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ABSTRACT 

Reinforcement learning requires the dynamic interplay of several specialized networks distributed 

across the brain. A potential mechanism to establish accurate temporal coordination among these 

paths is through the synchronization of neuronal activity to a common rhythm of neuronal firing. 

Previous EEG studies have suggested that theta oscillatory activity might be crucial in the 

integration of information from motivational and attentional paths that converge into the medial 

Prefrontal Cortex (mPFC) during reward-guided learning. However, due to the low spatial 

resolution of EEG, this hypothesis has not been directly tested. Here, by combining EEG and 

fMRI, we show that theta oscillations serve as common substrate for the engagement of separated 

sub-regions within the mPFC (the pre-Supplementary Motor Area and the dorsomedial Prefrontal 

Cortex), underlying different cognitive operations (encoding of outcome valence and unsigned 

prediction errors) through separate functional paths (the Salience and the Central Executive 

Networks). 

Keywords: Reward processing, theta oscillations, medial Prefrontal Cortex, Reinforcement 

learning 

 

 

 

  

 

 

 

 



 
2 

 

INTRODUCTION 

One of the most challenging tasks that people have to face in their everyday life is to rapidly and 

accurately adapt their behavior based on current outcomes and previous experiences. An essential 

element for successful goal-directed behavior is to continuously monitor the context, the 

predictive relation between events, and the value of outcomes in order to derive appropriate 

cognitive, affective, and behavioral adaptations. In order to accomplish this, the brain has to 

integrate information from several specialized networks, involved, among others, in attention and 

motivation. In that sense, brain regions containing converging terminals from these networks 

might represent key nodes for the integration of information across these functional paths. One of 

these structures is the medial Prefrontal Cortex (mPFC), which encompasses the supplementary 

motor area (SMA) and pre-SMA and extends rostrally along the dorsomedial prefrontal cortex 

(dmPFC) among other cortical areas (Ridderinkhof et al., 2004; Ullsperger et al., 2014). This 

large and heterogeneous cortical region has extensive connections with other parts of the brain 

involved in cognitive control and motivation among others, and has been related to the monitoring 

of diverse dimensions of outcome-processing such as value, surprise, risk or uncertainty 

(Ridderinkhof et al., 2004; Ullsperger et al., 2014). Based on this evidence, the mPFC might 

represent a key node to integrate information across different functional networks with the 

objective of performing attentional and behavioral adjustments according to environmental 

demands. 

However, in order to establish efficient communication, functional networks converging in the 

mPFC (such attentional or motivationl networks) need to be engaged into a common temporal 

context in which they can interact and influence each other. The synchronization of neuronal 

activity to a common rhythm of neuronal firing might be an ideal functional mechanism to 

establish such accurate temporal coordination among different regions and networks (Buzsáki and 

Draguhn, 2004; Womelsdorf et al., 2007). This synchronous activity gives rise to fluctuating local 
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field potentials that can be recorded on the surface of the scalp by means of 

electroencephalography (EEG) recordings. Under this context, previous EEG studies have 

identified an oscillatory component – mid-frontal theta oscillatory activity (4-8 Hz) – which has 

been suggested to play an important role in outcome monitoring processes (Cohen et al., 2011). 

In particular, this oscillatory activity has been shown to be sensitive to, at least, two different 

aspects of outcome monitoring: evaluation of the valence and the unexpectedness of the outcome 

or unsigned prediction errors (Mas-Herrero and Marco-Pallarés, 2013). These two features of 

feedback evaluation have been suggested to reflect either motivational or attentional functions of 

the mPFC (Cavanagh et al., 2011; Mas-Herrero and Marco-Pallarés, 2013). In fact, recent studies 

have pointed out that mid-frontal theta oscillations could be a common substrate for action 

monitoring processes; providing a temporal template for the coordination of the different 

networks engaged in the mPFC (Cavanagh et al., 2012). However, due to the low spatial 

resolution of EEG, it remains unknown to what extent the dynamics of this signal are reflecting 

the engagement of one single sub-region or in contrast, it reflects the simultaneous recruitment of 

several specialized sub-regions of the mPFC involved in different cognitive operations.  

In order to study this relationship, seventeen participants were involved in both EEG and fMRI 

experiments in which subjects were engaged in a reversal learning task in two separate sessions. 

In such task, participants have to constantly monitor the outcome of their choices in order to adapt 

to potential changes in the environment, as action contingencies are reversed after certain number 

of trials. We aimed to understand to what extent the modulation of mid-frontal theta oscillations 

with outcome valence and unsigned prediction errors (UPE) underlie the engagement of one 

single sub-region of the mPFC, encoding both processes; or in contrast, theta rhythms synchronize 

the action of different sub-regions of the mPFC involved in different cognitive operations, 

providing a temporal template for the integration of such computations. 
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MATERIALS AND METHODS 

Participants. Seventeen students from the University of Barcelona (M = 21.8 years, SD = 2.5, 7 

males) participated in the experiment. All participants were paid 10€ per hour and a monetary 

bonus depending on their performance. All participants gave written informed consent, and all 

procedures were approved by the local ethics committee.  

