
Fast imaging of mean, axial and radial diffusion kurtosis

Brian Hansen1, Noam Shemesh2, and Sune Nørhøj Jespersen1,3,*

1Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus 
University, Aarhus, Denmark

2Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, 
Portugal

3Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark

Abstract

Diffusion kurtosis imaging (DKI) is being increasingly reported to provide sensitive biomarkers of 

subtle changes in tissue microstructure. However, DKI also imposes larger data requirements than 

diffusion tensor imaging (DTI), hence, the widespread adaptation and exploration of DKI would 

benefit from more efficient acquisition and computational methods. To meet this demand, we 

recently developed a method capable of estimating mean kurtosis with only 13 diffusion weighted 

images. This approach was later shown to provide very accurate mean kurtosis estimates and to be 

more efficient in terms of contrast to noise per unit time. However, insofar, the computation of two 

other critical DKI parameters, radial and axial kurtosis, has required the estimation of all 22 

variables parameterizing the full DKI signal expression. Here, we present two strategies for 

estimating all of DKI’s principal parameters – mean kurtosis, radial kurtosis, and axial kurtosis – 

using only 19 diffusion weighted images, compared to the current state-of-the-art acquisitions 

typically requiring about 60 images. The first approach is based on axially symmetric diffusion 

and kurtosis tensors, presented here for the first time, and referred to as axially symmetric DKI. 

The second approach is applicable in tissues with a priori known principal diffusion direction, and 

does not require fitting of any kind. The approaches are evaluated in human brain in vivo as well 

as in fixed rat spinal cord, and are demonstrated to provide metrics in good agreement with their 

full DKI counterparts estimated with nonlinear least squares. For small data sets and in white 

matter, axially symmetric DKI provides more accurate and robust estimates than unconstrained 

DKI. The significant acceleration achieved further paves the way to routine application of the 

technique.
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Introduction

Diffusion kurtosis imaging (Jensen and Helpern, 2010; Jensen et al., 2005) continues to 

attract increasing interest, due to its potential sensitivity to tissue microstructural properties 

not captured by the diffusion tensor. Parameters derived from the diffusion kurtosis tensor 

have been shown to provide complementary information to those based on the diffusion 

tensor in several studies. In stroke for example, kurtosis based parameters improve the 

detection of tissue changes (Rudrapatna et al., 2014), and mean kurtosis remains elevated 

after mean diffusivity normalizes (Weber et al., 2015). In demyelinating diseases such as 

multiple sclerosis, kurtosis derived parameters are associated with cognitive deficits (Bester 

et al., 2015) and detect cortical alterations, whereas DTI parameters are not (or could not be 

detected) (Guglielmetti et al., 2016). Similar benefits of DKI have been reported in mild 

traumatic brain injury e.g. in (Grossman et al., 2012), see also review of DKI in this context 

in (Ostergaard et al., 2014). DKI has an increased number of parameters compared to DTI 

(22 versus 7), and hence, the estimation of DKI metrics requires substantially more data. A 

traditional DKI acquisition samples 30 directions at 5 b-shells (Poot et al., 2010), although 

more modest protocols with 30 directions at two non-zero b-values can also provide 

satisfactory estimation quality (Fieremans et al., 2011). While important for research, such 

lengthy MRI protocols are an obstacle for clinical adaptation, where time is often limited, 

especially when the practical clinical utility of DKI is not yet fully validated. This imposes a 

significant constraint towards routine implementation of DKI, as well as its testing in 

different clinical scenarios. We recently proposed a fast imaging framework, capable of 

estimating mean kurtosis on the basis of only 13 (139 protocol (Hansen et al., 2013a)) or 19 

(199 protocol (Hansen et al., 2015)) diffusion weighted images. In contrast to other methods 

suggested to accelerate DKI by reducing the data requirements (Giannelli and Toschi, 2016; 

Golkov et al., 2015; Tachibana et al., 2015), our approach does not rely on additional 

assumptions or approximations beyond the few already inherent to DKI. Our approach was 

later adopted and validated in a rat model of stroke (Sun et al., 2014), and applied in human 

cancer patients, where it was shown to discriminate among different brain tumor types 

(Tietze et al., 2015). Very recently, the 139 fast DKI protocol was shown to afford higher 

contrast to noise ratio per unit time compared to a routine DKI protocol (Wu et al., 2016b).

While the 139/199 schemes have enabled a substantial acceleration for mean kurtosis 

imaging with very high parameter fidelity comparable to standard estimation methods 

(Hansen et al., 2015), it has not previously allowed estimation of axial and radial kurtosis 

values. Indeed, the most general DKI signal involves 22 parameters, which cannot all be 

determined in the absence of prior knowledge with only 19 measurements. Although 

published studies have identified mean kurtosis as a kurtosis parameter that can be 

sufficiently sensitive to provide contrast in disease, some also report differences in axial and 

radial kurtosis (Conklin et al., 2016; Guglielmetti et al., 2016; Kelm et al., 2016; Nie et al., 

2015). Moreover, in highly directional tissues, such as e.g. spinal cord (Cheung et al., 2008; 

Hui et al., 2008b), changes in mean kurtosis are more difficult to interpret, as they combine 

properties across directions that are expected to behave quite differently. This incentivizes 

the development of accelerated DKI acquisition and analysis schemes, capable of extracting 

these salient DKI driven metrics.
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Here we propose and evaluate two new approaches to measure axial and radial kurtosis, in 

addition to mean kurtosis, using the 199 protocol. The first approach for fast estimation of 

axial and radial kurtosis works by approximating the diffusion signal using axially 

symmetric diffusion and kurtosis tensors. This reduces the total number of DKI parameters 

to only 8, and it is therefore possible to determine them all by nonlinear fitting to the 19 

measurements acquired with the 199 protocol. Axial symmetry is likely to be a reasonable 

approximation in certain types of tissues, such as in major white matter fiber bundles in the 

brain, as well as in the spinal cord and peripheral nerves. The second approach does not 

require fitting and does not assume axial symmetry, but necessitates a priori knowledge of 

the principal axis of the diffusion tensor. This makes the approach best suited for certain 

applications, e.g. spinal cord or peripheral nerve imaging. Here we illustrate both approaches 

with diffusion weighted imaging of the human brain, as well as the rat spinal cord, and 

compare the performance of the two approaches to each other, and to conventional DKI 

metrics. We also provide freely available code allowing interested researchers and clinicians 

to analyze DKI data with our methods.

