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Abstract

Biasing choices may prove a useful way to implement behavior change. Previous work has shown 

that a simple training task (the cue-approach task), which does not rely on external reinforcement, 

can robustly influence choice behavior by biasing choice toward items that were targeted during 

training. In the current study, we replicate previous behavioral findings and explore the neural 

mechanisms underlying the shift in preferences following cue-approach training. Given recent 

successes in the development and application of machine learning techniques to task-based fMRI 

data, which have advanced understanding of the neural substrates of cognition, we sought to 

leverage the power of these techniques to better understand neural changes during cue-approach 

training that subsequently led to a shift in choice behavior. Contrary to our expectations, we found 

that machine learning techniques applied to fMRI data during non-reinforced training were 

unsuccessful in elucidating the neural mechanism underlying the behavioral effect. However, 

univariate analyses during training revealed that the relationship between BOLD and choices for 

Go items increases as training progresses compared to choices of NoGo items primarily in lateral 

prefrontal cortical areas. This new imaging finding suggests that preferences are shifted via 

differential engagement of task control networks that interact with value networks during cue-

approach training.
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1. Introduction

In order to eliminate unhealthy behaviors, one must find ways to enhance healthy choices. 

Changing preferences is an important strategy in addressing public health concerns, such as 

the obesity epidemic. To achieve lasting behavioral change to improve health, one must 

overcome the automaticity and strength of first-learned habits. First-learned behaviors are 

the rule that must be broken by subsequent learning in order for new habits to replace older 

ones over the long term (Bouton, 2004). Initial positive change in behavior may be achieved 

through intervention based on willful effort (Schonberg et al., 2014b; Tricomi et al., 2009), 

but the long term prospects for such improvement are uncertain (Bjork, 2001; Bouton, 1993; 

Cahill and Perera, 2011; Higgins et al., 1995; Wood and Neal, 2007). Focus has turned to 

targeting automatic processes to change human behavior with the goal of preventing disease 

(Marteau et al., 2012).

Previous research on value-based decision making has focused mostly on external 

reinforcement (O’Doherty et al., 2004; Thorndike, 1911) or the description of the decision 

problem (De Martino et al., 2006; Slovic, 1995; Tversky and Kahneman, 1986), but few 

have attempted to directly influence the underlying subjective values of individual options. 

In previous work by our group, we showed that choices can be biased toward targeted food 

items and the subjective value placed on these items can be differentially modulated by 

simply associating particular food items with an auditory cue to perform a motor response, 

without relying on external reinforcement or reframing the decision problem (Schonberg et 

al., 2014a). The previously described cue-approach task (CAT) is similar to the cued 

inhibition version of the stop-signal task (Lenartowicz et al., 2011; Verbruggen and Logan, 

2008), with a crucial difference. In a typical stop-signal task, participants press a button on 

the keyboard every time a stimulus appears on the screen, except when a tone sounds they 

must try to inhibit a prepotent motor response. In CAT however, participants passively view 

stimuli on the screen, except when a tone sounds, they must press a button on the keyboard 

as quickly as possible. Training inhibition has been demonstrated to influence choice 

behavior for appetitive stimuli (Houben et al., 2012; Lawrence et al., 2015; Veling et al., 

2013) and value for neutral stimuli (Wessel et al., 2014). Following stop-signal or go/no-go 

inhibition, participants tended to avoid or devalue stimuli that were associated with 

inhibition of action. However, rather than aiming to decrease choices, we developed CAT 

seeking to enhance choices for certain stimuli. In the original version of CAT, participants 

were asked to fast for four hours prior to arriving for the experiment. After providing 

informed consent, they were endowed with $3 to take part in an auction to obtain their pre-

experimental preferences for 60 food items (Becker et al., 1964; Plassmann et al., 2007). 

Items were then rank ordered based on preference and median split into high and low value 

items. High and low value items were then placed into one of two experimental conditions: 

Go or NoGo. During training, participants passively viewed pictures of food items and 

pressed a button when they heard an infrequent tone. In a subsequent probe phase, 
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participants chose one item from a pair of equally preferred items, one associated with a 

tone during training (Go) and the other not associated with a tone (NoGo). Cue-approach 

training has proven to directly influence preference for single items through choice behavior 

following training. Approached (Go) items were chosen more often than initially equally 

preferred, non-approached (NoGo) items (Bakkour et al., 2016; Schonberg et al., 2014a). 