Experimental procedure. Each participant performed a reversal learning task (Cools et al., 2002) 

in two separated sessions. One in which EEG data was recorded and a second one, four months 

later, in which functional images were acquired. 

In the EEG session, the task consisted of 637 trials divided into 49 blocks (10 to 16 trials each). 

Figure 1 shows the task design. In each trial, two geometric figures (a square and a triangle) were 

presented on either side of a central fixation point. The participants were instructed to select the 

square or the triangle by pressing a corresponding button (left or right) with his/her index and 

middle finger during the presentation of the figures. The position of the figures (left or right) was 

randomized in each trial. After a delay of 1000 ms, one of two possible types of feedback was 

displayed: a green tick (reward, +€0.04) or a red cross (punishment, -€0.04). Feedback remained 

on the screen for 1000 ms. and a new trial was presented after a delay of 750 ms. On each block, 

one figure was rewarded in 75% of the trials and punished in the 25% of the trials, while the other 

was rewarded in 25% of the trials and punished 75% of the trials (Figure 1). However, at the 

beginning of each block, and without informing the participant the rule was reversed. Note that 

participants may not fully predict the occurrence of a reversal as the stimuli were the same for all 

the blocks (see Figure 1) and the length of each block varied randomly from 10 to 16 trials. Similar 

approaches have been extensively used in the literature (Cools et al., 2002, Fellows and Farah, 

2003, Cools et al., 2007, Jocham et al., 2009, Philiastides et al., 2010; Chase et al., 2011, Padrao 

et al., 2015). However, to facilitate the reversal, during the first five trials following the 



 
5 

 

contingency reversal, a selection of the previously correct stimulus resulted in punishment. All 

the trials were included in further behavioral and EEG analysis except those trials in which the 

participants did not respond in the requested time (1000 ms), which were discarded from further 

analysis. In case of late response, a question mark appeared on the screen after the stimuli. Self-

paced rest periods were given after 35-40 trials. During these pauses, the participants were told 

how much money they had earned up to that point. 

In the fMRI session, the task consisted of three runs of 104 trials each divided into 8 blocks (10 

to 16 trials each). The paradigm used in the fMRI session was the same as in the EEG session 

except that cues were presented after a variable interval (randomly jittered among 300, 800, 1500 

and 2300 ms) and the inter-trial duration was variable to set the duration of the trial to 5000 ms. 

These modifications were applied to adapt to the different technical requirements of each 

neuroimaging modality. We used standard number of trials for both fMRI (our task had 312 trials 

-104 trial per run; similar to Cools et al., 2002 or Jocham et al., 2009) and EEG (our task had 637 

gains and losses; similar to Mas-Herrero and Marco-Pallares, 2013, Chase et al., 2011 or 

Philiastides et al., 2010). 

The participants were encouraged to earn as much money as possible in both sessions. 

Reinforcement Learning Model. A Q-learning model (Watkins and Dayan, 1992) was 

implemented using the data from both sessions. The model used reward prediction error to update 

the weights associated with each stimulus and probabilistically chose the stimulus with the higher 

weight. The weights are updated using the following algorithm: 

V(a)t = V(a)t−1 +  αδ 
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where α is the learning rate and δ represents the prediction error, calculated as the difference 

between the outcome and the expectancy or weight of the selected figure. Next, softmax action 

selection was used to compute the probability of choosing one of the two options: 

𝑝(𝑎) =  
𝑒𝑉(𝑎)𝛾

𝑒𝑉(𝑎)𝛾 + 𝑒𝑉(𝑏)𝛾
 

where γ is the inverse of the temperature. γ determines the degree with which differences in 

reward values between two potential actions are translated into a more deterministic choice. 

The model was run ten times, using random initial values for each subject by maximizing the log 

likelihood estimate (LLE) with the the fmincon function of Matlab R2008. The parameters α and 

γ with the best log likelihood estimate were selected. Once α and γ were individually calculated, 

values representing the prediction error could be determined on a trial-by-trial basis. 