Theory

The basic equation of DKI signals reads

(1)

where b is the diffusion weighting applied along n̂ = (nx, ny, nz), D is the diffusion tensor, 

and subscripts label Cartesian components (e.g. i = x,y,z). The kurtosis tensor W and the 

apparent excess kurtosis K (n̂) are defined as in (Jensen et al., 2005). On this basis it was 

shown that the mean (of the) kurtosis tensor, W̄ or MKT, being defined as the directionally 

averaged observed kurtosis

(2)

over the sphere S2, may be obtained from W (n̂) along nine distinct directions, n̂(i), n̂(i+) and 

n̂(i−) (i=1,2,3) (Hansen et al., 2014a; Hansen et al., 2015; Hansen et al., 2014b), defined in 

Table 1. This was shown to follow from the identity

(3)
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A protocol acquiring one b=0 image and all nine directions in Table 1 at two b-values, b1 

and b2 (hence we refer to this as the 199 protocol (Hansen et al., 2015)), allows one to use 

Eq. (3) to form a set of two equations with two unknowns D̄ and W̄:

(4)

and solve to obtain estimates for D̄:

(5)

and for W̄:

(6)

Note that a similar procedure cannot be applied to the estimation of conventional mean 

kurtosis (MK or K̄) (Jensen et al., 2005), because of the multiplication with D(n̂) in Eq. (1).

Axial K|| and radial K⊥ kurtosis were originally defined by Hui and colleagues (Hui et al., 

2008a, b) in terms of the apparent kurtosis K (n̂) along the direction of the diffusion tensor 

eigenvectors, v1, v2 and v3 in order of decreasing diffusivities λ1, λ2 and λ3 as

(7)

The latter equalities apply in the principal coordinate system in which v1, v2 and v3 are 

parallel to the z, y and x axes, respectively. A so far unreported effect of the original radial 

kurtosis in Eq. (7), is that it is not rotationally invariant. Fundamentally, this is related to its 

definition in terms of the eigenvectors of D, because W does not necessarily share its 

symmetry. For example, in cases where D is approximately axially symmetric, e.g. in 

regions with fiber bundles crossing at close to right angles, the two minor diffusion tensor 

eigenvalues are approximately degenerate, and hence the associated eigenvectors can be any 

pair of perpendicular vectors in the transverse plane. In such a case, they are effectively 

determined by fitting algorithm, initialization, and noise. However, W (as well as K (n̂) ) 
need not possess this symmetry, and as a result, radial kurtosis is not uniquely defined. In 

regions where D is isotropic (e.g. gray matter or where three fiber bundles cross at right 
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angles) the primary eigenvector direction will also be effectively random and hence both 

directional kurtosis metrics are poor reporters of underlying fiber architecture.

A more recent definition of radial kurtosis was proposed independently by Poot et al. (Poot 

et al., 2010) and Jensen et al. (Jensen and Helpern, 2010), as the average apparent kurtosis 

perpendicular to the principal diffusion eigenvector, i.e.

(8)

This definition has since become standard, and we henceforth refer to it as the conventional 

radial kurtosis. In the principal coordinate system defined earlier, K⊥ can be expressed in 

terms of elements of the kurtosis tensor and diffusion tensor eigenvalues as (Tabesh et al., 

2011):

(9)

where

(10)

In order to enable direct estimation of directional kurtosis metrics from a few diffusion 

directions, we use the mathematically more convenient kurtosis tensor W (n̂) instead of the 

apparent kurtosis K (n̂) to define axial and radial tensor kurtosis. Thus, axial tensor kurtosis 

W|| is the apparent tensor kurtosis along the primary eigenvector v1 of the diffusion tensor. In 

the principal coordinate frame of the diffusion eigenvector, where ẑ = v1, ŷ = v2, and x̂ = v3,

(11)

We define the radial tensor kurtosis W⊥ similarly to Eq. (8) by averaging W (n̂) over the 

circle S1 perpendicular to the axis of symmetry, i.e. the equator associated with the primary 

eigenvector:

(12)

The latter identity holds as long as v1 = ẑ, and does not depend on the choice of x and y 

axes. Importantly, in contrast to the original radial kurtosis in Eq. (7), our radial tensor 
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kurtosis does not only involve kurtosis along the two axes, but also a cross term Wxxyy. 

Notably, both definitions of radial kurtosis in Eqs. (8) and (12) are rotationally invariant in 

the case of degenerate minor eigenvalues of the diffusion tensor, and hence do not suffer the 

problem with the original radial kurtosis described earlier.

Using the definition W (n̂) = ninjnknlWijkl, it is straightforward to verify that radial tensor 

kurtosis can be computed from the kurtosis along 4 directions perpendicular to ẑ, for 

example:

(13)

where x̂ and ŷ may be any perpendicular directions in the plane orthogonal to the principal 

diffusion tensor eigenvector. Specifically, we may choose ŷ = v2, and x̂ = v3. This 

expression reveals an advantage of the tensor based definition radial kurtosis in that it allows 

the new radial kurtosis to be directly evaluated from the kurtosis along four directions. This 

property is rooted in the order four nature of the kurtosis tensor. An expression somewhat 

similar to Eq. (12) can be found for K⊥ in (Jensen and Helpern, 2010; Tabesh et al., 2011) 

which, however, requires the diffusion tensor eigenvalues to be known, which is not the case 

in Eq. (12). We will take advantage of this property of the radial tensor kurtosis in the direct 

estimation scheme for systems with known principal axis to be discussed below.

