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Abstract

Multi-echo fMRI, particularly the multi-echo independent component analysis (ME-ICA) 

algorithm, has previously proven useful for increasing the sensitivity and reducing false positives 

for functional MRI (fMRI) based resting state connectivity studies. Less is known about its 

efficacy for task-based fMRI, especially at the single subject level. This work, which focuses 

exclusively on individual subject results, compares ME-ICA to single-echo fMRI and a voxel-wise 

 weighted combination of multi-echo data for task-based fMRI under the following scenarios: 

cardiac-gated block designs, constant repetition time (TR) block designs, and constant TR rapid 

event-related designs. Performance is evaluated primarily in terms of sensitivity (i.e., activation 

extent, activation magnitude, percent detected trials and effect size estimates) using five different 

tasks expected to evoke neuronal activity in a distributed set of regions. The ME-ICA algorithm 

significantly outperformed all other evaluated processing alternatives in all scenarios. Largest 

improvements were observed for the cardiac-gated dataset, where ME-ICA was able to reliably 

detect and remove non-neural T1 signal fluctuations caused by non-constant repetition times. 

Although ME-ICA also outperformed the other options in terms of percent detection of individual 

trials for rapid event-related experiments, only 46% of all events were detected after ME-ICA; 

suggesting additional improvements in sensitivity are required to reliably detect individual short 

event occurrences. We conclude the manuscript with a detailed evaluation of ME-ICA outcomes 

and a discussion of how the ME-ICA algorithm could be further improved. Overall, our results 

suggest that ME-ICA constitutes a versatile, powerful approach for advanced denoising of task-

based fMRI, not just resting-state data.
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Introduction

Even with advances in hardware (e.g., higher field systems) and acquisition technology (e.g., 

multichannel receiver, surface coils, etc.), in functional magnetic resonance imaging (fMRI) 

there exists a continual need for a greater signal-to-noise ratio, especially at the single 

subject level. In addition to the signal of interest–  fluctuations of a neuronal origin–fMRI 

time series contain fluctuations due to thermal noise, hardware instabilities, subject head 

motion, cardiac function and respiration (see (Greve et al., 2013) for a detailed review). In 

some instances, these nuisance sources can account for up to 82% of the variance at the 

voxel level (Bianciardi et al., 2009). Insufficiently accounting for these undesired sources of 

fluctuation during analyses translates into reduced sensitivity to true neuronal responses 

(Gonzalez-Castillo et al., 2012b), lower test-retest reproducibility, biased results across 

populations, and ultimately obstructs the interpretability of the results and diminishes their 

potential scientific and clinical value.

To reduce noise in fMRI data, complex pre-processing pipelines precede activation and 

connectivity analysis. For example, slow signal drifts are often modeled via Legendre 

polynomials or sinusoidal basis sets (see (Tanabe et al., 2002) for details). All fMRI analysis 

packages include tools to estimate and minimize artifacts from head motion (e.g., 3dvolreg 
in AFNI, mcflirt in FSL). Several algorithms have been proposed to also moderate signal 

variance due to cardiac and respiratory function (e.g., RETROICOR (Glover et al., 2000), 

RVT (Birn et al., 2008), HR variation (Chang et al., 2009)). Spatially uncorrelated noise is 

often lowered by means of spatial smoothing. Finally, gains in signal-to-noise ratio can be 

obtained by averaging across runs and subjects. More advanced denoising methods include 

the use of multivariate decomposition approaches, such as principal component analysis 

(PCA) or independent component analysis (ICA), to identify and subsequently remove 

artifactual (i.e., non-neuronal) signals specific to each dataset. In the past, these procedures 

have relied on the expertise of well-trained fMRI specialists to manually identify noise 

components. For ICA, automatic classification of nuisance ICA components based on 

different combinations of spatial, temporal and spectral characteristics of the components 

have been recently proposed–namely FIX (Salimi-Khorshidi et al., 2014) and AROMA 

(Pruim et al., 2015)–yet, they either require a study-specific data-intensive training phase 

(i.e., FIX) or focus solely on a subset of noise sources (i.e., AROMA deals primarily with 

motion-related artifacts).

An alternative way to improve the sensitivity to the BOLD response, and in turn improve the 

contrast-to-noise of fMRI experiments, is to acquire the data differently, by using multi-echo 

acquisition schemes (Gowland and Bowtell, 2007; Poser et al., 2006; Posse, 2012; Posse et 

al., 1999; Speck and Hennig, 1998). In single-echo fMRI, data is acquired at a unique echo 

time (TE) close to the average grey matter  inside regions targeted by the study. 

Conversely, in multi-echo (ME) fMRI, the scanner outputs Ne time series per voxel, each of 
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them acquired at a different TE, and all of them following a single excitation pulse. 

Crucially, these Ne time series differ from each other in terms of  weighting and thermal 

noise, but not in terms of T1 weighting. These specific properties of ME-fMRI data can be 

exploited in several manners for denoising purposes. For example, different voxel-wise 

linear weighted combination schemes of ME time series have been demonstrated to improve 

sensitivity for task and resting experiments at 1.5 T (Posse et al., 1999), 3 T (Poser et al., 

2006) and 7 T (Poser and Norris, 2009); primarily by reducing thermal noise and 

susceptibility artifacts. In addition, other groups have proposed dual-echo approaches where 

signal fluctuations recorded at a short echo (assumed to have minimal  weighing) are 

regressed out from the time series acquired at a longer echo time optimized for BOLD 

weighting (Bright and Murphy, 2013; Buur et al., 2009). One such example is the work of 

Bright and Murphy (2013) who evaluated how regressing out data acquired at TE = 3.3 ms 

(expected to have minimal  weighting) from that acquired at TE = 35 ms (a common TE 

for experiments at 3 T) could help reduce motion-related effects and physiological noise. 

This approach showed improvements in connectivity estimations, but resulted in reduced 

activation extent and magnitude; therefore demonstrating that activity and connectivity 

studies may benefit differently from similar ME-based denoising schemes.

Kundu et al. (2012) recently proposed a ME-based denoising technique named ME-ICA 

(Multi-Echo Independent Component Analysis); which takes advantage of the distinct TE-

dependence profiles of BOLD-like (linear dependence with TE) and non-BOLD-like 

fluctuations (no dependence with TE) to automatically classify ICA components as signal 

(BOLD-like) or noise (non-BOLD-like). The ME-ICA algorithm proceeds as follows. First, 

voxel-wise estimates of  are obtained. These are subsequently used to linearly mix all 

echoes and create a new single, “Optimally Combined”, time series per voxel (the OC time 

series) optimized for functional contrast (Poser et al., 2006; Posse et al., 1999). This OC 

time series constitutes the input to a subsequent ICA that extracts spatially independent 

signals in the data. The overall TE-dependence profile of each ICA component is then 

characterized using two summary metrics: kappa (κ) and rho (ρ), respectively representing 

the BOLD signal and the spin-density or inflow signal. A combination of low kappa and 

high rho indicates the component has a low dependence on TE and a high likelihood of 

being noise (i.e., non-BOLD). In its last step, ME-ICA uses kappa, rho, explained variance 

and additional metrics that further characterize the TE-dependence profile of each 

component to automatically identify and regress out from the data those ICA components 

that constitute noise. (Kundu et al., 2012) and Appendix A in Olafsson et al. (2015) provide 

a detailed description of the ME-ICA algorithm.

Several studies have already established experimentally how ME-ICA can help improve the 

quality of fMRI results, but often focused on connectivity analyses. For example, ME-ICA 

has been shown to improve network detection over conventional single-echo fMRI both in 

humans at 3 T (Kundu et al., 2012) and rats at 11.7 T (Kundu et al., 2014). Olafsson et al. 

(2015) have also shown how ME-ICA can reliably identify and remove artifacts unique to 

novel simultaneous multi-slice acquisition techniques (Feinberg et al., 2010) during rest 

scans. In addition, ME-ICA’s ability to differentiate artifactual slow signal drifts from those 

of a BOLD origin has also been demonstrated with long (>1 min) blocks of visual 
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stimulation (Evans et al., 2015). However, little is known about the performance of ME-ICA 

for conventional task experimental designs. To the best of our knowledge, only one non 

peer-reviewed study to date has evaluated ME-ICA for regular task-based fMRI (Lombardo 

et al., 2015). That study focused solely on sensitivity for block designs at the group level, 

concluding that ME-ICA outperforms single-echo fMRI and optimal combination of ME 

datasets in this particular scenario. Here, we attempt to address this gap by evaluating the 

performance of ME-ICA for task-based fMRI at the single-subject level. We decided to 

focus on single-subject results, as this is where fMRI holds potential clinical value, and 

where fMRI strives the most for improvements in signal-to-noise.