Electrophysiological recording. EEG was recorded from the scalp (band-pass filter: 0.01 – 250 

Hz, with a notch filter at 50 Hz; 500 Hz sampling rate) using a BrainAmp amplifier (Brain 

Products GmbH) with tin electrodes mounted in an electrocap (Electro-Cap International) located 

at 29 standard positions (Fp1/2, Fz, FCz, F7/8, F3/4, Fc1/2 Fc5/6, Cz, C3/4, T3/4, Cp1/2, Cp5/6, 

Pz, P3/4, T5/6, PO1/2, Oz) and the left and right mastoids. An electrode placed at the lateral outer 

canthus of the right eye served as an online reference. EEG was re-referenced off-line to the linked 

mastoids. Vertical eye movements were monitored with an electrode at the infraorbital ridge of 

the right eye. Electrode impedances were kept below 5 kΩ. Trials with absolute mean amplitudes 

higher than 100 uV were automatically rejected off-line. Additionally, we performed a carefully 

visual inspection of the remaining trials after this automatic rejection. As a result, 10.5% (SD = 

9.1) of the trials were rejected (Gains: M = 9.3%, SD = 8.9; Losses: M = 12.4%, SD = 9.8). 
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EEG analysis. Time-frequency analysis was performed per trial in 4 second epochs (2 seconds 

prior to feedback through to 2 seconds after) using 7-cycle complex Morlet wavelets. Changes in 

time-varying energy (square of the convolution between wavelet and signal) in the studied 

frequencies (1 to 30 Hz, in steps of one) were computed for each trial in all channels. In order to 

compare different conditions, trials associated with a specific condition were averaged for each 

subject and baseline corrected before performing a grand average. For trial-by-trial analysis, 

changes in time-varying energy in the studied frequencies with respect to the average baseline 

(100 ms before feedback onset) were computed for each trial. 

To study the relationship between mid-frontal theta activity and both outcome valence and 

unsigned prediction error, negative and positive feedback were independently sorted into ten bins 

according to the size of the absolute reward prediction error (the 10th, 20th, 30th, 40th, 50th, 60th, 

70th, 80th, 90th and 100th percentile of the range).  

For all statistical effects involving two or more degrees of freedom in the numerator, the 

Greenhouse-Geisser epsilon was used as needed to correct for possible violations of the sphericity 

assumption. The p-values following correction are reported. 

Finally, a multiple-regression analysis was performed using unsigned prediction error and 

outcome valence as predictors of mid-frontal theta power (4-8 Hz, 200-400 msec.). We then 

determined whether the values of the slopes were different overall from 0 for the group using a 

one-sample t test. A significant difference from 0 would suggest a relationship between both 

effects and increases of mid-frontal theta activity. We used these beta values as index of the 

impact of both variables on participant’s mid-frontal theta power increases to further analyze their 

relationship with the fMRI data. 
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fMRI recording. fMRI data was collected using a 3T whole-body MRI scanner (General Electric 

MR750 GEM E). Conventional high-resolution structural images [magnetization-prepared rapid-

acquisition gradient echo sequence, repetition time (TR) = 4.7 ms, echo time (TE) = 4.8ms, 

inversion time 450 ms, flip angle 12°, 1 mm thickness (isotropic voxels)] were followed by 

functional images sensitive to blood oxygenation level-dependent contrast (echo planar T2*-

weighted gradient echo sequence, TR=2000 ms, TE=35 ms, flip angle 90°). Each functional run 

consisted of 270 sequential whole-brain volumes, comprising 30 axial slices aligned to the plane 

intersecting the anterior and posterior commissures, 3.5 mm in-plane resolution, 4 mm thickness, 

no gap, positioned to cover all but the most superior region of the brain and the cerebellum. 

fMRI Analysis. Preprocessing was carried out using Statistical Parametric Mapping software 

(SPM8, Wellcome Department of Imaging Neuroscience, University College, London, UK, 

www.fil.ion.ucl.ac.uk/spm/). Additionally, image volumes with significant motion artifact were 

identified using the ArtRepair toolbox based on scan-to-scan motion (head position change 

exceeding 0.5 mm or global mean BOLD signal change exceeding 1.3%) and replaced by linear 

interpolation between the closest non-outlier volumes. From the 810 volumes acquired for each 

participant, on average, 1.1% (SD = 1.9) were corrected.  

Functional images were first sinc interpolated in time to correct for slice timing differences and 

realigned. Realigned images were then spatially smoothed with a 4 mm FWHM kernel before 

they were motion-adjusted by ArtRepair toolbox. The corrected images were co-registered to the 

mean EPI image and normalized to the ICBM152 standard template in Montreal Neurological 

Institute (MNI) space. Finally images were spatially smoothed with a 7 mm FWHM kernel. 

For the statistical model an event-related design matrix was specified using the canonical 

hemodynamic response function. Three regressor onsets were included for each trial: cue, 

response and feedback event. Response regressor also contained a parametric regressor indicating 
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whether the response was done with the index (value of 1) or the middle finger (value of 0). 