A somewhat peculiar side effect of working with W, is the property that its value W (n̂) 
along any direction n̂ is affected by the diffusion signal in other directions due to the 

multiplication of mean diffusivity in Eq. (1): however, this may easily be avoided if desired, 

by considering instead the tensor WD̄2. In a similar vein, we note that for the comparison of 

the degree of non-gaussianity along the radial and axial directions, it is natural to consider 

for each direction separately the relative size of the second term in the cumulant expansion 

to that of the first term squared. Hence, a rescaling of the axial and radial tensor kurtosis is 

convenient, and therefore we define

(14)

This also removes the influence of the diffusion signal along other directions from the 

metrics. Note that this definition of axial kurtosis is equivalent to the conventional one Eq. 

(7), whereas the radial kurtosis in Eq. (14) in general is different from that of Eq. (8). When 

there is risk of ambiguity we refer to the Jensen/Poot definitions as  and .

Even though we here mainly employ the definitions in Eq. (14), we stress that the methods 

introduced below can also be used to extract directional kurtosis metrics defined in the 

conventional way (Jensen and Helpern, 2010; Poot et al., 2010; Tabesh et al., 2011). Matlab 

code to extract all these metrics is available at http://cfin.au.dk/cfinmindlab-labs-research-
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groups/neurophysics/software1. While the two definitions of radial kurtosis reflect similar 

physical properties, our preference for working with the present definition of radial kurtosis 

(Eq. (14)) over the conventional (Eq. (8)) include the following differences: 1) It is 

mathematically simpler than the conventional, compare Eqs. (9) and (10) with Eq. (12). 2) It 

does not necessitate eigenvalue decomposition of the diffusion tensor. In fact, the latter 

property enables estimation of radial kurtosis from 4 diffusion directions without fitting, as 

we shall see below, whereas to obtain the conventional radial kurtosis, it is necessary to 

apply either fitting or an additional assumption of axial symmetry.

In the following, we will experimentally examine properties of radial (K⊥) and axial (K||) 

kurtosis and how they can be determined rapidly with the fast kurtosis imaging protocol 

(199) proposed in Refs. (Hansen et al., 2013a; Hansen et al., 2014a; Hansen et al., 2015). 

First however, we present the theoretical backgrounds of the two methods.

Kurtosis for axially symmetric systems: axially symmetric DKI

In general, the kurtosis tensor has 15 independent parameters assuming full permutation 

symmetry of its indices (Jensen and Helpern, 2010; Jensen et al., 2005). In a system with 

axial symmetry (taking the z-axis to be parallel to the axis of symmetry), the kurtosis is 

characterized by three independent parameters, for example W̄ (mean kurtosis), K|| (axial 

kurtosis, z-axis) and K⊥ (radial kurtosis, xy-plane). This can be seen for example by 

considering the Laplace expansion of W (n̂) : Since it is a quartic form in n̂, the Laplace 

expansion involves only spherical harmonics Ylm up to order l=4. Furthermore, due to anti-

podal symmetry, only even l terms appear, and the azimuthal symmetry further selects only 

the m=0 zonal spherical harmonics. This leaves only the three real coefficients of Y00, Y20 

and Y40 to be specified. The axis of symmetry must be specified as well, leaving a total of 

only 5 degrees of freedom for an axially symmetric kurtosis tensor. In contrast to the 

diffusion tensor, the mean kurtosis is independent of the radial and axial kurtosis, which also 

applies to the earlier definitions (Hui et al., 2008a, b) (Jensen and Helpern, 2010; Poot et al., 

2010; Tabesh et al., 2011). The reason for this has to do with the property that apparent 

kurtosis evaluated along a direction in the yz-plane, e.g., involves cross terms such as Wyyzz, 

which do not appear in radial nor axial kurtosis. Importantly, we note that the conventional 

and present definitions of radial kurtosis coincide for axially symmetric systems.

In an axially symmetric system, with the z-axis chosen to be parallel to the axis of 

symmetry, the kurtosis along an arbitrary direction characterized by a polar angle θ is then:

(15)

Similarly for D(θ)

1If accepted
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(16)

This can be straightforwardly verified by computing the mean, axial, and radial kurtosis 

from Eq. (15) using their definitions in Eqs. (2), (11) and (12). Note that in axially 

symmetric systems, the present definitions of both radial and axial kurtosis are identical to 

the conventional definitions. If the direction of diffusion weighting is not well defined, such 

as when cross terms from imaging gradients are significant, it is necessary to have explicit 

and coordinate independent tensor forms:

(17)

(18)

where I in Eq. (18) is the identity matrix and u is a unit vector along the axis of symmetry. 

The tensors P,  and Q are defined as

(19)

This allows contraction of the tensors with the appropriate b-matrices, as needed for 

computing the signal, cf. Eq. (1):

(20)

(21)

Here Tr(b) is the trace of the matrix b, and we use ⊗ to denote the tensor product; e.g. for 

two second order tensors A and B, the tensor product A⊗B is an order four tensor with 

Cartesian components (A⊗B)ijkl = AijBkl.

In the following, we analyze human brain and rat spinal cord diffusion MRI data using the 

assumption of axially symmetric tensors — i.e., axially symmetric DKI with only 8 
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parameters. The idea is that using the 199-scheme allows us to fit the 19 signals to Eq. (1), 

enabling a fast determination of the 8 unknown parameters fully characterizing the DKI 

signal.