Here we evaluate ME-ICA with respect to single-echo fMRI and OC using both block and 

rapid event-related designs. For the block design evaluation we used an auditory task and 

two different acquisition strategies: constant-TR, and cardiac-gated (i.e., non-constant TR) 

acquisitions. Cardiac-gated fMRI constitutes an interesting test case for ME-ICA, as it 

produces data strongly contaminated by baseline signal fluctuations of T1 origin (due to the 

non-constant TR) that ME-ICA should be able to reliably correct. For this particular 

scenario, we also evaluate ME-ICA against two additional processing strategies (Beissner et 

al., 2010; Guimares et al., 1998) previously shown to benefit in the analysis cardiac-gated 

datasets.

For the rapid event-related evaluation we acquired data for five different tasks (e.g., motor, 

auditory, reading, and two visual identification tasks), so that we could evaluate, to a given 

extent, the generality of ME-ICA performance across tasks. In all instances, we evaluate 

performance in terms of activation extent, activation magnitude, and effect size. We also 

investigate how ME-ICA can help detect activity for individual instances of tasks (i.e., 

individual trials). Our results show how ME-ICA significantly outperforms the single-echo 

fMRI and OC pipelines in all scenarios, suggesting that task-based fMRI can benefit from 

the ME-ICA approach just as resting-state connectivity analyses have done in the past.

Methods

We acquired two different datasets for this study. First, we collected fMRI data from five 

individuals using an auditory block-design paradigm. For this first dataset, we acquired data 

in two ways: constant repetition time (non-gated) and cardiac-gated. Second, we collected 

fMRI data from ten additional subjects using a multi-task rapid event-related paradigm. This 

second dataset was acquired using a constant repetition time only. Acquisition details, 

analytical procedures and experimental goals for both datasets are described below.

Block design experiments

Subjects—Five subjects (2 males, 3 females, mean ± SD age = 25 ± 2 y.o.) participated in 

these experiments after giving informed consent in compliance with the NIH Combined 

Neuroscience Institutional Review Board-approved protocol 93-M-0170 in Bethesda, MD.

Experimental paradigm—All functional scans (cardiac-gated and non-gated) were 

acquired using the same block design paradigm. An initial 20 s period was followed by 5 

repetitions of the following sequence of blocks: listen block (20 s); and rest block (40 s). An 
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additional 20 s of rest were added at the end of each functional run. This resulted in 340-s 

runs. During the rest periods, subjects were instructed to remain still and focus their 

attention on a crosshair at the center of the screen. During the listen blocks subjects were 

presented with 20 s of instrumental music via MRI compatible headphones. Subjects had 

been previously instructed to attentively listen to the music when present. The PsychoPy 
software (Peirce, 2008) was used for stimuli delivery.

Data acquisition—Imaging was performed on a General Electric (GE) 3 Tesla 750 MRI 

scanner (Waukesha, WI). The scanner’s body coil was used for RF transmission, and a 32-

channel receive-only head coil (GE, Waukesha, WI) was used for signal reception. 

Functional scans were acquired with a multi-echo EPI sequence (flip angle = 60°, TEs = 

13.9/31.7/ 49.5 ms, 33 oblique slices, slice thickness=3 mm, in-plane resolution = 3 × 3 

mm2, FOV 216 mm, acceleration factor 2, number of acquisitions = 136, bottom/up 

sequential acquisitions). For each participant we acquired two non-gated functional scans 

and two cardiac-gated functional scans. The order of the scans was randomized across 

subjects. Non-gated scans were acquired using a constant repetition time (TR) of 2.5 s. 

Cardiac-gated acquisitions were time-locked to the first peak of the cardiac cycle, recorded 

on a GE optical pulse oximeter attached to one of the subject’s fingers, following a nominal 

TR of 2.5 s. This resulted in a non-constant TR of mean ± SD = 3.12 ± 0.15 s across the 

whole dataset. At the end of each cardiac-gated scan, the system saved a text file with 

information about the actual repetition time between successive acquisitions. Evaluation of 

cardiac traces and triggering files confirmed reliable detection of cardiac cycle events, and 

correct synchronization of fMRI triggering events with the peak of the cardiac cycle.

In addition, T1-weighted Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) and 

Proton Density (PD) sequences were acquired for presentation and alignment purposes 

(axial prescription, number of slices per slab, 176; slice thickness, 1 mm; square FOV, 256 

mm; image matrix, 256 × 256).

Data pre-processing—Data were pre-processed with the AFNI software (Cox, 1996). 

Three different pre-processing pipelines were used in these experiments, namely: single-

echo (1E) pipeline, OC pipeline, and ME-ICA pipeline. In addition, for the cardiac-gated 

dataset, data were pre-processed with an additional single-echo pipeline that included a 

model-based correction of T1 baseline signal fluctuations associated with non-constant TRs 

following the procedures previously described by Guimares et al. (1998). This additional 

cardiac-gated only pipeline is referred to as the 1E-T1C (after T1 Correction) pipeline 

throughout the manuscript.

1E pipeline: Only one time series, that for TE = 31.7 ms, enters this pipeline, in a manner 

similar to how single-echo fMRI is commonly analyzed in conventional fMRI studies. The 

pre-processing steps in the 1E pipeline are: (1) discard initial 10 s of data to achieve steady-

state, (2) time-shift correction, (3) estimation of head motion (AFNI program 3dvolreg) and 

transformations to MNI space using the MPRAGE and PD scans following procedures 

previously described in (Gonzalez-Castillo et al., 2012a), (4) spatial smoothing (FWHM = 6 

mm; AFNI program 3dBlurInMask), and (5) voxel-wise intensity normalization to percent 

signal change units.
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For non-gated data, the time-shift correction step was performed with AFNI program 

3dTshift, which interpolates data in time so that all slices have the same temporal reference. 

To accomplish this, 3dTshift takes as input information about slice acquisition order. For 

cardiacgated data, time-shift correction was performed with AFNI program 3dTRfix, which 

not only corrects inter-slice timing, but also brings non-constant TR datasets into a regular 

temporal grid; also via linear interpolation in time. 3dTRfix takes as inputs not only the slice 

acquisition order, but also the onsets of each volume acquisition. These two ways to time-

shift correct the data are common across all other pre-processing pipelines described below.

1E-T1C pipeline: This pipeline also takes only the second echo (TE = 31.7 ms) as input. 

The only difference from the 1E pipeline, is that a model-based T1 baseline shift correction 

following procedures previously described by Guimares et al. (1998) was performed after 

discarding the initial 10 s of data, and prior to all other pre-processing steps. No other 

differences exist between the 1E and 1E-T1C pipelines.

 estimation pipeline: This pipeline uses the last two echoes (31.7 ms and 49.5 ms) and 

follows methods previously proposed by Beissner et al. (2011, 2010) for the analysis of non-

constant TR fMRI datasets. Pre-processing steps include: (1) discard initial 10 s of data, (2) 

time-shift correction (3dTshift or 3dTRfix), (3) estimation of head motion and 

transformation to MNI space using the MPRAGE and PD scans following procedures 

previously described in (Gonzalez-Castillo et al., 2012a), (4) spatial smoothing (FWHM = 6 

mm), (5) computation of  time series using Eq. (1), and (6) voxel-wise intensity 

normalization to signal percent change units.

(1)

In Eq. (1) (originally derived in (Beissner et al., 2010)), index i represents voxel, index n 
represents time, TE2 and TE3 refer to the two experimental echo times, S2 refers to the time 

series for TE2 = 31.7 ms, and S3 refers to the time series for TE3 = 49.5 ms.

OC pipeline: All three echoes are used in this pipeline. Pre-processing steps include: (1) 

discard initial 10 s of data, (2) time-shift correction, (3) estimation of head motion and 

transformations to MNI space using the MPRAGE and PD scans following procedures 

previously described in (Gonzalez-Castillo et al., 2012a), (4) voxel-wise linear weighted 

combination of echoes optimized for  (Poser et al., 2006; Posse et al., 1999) with AFNI 

program tedana.py (a component of the ME-ICA software; version 2.5-beta11; https://

bitbucket.org/prantikk/meica#f5d52a6), (5) spatial smoothing (FWHM = 6 mm), and (6) 

voxel-wise intensity normalization to signal percent change units.