Finally, feedback regressor had two parametric regressors associated, variations in unsigned 

prediction error derived from the RL model and the outcome valence (with losses indicated with 

1 and gains as 0). At first-level, outcome valence and unsigned prediction error contrasts were 

specified for all subjects as each condition against the implicit baseline. These contrast images 

were introduced into a second level t-test analysis. All results from the fMRI analysis are shown 

at a FWE corrected p<0.05 value at peak-level with a minimal cluster size of 2 voxels. 

ROI Analysis. In order to assess the relationship between brain responses in outcome valence- 

and UPE-sensitive regions and mid-frontal theta dynamics, we defined an 8 mm radius spheres 

around the peak value of those regions sensitive to UPE and outcome valence within the mPFC – 

with the MarsBaR ROI toolbox. We extracted, for each of these regions, the average beta-slope 

from the outcome valence and UPE contrasts. Finally, stepwise linear regression analysis was 

used to assess the relationship between the fMRI measures and the beta-slopes extracted from the 

time-frequency analysis. The entry criterion was p < .05 and the exit criterion was p > .10. 

Functional connectivity analysis. For the functional connectivity analysis, an 8 mm radius ROI 

was defined around the peak value of the regions that were significantly sensitive to outcome 

valence and UPE. For each participant, the maximum peak within the ROI was analyzed. 

Individual time-courses from this ROI were extracted, and an extended model was built. This 

model included the conditions previously defined for the reversal learning task plus the extracted 

time-course and the derived psychophysiological interaction (PPI) from those regions within the 

standard PPI approach (Friston et al., 1997) as regressors. In particular, we used PPIs to test for 

higher inter-regional coupling with those regions sensitive to outcome valence and unsigned 

prediction error during outcome processing. The computed first level PPI results were taken to a 

second level one-sample t-test analysis. Results are reported at p < 0.05 (FWE-corrected) at the 

peak level with a minimal cluster size of 2 voxels. 
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RESULTS 

Behavior. The participants had similar performance levels in both the EEG and the fMRI 

sessions. Paired t-test analyses showed no differences in % of correct responses (t(16) = .94, p = 

.36) nor in the number of negative feedback before participants switch to the current correct 

response after a reversal (t(16) = 1.2, p = .24). Indeed, there were high significant correlations 

between sessions for both % of correct responses (rho(17) = .67; p = .003) and negative feedback 

perseveration (rho(17) = .80; p < .001) (Fig. 2A,B). 

Additionally, an RL model was fitted to participants’ behavioral performance in order to estimate 

single-trial prediction errors (EEG session: Pseudo-R2 = .48; SD = .10; fMRI session: Pseudo-R2 

= .45, SD = .15; no differences between sessions, t < 1). The learning rate (rho(17) = .78, p < 

.001) and the inverse of the temperature value  (rho(17) = .61, p = .01), were highly correlated 

between sessions as well (Fig. 2C,D). These results show that participants used very similar 

strategies in both sessions, suggesting that similar neuronal mechanisms were engaged.  

Relationship between mid-frontal theta and both outcome valence and unsigned prediction 

error. Similar to previous studies (Mas-Herrero et al., 2015; Marco-Pallares et al., 2008) the time-

frequency analysis revealed a clear enhancement of theta activity (4-8 Hz) in positive and negative 

feedback with its maximum values between 200 and 400 ms after feedback onset (Fig 3A). 

Topographical maps indicated that the maximum effect was localized at FCz (Fig 3C). 

In order to study whether mid-frontal theta activity within this time-frequency windows (averaged 

power from 200 to 400 msec, from 4 to 8 Hz at Fcz) was similarly modulated by unsigned 

prediction error following either positive or negative feedback, both types of feedback were split 

into 10 percentile groups (from 10th to 100th) derived from the individual distribution of UPE 

predicted on a trial-by-trial basis by the RL model (Fig 3B). These two effects, outcome valence 

(gain and loss) and UPE (10 levels), were included as within-participants factors in a Repeated 
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Measures ANOVA. The analysis revealed a main effect of outcome valence (F(1,16) = 45.11, p 

< .001) and UPE (F(1,16) = 14.26, p < .001). However, these two effects did not interact (F(1,16) 

= 1.2, p = .30). That is, increases of mid-frontal theta activity were greater following negative 

than positive feedback but increased with unsigned prediction error independently of the outcome 

valence (Fig 3D). We also tested these effects on a trial-by-trial basis, performing a multiple-

regression analysis with increases of mid-frontal theta activity – at FCz – as the dependent 

variable and outcome valence and UPE as independent variables. The beta values obtained, for 

both effects, were significantly different from 0, supporting the relationship between mid-frontal 

theta activity and these two variables, outcome valence (t(16) = 7.17; p < .001) and UPE (t(16) = 

4.79; p < .001). Topographical distribution of the beta values of the two effects showed that its 

maximum value was at Fcz (Fig.3C). 