Axial and Radial Kurtosis for systems with known principal axis: direct 199 approach

For this approach, we assume the principal axis to be known in advance, and define it to be 

the z-axis. Then axial and radial kurtosis can be rapidly estimated from five of the directions 

already included in our 199 design. On the basis of Eqs. (1) and (13) it can be 

straightforwardly worked out that

(22)

analogously to Eq. (4), but note that Ai is not the same in the two equations. Acquiring this 

at two shells (with b-values b1 and b2), we can solve for radial diffusivity defined in the 

standard way

(23)

and radial tensor kurtosis

(24)

Mean diffusivity D̄ is estimated from the same data using the procedure outlined in detail in 

(Hansen et al., 2013a; Hansen et al., 2015). The axial kurtosis can be estimated quite simply 

from measurements at two b-values along the axial direction, i.e. n̂(3). With this procedure, 

no fitting is involved to obtain any of the metrics W̄, K⊥ and K|| as well as analogous 

diffusion tensor metrics, and even the full diffusion tensor (Hansen et al., 2015) can be 

obtained with fitting. This means that the conventional radial and axial kurtoses, which 

require all three diffusion tensor eigenvalues for their calculation, can also be estimated with 

this method using the theory in (Tabesh et al., 2011). All of the above assumes that the axis 

of symmetry is known in advance, such that the scheme can be applied with one of the axes 

aligned with it (here the z-axis). Below, we test this approach in rat spinal cord, where the 

primary diffusion eigenvector in the spinal cord’s white matter is assumed to be along the 

spinal cord longitudinal axis, as clearly demonstrated in (Flint et al., 2010; Hansen et al., 

2011).
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Methods

Human data was acquired in a normal volunteer on a Siemens Trio 3T using a 32 channel 

head coil and a double spin echo DW EPI sequence with cerebrospinal fluid (CSF) 

suppression by inversion recovery as per (Jones et al., 2013). Padding was used to avoid 

head motion during the acquisitions. Image resolution was 3 mm isotropic with an SNR of 

39 at b=0. Throughout SNR was calculated as the average of a homogenous signal region 

divided by the standard deviation of the signal in a background region, corrected for 

Rayleigh distribution in a standard manner. A total of 19 slices were acquired, with 

TR=4300 ms, TE=103 ms. Data consisted of one b=0 image and 14 shells with 33 directions 

at b-values of 0.2–3.0 ms/μm2. The 33 directions were chosen from a 3 dimensional 24 point 

spherical 7-design (Hardin and Sloane, 1996), appended with the 9 directions (Table 1) 

identified previously (Hansen et al., 2013a). Human data was acquired by permission from 

the local ethics committee and informed consent was obtained prior to acquisition.

Data from rat spinal cord was acquired using an ultrahigh-field 16.4T Bruker Aeon Ascend 

magnet (700MHz proton frequency) equipped with gradients capable of producing up to 

3000mT/m in every direction (MICRO5 micro-imaging gradients, Bruker Biospin, Ettlingen, 

Germany). All animal handling was done in accordance with EU directive 2010/63/EU for 

animal experiments, and approved in advance by the Champalimaud Centre for the 

Unknown’s animal ethics committee. A Long-Evans rat, 14–16 weeks old, was perfused 

with 4% PFA and the cervical spinal cord (SC) was isolated, washed in PBS, placed in a 

5mm NMR tube and placed in the magnet with its length axis aligned with the main 

magnetic field. Diffusion weighted imaging (with echo-planar readout) with TR/TE = 

4000/35 ms and 4 averages was performed with in-plane resolution of 36×36 μm2 and a slice 

thickness of 1 mm using axial slice orientation and 70% k-space coverage for acceleration. 

SNR at b=0 was larger than 60. Diffusion times (Δ/δ) were 10ms/2ms, and diffusion 

gradients sampled the same directions as for the human brain data set but with 9 nonzero b-

values having nominal values linearly interspersed between 0.6 ms/μm2 and 5.4 ms/μm2. 10 

b=0 images were acquired.

Postprocessing

All data sets were evaluated visually for quality (artifacts, subject/sample movement, and 

field drift). Due to the padding around the subject’s head, image registration was found to be 

unnecessary. This was also the case for the rat spinal cord sample held in the NMR tube. To 

reduce the impact of Gibbs ringing, smoothing with a two-dimensional Gaussian filter 

(FWHM 1.75 x voxel size) was applied to the human in vivo data set (Tabesh et al., 2011). 

Nonlinear least squares fitting was applied with Levenberg–Marquardt algorithm 

implemented in Matlab® (Natick, Massachusetts). In the case of fitting to the axially 

symmetric DKI model, we found that a good starting guess for the axis of symmetry was 

crucial. Here, we used the primary diffusion eigenvector of the diffusion tensor, which can 

also be estimated from the 199 data sets. The axially symmetric DKI representation was 

applied both to the full data sets, and to subsets corresponding to the 199 protocol. For the 

human data set, the 199 data set was selected from the b=1.0 ms/μm2 and b=2.6 ms/μm2 

shells, whereas for the rat spinal cord b=1.3 ms/μm2 and b=5.5 ms/μm2 were used, mainly 
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due to the lower temperature in the magnet bore which renders the intrinsic diffusion 

processes slower compared to those in the living human brain. The direct 199 approach 

applicable in tissues with known primary diffusion direction was applied to the rat spinal 

cord data with b-values of 1.9 ms/μm2 and 5.5 ms/μm2. For the evaluation of direct 199 

performance in rat spinal cord, gray and white matter was segmented manually on an FA 

map based on known spinal cord anatomy.