The voxel-wise weights for the OC time series are given by

(2)
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where i = 1..3 refers to echo, v refers to voxel, and  corresponds to voxel-wise estimates 

of  obtained via a log-linear firs to the multiecho dataset.

ME-ICA pipeline: All three echoes are used in this pipeline. This pipeline builds on top of 

the OC pipeline. Following step (4) of the OC pipeline, we use the AFNI program tedana.py 
(version 2.5, beta 11) to perform ME-ICA denoising (Kundu et al., 2012). The denoised time 

series output by ME-ICA are then submitted to (5) spatial smoothing (FWHM = 6 mm), and 

(6) voxel-wise intensity normalization steps, as in the 1E and OC pipelines.

Activation analyses—Following each pre-processing pipeline, activation maps for the 

contrast task vs. rest were obtained separately for each subject using both functional runs as 

input to AFNI program 3dREMLFit. Motion parameters, their first derivatives and Legendre 

polynomials up to 3rd order were used as covariates of no interest. All activation maps were 

thresholded at pFDR < 0.05.

For the ME-ICA pipeline, degrees of freedom were adjusted to account for the number of 

removed components when computing statistical significance for this particular pipeline. 

One degree of freedom is subtracted for each component being removed (Kundu et al., 

2012).

Target regions of interest (ROI)—Performance metrics for this first set of experiments 

were computed using two different sets of ROIs: (1) ROIs derived from the reverse inference 

map generated by the Neurosynth tool (Yarkoni et al., 2011) for the concept “music”; and 

(2) bilateral inferior colliculus (IC) ROIs based on previously published coordinates 

(described below).

The Neurosynth-derived ROIs (Fig. 1.A) include 4 ROIs covering primarily bilateral 

superior temporal cortex and bilateral pre-central gyrus. The IC ROIs (Fig. 1.B) are 5 mm 

radius spherical ROIs centered at reference MNI coordinates for this particular anatomical 

structure ([x,y,z] = [±6, −33, −9]) taken from (Parsons et al., 2014). We decided to evaluate 

the IC region, as it is a well established processing node of the ascending auditory pathway 

in which detection of activity is difficult due to large amounts of pulsatile noise (Guimares et 

al., 1998).

Performance metrics—The different pre-processing pipelines are evaluated in terms of 

activation extent, T-statistic magnitude, and estimated effect size.

Activation extent was measured as the number of significantly active voxels inside each set 

of target ROIs (e.g., Neurosynth and IC ROIs). Activation extent measures for each pipeline 

were included in a 2-way mixed-effects ANOVA [A = Subject|Random; B = Pipeline|Fixed] 

in MATLAB to elucidate if pre-processing pipelines had a significant effect on activation 

extent. This omnibus test was followed by post-hoc paired t-tests to discover significant pair-

wise differences across pipelines. For non-gated data we only compared three pipelines—

namely 1E, OC and ME-ICA—while all 4 pipelines were compared using cardiac-gated 

data.
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T-statistic magnitudes were used as a proxy for contrast-to-noise for the condition of 

interest. Average T-statistic values were computed within significantly active voxels inside 

target ROIs. For all pipelines, we computed averages using only the voxels that were 

significant during the 1E pipeline to ensure consistency of voxels contributing to the 

averages. Similar to activation extent, average T-statistics were submitted to an ANOVA. 

When a main effect was found, post-hoc paired t-tests across pipelines were conducted.

Finally, effect size was evaluated in terms of average coefficient fits (i.e., beta weights) 

within significantly active voxels inside the target ROIs. The same statistical tests used for 

the other two metrics were also used for effect size measures.

Estimates of T1 baseline fluctuations in cardiac-gated data—To evaluate how 

well ME-ICA identifies this artifact specific to the cardiac-gated dataset, we computed the 

temporal Pearson correlation between time series of components marked as noise by the 

ME-ICA algorithm and estimates of T1-related baseline shift estimated using the following 

equation:

(3)

where TR(t) refers to the time between onsets of consecutive volume acquisitions; and T1 

was set to 1331 ms, according to previous estimates of T1 for grey matter at 3 T published 

by Wansapura et al. (1999). This equation is equivalent to Eq. (1) in Guimares et al. (1998).

BOLD contrast simulation—To understand how OC affects effect size estimates (i.e., 

BOLD contrast estimates), we generated theoretical BOLD contrast and OC weight curves 

for TEs ranging from 0 ms to 200 ms (Fig. 2.A). OC weight curves were generated using Eq. 

(1) above. BOLD contrast curves were generated using Eq. (3) from Posse et al. (1999), 

reproduced here:

(4)

where i indexes echo time, So is the average initial signal amplitude,  is the average 

transverse relaxation time due to spin-spin interactions and static field inhomogeneities, and 

 is the stimulus dependent change in  relaxation time. So and  were estimated 

directly from the data using AFNI program tedana.py (version 2.5, beta 11), which generates 

voxel-wise estimates of So and . For the purpose of these simulations, we computed a 

single So and  value as the average of the corresponding voxel-wise maps within 

significantly active voxels for the non-gated block-design experiments across all subjects 

( ; So = 1978 ± 109). BOLD contrast curves were generated for three different 

 scenarios: 1, 3 and 7% changes in .

Once these curves were available, we extracted estimates of BOLD contrast (ΔS) and OC 

weights (wi) for our three experimental TEs. These were subsequently used to compute 
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theoretical estimates of BOLD contrast for the OC approach. Fig. 2.B shows the estimated 

BOLD contrast for the middle echo (red bars) and OC (green bars) for the different 

scenarios. In all instances, the OC BOLD contrast is lower than the middle echo BOLD 

contrast; which predicts a decrease in estimates of effect size for the OC pipeline relative to 

the 1E pipeline should be observed in the experimental results.

Rapid event-related experiments

Subjects—Ten subjects (5 males, 5 females, mean ± SD age =25 ± 3 y.o.) participated in 

these experiments after giving informed consent in compliance with the NIH Combined 

Neuroscience Institutional Review Board-approved protocol 93-M-0170 in Bethesda, MD.

Experimental paradigm—The PsychoPy software (Peirce, 2008) was used for stimulus 

delivery. Eye tracking data were collected to check subject’s performance (see below for 

further description). Subjects were instructed on five different tasks prior to entering the 

scanner room. The purpose of using five distinct tasks was to engage multiple cognitive 

systems in a single event-related study to make sure the effects of pre-processing choices 

were not restricted to specific brain regions. The tasks used in these experiments are:

• Motor (MOTOR). Subjects were instructed to intermittently press one 

button of a response box with a single finger at a fixed rate of 

approximately 0.5 Hz. By using the response box we were able to 

objectively evaluate subject compliance for this task. Motor task trials 

always lasted 4 s. During these trials, three items were presented on a 

screen (Fig. 3.A): a central crosshair to aid with fixation, a left pointing 

arrow that didn’t relate to task instructions, and an integer counter to help 

subjects press the button at a constant rate. All subjects performed this 

task with the left hand except two, who were inadvertently provided with 

the response box on their right hand. The hand used during the task was 

taken into account during the analyses.

• Biological Motion Observation (BMOT). Subjects were instructed to 

observe short 4-second publicly available videos of dot patterns 

resembling biological motion such as walking, jumping, dancing, drinking 

and climbing steps. During biological motion task trials, the crosshair 

disappeared from the center of the screen and the corresponding video 

appeared on one of the two visual hemi-fields (right or left; Fig. 3.B). The 

position of the videos was randomized across trials to aid with eye 

tracking data analysis.

• Passive Viewing of Houses (HOUSES). Subjects were instructed to 

attentively look at a succession of pictures of houses that appeared in the 

center of the screen (Fig. 3.C). Each house task trial lasted 4 s, during 

which subjects were presented with six different houses. Each house 

appears for approximately 170 milliseconds with a gap of approximately 

500 milliseconds in between totaling to the 4 s per trial.
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• Listening to Music (MUSIC). Subjects were instructed to attentively listen 

to 4-second recordings of music clips played by a single instrument–

namely violin, piano or drums–and to direct their gaze to the picture 

representing the instrument being played as soon as they had identified it. 

During each music trial, in addition to the auditory stimuli, subjects were 

presented with three pictures (one per instrument) located in a triangular 

arrangement on the screen (Fig. 3.D).

• Sentence Reading (READ). Subjects were instructed to covertly read 

sentences presented on the screen one word at a time (Fig. 3.E). For each 

trial, words were presented in one of the two hemifields (right or left) to 

aid with analysis of eye tracking data. All words of a trial appeared on the 

same hemifield. Each word was presented for approximately 250 

milliseconds, with gaps of approximately 100 milliseconds in between. 