Spatial localization of outcome valence and UPE effects. During the fMRI session, we found 

that the two main contrast – UPE and outcome valence – engaged the mPFC, but at different 

locations. Negative feedback, compared to positive, induced significant signal change mainly in 

the pre-Supplementary Motor Area (pre-SMA). In contrast, the dorsomedial Prefrontal Cortex 

(dmPFC) responded to variations of unsigned prediction errors. (Fig 4A; Table 1).  

Correlation between mid-frontal theta power and brain activity. In order to assess the 

relationship between theta sensitivity to either outcome valence and UPE evaluation, on the one 

hand, and pre-SMA and dmPFC sensitivity, on the other, we performed stepwise linear regression 

analysis. Theta sensitivity to outcome valence evaluation was only predicted by pre-SMA changes 

to outcome valence (R2 = 0.3, F(1,16) = 6.3, p = 0.02). Conversely, individual differences in mid-

frontal theta sensitivity to UPE was predicted by dmPFC sensitivity to UPE (R2 = 0.32, F(1,16) = 

7.01, p = 0.01) (Fig. 5).  
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Functional connectivity of regions sensitive to outcome valence and UPE. We then wanted to 

determine whether these two regions, with dissociable impact into mid-frontal theta activity, were 

engaged into the same network or conversely, if they presented a different connectivity pattern. 

Functional connectivity analyses of these two sub-regions support the last hypothesis (Fig. 4B; 

table 2). The pre-SMA, sensitive to outcome valence, was mainly engaged with insula, putamen 

and substancia nigra, a network also known as the salience network (SN) (Seeley et al., 2007). 

On the other hand, the dmPFC was engaged in a network involving the right dorsolateral 

prefrontal cortex (dlPFC), the ventromedial prefrontal cortex (vmPFC), and the right parietal 

cortex (PC). This network has been previously identified as the Central Executive Network 

(CEN).  

DISCUSSION 

In the present study we explored the relationship between mid-frontal theta activity and the brain 

structures associated with different aspect of outcome monitoring processes: outcome valence and 

unsigned prediction error. Seventeen participants performed a reversal learning task in two 

separate sessions in which EEG and fMRI were recorded. Present results confirm, with a new set 

of participants, our previous study (Mas-Herrero and Marco-Pallarés, 2013) showing that 

increases of mid-frontal theta (4-8 Hz) power activity at the same time window – from 200 to 400 

msec after feedback onset – are sensitive to both variations of unsigned prediction error and the 

valence of the outcome. Additionally, individual differences in these two independent effects on 

mid-frontal theta power were predicted by the activity of two sub-regions of the mPFC. The pre-

SMA sensitivity to outcome valence specifically predicted mid-frontal theta responses following 

negative compared to positive feedback. In contrast, individual differences in dmPFC sensitivity 

to UPE specifically predicted increases of mid-frontal theta power in response to variations of 

unsigned prediction error. Finally, these two sub-regions, with a differentiated effect on theta 

power increases, presented different functional connectivity profiles. While the pre-SMA was 
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functionally connected with regions of the SN, the dmPFC was engaged with a group of regions 

from the CEN. These results indicate the mid-frontal theta activity is not only reflecting activity 

of different mPFC sub-regions of one single network, but from different networks.  

Previous intracranial studies, in both epilepsy human patients (Uchida et al., 2002; Nishida et al., 

2004) and monkeys performing tasks involving executive functions and error processing 

(Tsujimoto et al., 2006; Womelsdorf et al., 2010) have consistently shown that mPFC is a 

generator of theta activity. Indeed, mid-frontal theta activity has been typically observed in 

situations involving the engagement of the mPFC, such conflict, uncertainty, prediction error, 

error and punishment (Nachev et al., 2005; Behrens et al., 2007). The ubiquity of this signal 

suggests that it may represent a common mechanism to temporally coordinate mPFC 

computations (Cavanagh et al., 2012). However, those computations may occur in functionally 

distinct subpopulations of neurons. For instance, neural recording studies have shown different 

mPFC’s neuronal populations responding to either positive, negative or both prediction errors 

(Matsumoto et al., 2007). Similarly, fMRI studies have shown functional subdivisions within the 

mPFC, from dorsal-to-ventral to posterior-to-anterior gradients (Venkatraman et al., 2009; Taren 

et al., 2011; Bzdok et al., 2013) with dissociable connectivity profiles and functional roles (Seeley 

et al., 2007). The information encoded on each of these sub-regions and networks needs to be 

integrated to guide learning. For instance, our attention is increased by motivational salient events, 

and, at the same time, the identification of salient events might be influenced by the levels of 

attention (Menon and Uddin, 2010). Thus, theta might provide a temporal template to coordinate 

the spike timing of mPFC’s sub-regions leading to coherent communication and serving as a 

fundamental mechanism to integrate information from functionally segregated sub-regions (Rony 

et al., 2008). Specifically, our results indicate that mid-frontal theta activity at the time of the 

outcome could provide a temporal window for the interaction of mPFC regions engaged with the 