Results

Figure 1 compares (from left to right) the proposed radial K⊥ and axial K|| kurtosis and 

MKT (i.e. W̄) (top row) to the conventionally defined counterparts (middle row) in human 

brain. Radial and axial diffusivities, along with FA, are also shown for comparison (left to 

right, bottom row). The diffusivities are given in units of μm2/ms. MKT and MK appear 

quite similar, as also noticed previously (Glenn et al., 2015; Hansen et al., 2013a; Hansen et 

al., 2014a; Hansen et al., 2014b; Sun et al., 2014). The overall contrast in the two radial 

kurtosis maps likewise appears qualitatively similar, and both appear somewhat FA 

weighted. Nevertheless, conventional K⊥ has higher numerical values in white matter than 

K⊥. The two maps of axial kurtosis K|| are identical by construction.

The difference between the Jensen/Poot definition and our K⊥ is examined in more detail in 

Fig. 2, which shows a map of their relative difference and the corresponding histogram. It is 

clear that the largest differences occur mostly in white matter, though some cortical areas 

show some slight differences as well. While the histogram is sharply peaked around zero, it 

also reveals a fat tail of voxels with  larger than K⊥ with up to 100%.

Axially symmetric DKI

Figure 3 is also based on the human brain data and compares the K⊥, K||, and MKT (left to 

right) estimates from axially symmetric DKI to those obtained from the fits to general DKI 

(top row). The axially symmetric model estimates were obtained in two ways: fitting the 

axially symmetric DKI to the full data set (middle row) and to a 199 subset of the data 

(bottom row). The agreement between the maps based on axially symmetric DKI and those 

based on unconstrained DKI is striking, and one has to scrutinize the maps to detect 

differences. The reduced data set is unsurprisingly seen to produce noisier maps, but the 

contrast remains quite similar.

A more detailed comparison is illustrated in Fig. 4 with scatterplots (human white matter, 22 

slices) between general DKI and axial DKI for each parameter (top row), and between axial 

DKI and axial DKI analysed with 199 subsampled data (bottom row). The best fit straight 

line is added, and points are color coded according to 6 levels of FA. Mean kurtosis is very 

well reproduced with the axial assumption, and displays a correlation coefficient of 0.996 to 

that obtained from conventional DKI. Here, and in the following, all reported correlation 

coefficients are Pearson’s correlation coefficients. Radial and especially axial kurtosis show 

a bit more scatter, but with correlation coefficients of 0.99 and 0.95, respectively. Upon 

reducing the data to the 199 subset, more scatter in all the three metrics is observed, with 

axial kurtosis again showing the poorest correspondence. Moreover, the best fit straight lines 

deviate more from the identity. For both the full and 199 data sets, better agreement is found 
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in the higher FA regions, and this tendency is especially pronounced for axial and radial 

kurtosis and in the reduced data set. Nevertheless, a strong linear correlation remains, with 

correlation coefficients of 0.78, 0.58, and 0.90 for radial, axial and MKT respectively.

The reason for the good overall agreement in Fig. 4, is not necessarily that the DKI signal is 

axially symmetric in all brain voxels. In Fig. 5, the radial variability of the kurtosis W (n̂) is 

investigated through the difference α = (Wmax − Wmin)/W⊥ between the maximum and 

minimum kurtosis values in radial directions, relative to the mean (i.e. radial tensor kurtosis 

W⊥). The histograms in Fig. 5a show the distribution of α for the full DKI fitted to actual 

data (blue) and to data synthesized from the axially symmetric fit (orange). The fits were 

based on equal data amounts and noise was added the synthetic signal to match the 

experimental SNR = 39 at b=0). Maps are provided in panels b and c where it can be seen 

that while α is typically on the order of 10%, it approaches 100% in several voxels, and in 

particular is much larger for real data (panel b) than the same quantity computed from 

artificial data generated directly from the previously estimated axially symmetric tensors, 

and refitted to the full DKI signal (panel c). Finally, an F-test comparing the goodness of fit 

of full and axially symmetric DKI to the complete data set favors the full representation in 

the far majority of voxels (data not shown).

In a follow-up analysis, we compared the precision and accuracy of kurtosis metrics 

estimated with a standard protocol with 1×30×30 directions at b=0, 1000 and 2600 ms/mm2 

from axially symmetric DKI and unconstrained DKI with simulated data (SNR=39) from a 

typical white matter and a typical gray matter voxel. Figure 6 shows histograms over 1000 

noise repetitions, and indicates that axially symmetric DKI slightly outperforms 

unconstrained DKI in white matter, especially in terms of bias. The advantage of axially 

symmetric DKI further improves when the number of directions is decreased more. The 

histogram median and mid-95% range (distance between 2.5% and 97.5% quantiles) are 

provided in each graph.

Figure 7 is similar to Fig. 3, but for the spinal cord data. Here, radial and axial diffusivity 

and fractional anisotropy are also shown (top row) to demonstrate the different 

microstructural information conveyed by the kurtosis metrics. The remaining rows show K⊥, 

K||, and MKT (left to right). Again, parameter maps based on the full data set (conventional 

DKI in second row and axially symmetric DKI in the third) are highly similar, whereas the 

199 data set (bottom row) gives noisier maps of very similar contrast.

The scatterplots in Fig. 8 for all three kurtosis parameters shown in Fig. 7 demonstrate an 

excellent agreement between full tensor metrics and axially symmetric DKI metrics (top 

row): all correlation coefficients are above 0.99. For the metrics obtained by fitting to the 

199 subset, correlations decreased to 0.94, 0.92, and 0.96 for radial, axial and MKT, 

respectively. Furthermore, axial kurtosis and mean kurtosis show a small propensity for 

underestimation.