Sentences ranged in length between 10 and 11 words, so each trial lasted 

either 3400 or 3750 milliseconds.

All functional runs lasted 440 s and contained a total of 30 task trials, six per task type. 

Onset times for trials were obtained with Freesurfer program optseq2 (https://

surfer.nmr.mgh.harvard.edu/optseq/), which is designed to optimize timing of events for 

event-related experiments. Three different schedules (onset times) were randomly used in 

these experiments. For all three schedules the minimum inter-stimulus interval (ISI) was 10 

s. Mean and standard deviation ISIs for the three different schedules were: 13 ± 24, 13 ± 18 

and 13 ± 15 s.

MRI data acquisition—Imaging was performed on a General Electric (GE) 3 Tesla 750 

MRI scanner (Waukesha, WI). The scanner’s body coil was used for RF transmission, and a 

32-channel receive-only head coil (GE, Waukesha, WI) was used for signal reception. 

Functional scans were acquired with a multi-echo EPI sequence (flip angle = 70° for 9 

subjects, flip angle = 60° for 1 subject, TEs = 16.3/32.2/48.1 ms, TR = 2 s, 30 axial slices, 

slice thickness = 4 mm, in-plane resolution = 3 × 3 mm2, FOV 192 mm, acceleration factor 

2, number of acquisitions = 220, bottom/ up sequential acquisitions). For one subject, 

acquisitions were interleaved, instead of sequential due to an operator error. Two functional 

runs were acquired in six subjects, and only one in the remaining four due to scanning time 

constraints.

In addition, MPRAGE and PD sequences were acquired for presentation and anatomical 

alignment purposes (axial prescription; number of slices per slab, 176; slice thickness, 1 

mm; square FOV, 256 mm; image matrix, 256 × 256).

MRI data pre-processing—Data were also pre-processed with the AFNI software (Cox, 

1996) using the three main pipelines described above: 1E pipeline, OC pipeline and ME-

ICA pipeline. All runs in this second experiment were acquired using a constant TR, 

therefore the slice time correction step is always performed with AFNI program 3dTshift.

Activation analysis—For this second experiment, each functional run was analyzed 

separately. Two different statistical analyses were conducted to generate activation maps. 
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First, we computed activation maps per task-type, taking into account all 30 trials in a run. 

Second, we attempted detection of individual trials, generating activation maps for each trial 

independently.

For the ME-ICA pipeline, degrees of freedom were adjusted to account for the number of 

removed components when computing statistical significance for this particular pipeline.

Per-task activation maps: Following each pre-processing pipeline, activation maps for the 

five contrasts of interest (e.g., music vs. rest, read vs. rest, etc.) were obtained separately for 

each run and subject using AFNI program 3dREMLFit. Motion parameters, their first 

derivatives and Legendre polynomials up to 3rd order were used as covariates of no interest. 

All activation maps were thresholded at pFDR < 0.05.

Per-trial activation maps: Following each pre-processing pipeline, activation maps for each 

individual trial of each task were also computed with AFNI program 3dREMLFit, using the 

individual modulation option (−stim_times_IM) that instructs the program to generate a 

separate regressor per individual trial so that it can compute statistics (i.e., effect size and T-

stat) for each individual task event. Motion parameters, their first derivatives and Legendre 

polynomials up to 3rd order were used as covariates of no interest. All activation maps were 

thresholded at pFDR < 0.05.

Target regions of interest—Five different target ROI sets, one per task type, were used 

in this second experiment. Three ROI sets (i.e., HOUSES, MUSIC and READ) were 

obtained using the Neurosynth tool (Yarkoni et al., 2011) and two (i.e., MOTOR and 

BMOT) using cytoarchitectural maximum probability maps distributed with AFNI.

• MOTOR ROIs. Voxels with a probability of being in task-contralateral 

anterior and posterior Brodmann Area 4 >70% according to 

cytoarchitectural maximum probability maps for these regions (Geyer et 

al., 1996) distributed with AFNI (Fig. 4.A).

• BMOT ROIs. Voxels inside bilateral human occipital visual area 5 (hOC5) 

according to cytoarchitectural maximum probability maps for this region 

(Malikovic et al., 2006) distributed with AFNI (Fig. 4.B).

• HOUSES ROIs. Voxels inside reverse inference maps generated by the 

Neurosynth tool for the concept “place” covering bilateral place 

parahippocampal region and bilateral posterior cingulate cortex (Fig. 4.C). 

No map for concept “house” is currently available at Neurosynth.

• MUSIC ROIs. These are the same ROIs derived from Neurosynth used in 

experiment one.

• READ ROIs. Voxels inside reverse inference maps generated by the 

Neurosynth tool for the concept “reading” covering primarily large 

portions of left inferior and middle frontal gyrus, the left posterior superior 

temporal gyrus, the left fusiform gyrus (e.g., visual word form area) and 

bilateral higher visual regions (Fig. 4.D).
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Performance metrics—Similarly to the block-design experiments, we evaluated the 

different pre-processing pipelines in terms of activation extent, T-statistic magnitude and 

effect size using the per-task activation maps and task-specific target ROIs. We computed the 

three metrics for each task, and then evaluated if there was any significant difference across 

pre-processing pipelines using a 3-way mixed-effects ANOVA [A = Subject|Random; B = 
Pipeline|Fixed; C = Task|Fixed] in MATLAB. Post-hoc paired t-tests between pre-processing 

pipelines were also conducted to detect significant differences between pairs of pipelines.

For the per-trial analysis, we evaluated the performance of the different pre-processing 

pipelines in terms of the percentage of detected trials. Each run contains 30 trials (6 per task) 

leading to a total of 480 trials (6 subjects × 2 runs × 5 tasks × 6 events + 4 subjects × 1 run × 
5 tasks × 6 events) in these experiments. Subjects were actively engaged in 473 of them 

according to behavioral and eye tracking data (see details below). For each attended trial, we 

evaluated its fMRI activation map, and marked the trial as “detected” if its associated 

activation map had at least 10 significantly active voxels (pFDR < 0.05) inside the 

appropriate target ROI set. Finally, percent of detected trials per task/per subject were 

computed and input to a 3-way mixed effect ANOVA and subsequent post-hoc paired t-tests 
in a manner similar to all other performance metrics.

Temporal signal-to-noise ratio (TSNR)—To evaluate how much the percentage of 

detected events correlates with initial data quality, we computed the TSNR of all scans. 

TSNR is defined voxel-wise as the ratio of the temporal average of the signal for a given 

voxel divided by the temporal standard deviation of the signal in that same voxel (Parrish et 

al., 2000). Voxel-wise TSNR values are often averaged across voxels for reporting purposes.

Here we first computed voxel-wise TSNR maps for each echo separately right after 

discarding non-steady state volumes. A single TSNR value per echo (e) and functional run 

(r) was computed as the average of TSNR values across all intra-cranial voxels in the 

imaging field of view. Additionally an overall (across echoes) TSNR value per functional 

run (r) was computed using the following equation:

(5)

Eye tracker data acquisition—An MRI compatible infrared eye tracking system, 

consisting of an infrared source and camera, mounted on top of the head coil was used to 

track the right eye’s gaze position during functional scans (Avotec Real Eye Model 

RE-5701; Avotec Inc., Stuart, FL). The eye-gaze position was sampled at a rate of 60 Hz 

using the SMI iViewX software. The PsychoPy software, in conjunction with home 

developed python add-ons for integration with iViewX (https://github.com/djangraw/

PsychoPyParadigms), was used for running the 13-point eye tracker calibration protocol, as 

well as for synchronizing eye tracker recordings with stimulus presentation during 

functional scans.
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Eye tracking/behavioral data analysis—The eye-tracking data were analyzed using 

the Open Gaze And Mouse Analyzer package (OGAMA; (Vosskühler et al., 2008)). Visual 

field areas of interest (AOI) specific to each task (Supplementary Fig. 1) were first defined 

using OGAMA’s AOI tool. We then used the OGAMA Statistics Module to compute 

fixation time and percent time inside target AOIs for each trial. We declared events as 

“valid” (e.g., subjects attended to them) if the subject’s total gaze duration inside the target 

AOI was equal or >75% of the trial’s duration. This cutoff at 75% was used to account for 

inherent jitter in the eye tracker and for blinking periods. For trials with large jitter, we used 

the OGAMA Replay Module to ensure the eye path showed a focus on the target AOI prior 

to assigning a definitive “valid” label.