This procedure successfully changed choice behavior and the effect was maintained over six 

to eight weeks for participants who underwent the longest training (Schonberg et al., 2014a). 

Such a shift in choice behavior is thought to be mediated by an increase in gain in the coding 

of value for Go items in the ventromedial prefrontal cortex (vmPFC, Schonberg et al., 

2014a), a brain region that has previously been heavily implicated in coding for value 

(Bartra et al., 2013; Padoa-Schioppa and Assad, 2006). This work has established cue-

approach training as a model for non-reinforced preference change via modulation of 

subjective value for individual items. The question remains; how are values of Go items 

being modulated during CAT training?

Development of CAT was influenced by work on the attentional boost effect (Lin et al., 

2010; Swallow and Jiang, 2010). In a typical attentional boost task, participants have better 

subsequent memory for incidental stimuli that were presented along with targets than those 

that were presented along with non-targets. The attentional boost effect established the 

importance of behavioral relevance in improving memory for incidental information. The 

cue-approach effect similarly established the importance of behavioral relevance for shifting 

preferences. Follow-up behavioral studies (Bakkour et al., 2016), using variations on the 

basic cue-approach training task have singled out memory retrieval and sustained top-down 

attention mechanisms to be at play during cue-approach training, leading to a shift in 

preferences at a later choice phase. However, standard univariate analyses of training-phase 

fMRI data in the previous imaging study of CAT were inconclusive and did not provide any 

insight into the neural mechanism responsible for modulating values of individual items 

during CAT training (Schonberg et al., 2014a). In the current study, we set out to 

characterize changes in neural activity during the cue-approach training phase using both 

univariate and multivariate analysis techniques.

Machine learning and pattern recognition algorithms have recently been adapted and 

developed to decode and characterize cognitive task-relevant neural activity using fMRI data 

(see Lemm et al., 2011; Mahmoudi et al., 2012, for review). One of the most popular of 

these machine-learning techniques is linear classification. This is a technique for decoding 

information about task variables from patterns of activity across an array of voxels. One of 

the common linear classification algorithms is the linear support vector machine (SVM). In 

this study, we sought to train a linear SVM classifier to identify whole-brain fMRI patterns 

elicited by cognitive processes thought to underlie shifts in choice preference during cue-

approach training. Our hypothesis was that changes in classifier identification of the level of 

engagement of these cognitive processes of interest during training would predict later 

choices, reflecting a shift in preferences.

In order to test our hypothesis, we developed a cognitive localizer task that engages three 

distinct cognitive processes implicated in value change during the cue-approach training 

task: perception, memory retrieval, and valuation. We used multivariate pattern analysis 
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techniques on fMRI data acquired during this novel task to predict the level of engagement 

of these cognitive processes during cue-approach training. We investigated how changes in 

these processes (as measured by classifier predictions) contributed to a shift in preferences at 

a later choice phase. This analysis allows us to directly test our hypothesis that changes in 

the level of engagement of these particular cognitive processes during training predicts a 

shift in choice behavior. We expect that increases in the engagement of valuation and 

memory retrieval processes over the course of cue-approach training will be related to later 

choices. Furthermore, we were able to test whether process engagement progressed 

differentially for Go and NoGo trials as training proceeded. We predicted that the differential 

change in engagement of valuation and memory retrieval processes from beginning to end of 

the training phase, rather than the difference in overall engagement of these processes, 

would be predictive of later choices as participants learn to associate the food item with the 

tone cue as the training phase progresses. This allowed us the potential to better understand 

the neural mechanisms underlying non-reinforced training that leads to a shift in 

preferences. Finally, we also used standard univariate fMRI analysis techniques on probe 

phase data to replicate previous findings, and on training phase data to identify changes in 

whole-brain activation throughout training.