Direct 199 approach

Next, we examine the 199 approach, which as described above is based on an a priori 

knowledge of the primary diffusion direction, here assumed to be the z-axis parallel to the 
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long axis of the spinal cord. Figure 9 (bottom row) shows the direct 199 estimate of the three 

kurtosis metrics (from left to right: K⊥, K||, and W̄) computed from the weighted sum of log 

signals Eqs. (24) and (6). The 199 estimates again display overall similar contrast to the 

measures obtained from fitting to the full data set (top row), although they clearly have more 

noise.

Finally, Fig. 10 is a scatterplot of the data corresponding to Fig. 9. The overall correlation 

between the two methods is 0.87, 0.88, and 0.94 for radial, axial and mean tensor kurtosis 

respectively. For radial kurtosis, the most scatter is seen in the white matter (blue points), in 

contrast to axial kurtosis which displays more scatter in gray matter (green).

Comparing estimates of D⊥, D||, and FA from the three presented methods to conventional 

DKI in the rat spinal cord data the similarity of the maps is again striking with all 

correlations above 0.91 for D⊥, 0.94 for D||, and 0.98 for FA (data not shown).

Discussion

In this paper, we evaluated two new methods to estimate radial and axial kurtosis from 

reduced diffusion weighted imaging data sets, to facilitate faster DKI, which in turn could 

enable a much broader range of applications of this important methodology. We have 

introduced a new definition of radial kurtosis, which differ from the earlier definitions in two 

ways. First, it was defined directly in terms of the more fundamental kurtosis tensor W, 

which is proportional to the fourth cumulant (Kiselev, 2011), as opposed to the apparent 

kurtosis K (n̂) used by (Hui et al., 2008a, b) and later also for the definitions in (Jensen and 

Helpern, 2010; Poot et al., 2010), which coincide with the present definition in axially 

symmetric systems. Besides mathematical convenience, defining radial kurtosis directly in 

terms of the kurtosis tensor enables direct estimation of radial kurtosis from the diffusion 

signal along four directions without fitting, as shown here. This is analogous to the mean of 

the kurtosis tensor W̄ (or MKT) introduced in (Hansen et al., 2013a; Hansen et al., 2015), 

which has contrast very similar to traditional mean kurtosis (MK/ K̄) (Jensen et al., 2005) as 

shown in (Glenn et al., 2015; Hansen et al., 2013a; Sun et al., 2014). This similarity was also 

observed here, as well as the similarity of conventional directional kurtosis metrics to the 

ones proposed here. The second way in which the new definitions differ applies only to the 

original definition of the radial kurtosis as the average apparent kurtosis along the two minor 

diffusion eigenvectors (Hui et al., 2008b). Instead, radial kurtosis was defined here via 

integration over the equator associated with the primary diffusion tensor eigenvector 

analogous to the conventional definitions (Jensen and Helpern, 2010; Poot et al., 2010). The 

originally proposed radial kurtosis does not fully reflect the values of apparent kurtosis in 

the perpendicular plane and results in a measure which is not rotationally invariant, for 

example in crossing fiber bundles where the diffusion tensor but not the kurtosis tensor is 

axially symmetric. In practice, it can render the radial apparent kurtosis noisier and less 

accurate than the radial tensor kurtosis. Strictly speaking, radial kurtosis as defined here or 

in (Jensen and Helpern, 2010; Poot et al., 2010) is not rotationally invariant either: if three 

identical fiber bundles of equal volume fractions were to cross at 90°, the diffusion tensor 

would be isotropic, but not the kurtosis tensor. Again, this would make radial and axial 

kurtosis depend on the arbitrary choice of diffusion tensor eigenvectors, which are 
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degenerate. However, we believe such a case to be very rare. Regions where such fiber 

arrangements exist may be identified by comparison of FA and Kurtosis Fractional 

anisotropy (KFA) (Hansen et al., 2013a; Jespersen, 2012) as recently demonstrated (Glenn et 

al., 2015; Hansen and Jespersen, 2016). Inspection of our human data seems to indicate that 

K⊥ is more stable than K|| in such areas. To fully escape this problem, it seems necessary to 

rely only on kurtosis tensor properties when defining directional kurtosis metrics, but due to 

the order two nature of the kurtosis tensor eigenvectors (eigenmatrices), this is not 

straightforward (Qi et al., 2009; Qi et al., 2008).

Another potential issue with both definitions of radial and axial kurtosis so far, is their 

interpretation in regions with oblate tensors of axial symmetry, for example caused by the 

crossing of two fiber bundles at close to 90°. In such regions, the axis of symmetry is 

parallel to v3 and perpendicular to the plane of the fibers, whereas the principal diffusion 

direction v1 is in the plane. Hence, axial kurtosis is not evaluated along the diffusion tensor 

axis of symmetry, but some arbitrary direction v1 perpendicular to it, and the radial kurtosis 

mixes properties along the axis of symmetry with those perpendicular to it. One could 

potentially address this problem by using the third eigenvector in place of the first in all 

equations above, in cases when the diffusion tensor is estimated to be more oblate than 

prolate, as judged by some relevant criteria, e.g. λ1 − λ2 ≤ λ2 − λ3 (Westin et al., 2002). 

However, this results in rather noisy appearing maps (data not shown). Alternatively, fiber 

decomposition (Neto Henriques et al., 2015) could be used to compute the axial/radial 

kurtosis from a weighted sum of each of the fiber contributions, as the interpretation of 

radial and axial kurtoses is clearer in the case of individual fibers. Such a method would be 

computationally much more demanding.