For MOTOR trials, an event was declared “valid” only if in addition to fulfilling the above-

mentioned eye-tracking criteria, a minimum of 4 button presses (half the number of expected 

presses) was logged by the response box during the trial. For four functional scans button 

box responses were not recorded due to an operator’s error. Only the eye-tracking criterion 

was applied to these subjects.

For MUSIC trials, an event was declared “valid” only if in addition to fulfilling the above-

mentioned eye-tracking criteria, subjects directed their gaze towards the instrument picture 

that corresponds to the actual instrument being played during that specific trial.

Results

Block design experiments

Fig. 5 shows probabilistic maps of activation (i.e., the color of a voxel indicates the 

percentage of subjects for which that voxel was marked as statistically significant at pFDR < 

0.05) for the music vs. rest contrast for all pre-processing pipelines evaluated using the 

block-design dataset. Target ROIs are shown with a black contour. In all instances, strong 

activation was present in bilateral portions of the superior temporal gyrus, including, but not 

limited to, primary auditory cortex. Activity was present in additional regions only for a 

subset of the subjects. In all instances, ME-ICA produced the highest number of 

significantly active voxels (Fig. 6.A). Regarding the IC, only the ME-ICA pipeline detected 

activity in this structure using cardiac-gated datasets (Table 1A), and it did so for all 5 

subjects. For non-gated data, although activity could be detected in some instances, ME-ICA 

had the best sensitivity (Table 1B).

Fig. 6 shows quantitative results from the performance analyses conducted in the block-

design datasets using the Neurosynth-derived target ROI set. A significant effect for the 

“pipeline” factor was found during the ANOVA analyses for activation extent (F = 82.15; p 
< 0.05), T-statistic magnitude (F = 104.75; p < 0.05) and effect size (F = 6.12; p < 0.05) for 

the non-gated data (top row in Fig. 6). Subsequent paired t-tests between pairs of pipelines 

revealed that ME-ICA produced maps with significantly more activation extent and higher 

T-statistic than all other pipelines (marked with an asterisk in Fig. 6). For effect size, both 

OC and ME-ICA produced significantly smaller estimates than the 1E pipeline. In the case 

of cardiac-gated data (bottom row in Fig. 6), we also included in the comparison the 1E-T1C 

pipeline (orange bars). For cardiac-gated data, we also found a significant main effect for 
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pipeline in activation extent (F = 89.6; p < 0.05) and activation magnitude (F = 74.2; p < 

0.05), but not in effect size (F = 2.4; p = 0.11). ME-ICA significantly outperforms all other 

pipelines in terms of activation extent and activation magnitude, according to post-hoc 

paired t-tests (asterisks in Fig. 6). In addition, the 1E-T1C pipeline resulted in significantly 

higher activation extent and T-stat than the 1E pipeline, but significantly less than ME-ICA.

Finally, both for gated and non-gated data, the T2* pipeline (yellow bars) resulted in 

significantly lower activation extent and magnitude than both the 1E and ME-ICA pipelines 

marked with asterisks in Fig. 6.

ME-ICA reliably corrects T1 baseline shifts in cardiac-gated datasets

Performance analyses for the cardiac-gated data suggest that ME-ICA was able to effectively 

identify and remove nuisance T1-related baseline fluctuations associated with the non-

constant TR. Fig. 6 shows, for each subject, the one ME-ICA component with the highest 

rho (i.e., non-BOLD index). Such a component, which was always marked as noise by the 

algorithm, had in all cases an associated time series that correlated well (r = 0.84 ± 0.16) 

with estimates of T1 baseline signal fluctuations obtained with Eq. (1) (red traces in the Fig. 

7). Moreover, the spatial maps of these components (right of Fig. 7) resemble anatomical-

like scans with good contrast between tissue compartments (e.g., grey matter, white matter 

and CSF). These are substantially different from the spatial maps of typical noise 

components associated with motion or scanner artifacts, as well as, from spatial maps typical 

of BOLD-like components (see Supplementary Fig. 2 for representative components of each 

type).

Event related experiments

Fig. 8 shows probabilistic maps of activation across runs for the per-task analyses in all five 

tasks for the three main pipelines under evaluation (1E, OC and MEICA). The color of a 

voxel in these maps indicates the percentage of runs for which that voxel was marked as 

significant (pFDR < 0.05). Per-task target ROI sets are shown as black contours. For all tasks, 

there is an increase in the extent of areas of high probability of activation (red arrows) going 

from left (1E pipeline) to right (ME-ICA pipeline). Such increases are not constrained solely 

to the target ROIs for each task, but also happen outside them (e.g., medial supplementary 

motor cortex for the motor task). In addition, Fig. 8 shows how there is an increase in the 

extent of significantly active regions for the multi-echo pipelines, especially for ME-ICA. 

This is particularly true for subcortical regions (black arrows).

Fig. 9 shows the results for the different performance metrics for the per-task analyses. 

Similar to the block-design results, we observed an increase in activation extent and T-
statistic magnitude for the ME-ICA pipeline with respect to OC and 1E pipelines. 

Conversely, the effect size estimate decreased for the OC and ME-ICA pipelines compared 

to the 1E pipeline. This is true for all five tasks. ANOVA revealed a main effect for pipeline 

in all three metrics: activation extent (F = 90.3; p < 0.05), activation magnitude (F = 40.4; p 
< 0.05), and effect size (F = 86.9; p < 0.05). Post-hoc paired t-tests revealed significant pair-

wise differences between all pipelines for all tasks in terms of activation extent (marked with 

asterisks in Fig. 9). For activation magnitude and effect size, a significant difference between 
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ME-ICA and the 1E pipeline was detected in all instances. These results are consistent with 

those from the block design experiments and suggest that ME-ICA helps improve the 

sensitivity of rapid event-related experiments for a variety of tasks.

Finally, Fig. 10. A shows the percent of detected trials (pFDR< 0.05) for all pipelines and 

tasks coming out of the per-trial analyses. The fraction of detected trials is below 50% for 

the MOTOR, BMOT and READING task in all instances. Only the HOUSES and MUSIC 

tasks reach levels above 50% for the ME-ICA pipeline. In fact, in all cases, ME-ICA 

produced on average a larger percent of detected events than the other two pipelines (except 

for the reading task, where the OC and ME-ICA pipeline have similar results). The ANOVA 
on this metric also showed a significant main effect for the factor “pipeline” (F = 10.3; p < 

0.05), yet post-hoc paired t-tests only revealed a significant difference in percent of detected 

trials for the ME-ICA pipeline for the MOTOR, HOUSES and MUSIC tasks. When a less 

restrictive threshold (Fig. 10.B, pUnc < 0.001) is used, the number of detected events 

increases, yet the relationships between pipelines described above remain.

Detailed evaluation of individual subject results revealed substantial inter-subject differences 

in the percent of detected trials. While some subjects had relatively high detection percent 

for most tasks (e.g., above 50%), others had low detection percent (e.g., below 20%) for all 

tasks. Low detectability for individual events is expected given limitations in statistical 

power when attempting their detection on a trial-by-trial basis; yet to better understand such 

inter-subject differences, we computed TSNR for all available scans in the event-related 

dataset (Fig. 11.A). We also computed the weighted average TSNR across all three echoes as 

a proxy for overall data quality of multi-echo scans (Fig. 11.A, grey region). Fig. 11.B–D 

show scatter plots of percent-detected events versus TSNR for all three pipelines, excluding 

the scan marked as an outlier (Fig. 11.A). In all instances, including ME-ICA, we observed a 

significant correlation between percent of detected trials and initial data quality (TSNR). 

This suggests that despite the ME-ICA denoising step there is still a strong dependence of 

the results on the original quality of the data.

Number of ME-ICA components

Table 2 shows the average number of components found by the ME-ICA algorithm for all 

datasets, as well as the number of components being rejected (i.e., marked as noise by the 

algorithm).

Discussion

Here we have evaluated the performance of ME-ICA with respect to an optimal linear 

weighted combination of multi-echo time series (Poser et al., 2006; Posse et al., 1999) and 

conventional analysis of single-echo fMRI data under different task-based experimental 

setups (i.e., block designs and rapid event-related designs) and acquisition strategies (i.e., 

constant TR and cardiac-gated). In all instances, ME-ICA outperformed the other pre-

processing approaches in terms of activation extent, activation magnitude and ability to 

detect responses to individual trials. This, despite an average reduction in available degrees 

of freedom due to removal of noise ICA components (see Table 2). All together, these results 

suggest that ME-ICA can reliably help improve the sensitivity of task-based fMRI 
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experiments at the single subject level. Thus, we extend prior work focused primarily on the 

evaluation of ME-ICA within the framework of resting-state and functional connectivity 

fMRI studies.