SN and the CEN during feedback learning.  
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The SN and CEN together with the Default Mode Network (DMN) are critically involved in the 

control of attention and decision making. During the performance of cognitive-demanding tasks, 

the SN and the CEN typically show increases in activation (Sridharan et al., 2008). In contrast, 

the DMN presents the opposite pattern, decreasing its activation (Greicius et al., 2003). Previous 

studies have shown that SN and/or CEN may negatively regulate the DMN activity (Bonnelle et 

al., 2011; Chen et al., 2013). Interestingly, studies using EEG-fMRI approaches, at resting state, 

have shown a negative correlation between mid-frontal theta oscillations and the BOLD activity 

of regions from the DMN (Scheeringa et al., 2008; White et al., 2013). However, no previous 

studies have studied the relationship between mid-frontal theta power activity and brain activity 

in any of these networks while participants undergo a cognitive task. In contrast to the dynamic 

of mid-frontal theta activity observed at resting state, our results suggest that while performing a 

cognitive-demanding task, increases of mid-frontal theta activity at outcome delivery are 

positively modulated by regions from the SN and CEN. These findings indicate a similar 

activation pattern of these networks and their correlation with theta activity (that is a decrease of 

DMN activation with negative correlation with theta power and an increase of CEN and SN with 

positive theta correlation), suggesting a potential role of mid-frontal theta activity in the 

coordination of these networks. 

The relationship between outcome valence effects on mid-frontal theta power activity and a region 

engaged with the SN agrees with previous studies suggesting that this effect may, in fact, reflect 

general salience processes rather than outcome value evaluation (Cavanagh et al., 2013). Indeed, 

a recent study has shown that in a real gambling situation in which the probability of obtaining a 

reward is very low and highly motivationally relevant, increases of mid-frontal theta power were 

greater in positive compared to negative feedback (Alicart et al., 2015). Similar findings have 

been described in the case of the Feedback Related Negativity (FRN) (Talmi et al., 2013), an 

Event-Related Potential also related to valence and prediction error processing with similar time 

course and topographical distribution to mid-frontal theta activity (Gehring and Willoughby, 
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2002). In parallel, our results are consistent with recent studies that have pointed out the role of 

the SMA and pre-SMA in the processing of motivationally relevant information, as errors and 

other salient signals (Litt et al., 2011; Bonini et al., 2014). 

Additionally, our results further support the idea that increases of mid-frontal theta activity are 

also modulated by UPE. This surprise signal is consistent with attentional models of learning that 

suggest that unexpected outcomes may drive learning by increasing attention to subsequent events 

(Pearce and Hall, 1980). Notably, we have shown that such modulation is related to the 

engagement of an mPFC sub-region functionally connected with brain-structures from the CEN. 

The CEN plays an important role in sustaining attention, manipulating information from working 

memory and decision-making in goal directed behaviors (Miller and Cohen, 2001; Petrides, 2005; 

Koechlin and Summerfield, 2007). Similarly, increases of mid-frontal theta activity reflect task 

difficulty (Gevins et al., 1997) and increase with working memory load (Jensen and Tesche, 2002; 

Deiber et al., 2007). Therefore, the relationship reported in the present study, between mid-frontal 

theta activity increases due to attentional signals as unsigned prediction errors and a specific 

subregion of the mPFC, the dmPFC, functionally connected with the CEN, agree with a growing 

body of literature that has related mid-frontal theta activity with cognitive control and attention 

(Ridderinkhof et al., 2004). Interestingly, Hajihosseini et al. (2013) proposed a functional 

dissociation between “evoked” theta oscillatory activity power and induced oscillatory power, 

that is, the oscillatory activity subtracting the Event-Related Potentials (ERP) component. In this 

study, authors showed that the induced activity was associated to the probability of the outcomes, 

while the Feedback-Related Negativity (FRN) ERP responded to valence. In addition, Cohen et 

al. 2013 showed that conflict responses were driven mainly by non-phase locked (induced) 

oscillatory theta responses. One of the strengths of our study is the possibility to compute 

unsigned prediction error on a trial by trial bases using a reinforcement-learning computational 

model, but this complicates the differentiation between evoked and induced oscillatory responses. 

