlighted with arrows. The areas indicated by the red and green arrow look spatially 

continuous, whereas the area indicated by the blue arrow looks noisy. The two largest fODF 
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peaks (used to create this image) in neighboring voxels do not necessarily belong to the 

same vector fields, we therefore have to consider the Lie bracket normal component for 

every pair of vector fields in each voxel. This further clarifies our motivation to use sheet 

tensors for visualization in the following since multiple sheet tensors can be visualized in 

each voxel. Histograms of the normal component for the bootstraps at these locations are 

shown in Fig. 11a on the right: high SPI (red arrow,  concentrated around zero), 

‘medium’ SPI (blue arrow,  spread), and low SPI (green arrow,  concentrated but 

not around zero). The histograms illustrate that the normality assumption used to calculate 

the SPI is reasonable. Figs. 11c and d show SPI maps for the largest fODF peaks.

Fig. 12a shows for one HCP subject sheet tensors on different coronal (top), sagittal 

(middle), and axial (bottom) slices. Here, hmax = 5 voxels is used, and sheet tensors with Pλ 
< 0.2 are not shown. When navigating through the brain slice-by-slice, these high-sheet 

probability areas seem to form continuous structures throughout the brain (see 

Supplementary Video S2). Fig. S3 shows similar results for hmax = 3, where we can 

recognize the same sheet areas (sometimes slightly less pronounced). Two high-SPI areas 

(green rectangle on coronal slice and red rectangle on sagittal slice) are detailed in Figs. 12b 

and c. The streamlines shown are a subset of the paths reconstructed to compute the Lie 

bracket in a voxel in the center of the high-SPI area (the paths  and 

, to be specific). Fig. 12b shows a sheet formed by the corpus callosum (CC) 

and the corticospinal tract (CST) in the left hemisphere (see also Supplementary Video S4). 

In addition, the white arrow highlights an area in which crossing sheets are found. Fig. 12c 

shows a more medial and sagittally oriented sheet structure, formed by parts of the CC/CST 

and anterior-posterior oriented association fibers. Details of a low SPI area (cyan rectangle 

on axial slice in Fig. 12a) are shown in Fig. 12d. This case highlights an important potential 

pitfall when using only visual and qualitative analysis to investigate sheet structures: Even 

though this structure much looks like a sheet from a superior point of view, it is clearly not a 

sheet from a lateral and posterior point of view (the fibers ‘diverge’ from each other and are 

not located on a surface, as can be seen in the views (1) and (2)). Our quantitative method 

indeed finds a low SPI in this area. Several high SPI areas in the brainstem could also be 

recognized, e.g. on the fourth coronal slice from the left in Fig. 12a.

4.3.2 Inter-subject variability—Fig. 13 shows results for 3 HCP subjects (first three 

rows, hmax = 5 voxels = 6.25 mm) and the MASSIVE dataset (last row, hmax = 2.5 voxels = 

6.25 mm). For each subject, corresponding coronal, sagittal, and axial slices are shown in 

the different columns (two different slices per viewpoint). The arrows highlight examples of 

high-SPI areas that visually appear consistent across subjects.

4.3.3 The effect of spatial resolution—Fig. 13 compares the MASSIVE dataset (2.5 

mm isotropic voxels) with the HCP datasets (1.25 mm isotropic voxels), where we kept the 

maximum distance hmax constant at 6.25 mm. In the MASSIVE dataset the same high-SPI 

areas can be recognized as in the HCP data.
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Supplementary Fig. S5 shows results for the same subject as in Fig. 12 (voxel size 1.25 mm, 

hmax = 5 voxels = 6.25 mm) and Fig. S3 (voxel size 1.25 mm, hmax = 3 voxels = 3.75 mm), 

but now we downsampled the data spatially (voxel size 2.5 mm, hmax = 2.5 voxels = 6.25 

mm). The same sheet structures can still be recognized, but some finer scale structures get 

lost.

4.3.4 The effect of diffusion weighting—Fig. 14 shows maps of the SPI for different 

diffusion weightings (b = {1000, 3000, 5000, 10000} s/mm2) of the MGH HCP data set, 

where we use CSD to extract the fODF peaks for every shell separately (hmax = 5 voxels). At 

b = 1000 s/mm2 the SPI was significantly lower, which is the direct consequence of the 

decreased ability to resolve crossing fibers. b = 10000 s/mm2 results in the most extensive 

high-SPI areas, although most of these regions could already be recognized at a b-value of 

3000 s/mm2.

4.3.5 The effect of dMRI technique: CSD vs DSI—Fig. 15a shows results of a single 

Lie bracket computation in tissue on the MGH DSI dataset (hmax = 3 voxels = 6 mm). Here, 

we visualize a tensor if  (all tensors have the same size), and we color the 

voxel red if the minimum  in that voxel is larger than 0.025 (which would indicate that 

there is likely no sheet structure locally, see e.g. Fig. 10). The arrows indicate high-SPI areas 

that could also be identified in the previous experiments. Many high  estimates are 

found in the gray matter, but the rectangles indicate example areas in the white matter where 

most likely no sheet exists. The paths in these areas are visualized in Figs. 15b and c.

5. Discussion

The hypothesis that brain pathways cross nearly orthogonally forming two-dimensional 

sheet-like structures is an active topic of debate (Catani et al., 2012; Wedeen et al., 2012a; 

Wedeen et al., 2012b). To date, there is no consensus on the large-scale existence of sheet 

structure, partly because the conditions for sheet structure are unclear (e.g., whether or not it 

depends on orthogonal angles), and, more importantly, because extensive quantitative proof 

is still lacking. In this work, we have focused on the definition of sheet structure defined as a 

surface formed by interwoven pathways, which does not depend on the angle of crossing 

fibers (see also Fig. S6 for a plot of the angle against the SPI). We have recapitulated the 

Frobenius theorem and investigated the discrete Lie bracket as a quantitative indicator of 

sheet structure. We performed extensive validation of the resulting algorithm by quantifying 

the effects of different settings and parameters. Finally we presented an investigation into the 

extent of sheet structure presence in the human brain for different spatial resolutions, dMRI 

models, and other acquisition parameters.