The design of the current study was optimized for application of MVPA techniques to 

identify underlying neurocognitive mechanisms for the CAT effect. Previous studies have 

demonstrated the power of these techniques not only to classify distributed patterns of fMRI 

activity elicited by different categories of images while the participant was viewing them 

(Cox and Savoy, 2003; Haxby et al., 2001), but also to classify intentions (Haynes et al., 

2007; Soon et al., 2008), attentional states (Rosenberg et al., 2015) and the contents of 

memory recall (Polyn et al., 2005) using classifiers trained on different sets of stimuli from 

those being classified. Furthermore, and most germane to our main question of interest in the 

current study, Gross et al. (2014) trained an SVM classifier to discriminate levels of 

subjective value of foods and predicted the subjective value of engaging activities and vice 

versa. This supports the idea of common representation of value and the valuation process 

across domains. This finding also suggests that classifying the valuation process in one task 

can be used to decode value from a different task as planned in the current study. Other 

studies demonstrated robust cross-modal or cross-task classification (Lewis-Peacock et al., 

2012; 2015). Polyn et al. (2005) trained classifiers on fMRI data from a localizer task 

requiring the perception and evaluation of familiar pictures, and then used these classifiers to 

decode the category of stimuli being retrieved from long-term memory during free recall. 

Lewis-Peacock and Postle (2008) used the same localizer task and analysis approach to 

decode the contents of working memory during cued recall. Esterman and colleagues (2009) 

used fMRI pattern classifiers to decode which domain of cognitive control (e.g., shifting 

visuospatial attention, switching task rules, shifting attention in working memory) was 

engaged at any given moment. Together, these findings suggest that fMRI classifiers trained 

on long-term memory retrieval might be able to identify the engagement of this process 

during CAT training.
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2. Materials and Methods

2.1. Participants

Thirty-two healthy right-handed participants (17 female, mean age = 21.8 ± 3.1, age range: 

18-29, mean body mass index (BMI) = 22.3 ± 3.8) completed the standard CAT while in a 

magnetic resonance imaging (MRI) scanner.

All participants had normal or corrected-to-normal vision, no history of psychiatric, 

neurologic or metabolic illnesses, no history of eating disorders, no food restrictions, and 

were not taking any medications that would interfere with the experiment. Participants were 

also free of any metal implants or any other contraindications for MRI. Participants were 

told that the goal of the experiment was to study food preferences and were asked to refrain 

from eating for four hours prior to arrival at the laboratory (Plassmann et al., 2007). All 

participants gave informed consent and the institutional review board (IRB) at the University 

of Texas at Austin approved the study.

2.2. Task

2.2.1. Auction—After consenting to take part in the study and filling out standard MRI 

safety metal screening forms, participants were endowed with $3, which they used to take 

part in an auction. Participants were presented with one snack item at a time on a computer 

screen. Food items were presented in random order. They placed their bid by moving the 

mouse cursor along an analog scale that spanned from 0 to 3 at the bottom of the screen. The 

auction was self-paced and the next item was presented only after the participants placed 

their bid. The auction procedure allowed us to obtain a measure of willingness to pay (WTP) 

for each of 56 appetitive food items per participant. The auction followed the BDM rules 

(Becker et al., 1964). Participants were told that their best strategy to win the auction was to 

bid exactly what each item was worth to them to purchase from the experimenter at the end 

of the experiment and that bidding consistently high or consistently low was a bad strategy. 

They were told that a single trial would be drawn at random at the end of the session and 

that they could use any amount of the full $3 for each food item and would not be spreading 

their endowment over multiple items. At the end of the session, the computer generated a 

counter bid; a random number between $0 and $3 in 25 cent increments. If the computer bid 

was equal to or higher than the participant’s bid, then he or she lost the auction. If, however, 

the participant outbid the computer, then they were offered to purchase the randomly drawn 

food item from the experimenter at the computer’s bid lower price.

2.2.2. Item Selection—Items were ranked based on WTP, where item #1 had the highest 

WTP and item #56 the lowest. 24 items with fixed rank order numbers from the full range 

were selected to serve as stimuli for the cognitive localizer task (see section 2.2.3 below). 

From the remaining 32 items, eight items were designated as higher-valued (from items 

ranked 8 through 18) and eight items as lower-valued (from items ranked 39 though 49). Out 

of each of these eight items, four were associated with an auditory cue (Go items) and four 

without any cue to press a button (NoGo items) during the cue-approach task (Figure 1). 