ME-ICA for cardiac-gated acquisitions

Cardiac-gated fMRI datasets constitute a particular case of fMRI data contaminated by 

strong T1-related baseline signal fluctuations derived from non-constant acquisition times. 

As such, specific analytical techniques have been proposed for dealing with these particular 

datasets. Here, in addition to the 1E and OC pipelines, we also evaluated ME-ICA against 

two such specific methods: (a) a model-driven T1 baseline signal correction method (1E-T1C 

pipeline; (Guimares et al., 1998)); and (2) a dual-echo  estimate approach (  pipeline; 

(Beissner et al., 2010)). Our results show how ME-ICA outperformed all four pipelines in 

terms of activation extent and magnitude; suggesting ME-ICA may be the preferable 

approach for such datasets. Below we discuss the relative differences across all pipelines.

Only two pipelines, the 1E-T1C and ME-ICA, significantly outperformed the 1E pipeline in 

cardiac-gated datasets. This suggests that these two pre-processing approaches were able to 

account, at least partially, for the above-mentioned T1-related signal fluctuations. The same 

was not true for  and OC. For example, while the OC pipeline significantly outperformed 

the 1E pipeline for non-gated data, such was not the case for cardiac gating. In fact, for gated 

data, activation extent and magnitude significantly decreased for the OC pipeline relative to 

1E (Fig. 6). This is because the T1 artifacts that affect gated acquisitions are equally present 

in all echoes, and a simple linear voxel-wise combination of the different echo time series 

does not eliminate them. Contrarily, it seems to enhance them relative to other signal 

components according to our results.

In the case of the T2
* approach, this pipeline resulted in the lowest activation extent and 

magnitude for both gated and non-gated datasets. Although for the purpose of  estimation, 

data were spatially smoothed prior to computing  estimates (as previously suggested 

(Beissner et al., 2010)), numerical instabilities in the computation of the voxel-wise signal 

quotients (Eq. (1)) might have resulted in  estimates with higher noise than original single 

echo time series; leading to the reported decrease in activation extent and magnitude. 

Similarly to here, a decrease in activation extent from single echo to dual-echo  estimates 

was previously reported by Beissner et al. (2010) using a finger tapping task; suggesting this 

issue is not specific to our dataset.

The 1E-T1C pipeline significantly outperformed the 1E pipeline, yet, it still yielded 

significantly less activation magnitude and extent than ME-ICA. Moreover, the 1E-T1C 

pipeline requires accurate logging of the interval of time that elapses between consecutive 

images and relies on obtaining accurate estimations of T1 across the brain, which can be 

problematic when attempting imaging of certain structures such as the spinal cord (Xie et 

al., 2012). Here we demonstrate how ME-ICA can be a viable alternative for denoising 

cardiac-gated datasets that lacks these limitations. In addition, ME-ICA, in this context, 

provides a qualitative T1 map as a major component. This T1 map may be used for image 

registration or other analyses.
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One important factor contributing to the superior performance of ME-ICA in cardiac-gated 

data is that ME-ICA was able to reliably detect components strongly correlated with T1 

artifacts. This is clearly exemplified by the fact that ME-ICA always assigned the highest 

rho (i.e., non-BOLD likelihood) and lowest kappa (i.e., BOLD likelihood) to a component 

whose time series strongly correlated (r = 0.84 ± 0.16) with estimations of T1-related signal 

shifts associated with the irregular acquisition intervals (Fig. 7). Moreover, the average rho 

for this “cardiac-gated artifactual component” detected by ME-ICA was on average 237.1 

± 59.6. The average rho for all other noise components across all subjects in the non-gated 

datasets (which lacks such T1 artifacts) was 28.7 ± 11.0, approximately an order of 

magnitude less. This shows how robustly ME-ICA can identify this T1 artifactual component 

specific to gated datasets. It also highlights the potential of ME-ICA to identify and remove 

other T1 -related artifacts such as those associated with inflow effects in constant TR 

acquisitions, which are otherwise difficult to model and account for.

ME-ICA for constant-TR acquisitions

For non-gated data, the improvements derived from the use of ME-ICA, although also 

statistically significant relative to the other pipelines, were smaller in magnitude (see Fig. 6). 

This may have been because all pre-processing pipelines included corrective steps for 

common artifacts such as slow signal drifts (via regression of Legendre polynomials), head 

motion (via rigid spatial realignment and regression of motion estimates and their first 

derivatives) and thermal noise (by means of smoothing). Our data suggest that although ME-

ICA statistically outperformed the other pipelines, the standard pre-processing pipeline was 

able to account, to a large extent, for the detrimental effects of these important 

contaminating sources, leaving a narrower margin of improvement for the ME-ICA 

algorithm. Nevertheless, the combined results from the gated and non-gated experiments 

highlight the versatility of ME-ICA to detect different types of artifacts without the need to 

adapt pre-processing pipelines to the specific characteristics of each dataset.

Detailed exploration of ME-ICA components marked as noise suggests that additional gains 

in sensitivity (relative to the other pipelines) came from the removal of physiological noise, 

scanner instabilities other than slow signal drifts, and residual head motion related artifacts. 

For all subjects and experimental paradigms, ME-ICA removed components with temporal 

and spatial patterns typical of these artifactual sources (Supplementary Fig. 2A–D). Yet, it is 

worth noticing that we still found a significant relationship between original per-run TSNR 

and detection percent of individual trials after ME-ICA (Fig. 11.D).This suggests that 

residual traces of noise persist in the data despite the application of ME-ICA, and sensitivity 

is still dependent on original data quality. Additional improvements to the ME-ICA 

algorithm and optimization of multi-echo acquisition parameters may help mitigate this 

situation (please see Future Directions below for a more detailed discussion).

All improvements in activation extent and magnitude happened despite a significant 

decrease in estimated effect size from the 1E relative to the OC and ME-ICA pipelines. 

Although an additional significant decrease in effect size from OC to ME-ICA was 

observed, it was limited to only three tasks in the event related experiments. This 

observation, combined with the fact that OC is an intermediate component of the ME-ICA 
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algorithm, suggests that the main cause of the decrease in effect size estimates is this OC 

step. This is in agreement with the simulations of BOLD contrast and OC weights shown in 

Fig. 2. The OC scheme used here corresponds to a previously proposed voxel-wise linear 

combination of multi-echo time series designed to optimize BOLD contrast-to-noise (Posse 

et al., 1999); not simply BOLD contrast. With the exception of the cardiac-gated case, the 

OC pipeline always resulted in an increase in activation magnitude and a decrease in effect 

size relative to the 1E pipeline; confirming that the OC approach yielded the expected 

overall increase in BOLD contrast-to-noise; despite a concomitant decrease in effect size.

Overall experimental decreases in effect size from 1E to OC (Nongated Block Data: 

13.14%; Event-related: 8.86%) were larger than those in the simulations (6.63%). It is 

possible that small errors in  estimates, given the limited number of echoes available, or 

the fact that we did not correct for the use of parallel imaging (Poser et al., 2006), may have 

affected weight computations and produced the observed additional decrease in effect size. 

Also, other weighting methods, such as those based on temporal signal-to-noise estimates 

(Poser et al., 2006), may help alleviate these issues. Nevertheless, despite the decrease in 

effect size estimates, the OC step led to an overall improvement in BOLD contrast-to-noise 

as evidenced by the increases in activation extent and activation magnitude. The same is true 

for ME-ICA.

Finally, it is worth noting that the performance of ME-ICA was tested for the two most 

common task-based experimental paradigms (block and event related). Moreover, for event 

related paradigms, we used five tasks expected to evoke activity in many different brain 

regions, including but not limited to, primary sensory motor cortex. In all instances, ME-

ICA outperformed the other pipelines in terms of activation extent and magnitude. In terms 

of detectability of individual events, ME-ICA did better in all tasks, although pairwise 

comparison only reached significance for three of the five tasks. These results suggest that 

our conclusions regarding the better performance of ME-ICA over traditional single-echo 

fMRI and optimal combination of multi-echo data generalize well across tasks and 

paradigms. Prior studies have demonstrated the ability of ME-ICA to improve functional 

connectivity analysis, especially for subcortical regions (Kundu et al., 2013). Our results 

suggest that ME-ICA is also a viable denoising option for traditional task-based studies. 