5.1 Sheet or no sheet? Consistency with previous work

The first question that comes to mind is whether we can now prove or disprove the 

ubiquitous existence of sheet structure in the brain. Our simple simulations show that the 

discrete Lie bracket can distinguish between vector fields that do and do not form a sheet 

structure (Figs. 7 and 8). Also in the case of vector fields derived from diffusion MRI 
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simulations, the method is able to correctly identify data representing a sheet structure (Figs. 

9 and 10). We found that the performance was dependent on factors such as noise, voxel 

size, curvature, true Lie bracket normal component magnitude, and the chosen dMRI 

technique, which we discuss in the following sections. To be able to extend the findings 

from our simulations to the brain, however, we need to make the strong assumption that the 

vectors (or ODF peak directions) represent true underlying fiber directions, and that 

tractography correctly reconstructs true underlying bundles. Although these assumptions are 

often considered to be more or less valid in many connectivity studies, it is well-known that 

tractography is subject to many limitations and challenges (Jones, 2010), also a concern 

raised by Catani et al. (2012).

Based on our results from real dMRI data (Figs. 10 – 15), we can only state that the data 
supports the existence of sheet structures at several locations in the brain at the investigated 
scales, with the SPI indicating the likelihood. Tractography pathways at locations with high 

SPI values were visually confirmed to form a sheet by reconstructing the path neighborhood 

as in Wedeen et al. (2012b) (Fig. 12bc). Relying only on visual inspection of (layers of) 

pathways, however, holds an important pitfall: where paths seem to form a sheet from a 

particular point of view (since a grid pattern is easy to recognize by the human eye), they 

may not be an actual sheet, which becomes more apparent when the view is rotated (Fig. 12d 

and 15bc). This discrepancy clearly shows the added value of quantitative analysis in the 

investigation of such structures in the brain. Whereas Wedeen et al. (2012a b) state that “no 

brain pathways were observed without sheet structure”, our results indicate that this is not 

the case: crossing fiber regions with very low SPI could be identified at this scale (Figs. 10–

15). At some locations no reliable conclusion can be drawn on the existence of sheet 

structure for various reasons (e.g. only one fiber population could be reconstructed, the 

normality condition of the different bootstraps was not fulfilled, or the SPI was not clearly 

‘high’ or ‘low’ (Fig. 11c) e.g. due to a high standard deviation in the Lie bracket normal 

component estimates).

Certain areas with high SPI values were found to be qualitatively consistent across subjects 

(Fig. 13), indicating that our framework provides reproducible results. In agreement with 

Wedeen et al. (2012a b), we found high SPI values in crossing regions of the corpus 

callosum with the cingulum (see supplementary video S2) and SLF 1–3 (e.g. Fig. 12c), and 

observed the continuous (grid) character of these major longitudinal pathways (as opposed 

to them being clearly distinct). We also found high SPI values in crossing regions of the 

corpus callosum and the corticospinal tract (Fig. 12b). The existence of this sheet structure 

has been much debated, and here we find that the data supports sheet structure at the 

location where these pathways cross (Wedeen et al., 2012a) with non-orthogonal angles 

(Catani et al., 2012). However, we did not find a high SPI at crossings between callosal 

pathways and the fornix due to a high standard deviation of the Lie bracket normal 

component estimates. We could therefore not draw a reliable conclusion whether or not the 

data supports sheet structure at this location. Further extensive localization of sheet 

structures and investigation of the involved pathways is subject to future work.

Is the sheet structure something that can be trivially found in the brain, or is it a ‘special’ 

configuration? “Wedeen et al. (2015a) remarked that the sheet structure “is mathematically 
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specific and highly atypical, having prior probability ≈ 0”, and that “there are no 

mechanisms known whereby technical limitations will create it as an artifact”. Indeed, most 

configurations of vector fields do not form a sheet structure, and in this sense the sheet 

structure is thus special. On the other hand, one configuration in which two thicker bundles 

trivially form sheets is when they are both straight. Even though this may approximately 

occur in some regions (e.g. in the cingulum/corpus callosum), tracts exhibit a significant 

curvature at the scale we have investigated, and the results we have obtained also show high 

SPI in regions with high curvature in the streamlines of both vector fields (e.g. Fig. 12b). At 

this point, we cannot ascribe this phenomenon to a more straightforward alternative 

geometry.

We did not further investigate the issue of pathways making sharp turns (Wedeen et al., 

2012a), which we consider a separate topic; it cannot easily be addressed by current 

tractography algorithms or by the frame tractography used here because of necessary 

smoothness constraints.

5.2 The issue of scale

The discrete Lie bracket, and thus the derived SPI and sheet tensor maps, are locally defined 

in terms of the surrounding structure. The term ‘local’ here implies that spatial scale is an 

important factor in the method. The flow distance hmax (that determines the extent to which 

the neighborhood is taken into account), the voxel size δ, and the curvature of the 

streamlines affect the performance of the algorithm in different but related ways.