One strategy to reduce the onerous data requirements for the estimation of radial and axial 

kurtosis is to reduce the total number of independent kurtosis tensor elements, for example 

by imposing axial symmetry as done here. While axial symmetry is a common 

approximation for the diffusion tensor, for example in microstructural modeling (Hansen et 

al., 2013b; Jespersen et al., 2010; Jespersen et al., 2007), axially symmetric diffusion 

kurtosis tensors have to our knowledge so far not been previously described. Explicit 

expressions for DKI with axially symmetric tensors were presented, reducing the total 

number of independent parameters to 8, which should be compared to general DKI with 22 

parameters to be estimated. Corresponding Matlab scripts are freely available for usage, and 

can be downloaded at http://cfin.au.dk/cfinmindlab-labs-research-groups/neurophysics/

software2. Axially symmetric DKI signal expressions were then fit to human brain and rat 

spinal cord diffusion weighted images in order to provide estimates of W̄, K||, and K⊥. 

Perhaps somewhat surprisingly, all three metrics closely approximated the analogous metrics 

from fully general DKI in all regions of the brain.

To further investigate the reason behind this agreement, we asked whether diffusion and 

kurtosis tensors from DKI could in fact be axially symmetric, or approximately so, in the 

human brain. Maps and histograms of the radial variability (α in Fig. 5) of the apparent 

kurtosis revealed a relatively large dependence on direction, in particular there was much 

larger variability than from a signal generated with tensors having forced axial symmetry. 

This indicated that the radial variability was real, and not induced by noise or the fitting 
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procedure. Model comparisons with F tests further supported that the “ground truth” 

diffusion and kurtosis tensors are unlikely to be axially symmetric. Nevertheless, our results 

may indicate that the axially symmetric diffusion and kurtosis tensors which most closely 

approximate apparent diffusion and apparent kurtosis over all directions, have identical 

directional metrics to the underlying full diffusion and kurtosis tensors. Indeed, by using a 

spherical harmonics representation for the tensors, it is relatively straightforward to 

demonstrate that at least when the axis of symmetry is accurately estimated, the axially 

symmetric diffusion and kurtosis tensors that most closely approximate any given general 

diffusion and kurtosis tensors over all directions on the sphere, have the correct mean, axial, 

and radial diffusivities and kurtosis. Consistent with this, we showed that when the number 

of directions decreases, axially symmetric DKI provides more accurate and robust estimates 

of kurtosis metrics compared to unconstrained DKI, presumably due to the smaller number 

of parameters. For systems that do possess axial symmetry the radial kurtosis introduced 

here is identical to the conventional Poot/Jensen definition. Another advantage of axially 

symmetric DKI is its parameterization in terms of observable kurtosis metrics, which 

suggests an elegant and straightforward way to ensure nonnegative values of the apparent 

kurtosis over all directions. Rewriting Eq. (15) in terms of powers of cosine readily reveals 

necessary and sufficient conditions for the apparent kurtosis to be nonnegative to be W⊥>0, 

W||>0 and . In contrast, constraining the kurtosis to be 

nonnegative in the general case is nontrivial (Barmpoutis et al., 2009; Ghosh et al., 2014; 

Tabesh et al., 2011; Veraart et al., 2011). On the other hand, a drawback of axially 

symmetric DKI is that it does not lend itself to linear fitting, due to the inherently nonlinear 

parameterization.

When reducing the data to the 199 protocol, i.e. one b=0 image and nine directions on two 

b-shells, quite reasonable estimates of all three metrics could still be achieved, with 

correlations coefficients ranging from 0.70 to 0.94 to the metrics obtained from the full data 

set assuming axially symmetric DKI. Similar conclusions were drawn in spinal cord tissue, 

where axially symmetric DKI performed even better — in this case, all correlation 

coefficients exceeded 0.92. Presumably this can be at least partially ascribed to the simpler 

voxel composition at the resolution used to acquire the rat spinal cord data compared to 

human brain imaging, as well as the higher image quality and absence of physiological 

effects in ex vivo high field scanning. We note that that with only 8 free parameters, axially 

symmetric DKI allows estimation of all DKI metrics (regardless of definition) from small 

data sets. Here we use 199 data sets to show aspects of this, but it may be possible to 

efficiently apply axially symmetric DKI to even smaller data sets than those obtained with 

the 199 protocol. For example, as little as four directions with at least two non-vanishing b 

values may be sufficient to determine all parameters.

The second approach towards fast estimation of radial and axial kurtosis presented herein is 

somewhat less general, and requires the principal axis to be known beforehand, such that it 

may be chosen to coincide with one of the directions of the 199 protocol. This prerequisite 

could apply for spinal cord imaging, peripheral nerve imaging, or, for example, it could be 

fulfilled by fast acquisitions of the diffusion tensor followed by an alignment of the 199 

protocol with the fiber of interest. Then axial kurtosis can be determined from two diffusion 
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weighted images acquired along the known principal diffusion axis at two b-values, in 

addition to the b=0 image. Radial kurtosis likewise requires two nonzero b-values, although 

in this case 4 distinct directions are necessary on each shell. In contrast to axially symmetric 

DKI, this method involves very simple post-processing, in particular no fitting is required. 

However, if conventional radial kurtosis should be estimated, it is necessary to fit the data in 

order to estimate all three diffusion tensor eigenvalues (unless axial symmetry is further 

assumed). This is built into our freely available Matlab scripts. The direct 199 approach was 

validated in the rat spinal cord, where most of the white matter has a fairly uniform primary 

diffusion eigenvector parallel to the spinal cord axis. The resulting parameter estimates were 

a bit noisier than their counterparts based on the full data set, but had similar overall 

contrast. The overall correlation was above 0.86 for all parameters, and the estimate of K|| 

was better in white matter than in gray matter, as expected.

The direct 199 approach was slightly less accurate than the axially symmetric DKI, which 

could be partly due to deviations between the actual and the assumed direction of the 

principal diffusion direction, which will inevitably occur in practice. Another advantage of 

axially symmetric DKI is its ability to completely account for the full b-matrices, which is 

important when imaging cross terms contribute significantly to the diffusion weighting. This 

is typically the case with stimulated echo sequences or on animal systems with strong 

gradients. However, these advantages have to be weighed against the substantially simpler 

and faster postprocessing of the direct 199, which can heuristically account for full b-

matrices to some degree as shown in (Hansen et al., 2015).