This selection procedure ensured pairing of high-value Go with high-value NoGo items and 

low-value Go with low-value NoGo items such that items in each pair later presented at 
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probe were on average matched for WTP. Based on initially stated values during the auction, 

participants should a priori be indifferent in choosing between items in these pairs. Of the 56 

items presented during auction, 24 were used during the cognitive localizer task and the 

other 32 items were used during training. To maintain 25% cue frequency as is standard in 

stop-signal tasks (Logan and Cowan, 1984), 24 out of 32 items were NoGo items during 

training. Eight Go and eight NoGo items were presented in pairs during probe. Of those 32 

items that were used during training, only 16 were used during the probe phase (Figure 1B). 

Item assignment to Go and NoGo conditions to be used later in the probe phase was 

counterbalanced across participants.

2.2.3. Cognitive Localizer—In this task, participants were presented with one food 

stimulus at a time and at the bottom of the screen one of three questions appeared (Figure 

2A). Participants were asked to answer the question relevant to the item on the screen. Each 

of 24 items appeared with all three questions in random order over two runs. The three 

questions require three distinct cognitive processes: 1) Valuation: “How much would you 

like to eat this item?” Four alternative forced choices were ranked from 1 (most) to 4 (least). 

2) Memory retrieval: “When did you last see this item at a store?” Four alternative forced 

choices from never to within the last week. 3) Perceptual decision: “How many items are 

outside the packaging?” Two alternative forced choices, either one or several items. Food 

stimuli appeared partially unwrapped with some of the product (either one or several pieces) 

appearing outside of the packaging. Stimuli appeared on the screen for a fixed duration of 

3.6 seconds. Participants were asked to respond within that time limit and their responses 

were highlighted from the time they made a response until the end of the 3.6 second 

window, when the stimuli disappeared from the screen. Stimulus presentations were 

separated by a fixed inter-stimulus interval (ISI) of 6 seconds consisting of a central fixation 

cross. Each of the two scan runs consisted of 36 trials lasting five minutes and fifty seconds.

2.2.4. Training—The cue-approach training task was developed by Schonberg et al. 

(2014a). For each trial, images of the food items were presented on the screen for 1.2 

seconds followed by a fixed ISI of 3.6 seconds (Figure 2B). Item order was randomized 

within a block of 32 trials. Participants were instructed to press a button on the keypad as 

fast as possible only when they heard an infrequent neutral tone and before the item 

disappeared from the screen. Items that were assigned to the Go condition were consistently 

associated with the tone. The tone appeared on average 950 ms after the item was presented 

on the screen (Go-signal delay, GSD). GSD was adjusted using a ladder technique. We 

increased the GSD by 17 ms if participants pressed the button before the item disappeared 

(to make the task more difficult) and reduced GSD by 50 ms if the participant failed to press 

the button or pressed it after the item disappeared (to make the task easier). We chose this 

3:1 ladder titration ratio to ensure a 75% success rate in correct button presses. All 32 food 

items used during training were presented 12 times each during training. Each of the six 

scan runs consisted of two presentations of each stimulus (i.e. 64 trials) lasting five minutes 

and twelve seconds.

2.2.5. Probe—At the end of training, participants filled out a computer-adapted version of 

the Barratt impulsiveness scale questionnaire (BIS-11, Patton et al., 1995) while undergoing 
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a structural scan. They were then presented with pairs of food items in a probe task (Figure 

2D). Items in each pair were matched for WTP and made up of one Go and one NoGo item 

(Figure 1B). Participants were told that a single trial would be drawn at random at the end of 

the session and their choice on that trial would be honored (i.e. they would receive the item 

that they chose on the randomly selected trial at the end of the experiment and remain in the 

lab to consume it). Pairs of items were presented on the screen for 2.4 seconds. Item 

selection was confirmed with a green rectangle drawn around the selected item (see Figure 

2D), which remained on the screen from response time to the end of the 2.4 second trial 

window. If participants failed to make a choice within two seconds, a brief message asking 

them to respond faster appeared for 400 ms. Consecutive stimulus presentations were 

separated by a fixed ISI of 3.6 seconds. Each unique pair of items was presented in random 

order twice during probe (i.e. 64 probe trials total) for a scan run duration of six minutes and 

twenty-four seconds.