In Fig. 7 we show that for a fixed voxel size and fixed curvature, an increase in hmax 

improves the accuracy and precision of the method. This is likely a result of the 

corresponding increase of the number of data points in the least squares fit (Eq. [7], where K 
is determined by hmax and the fixed step size Δh = δ/2). This also motivates the 

incorporation of multiple loop configurations and the exploration of all four ‘quadrants’ 

surrounding point p (Sec. 3.1.3). Though increasing hmax generally has a positive effect, its 

value is naturally limited by the domain of definition of the vector fields. If a significant 

number of the loops extend beyond this domain, the accuracy and precision can be expected 

to drop. This means we should not choose the value of hmax to be much greater than the 

expected size of the sheet structure, which leads to the interpretation of hmax as a sheet 
structure scale parameter: hmax serves as an approximate lower bound to the size of the sheet 

structures that can be detected with the algorithm. Note that taking hmax ≤ 1 voxel does not 

lead to reliable estimates of the Lie bracket (Fig. 7), so the voxel size δ is, not unexpectedly, 

a hard limit on the size of detectable sheet structures. Related to the note that “grid structure 

was maintained at all scales, from the single voxel, to the lobe, to the hemisphere” (Wedeen 

et al., 2012b), we can thus conclude that it is only possible to reliably detect sheet structures 

larger than the voxel scale.

Fig. 7 furthermore shows that the accuracy and precision varies with the voxel size δ and 

with hmax in voxels, but remains relatively constant when hmax is defined in millimeters (the 

product of the former two) at the scales considered. This gives the definition of hmax as a 

sheet structure scale parameter a more intuitive physical interpretation. In our real data 

experiments, we kept hmax constant at 6 – 7 mm. The optimal detection of a given sheet 
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structure then involves tuning of these parameters: for example smaller or highly curved 

sheet structures require smaller voxel sizes (to be able to set hmax > 1 voxel ) at the cost of a 

lower precision when keeping hmax in voxels constant, or at the cost of higher computational 

demands when calculating more paths for a higher hmax in millimeters. This lower precision 

at smaller voxel sizes (Fig. 7) occurs because the tractography error in terms of voxels 
remains more or less constant for a given SNR and hmax in voxels. Deviations in the Lie 

bracket, having units mm−1, will thus be larger for a smaller voxel size in terms of 

millimeters. This implies that the normal component of the Lie bracket should be larger in 

order to still be able to distinguish sheet from non-sheet for a given SNR and hmax in voxels 

at a smaller voxel size. The physical limits of detecting sheets at particular scales have to be 

examined further in future work. At the scale investigated in our work, curvature does not 

have a significant effect (Fig. 8b).

The angle threshold is another parameter that can be varied in our algorithm. In this work, 

we have set a constant angle threshold of 35 degrees for the whole brain. In tractography, 

however, a single threshold might not be optimal for all brain pathways and should be 

adapted to the curvature of the tract relative to the voxel size and the SNR of the data, 

amongst others (Chamberland et al., 2014). This reasoning can be extended to the frame 

tractography used in our algorithm: the angle threshold being set too low might result in 

suboptimal Lie bracket normal component estimates and a failure to detect curved sheets 

(Fig. S7). Conversely, if the angle threshold is set too high, this might result in tracts taking a 

wrong turn, outliers, and a lower accuracy and precision.

5.3 The impact of diffusion weighting and dMRI method

The impact of the dMRI method, using DSI versus e.g. SD, has also been a big part of the 

debate (Catani et al., 2012; Wedeen et al., 2012a). This discussion centers on the ability of 

these models to accurately resolve the orientations of fiber populations. Although the initial 

concern was that DSI “does not allow separation of fibers that cross at non-orthogonal 

angles, thus making a grid structure of interwoven sheets a very likely configuration” 

(Catani et al., 2012), we find instead that the ability to robustly detect fiber populations 

mainly influences the precision and accuracy of the Lie bracket estimates (and thus the SPI), 

but it does not necessarily promote sheet structure.

The first factor of importance is the ability to detect crossing fibers, since 1) the Lie bracket 

cannot be computed in voxels with a single fiber population, and 2) paths end prematurely if 

peaks of a vector field are missing, reducing the number of difference vectors K and thus 

potentially reducing the accuracy and precision (a similar effect as shown in Fig. 7, where a 

lower hmax in voxels equals a lower amount of reconstructed paths). We visually confirmed 

that in the DSI experiment (Fig. 15) a lower amount of crossing fibers was detected than in a 

CSD experiment with similar or lower spatial resolution (e.g. MASSIVE data in Fig. 13), 

resulting in a lower amount of voxels where the Lie bracket could be computed. This is in 

agreement with Catani et al. (2012), where it was stated that DSI likely has a lower angular 

resolution. A second criterion that is of importance here is robustness to noise, or the 

accuracy and precision of the peak estimates. We investigated this effect using simulated 

dMRI data (based on the best scoring model of experiments in Ferizi et al., 2014, which also 
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included high b-values). The results shown in Fig. 9 suggest that the performance of DSI and 

CSD is comparable for a broad range of SNR with CSD having a higher precision, 

contradicting the statement in Wedeen et al. (2012a) that “DSI should present the lower risk 

of bias”.

A comparison between the CSD results of the MASSIVE data with voxel size δ = 2.5 mm 
(Fig. 13, bottom row) and the MGH DSI data with δ = 2 mm (Fig. 15) reveals similar large 

scale high-SPI areas. These sheet areas could also be observed in the Wu-Minn HCP 

subjects (Fig. 13, first three rows). Neither CSD nor DSI results in the detection of sheet 

structure at every crossing fiber location in the brain. Based on our findings, we conclude 

that DSI has no bias towards detecting sheet structure, and also reveals non-sheet areas (Fig. 

15).