Conclusions

We introduced two strategies for reducing data requirements for DKI, and which may in 

particular be used with the 199 protocol introduced previously to extract additional 

information. The first was axially symmetric DKI, which operates with diffusion and 

kurtosis tensors having axial symmetry, and reduces the total DKI number of parameters 

from 22 to 8. Axially symmetric DKI was demonstrated in human brain in vivo and fixed rat 

spinal cord, and shown to provide good estimates of radial, axial, and mean tensor kurtosis, 

with reduced data demands. We also note that, in principle, all DKI parameters may be 

derived from small data sets using axially symmetric DKI. The second method was an 

extension of a previously introduced method for mean tensor kurtosis estimation, and relies 

on a priori knowledge of the primary diffusion direction. Although this method displayed 

good agreement with metrics from full DKI, its performance was slightly poorer than axially 

symmetric DKI. Both methods significantly reduce the minimum number of necessary 

diffusion weighted images, enabling accelerated imaging of the three DKI metrics, as well 

as DTI metrics.
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Figure 1. 
The top row shows the proposed radial and axial kurtosis and MKT (i.e. W̄) (from left to 

right) in human brain. The conventionally defined counterparts are shown in the middle row. 

Radial and axial diffusivities, along with FA, are also shown for comparison (left to right, 

bottom row). Diffusivities are given in units of μm2/ms.
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Figure 2. 

The map on the left shows the relative difference between the Jensen/Poot definition ( ) 

and our K⊥. The corresponding histogram is shown on the right. The figure is based on the 

same data used as in Fig. 1.
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Figure 3. 
Comparison of radial, axial, and mean kurtosis (left to right) obtained from a general DKI fit 

(top row) to those obtained from a DKI fit assuming axially symmetric kurtosis and 

diffusion tensors (middle row). Here the full data set was used in the estimation. The bottom 

row shows the parameter estimates obtained when fitting the axially symmetric model to a 

199 subset of the data.
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Figure 4. 
Scatterplots comparing radial, axial, and mean tensor kurtosis over all 22 slices in the human 

data set. Data points are color coded according to their FA values. The top panel compares 

full tensor metrics to analogous metrics obtained from axially symmetric DKI. The bottom 

panel compares axially symmetric DKI obtained using all diffusion weighted images to 

those obtained using only a subset corresponding to 199 data. Less than 4% of the data fall 

outside the shown ranges. In each plot, the red line is the identity line and the black line is 

the best straight line fit (robustfit) to the data.
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Figure 5. 
Demonstration of variability in equatorial kurtosis for the full DKI fitted to actual data and 

to data synthesized from the axially symmetric fit (equal data sizes and with noise added in 

quadrature to match the experimental SNR = 39 at b=0). Panel a) shows histograms of α = 

(Wmax − Wmin)/W⊥ for both fits (whole brain). The count in the first bin from the simulated 

signal is ~50.000. Panel b) provides maps of in five consecutive slices from the fit to actual 

data. Similarly, panel c) shows α from the fit to synthetic axially symmetric data.
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Figure 6. 
histograms of estimated kurtosis metrics errors from a) a white matter voxel (W̄= 1.07, FA= 

0.78, α= 0.28) and b) a gray matter voxel (W̄ = 0.79, FA= 0.12, α = 0.36). In each panel, the 

left column shows metrics estimated with axially symmetric DKI, whereas the right column 

estimates are based on the unconstrained conventional DKI. The data were generated 

numerically by computing the signal using full diffusion and kurtosis tensors estimated from 

the corresponding voxels in the full human brain data set with unconstrained DKI. Rician 

noise was then added to match the experimental SNR of 39, and axially symmetric DKI as 

well as unconstrained DKI was then fitted to the noisy signal. This process was repeated 

1000 times. Numbers inside each graph frame are median and mid-95% range.
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Figure 7. 
Same as Fig. 3, but for the rat spinal cord data. Top row (left to right): Comparison of radial 

and axial diffusivity (μm2/ms), and FA. In the lower panels, radial, axial, and mean kurtosis 

obtained from a general DKI fit (second row) are compared to those obtained from a DKI fit 

assuming axially symmetric kurtosis and diffusion tensors using the entire data set (third 

row) and a 199 subset of the data (bottom row).
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Figure 8. 
Scatterplots comparing radial, axial, and MKT in the rat spinal cord. The top panel compares 

full tensor metrics to analogous metrics obtained from axially symmetric DKI, where less 

than 3% of the data fell outside of the range shown. The bottom panel compares axially 

symmetric DKI obtained using all diffusion weighted images to those obtained using only a 

subset corresponding to 199 data. Less than 1% of the data are outside of the shown ranges. 

In each plot, the red line is the identity line and (when present) the black line is the best 

straight line fit (robustfit) to the data.
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Figure 9. 
Maps of radial and axial kurtosis and MKT (left to right) from the direct 199 approach with 

assumed known principal diffusion direction (bottom row). For convenience, the top row 

shows the same maps from the nonlinear least squares estimation using the full data set.
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Figure 10. 
Scatterplots corresponding to Fig. 9. Points in gray matter are in green, points in white 

matter are in blue. At most 2% of the data fall outside the shown ranges. In each plot, the red 

line is the identity line and the black line is the best straight line fit (robustfit) to the data.
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Table 1

The nine directions n̂(i), n̂(i+) and n̂(i−), i=1,2,3.

Direction x y z

n1 1 0 0

n1+ 0

n1− 0

n2 0 1 0

n2+ 0

n2− 0

n3 0 0 1

n3+ 0

n3− 0
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