Further research should evaluate how ME-ICA may help increase the sensitivity and 

interpretability of studies that use naturalistic stimuli for purposes such as decoding 

(Nishimoto et al., 2011) or looking for patterns of inter-subject correlation (Hasson et al., 

2004).

Limitations of the current study

In this study, we compared ME-ICA to four other pre-processing pipelines, of which only 

one mimics single-echo fMRI protocols. Although most common pre-processing steps were 

included in the 1E pipeline, more aggressive denoising could be accomplished in single-

echo datasets using additional steps. For example, different aspects of physiological noise 

can be corrected if concurrent physiological traces (e.g., cardiac and respiration) are 

available (Birn et al., 2008; Chang et al., 2009; Glover et al., 2000); or even in their absence 

(Beall and Lowe, 2007; Behzadi et al., 2007). Manual and automatic single-echo ICA-based 
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denoising procedures (Pruim et al., 2015; Salimi-Khorshidi et al., 2014) can also help 

remove additional traces of noise. Prior research has shown that there can be substantial 

inter-subject differences in terms of optimal pre-processing pipelines (Strother et al., 2004). 

It is possible that comparison of ME-ICA against these other single-echo preprocessing 

pipelines, including subject-specific ones, would show relatively less improvements.

Also, the present study focused only on different aspects of sensitivity. The performance of 

ME-ICA ought to also be evaluated in terms of test-retest reproducibility across scans, 

subjects and sites. For example, more accurate accounting of hardware instabilities, where 

ME-ICA tends to do well, may help improve the reproducibility of single-subject results 

across sites, an important standing challenge for future clinical fMRI applications. Further 

research should evaluate these other scenarios before making any categorical claims about 

the superiority of multi-echo denoising approaches over single-echo.

Finally, in this study we used the middle echo as a proxy for standard single-echo fMRI. In 

this manner, we were able to compare preprocessing pipelines for single and multi-echo 

datasets using the same data (with the same artifacts) for all pipelines. Yet, the acquisition of 

additional echoes comes at a cost in temporal resolution. For example, single-echo runs with 

the same spatial resolution, in-plane acceleration, and number of slices of the block-design 

dataset could have been acquired using a TR of 1875 ms, instead of the current one of 2500 

ms, if the echo time were that of middle echo (TE = 31.7 ms). It is possible that additional 

data points, derived from shorter TRs, could help increase the statistical power of equivalent 

“true” single-echo datasets, and reduce the differences presented here.

Nevertheless, despite the limitations cited above, our results agree with prior reports of the 

better performance of ME-ICA for functional connectivity studies (Kundu et al., 2012). 

These, combined with experimental demonstration of its ability to separate BOLD-like (as in 

ultra-slow block designs) from non-BOLD (scanner related) slow signal fluctuations (Evans 

et al., 2015), and its ability to remove simultaneous multi-slice related artifacts (Olafsson et 

al., 2015), suggest that multi-echo fMRI acquisition strategies combined with ME-ICA are a 

versatile and powerful alternative to current single-echo fMRI acquisition and pre-

processing schemes.

Future directions for ME-ICA

Although ME-ICA was able to remove greater amounts of noise in the data than the other 

pipelines were, three different findings suggest the ME-ICA procedure could still be further 

improved. First, for the ME-ICA per-trial analyses, only 46% of individual trials were 

detected in the fMRI maps. This, despite strong evidence of subject compliance based on 

eye tracker and button box responses. Second, we found a significant relationship between 

data quality (i.e., TSNR) and individual trial percent detection after ME-ICA. These two 

observations suggest that there is room both for improvements in sensitivity and for the 

removal of residual noise. Third, detailed evaluation of ME-ICA outputs revealed consistent 

misclassification of a few clear noise-like components (see examples in Fig. 12) as “not-

noise” in all subjects. This third observation confirms that the ME-ICA algorithm did not 

correctly eliminate all potential noise components. In the remainder of this section we 
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discuss several ways in which the ME-ICA algorithm could be improved, as well as the need 

for additional systematic evaluations to optimize multi-echo acquisitions for ME-ICA.

The following are the main components of the ME-ICA algorithm (see (Kundu et al., 2012) 

for a detailed description): (1) generation of OC time series (i.e., a  weighted voxel-wise 

linear combination of all echoes); (2) spatial ICA over the OC time series to determine 

spatially independent signal components in the data; (3) computation of a per-component 

feature set aimed primarily at characterizing its TE-dependence profile; (4) classification of 

components as noise/not-noise running an empirically defined decision tree over the feature 

set; and (5) removal of noise components from the data. Of these, components 2, 3 and 4 are 

the best targets for algorithmic tuning.

Spatial ICA, the most common form of ICA in fMRI, is designed to separate spatially 

independent sources for which only linear mixtures of the sources themselves (e.g., voxel-

wise time series) are available (Mckeown et al., 1998). When applied to fMRI data, spatial 

ICA has proven successful at reliably extracting both noise (Thomas et al., 2002) and 

biologically meaningful (Smith et al., 2009) signal components. While many ME-ICA 

components show clear noise-like (their rho is among the highest and their kappa among the 

lowest; Fig. 12.B) and BOLD-like (their kappa is among the highest and their rho among the 

lowest; Fig. 12.D) profiles, there is also a non-negligible number of components whose 

kappa and rho suggest they constitute a mixture of both BOLD and non-BOLD effects (their 

position in the kappa-rho plot is near the 45° degree line; Fig. 12.A, dashed black line). 

Keeping components with a mixture of TE and non-TE dependence may translate into 

suboptimal denoising, as non-TE components remain in the data after the ME-ICA step. 

Removing them risks eliminating BOLD-effects of neuronal origin (e.g., false negatives). It 

may be possible that alternative source separation methods could better extract signal 

components with purer TE dependence profiles. Potential candidates include regionally 

restricted spatial ICA (e.g., a searchlight-like approach), independent vector analysis (Adali 

et al., 2014), temporal ICA (Smith et al., 2012) and deep learning approaches (Plis et al., 

2014). All these alternatives have been successfully applied to fMRI datasets in contexts 

other than denoising. Future research should evaluate their performance for the specific 

purpose of multi-echo based denoising.

Kappa and rho are ME-ICA’s primary way to characterize the overall TE-dependence 

profiles of ICA components. Kappa is a weighted grand-average of how well the magnitude 

of the component varies linearly with TE across the imaged volume of brain (as expected for 

pure BOLD components). Its counterpart, rho, tells on average how much the component’s 

magnitude remains constant across echoes. In theory, noise components (e.g., scanning 

artifacts and head motion artifacts) should have high rho and negligible kappa, while BOLD-

like components (e.g., task-induced activation and intrinsic resting-state fluctuations) should 

have high kappa and negligible rho. In practice, those expectations are not always met, with 

some noise components—easily identifiable as noise by their spatio-temporal patterns—

having similar kappa and rho (e.g., sitting near the 45° line in Fig. 12.A) or, even higher 

kappa than rho (Fig. 12.C). ME-ICA deals with this reality by using additional features 

during the final classification step, including explained variance, relative percentage of 

voxels fitting the two TE dependence profiles of interest (e.g., no-dependence or linear 
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dependence), and overlap between component maps and voxels that best fit each TE 

dependence profile. Moreover, ME-ICA does not operate in absolute terms of kappa and rho, 

but on their rank and relative position with respect to empirically observed inflection points 

(e.g., an elbow) in both kappa and rho spectrums that tend to indicate the border between 

mostly BOLD and mostly noise components (see Figs. 4 and 5 in (Kundu et al., 2012)). 

Despite all these safeguards, our data show how noise components, in some instances, are 

incorrectly labeled as BOLD-like (Fig. 12.C), most likely because these components have 

similar kappa and rho values, but also because they are located near the above-mentioned 

empirically defined inflection points. We believe that refinements in the computation of 

kappa and rho (e.g., better accounting for outliers in the TE fits or using a different 

weighting scheme when averaging across the brain) may help improve the profiling of 

components as BOLD and non-BOLD. In addition, the ME-ICA algorithm may also benefit 

from the inclusion of additional, not necessarily TE-based, features that may help better 

characterize noise components in a manner similar to how other automatic ICA denoising 

algorithms do (Pruim et al., 2015; Salimi-Khorshidi et al., 2014).

Finally, additional improvements to ME-ICA could come from modifying or substituting its 

current empirically defined decision tree by data driven alternatives (e.g., logistic regression, 

clustering) that may better combine the rich information gathered by the current, or a 

potentially expanded, feature set.