A higher diffusion weighting generally causes an increase in the number of voxels with a 

significantly high SPI value (Fig. 14). Using CSD we find very little high-SPI areas in the b 
= 1000 s/mm2 shell of the MGH HCP data set, while for higher b-values the percentage of 

voxels that are likely to form sheet structures increases. This is consistent with the fact that 

the angular resolution increases with higher b-values, confirming the importance of a 

reasonable “diffusion resolution” (Wedeen et al., 2012a). Increased diffusion weighting, 

however, also comes at the cost of a lower SNR. Generally, a b-value of 3000 s/mm2 is used 

for CSD, and the vast majority of the sheets detected at this b are retained when moving to 

higher diffusion weighting.

With the ever increasing amount of proposed diffusion models, the reliable extraction of 

fiber directions is still an active area of research. To assess the presence of sheet structure in 

dMRI data, one requires a robust and reliable means to determine these peak directions. Our 

method is general and not limited to a particular dMRI technique or acquisition scheme, and 

we therefore believe that its performance can be improved with ongoing technical 

developments in the field.

5.4 Further methodological considerations and potential improvements

The error term ε in Eq. [7] includes errors due to the approximation of Eq. [4], and errors in 

the streamline tractography. The approximation errors depend on h1 and h 2 and on the 

underlying vector fields. These errors are small and turn out to be negligible compared to 

other sources of errors. The tractography errors result from measurement noise, 

interpolation, curvature of the tracts, and step size Δh (which is linked to the voxel size in 

our case), among others. Our experiments indicate that noise has the largest effect; in the 

case of infinite SNR the estimate is accurate. Regarding interpolation, we opted for simple 

nearest neighbor interpolation of the vector fields for reasons of speed and computational 

efficiency (both for DSI and for CSD). In the case of CSD we performed additional 

experiments using fODF interpolation (strictly speaking the actual diffusion measurements 

would have to be interpolated), which is more precise (Fig. 9a and Fig. S1) but also more 

computationally intensive because peak extraction has to be performed at every step. In 

future work, more advanced tractography algorithms could be used to reconstruct the loops 

and estimate the Lie bracket (e.g. using more complex integration schemes or combining 

model fitting and tractography (e.g. (Daducci et al., 2015; Reisert et al., 2014))). The 
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question of whether the added benefit outweighs the additional computation time (the 

streamlines computed in the algorithm are fairly short) remains to be answered.

To estimate the Lie bracket and its normal component at point p we reconstruct multiple 

loop configurations, in all quadrants surrounding point p, and with a range of walking 

distances. Currently we do a simple linear least squares fit (Eq. [7]) on the difference vectors 

of these loops. We do not take into account the variance of the measurements or potential 

outliers that arise, for example, when the tractography takes a wrong path during the 

reconstruction of a loop. This can potentially be improved by doing a (robust) iteratively 

weighted least squares fit, with the weight dependent on the variance of the values for a 

given h1 h2 from corresponding loops. In addition, the variance of the difference vectors 

from single loops potentially holds information on the sheet probability; however, it does not 

give information on the uncertainty of the underlying peaks.

To compute the SPI maps in the case of CSD we use residual bootstrapping, since the 

acquisition of repeated dMRI data sets is mostly not feasible. In Fig. 10 we show 

comparable results between the SPI obtained with residual bootstrapping and the SPI 

obtained with true noise iterations (in the case of simulations). To the best of our knowledge 

no bootstrapping method exists for DSI, so the reported DSI results are based on a single 

noise iteration. This makes the quantification and investigation of sheet structure more 

difficult since the choice of threshold has a hard effect on the visualization of the sheet 

tensors, sometimes resulting in regions with noisy (isolated) sheet tensors and high Lie 

bracket normal components (Fig. 15). This further illustrates the necessity of more extensive 

evaluation of measurement variance (i.e., the computation of the SPI as opposed to 

considering only a single measurement) for reliable quantification of sheet structure.

When computation of the SPI was possible (in the case of CSD), we set λ = 0.008 and we 

excluded the small percentage of voxels that did not have normally distributed Lie bracket 

normal components over the bootstrap iterations. In future work, the distribution of normal 

components per voxel and the optimal way to extract an SPI from this (e.g. detection of 

outliers, fitting, threshold settings) could be investigated more thoroughly. In this work, the 

value for λ was chosen based on the variability in simulation experiments, and the used 

setting resulted in regions of smoothly varying SPI with sheet tensors of a similar orientation 

(i.e. normal) in a certain neighborhood. This suggests that continuous sheet structures could 

perhaps be better visualized as actual surfaces; tractography could be extended to 

sheetography by means of a surface propagation process. There are examples of surface 

reconstruction approaches for DTI data, e.g. (Vilanova et al., 2004; Zhang et al., 2003), 

which compute streamsurfaces at points where the DTI tensor has a high planarity 

coefficient Cp (Westin et al., 2002). We found points in the data where the SPI and the Cp 

were both high, and where the reconstructed surfaces corresponded well with the 

information represented by the sheet tensor. This is however no strict prerequisite for the 

presence of sheet structure. There are places with a high Cp without sheet structure (i.e., low 

SPI due to spatial incoherence of the data), and places with a low Cp that do show evidence 

of sheet structure (i.e., high SPI, for example in the case of several sheet structures crossing 

in a voxel). A comparison between the SPI and different DTI shape measures is included in 

the supplementary materials (Fig. S8).