Indeed, the classical procedure to compute induced oscillatory activity (Cohen et al. 2013) is by 
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subtracting, for each condition, the event-related responses to single trial data. However, in our 

case, we do not have “conditions” for unsigned prediction error (as it is computed on each trial 

and presents continuous values) and therefore the subtraction of event-related responses for each 

condition is not possible. Future studies using different conditions for high and low prediction 

error (see e.g. Hajihosseini et al. 2012) might help in determining the evoked or induced nature 

of the theta oscillatory activity reported in the present manuscript. 

The approach used in the present study combines information from brain electrical activity 

recorded using EEG and BOLD activity from fMRI. This approach takes advantage of the 

excellent spatial resolution of the fMRI and allows studying brain oscillatory activity using EEG 

data. The two sessions were separated 4 months in order to minimize re-test effects. A potential 

problem of this procedure would be differences in task performance between sessions (e.g., 

because participant used different strategies in the two sessions). However, in the present study, 

behavioral measures presented a very high reliability, suggesting that the strategy used by the 

participants in the two sessions was very similar, and supporting the idea that individual 

differences in the reversal learning task are highly consistent and might reflect a trait 

characteristic, as proposed in different studies (Jocham et al., 2009, den Oude et al., 2013 Padrao 

et al., 2015). Additionally, the use of two separate sessions allows us to adapt each session to the 

different technical requirements of each neuroimaging modality. Thus, the use of the approach 

implemented in this study may be convenient for processes that are highly consistent across time 

(for instance, cognitive flexibility, working memory processes, etc). However, a limitation of the 

present approach is that there are no direct recordings of the theta activity in the target areas. 

Future studies using intracranial recording could test whether electrodes placed into the dmPFC 

and the pre-SMA are sensitive to different aspect of outcome evaluation (surprise and outcome 

valence, respectively) within the theta range and whether the phase of theta cycles in these two 

electrodes is synchronized. 
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It is also important to note that the relationship between BOLD response and brain electrical 

activity (and, in concrete, oscillatory activity) is not well yet well understood. Some initial studies 

comparing Local Field Potentials and BOLD response found that that the strongest relationship 

between these two measures was in LFP high-frequency activity (gamma band), and that low 

oscillatory frequencies presented negative correlations (see e.g. Mukamel et al., 2005), but recent 

studies have revealed that this relationship might be more complex. For example, a recent study 

(Hipp et al., 2015) showed that resting state EEG correlation structure activity correlated to BOLD 

at a very wide oscillatory range (2-128 Hz), being this correlation strongest at alpha and beta 

activity. Regarding theta activity, Scheeringa et al., (2009) found a complex patter of positive and 

negative correlations of theta and alpha oscillatory activity with BOLD activity in a working 

memory task. Importantly, Kujala et al., (2014) found that the correlation between BOLD and 

MEG oscillatory activity varied as a function of the different brain regions activated in a reading 

paradigm. Therefore, visual cortex presented a pattern very similar to the one described in 

Mukamel et al., (2005), that is, positive correlation of BOLD activity with high (gamma-band) 

frequencies and inverse correlation with low (delta-, theta- and alpha-band) frequencies. In 

contrast, other brain areas presented very different patterns. For example, supra-temporal and 

inferior frontal areas presented positive correlations of BOLD activity with gamma, but also theta 

(6 Hz) and beta bands. All these studies point out to a rich and complex pattern of relationship 

between EEG/MEG and BOLD responses, which would depend on the brain region and function 

involved. In this regard, the positive correlation of BOLD and theta oscillatory activity found in 

the present study is fully compatible with (a) the well-known role of this oscillatory activity in 

cognitive control function (Cavanagh and Frank, 2014), (b) intracranial recording studies 

identifying the mPFC as a generator of mid-frontal theta oscillations in tasks involving cognitive 

control and error processing (Uchida et al., 2002, Nishida et al., 2004, Tsujimoto et al. 2006) and 

(c) fMRI studies observing the engagement of the mPFC following negative feedback 

(Ridderinkhof et al., 2004; Jocham et al., 2009). 
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In summary, our study shows that increases of mid-frontal theta activity at outcome delivery are 

influenced by the activity of at least two different sub-regions of the mPFC, the pre-SMA and 

dmPFC, which are functionally connected to the SN and CEN. Present results might indicate that 

mid-frontal theta activity serve as temporal context for the coordination of these networks during 

feedback learning. 
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Table 1. Effects of UPE and outcome valence on fMRI signal 

Enhanced group level fMRI-signals for the UPE and outcome valence contrasts thresholded at a 

FWE p < 0.05 with 2 voxels of cluster extent (see also Fig. 2A). MNI coordinates are used. 