In addition to potential updates to the ME-ICA algorithm itself, several questions regarding 

how to best optimize multi-echo data acquisition and pre-processing for ME-ICA still 

require systematic empirical evaluation. For example, most prior studies that use ME-ICA 

acquired three or four equally spaced echoes; partly to avoid incurring large losses in 

temporal resolution. Computation of kappa and rho, the main decision criteria, relies on 

voxel-wise linear fits based on as many points as there are available echoes. The same is true 

for computation of static voxel-wise  maps later used for generation of OC time series 

(Eq. (1)). Although three points are sufficient to compute a linear fit (please see 

Supplementary Fig. 3 for representative  maps and goodness of fit in terms of the 

coefficient of determination R2), additional points can help improve the quality of the fits as 

long as these additional points are not excessively noisy. Multi-echo sequences can acquire 

more than three echoes, yet any additional echoes will have lower signal-to-noise ratio as the 

longer the time interval between the radio-frequency pulse and read-out window the lower 

the amount of signal available. Future research should evaluate the optimal number of 

echoes, and how much the specific echo times matter, for the purpose of ME-ICA denoising. 

These additional investigations should consider the use of multi-echo multiband sequences 

which now permit acquisition of additional echoes without incurring concomitant loses in 

temporal resolution. Several recent studies (Boyacioğlu et al., 2015; Olafsson et al., 2015) 

have reported that combined multi-echo/multiband approaches can help better account for 

high frequency artifacts, help with removal of physiological noise, and ultimately improve 

the spatial specificity and sensitivity of regular multi-echo fMRI. In fact, initial evaluation of 

ME-ICA with multi-echo/multiband datasets suggest that ME-ICA can clearly benefit from 

these richer datasets (Olafsson et al., 2015).
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The effect of other important acquisition parameters with the potential to alter the noise 

profile of the data such as amount of in-plane acceleration, multi-slice acceleration factor or 

flip angle should also be evaluated systematically. Finally, another important factor to 

consider is the effect that other pre-processing steps may have on the ME-ICA algorithm. 

For example, any registration step will come at the cost of spatial smoothing. While spatial 

smoothing may help remove thermal noise and aid with ICA convergence, it may also 

produce undesired mixing of BOLD and non-BOLD signals, making their separation and 

consequent classification more difficult. It may be possible that ME-ICA may benefit from 

conducting the TE-dependence analysis at an earlier pre-processing step than as currently 

implemented here. Empirical optimization of all these factors, combined with improvements 

in the algorithm itself, should help further improve the denoising capabilities of the ME-ICA 

methodology, and perhaps help fMRI achieve the necessary single-subject levels of 

sensitivity, specificity and reproducibility to achieve its long-term goal of entering routine 

clinical practice.

Conclusion

In this study, we evaluated the performance of the ME-ICA denoising technique for task-

based fMRI studies at the single-subject level under different experimental scenarios. In all 

instances, ME-ICA showed superior sensitivity to the other two alternatives under 

evaluation, suggesting its potential suitability for clinical applications where group 

averaging is not possible. ME-ICA performed especially well in cardiac-gated datasets, 

where we demonstrated how it was able to reliably remove T1 artifacts associated with 

irregular repetition times.
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Fig. 1. 
Target ROIs for the performance analysis of block-design dataset. (A) Target ROI obtained 

with the Neurosynth tool for the concept “music”. (B) Spherical ROIs sitting on bilateral 

inferior colliculus.
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Fig. 2. 
(A) Simulated BOLD contrast curves for echo times ranging from 0 to 200 ms for three 

different amounts of task-induced ΔT2
* (i.e., 1%, 3% and 7%; black curves). Estimated OC 

weights according to Eq. (1) for the same range of echo times are shown in green. (b) 

Simulated effect size (i.e., BOLD contrast) for the 1E and OC pipelines for the three 

different ΔT2
* scenarios.

Gonzalez-Castillo et al. Page 27

Neuroimage. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Sample screenshots for each of the five tasks under evaluation in the rapid event-related 

experiments. (A) Motor task. (B) Biological motion detection task. (C) Houses visualization 

task. (D) Music listening task. (E) Sentence reading task.
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Fig. 4. 
Target ROI sets for the rapid event-related experiments. (A) Target ROIs for the motor task. 

(B) Target ROIs for the biological motion observation task. (C) Target ROIs for the house 

visualization task. (D) Target ROIs for the sentence reading task.
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Fig. 5. 
Probabilistic maps of activation across subjects for all pre-processing pipelines for both 

acquisition schemes (cardiac-gated and non-gated). The color of a voxel indicates the 

percentage of subjects for which that voxel became significant at pFDR < 0.05. In all 

instances, activity was detected in portions of the superior temporal gyrus. IC activation was 

present more consistently across subjects only for the ME-ICA pipeline (see Tables 1A and 

B). Target ROIs are shown with a black contour.
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Fig. 6. 
Performance analysis results for the block-design dataset. The top row shows the results for 

the non-gated data and the bottom row for the cardiac-gated. Post-hoc paired t-tests that 

reached significance (p < 0.05) are marked with an asterisk.
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Fig. 7. 
ME-ICA components marked as noise and showing the largest correlation with the 

estimation of T1-related signal changes derived from irregular TR in cardiac-gated 

acquisitions. For each subject we show the ME-ICA component spatial map on the right, its 

associated time series in black and the estimation of T1-related signal change for that subject 

in dashed red. All time series are normalized (mean of zero and standard deviation of one) 

so that similarities in shape can be better visualized. Light grey vertical lines indicate actual 

acquisition times of the MRI volumes. Dark grey rectangles signal the times associated with 

discarded volumes at the beginning of each run. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. 
Probabilistic maps of activation across runs for the per-task (rapid event-related) analysis for 

all five tasks and three pre-processing pipelines. While a total of 16 runs contributed to the 

probabilistic maps for the BMOT, HOUSES, MUSIC and READ tasks, only13 did for the 

MOTOR task. These 13 activation maps correspond to the runs in which subjects were 

instructed to use their left hand. Black contours show the target ROIs for each particular 

task. Colored arrows point at locations where ME-ICA resulted in greater consistency of 

activation across subjects inside (red) and outside (black) the target ROIs.
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Fig. 9. 
Performance analysis results for the rapid event-related dataset/per-task analyses. Post-hoc 

paired t-tests that reached significance (p < 0.05) are marked with an asterisk.
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Fig. 10. 
(A) Average percent of detected trials across tasks (pFDR < 0.05) and pre-processing 

pipelines for the per-trial analysis of the rapid event-related dataset. Significant pair-wise t-
tests are marked with an asterisk. Error bars represent standard error. (B) Same as (A) for 

pUnc < 0.001.
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Fig. 11. 
(A) TSNR per functional run and echo time. The weighted average TSNR across all three 

echoes is also presented (grey box). TSNR reported in terms of the median (dot), 25–75% 

percentiles (box), and most extreme data points not considered outliers (dotted whiskers). In 

addition, outliers are marked with a (+) symbol. (B) Scatter plot of percent detected trials 

(pFDR < 0.05) for the 1E pipeline versus temporal signal-to-noise ratio (TSNR). Each circle 

represents a different functional scan and the dashed line represents a least-squares linear fit 

to the data. (C) Same as (B) for the OC pipeline. (D) Same as (B) for the ME-ICA pipeline.
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Fig. 12. 
(A) Kappa – Rho spectrum for the ME-ICA decomposition of a representative subject that 

participated in the rapid event-related experiments. Each dot represents a component. The 

color of the dot indicates whether the component was marked as noise by the ME-ICA 

algorithm (red) or not-noise (green). The size of the dots is proportional to the amount of 

variance explained by the component. A dashed black line indicates locations in the plane 

where kappa equals rho. (B) Time series and spatial maps for three different noise 

component correctly identified as noise by ME-ICA. For the particular case of component 

C3, the component had high temporal correlation (r = 0.87) with traces of head displacement 

in the AP direction (dashed red line). (C) Time series and spatial maps for two noise 

components incorrectly identified as BOLD by ME-ICA. (D) Time series and spatial maps 

for two BOLD components correctly identified by ME-ICA. For all components a label or 

black arrow indicates its location in the kappa-rho spectrum (A).
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Table 2

Summary of ME-ICA components.

Experiment Repetition time Total # components # rejected components

Block design Constant 84 ± 26 34 ± 8

Non-constant 142 ± 106 51 ± 37

Event related Constant 149 ± 36 54 ± 20
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