Tax et al. Page 20

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this manuscript we view the Lie bracket in terms of the integral curves of vector fields 

(Eq. [4]), which is equivalent to a combination of differential operators on the vector fields 

known as the commutator (see Eq. [13] in Appendix B for details). This raises the question 

of whether there might be an alternative way to calculate the Lie bracket that does not 

require the reconstruction of many loops, which is computationally expensive. A direct 

discretization of Eq. [13] would involve the computation of vector field derivatives, which is 

a complicated operation. A finite difference implementation does not give stable results in 

the case of noise. A very recently proposed method to estimate the Lie bracket for 

diffeomorphic registration purposes computes central difference Jacobians of discrete vector 

fields by considering them as bandlimited signals in the Fourier domain (i.e. truncating the 

high frequency components) (Zhang and Fletcher, 2015). However, in addition to 

discretization and noise, our application has other major challenges: 1) all peaks in a certain 

neighborhood would have to be clustered into distinct vector fields to be able to compute the 

Jacobian; 2) there are potential sign inconsistencies between neighboring peaks; and 3) there 

is no guarantee that all peaks of a vector field exist in a certain neighborhood. The first two 

challenges are addressed in our algorithm by clustering the peaks into vector fields ‘on the 

fly’ during the proposed frame tractography. The third challenge still affects our method: In 

the case of missing peaks the path is terminated, resulting in fewer difference vectors to 

compute the Lie bracket. This has an important influence on the precision of the estimates 

(see e.g. the experiments for different hmax in Fig. 7). Future work will be directed towards 

investigating whether the alternative definition of the Lie bracket in terms of the Jacobians 

can be used to obtain an estimate of the SPI, omitting the computationally expensive 

reconstruction of many paths per voxel required for the current method.

5.5 Future perspectives

Our results indicate that areas with high SPI values are relatively consistent between healthy 

subjects, and we therefore hypothesize that they could be used as new structural features of 

the brain. The extensiveness, orientation, and spatial distribution of sheet structures could be 

altered in the case of pathology. For example, if these sheets truly occur in the brain like “the 

warp and weft of fabric” (Wedeen et al., 2012a), it might be the case that space occupying 

lesions could dislocate the whole sheet structure as opposed to individual pathways. Another 

interesting feature could be the angle between pathways that form sheets through the shape 

of sheet tensors; it was shown that there was a significant crossing-angle difference in the 

frontal connections between a schizophrenia and healthy control group (Pasternak et al., 

2012). The hypothesis that sheet structures have a close connection to development, axonal 

path finding, and the chemotactic gradients of early embryogenesis (Wedeen et al., 2012b) 

can now be investigated in a quantitative fashion. Whereas we only visually confirmed the 

consistency of areas with high SPI values between subjects in this work, a quantitative 

evaluation should be performed in future work. Such an inter-subject or inter-group 

evaluation would require a way to register these structures towards each other. Preliminary 

results of a quantitative comparison in which we registered the FA images of HCP subjects 

and calculated the overlap of thresholded maximum SPI maps indicated only a moderate 

overlap (Fig. S9). However, in analogy to recent insights in tract-based analyses, it is likely 

not optimal to work in voxel coordinate space and register scalar volumes such as FA, since 

such methods can for example not distinguish between nearby but differently oriented tracts 

Tax et al. Page 21

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(O’Donnell et al., 2009). Instead, point correspondences should be found ‘in the space of 

sheet structures’. Ongoing developments in registration of tensor fields (e.g. (Zhang et al., 

2006a) which could potentially be applied to sheet tensors), ODFs and multi-fascicle models 

(e.g. (Raffelt et al., 2011; Taquet et al., 2014)), and tractography data (e.g. (Garyfallidis et 

al., 2015; O’Donnell et al., 2012)) could contribute towards this end.

Although we find that the dMRI data investigated in this work supports the existence of 

sheet-like structures at certain locations in the brain, it should be noted that the dMRI data 

reflects just a few aspects of the true underlying structure and its derived tracts do not 

correspond to true axons. Ideally, the existence of sheet structure should also be validated 

with a ‘gold standard’, such as histology, and quantified with other techniques that can map 

brain structure orientations. Exciting new technologies such as CLARITY (Chung et al., 

2013) and polarized light imaging (Axer et al., 2001) could provide more insight into the 

existence of sheet structures and the scale on which they exist. Our method can be used in 

combination with such techniques: the Lie bracket computation is based on vector fields and 

could therefore be extended to directional data derived from these other techniques.

6. Conclusion

The extensive presence of sheet structures in the brain has been debated since its proposal, 

mainly due to its unclear relation to orthogonal angles and a lack of quantitative 

characterization. In this work we have explored the necessary and sufficient condition for a 

sheet structure to exist, which involves the computation of the Lie bracket of vector fields. 

We have proposed a method to compute the Lie bracket throughout the brain taking into 

account challenges such as discretization, noise, and clustering of vector fields. We have 

proposed a novel metric based on the Lie bracket, the sheet probability index (SPI), which 

indicates the extent to which the data supports sheet structure. In simple vector field and 

diffusion MRI simulations the method is able to quantitatively distinguish sheet from non-

sheet structure, with spatial resolution and SNR being important factors that influence the 

accuracy and precision. Real diffusion MRI data experiments reveal a high SPI at various 

locations in the brain at the investigated scale, but also low SPI areas were found. Several 

high SPI areas could consistently be recognized across subjects, scanners, diffusion MRI 

techniques (i.e. CSD vs DSI), and spatial resolutions. Neither CSD nor DSI finds a high SPI 

at every location in the brain, and we find no bias towards sheet structure for DSI. Since 

tractography pathways do not represent true axons, validation of sheet structure with other 

technologies is necessary, and the proposed method can be extended to quantify sheet 

structure in other directional data. We hypothesize that sheet structure location, extent, and 

orientation could serve as new and important structural features of the brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A: List of symbols

U, V, W, X, Y, Z, … Vector fields, where a field X is 
defined on NX ⊂ ℝ3

Sij The cosine similarity between 
the i-th and j-th vector in an 
ordered set

p, q ∈ M ⊂ ℝ3 Positions in the brain M h Discrete flow distance along an 
integral curve