 

 

 

 

 

 

 

 

 

 

 

fMRI UPE effect 

Anatomical Area Coordinates Size t-value 

Middle Occipital Gyrus -14 -97 2 3 7,38 
Dorsomedial Prefrontal Cortex 1 27 46 2 7,24 

    

fMRI Valence effect 

Anatomical Area Coordinates Size t-value 

Left Middle Occipital Gyrus; Left Superior 
Occipital Gyrus; Left Calcarine Gyrus 

-11 -97 2 48 9,54 

Pre-Supplementary Motor Area 5 12 54 21 9,51 
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Table 2. Changes in interregional functional connectivity of the fMRI-data 

Local maxima for the functional coupling with the pre-SMA and dmPFC seeds specifically testing 

for higher coupling in the context of outcome monitoring respect the implicit baseline. Results 

are reported at p < 0.05 FWE corrected threshold at the peak level with 2 or more voxels of cluster 

extent (see also Fig. 2B). MNI coordinates are used. 

 

 

 

 

 

 

Pre-SMA seed 

Anatomical Area Coordinates Size t-value 

Left Dorsolateral Prefrontal Cortex -52 4 18 34 9,92 

Left Inferior Parietal Gyrus; Left Supramarginal Gyrus -59 -56 42 39 9,77 

Pre-Supplementary Motor Area; Dorsomedial Prefrontal Cortex 8 4 62 102 9,36 

Right Putamen; Right Insula; Right Pallidum; Right Caudate 23 8 2 101 9,10 

Left Putamen; Left Insula; Left Pallidum; Left Caudate -18 12 2 91 9,06 

Right Inferior Orbitofrontal Cortex 42 42 -6 38 8,89 

Left Inferior Orbitofrontal Cortex -48 42 2 27 8,41 

Substancia Nigra; Thalamus 12 -18 -6 25 7,99 

dmPFC seed 

Anatomical Area Coordinates Size t-value 

Dorsomedial Prefrontal Cortex; Left pre-Supplementary Motor 

Area; Right Middle Cingulum Gyrus 

1 23 46 127 15,48 

Rigth Dorsolateral Prefrontal Cortex 42 12 46 138 12,67 

Left Insula -29 23 -6 22 10.23 

Right Inferior Orbitofrontal Cortex; Right Insula 27 27 -6 32 10,00 

Left Middle Orbitofrontal Cortex; Left Middle Frontal Gyrus -41 46 6 53 9,90 

Right Middle Frontal Gyrus; Right Superior Frontal Gyrus 35 57 6 48 8,87 

Right Inferior Parietal Gyrus; Right Supramarginal Gyrus 53 -60 42 82 8,32 
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Figure 

 

Figure 1. Task design. In each trial, two figures (a square and a triangle) appeared in the screen 

and the participants had to choose one of them. Then a feedback appeared, indicating whether 

participant had won or lost 4 cents. One figure had a probability of gain of 0.75, while the other 

had a winning probability of 0.25. Each 10-16 trials, and without informing the participant, the 

rule changed.  
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Figure 2. Behavioral correlation between the EEG and the fMRI session in the: A) number of 

negative feedback before participant performed a switch after a reversal; B) % of correct 

responses; C) learning rate and D) the inverse temperature derived from the RL model. 
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Figure 3. EEG results. A) Changes in power at FCz with respect to baseline (100 msec before 

feedback onset) after positive (left) and negative feedback (right). B) Variations in theta power 

(4-8Hz) at FCz due to UPE for both positive and negative feedback. C) Scalp maps for the 

difference in theta activity between loss and gain conditions and the distribution of beta values 

of UPE and VAL effects from the multiple regression analysis. D) Theta power responses to 

different degrees of UPE after positive and negative feedback. Although there is a clear increase 

of theta activity in negative compared to positive feedback, in both cases mid-frontal theta also 

increased with UPE. 
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Figure 4. fMRI results. A) Outcome valence (VAL) and UPE effects on BOLD activity. Both 

effects peaked in the mPFC, however, VAL effect was more posterior than the UPE B) 

Functional connectivity of the two mPFC sub-regions indentified as sensitive to outcome 

valence and UPE in the context of outcome processing. Note that the spatial dissociation found 

in the fMRI revealed a different pattern of connectivity. 
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Figure 5. EEG-fMRI relationship A) Standardized beta scores from the multiple linear 

regression analysis performed to predict mid-frontal theta increases driven by outcome valence 

(left) and UPE (right). Note that pre-SMA activity from the fMRI outcome valence contrast 

specifically predicted individual differences of mid-frontal theta activity driven by the valence 

of the outcome. On the other hand, dmPFC activity from the UPE contrast predicted variations 

of mid-frontal theta activity driven by differences in UPE. B) Scatter plot of the relationship 

between increases of mid-frontal theta activity driven by outcome valence (left) and UPE (right) 

and activity of the pre-SMA (left) and the dmPFC (right). 

 

 