Xp Vector X at point p Δh Step size in a discrete flow

S ⊂ ℝ3 Sheet structure hmax The maximum distance in a 
discrete flow

ΦX(s, p), 

The flow operator, along X for a 
distance s and with initial 
position p

R H, β, ε Matrices

RP The vector given by the 
deviation from p after specific 
flows, called the closure

Pλ The sheet probability index with 
parameter λ

[V, W]P Lie bracket of V and W at point 
p

N(μ, σ2) Normal distribution with mean μ 
and standard deviation σ

Normal component of [V, W]P xi Cartesian coordinates

Discrete approximation to the 

flow 

Tp Sheet tensor at p

Discrete Lie bracket of V and W 
at point p

Tensor product between two 
identical vectors Xp

R̂ Estimated closure κ, ρ The curvature κ, and its 
reciprocal ρ

[a, b, … ] Ordered set of elements δ Voxel size

p A permutation of an ordered set Nn, Nb The number of noise or 
bootstrap iterations

E Similarity energy b The b-value

Appendix B: Mathematical background

There are three concepts that are explained or mentioned in the main text, which we feel 

might benefit from a more detailed exposition. These are the formal definition of the Lie 

bracket and its relation to the definition in terms of flows along vector fields (Section 3.1.2), 

the relation between the Lie bracket and the sheet structure (Sections 3.1.1 and 3.1.3), and 

the definition of three-dimensional grid structure (e.g. Section 1). In this appendix we 

discuss these more in-depth.

B.1 The Lie bracket and its relation to flow

In a differentiable manifold M, a tangent vector Vp at p ∈ M is identified with the directional 

derivative (denoted by ∇V) of any suitably differentiable function f: M → ℝ. Hence we can 
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write , given the components {V1, V2, V3} of V relative to 

the coordinates x1, x2, x3} on M. Let TPM denote the space of all tangent vectors at p ∈ M, 

and let the tangent bundle TM represent the union { TPM | p ∈ M}, i.e., the set of all tangent 

vectors in M. A vector field V is now defined as the smooth mapping V: M → TM: p ↦ 
Vp. The Lie bracket of two (non-zero) vector fields V and W on M is defined by its action 

on smooth functions f:

[12]

The Lie bracket satisfies the defining properties of a derivative (linearity and Leibniz’ 

product rule), and so [V, W]P can be regarded as a directional derivative, i.e. an element of 

the vector space TPM. If one is interested specifically in the Lie bracket [V, W] in terms of 

the vector fields V and W, Eq. [12] can be used to obtain

[13]

which is commonly known as the commutator of the vector fields, and where ∇VW denotes 

the derivative of W along V.

To relate the Lie bracket to flows  we write, using Taylor’s 

theorem,

[14]

Note that because  for any suitably differentiable f (compare this to 

the definition  used in the main text) it follows that . 

Taking s(t) = t this gives

[15]

where we repeatedly apply Eq. [14], such that
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[16]

Continuing this process to compute  and 

, we then find

[17]

after which Eq. [4] follows readily. Validity of the alternative definitions in Eq. [6] can be 

derived analogously. If V and W are defined on subsets NV and NW of M as in the main text, 

then the Lie bracket is only defined on the intersection NV ∩ NW. In the remaining sections 

of this appendix we will continue with V and W defined on the whole of M.

B.2 Sheet structure and the Lie bracket

The flow  defines a curve . The curves obtained when varying p form the 

leaves of a one-dimensional foliation of M; they are disjoint immersed submanifolds that 

partition M, which are tangent to V for all p and t. The existence of such a one-dimensional 

foliation given V is ensured by smoothness of V, but for higher-order foliations that are 

tangent to multiple vector fields there are additional constraints. These are summarily 

provided by the Lie bracket, which guarantees the existence of a foliation if the set of all 

vector fields that are locally tangent to the sheet, is closed under the Lie bracket.

For the existence of a two-dimensional foliation given two locally non-collinear vector fields 

V and W, it is sufficient if for all p ∈ M we have [V, W]P ∈ span(VP, WP) ⊂ TPM, which is 

equivalent to the requirement [V, W]⊥ = 0 used in the main text. The fact that [V, W]⊥ = 0 

is a necessary and sufficient condition for the existence of a foliation (with leaves that are 

locally perpendicular to both V and W) is known as the Frobenius theorem (Lang, 1995; 

Spivak, 1979). If V and W form a foliation, then all points on a leaf can be connected with a 

flow along these vector fields. The two-dimensional foliation of (a subset) of ℝ3 is called the 

sheet structure.

B.3 Grid structure

Grid structure as introduced by Wedeen et al. (2012b) is finally defined as three independent 

two-dimensional foliations, which form a three-dimensional foliation. Given three 

independent vector fields U, V, and W on M, a sufficient condition for the existence of this 

structure is that the Lie bracket normal component of each pair of vector fields is zero. As 

was the case with sheet structure, grid structure ensures that any two points on the leaves of 

this foliation can be connected with a flow along the vector fields. In the considered case of 

ℝ3, this means that any two points in the entire space can be connected by means of such a 

flow: the flows along U, V, and W are coordinates lines.
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Appendix C: Algorithms

C.1 Clustering of frames

Consider an ordered set of n vectors [Y1, … , Yn] at a position q, and m vectors { Z1, … , 

Zm} in some point r near q3. The ordered set [Y1, … , Yn] serves as a reference frame, i.e., 

we assume that n vector fields U, V, … are present in the local neighborhood of q that 

satisfy Uq = Y1, Vq = Y2, …. The aim of the clustering algorithm is to find a permutation of 

the frame (an ordered set [Zp1, … , Zpn, 0, … ]) that corresponds to the reference frame, so 

that we can take Ur = Zp1, Vr = Zp2, … for some permutation P of [1, … , n] (see Fig. 3 for a 

schematic example). Here, Pi denotes the index given by the ith element of P, and Zpi = 0 

implies that no matching vector was found.

Clustering is done by maximizing (over all permutations P) a similarity measure E that 

represents the total element-wise similarity between the frames [Y1, … , Yn] and [Zp1, … , 

Zpn]. In the algorithm below we will use the ‘total cosine similarity’ for E, which is defined 

as the sum of the cosines of the angles between corresponding vectors. The steps of our 

algorithm are as follows:

Algorithm for the clustering of frame { Z1, … , Zm } given an ordered frame [Y1, … , 

Yn]

1. Compute the cosine similarity Sij between Yi and Zj for all i ∈ {1, . . , n}, j ∈ 
{1, . . , m} (recall that Yi and Zj are unit or zero vectors):

[18]

2. For every n-permutation P of [1, … , m] (e.g. for n = 2 and m = 3 these are the 

permutations [1,2], [2,1], [1,3], [3,1], [2,3], and [3,2]), compute the similarity 

energy of the permutation by:

[19]

(e.g. for P = [2,3] in the example above, which associates Z2 to Y1 and Z3 to Y2, 

we have Ep = S12 + S23). Note that taking the sum (as opposed to the mean) 

favors the assignment of more vectors.

3. Determine the permutation P for which Ep is maximal, and define the reordered 

set of vectors [Zp1, … , Zpn].

4. If Yi · Zpi has a negative sign, set Zpi to −Zpi.

5. Apply an angle threshold on Zpi. If |Yi · Zpi| < t (here set to acos 35°) for some 

threshold t ∈ ℝ, set Zpi to 0.

3If m < n, we append n − m zero-vectors to the list {Z1, … , Zm}, so in the following we can take m ≥ n.
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6. Return [Zp1, … , Zpn].

C.2 Frame tractography

Algorithm for the approximate flow  along vector field X from point q0

1. While the number of taken steps l is less than or equal to a preset number of 

steps L = ⌊h/Δh⌋ (where ⌊ ⌋ denotes the floor function), do the following:

a. Move from the current position ql in the direction Xql with step size Δh. 

The new position ql+1 is given by

[20]

b. Identify the frame {Z1, … , Zm} at location ql+1.

c. Determine [Uql+1, Vql+1, … ] from { Z1, … , Zm} with the algorithm 

described in Section 3.1.1, using [Uql, Vql, … ] as a reference frame. If 

Xql = 0, i.e., if X is not defined at the new location, the propagation is 

terminated.

2. Return  and the corresponding frame [UqL, VqL, … ].

C.3 The closure and the Lie bracket

Algorithm for the reconstruction of difference vector R̂
1 at point p

1. Identify the frame [Y1, … , Yn] at p, and set Up = Y1, Vp = Y2,… In practice, 

determining { Y1, … , Yn } involves some kind of interpolation (e.g., nearest 

neighbor, trilinear) and potentially the computation of peak directions from 

dMRI data if one does not start from a set of pre-extracted peaks (see Section 

3.4.2.3 for details). Here, we stick to a general formulation and assume that the 

frame [Y1, … , Yn] is given or can be calculated.

2. Select two vectors Yi and Yj from {U, V, … } for the computation of the Lie 

bracket, which could be, for example, peaks along two predefined tracts. Here, 

we take the example Yi ∈ V and Yj ∈ W.

3.
Starting from q0 = p, compute the end point of the first leg  and the 

corresponding frame using the algorithm described in Section 3.1.2. If the 

tracking algorithm fails, the reconstruction algorithm is terminated.

4.
Repeat step 3 with  to compute the end point of the second leg 

.

5.
Repeat step 3 with  to compute the end point of the third leg 

.
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6.
Repeat step 3 with  to compute the end point of the 

final leg .

7.
Return .

When computing R̂ for all h1 and h2, (parts of) paths are taken multiple times. The positions 

q and the corresponding frames for each path are therefore stored in a lookup table.
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Fig. 1. 
(a) An example set of fiber ODFs (semi-transparent) along with their peak directions 

(arrows), which form the vector fields V (red) and W (blue). By integrating these vector 

fields, one can reconstruct at each initial position p the integral curves ΦV (s, p) (red curve) 

and ΦW(s, p) (blue curve) where s denotes arc length parameterization. (b) The tangent 

plane of an integral surface S at any point p ∈ S is parallel to the plane spanned by Vp and 

Wp (indicated by the dashed squares annotated on S).
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Fig. 2. 
(a) A loop composed of integral curves of V (red arrows) and W (blue arrows) with p as the 

starting position. αp is the curve formed by the end points of all loops (by varying the 

distance s) starting in the point p. [V, W]p is the Lie bracket at point p, and has a relation 

with the difference vector Rp(s): = αp(s) − p according to Eq. [4]. In this scenario, the vector 

fields V and W cannot be integrated to form a sheet structure. (b) The Lie bracket from (a) 

does not lie in the plane spanned by Vp and Wp (gray). Hence the normal component of the 

Lie bracket  defined in Eq. [5] is non-zero (green arrow), and the vector fields 

cannot be integrated to form a sheet structure. The vertical black line is perpendicular to the 

plane spanned by Vp and Wp. (c) A loop in a scenario where the vector fields V (red arrows) 

and W (blue arrows) do form a sheet structure. In this case αp is (locally) a curve on the 

sheet structure. (d) The Lie bracket [V, W]p from (c) lies in the plane spanned by the vectors 

at p, so that the normal component is zero and the vector fields V and W can be integrated to 

form a two-dimensional sheet.
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Fig. 3. 
Example of the clustering of frames. We have an ordered set of vectors [Y1, Y 2, Y3] at a 

position q, and 3 vectors {Z1, Z2, Z3} in some point r near q. We assume that they are 

assigned to the vector fields U, V, and W as follows: Uq = Y1, Vq = Y2, and Wq = Y3. Frame 

clustering yields the ordered set [Z3, Z2, Z1].
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Fig. 4. 
Loops that lead to 

 and 

.

Tax et al. Page 35

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
(a) Sheet tensors with a normal direction pointing towards the reader, for different angles 

between Up and Vp and different sheet probabilities. Here, V is always oriented in left-right 

direction. (b) Sheet tensors with different orientations are colored according to their third 

eigenvector. AP is the anterior-posterior direction, IS is inferior-superior, and LR is left-

right.
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Fig. 6. 
(a) Vector fields U (red), V (blue), and W (green), where U and V form a sheet and U and W 
do not. The left column shows a subset of integral curves, and vectors sampled on the upper 

hemisphere are shown on the right. This pattern of vector fields is repeated in the vertical 

direction. (b) Plot of  as a function of ρ and x1, with x2 = −x1.
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Fig. 7. 

 for different voxel sizes δ = {0.5, 1, 2} mm (a–c, columns) and different settings for 

hmax = {1, 3, 5} voxels (the corresponding hmax in mm is noted above each plot). Each plot 

shows the mean and range of the estimates in the case of sheet (green,  indicated 

by the dashed line) and non-sheet (red, ) for different SNR levels (i.e. the 

concentration parameter k, higher k means a lower perturbation of the vectors). We used 50 

noise iterations, κ = 1/ρ = 1/26 mm−1, and p = (10, −10,0).
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Fig. 8. 

(a) Mean and range of  for different points p = (x1, −x1, 0) to vary the Lie bracket 

normal component magnitude  (κ = 1/26 mm−1). (b) Mean and range of  for 

different curvatures κ = 1/{8, 13, 18, 23, 28, 33}. Different curvatures were achieved by 

changing ρ in Eq. [9], and  was kept constant using Eq. [10] by adapting the point of 

evaluation x2 = −x1. In both experiments,  (dashed lines) is evaluated at the same 

points for reference and k = 350, δ = 1 mm, and hmax = 5 voxels.
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Fig. 9. 

Mean and range of  for different settings of hmax (rows) and different SNR. We set the 

curvature κ = 1/ρ = 1/26 mm−1, voxel size δ = 1 mm (giving hmax = {3, 5} voxels = {3, 5} 

mm), and evaluate  at p = (10, −10,0). Dashed lines indicate the true Lie bracket normal 

component. (a) Peaks extracted from single shell data using CSD. (b) Peaks extracted from 

Cartesian sampled data using DSI.
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Fig. 10. 

Mean and range of  and the SPI Pλ for different points p = (x1, −x1, 0) to vary the Lie 

bracket normal component magnitude .  is evaluated at the same points for 

reference. We set SNR = 20, δ = 1 mm, hmax = 5 voxels, and κ = 1/26 mm−1.
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Fig. 11. 
(a) A single bootstrap of the Lie bracket normal component (two largest fODF peaks) in a 

single slice, together with histograms of the normal component at the indicated locations in 

(high- (green arrow), medium- (grey arrow), and low-sheet probability (blue arrow) area). 

(b) A direction color-encoded FA map of the slice shown in (a) provided for reference. (c) 

The corresponding SPI map (maximum per voxel) with λ = 0.008. The green voxels only 

contain one peak and thus no Lie bracket can be computed. (d) The high- (red, Pλ > 0.5) and 

low-sheet probability areas (blue, Pλ < 0.1) shown as an overlay on an anatomical scan.
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Fig. 12. 
(a) Sheet tensors (λ = 0.008) on different coronal (top), sagittal (middle), and axial (bottom) 

slices. Ellipsoids with Pλ < 0.2 are not shown for clarity, and the sheet tensors are colored 

according to Fig. 5b. (b) High-SPI area with streamlines (paths  and 

 with hmax = 5 voxels used to compute the Lie bracket in a voxel marked by 

a white asterisk) of the CC and the CST in the left hemisphere. Non-orthogonal angles can 

be recognized, and the white arrow indicates crossing sheets. (c) A medial and sagittally 

oriented sheet structure, formed by parts of the CC/CST and anterior-posterior oriented 

association fibers. (d) A low SPI area in which the fibers look like a sheet from a superior 

view, but clearly diverge when inspecting other viewpoints (1) and (2).
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Fig. 13. 
Visual comparison of sheet structures between subjects and spatial scales (tensors with Pλ < 

0.2 are not shown for clarity, colors according to Fig. 5b, and we set λ = 0.008). Examples 

of visually similar sheet structures are indicated by the arrows.
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Fig. 14. 
The detection of sheet structure with different diffusion weightings in the MGH HCP data 

set, overlaid on the FA of the b = 1000 s/mm2 shell (tensors with Pλ < 0.2 are not shown for 

clarity, colors according to Fig. 5b, and we set λ = 0.008).
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Fig. 15. 

(a) A map of  for the MGH DSI dataset (hmax = 3). A tensor is visualized if 

 with colors according to Fig. 5b (tensors have the same size, arrows indicate 

example areas), and we color the voxel red if the minimum  in that voxel is larger than 

0.025. Rectangles show spatially continuous example areas of high minimal , the 

corresponding paths for the voxel marked by a white asterisk are visualized in (b) and (c). 

The pathways clearly do not form a sheet but instead ‘diverge’ from the plane when 

inspecting them from a rotated view (orientation indicated by arrows).
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