2.3. fMRI Acquisition

Imaging data were acquired on a 3 T Siemens Skyra MRI scanner with a 32-channel head 

coil. Functional data were acquired using a T2*-weighted multiband echo planar imaging 

sequence (repetition time (TR) = 1200 ms, echo time (TE) = 30 ms, flip angle (FA) = 63, 

field of view (FOV) = 230 mm, acquisition matrix of 96 × 96). Sixty four oblique axial 

slices were acquired with a 2.4 mm in-plane resolution positioned 30° off the anterior 

commissure-posterior commissure line to reduce the frontal signal dropout (Deichmann et 

al., 2003) and spaced 2 mm with a 0.4 mm gap to achieve full brain coverage. Slices were 

acquired using the multi-band sequence (Moeller et al., 2010) in an interleaved fashion. 

Each of the localizer runs consisted of 292 volumes, each of the training runs consisted of 

260 volumes, and the probe run consisted of 324 volumes. In addition to functional data, a 

single three-dimensional high-resolution full brain image was acquired using a 

magnetization prepared rapid gradient echo (MPRAGE) pulse sequence (TR = 2400 ms, TI 

= 1000 ms, TE = 1.94 ms, FA = 8, FOV = 205 mm, voxel size = 0.8 × 0.8 × 0.8 mm) for 

brain masking and image registration.

2.4. Analysis

2.4.1. Behavioral Analysis

2.4.1.1. Probe: To test whether cue-approach training induced a preference change, we 

performed repeated-measures logistic regression to compare the odds of choosing the Go to 

NoGo items against equal odds for the high-value and low-value pairs separately. We also 

performed repeated-measures linear regression to test for differences in reaction time (RT) 

for choices of Go and NoGo items for the high-value and low-value pairs separately.

2.4.1.2. Auction: We ran repeated-measures linear regression to test the two-way interaction 

between time (pre-training/post-training auction) and condition (Go/NoGo) on WTP within 

high-value and low-value items separately. This interaction tests whether the change in WTP 

over time is different for Go and NoGo items. P values for the effects in the mixed models 

were calculated using the Kenward-Roger approximation for degrees of freedom (Kenward 

and Roger, 1997).
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2.4.2. Imaging Analysis

2.4.2.1. Imaging Data Preprocessing: Raw imaging data in DICOM format were converted 

to NIFTI format and preprocessed through a standard preprocessing pipeline using the FSL 

package version 5 (Smith et al., 2004). Functional image time series were first aligned using 

the MCFLIRT tool to obtain six motion parameters that correspond to the x-y-z translation 

and rotation of the brain over time. Second, the skull was removed from the T2* images 

using the brain extraction tool (BET) and from the high-resolution T1 images using 

Freesurfer (Dale et al., 1999; Ségonne et al., 2004). Spatial smoothing was performed using 

a Gaussian kernel with a full-width half maximum (FWHM) of 5 mm. Data and design 

matrix were high-pass filtered using a Gaussian-weighted least-squares straight line fit with 

a cutoff period of 100 s. Grand-mean intensity normalization of each run’s entire four-

dimensional data set by a single multiplicative factor was also performed. The functional 

volumes for each participant and run were registered to the high resolution T1-weighted 

structural volume using a boundary-based registration method implemented in FSL5 (BBR, 

Greve and Fischl, 2009). The T1-weighted image was then registered to the MNI152 2 mm 

template using a linear registration implemented in FLIRT (12 degrees of freedom). These 

two registration steps were concatenated to obtain a functional-to-standard space registration 

matrix.

2.4.2.2. Cognitive Localizer: We conducted a GLM analysis on the cognitive localizer task 

data. The GLM model included eight regressors of interest: (i) onsets for valuation trials, 

modeled with a duration which equaled the average RT across all trials and participants; (ii) 

same onsets and duration as i but modulated by response (1 for like least to 4 for like most) 

demeaned across these trials within each run for each participant; (iii) onsets for perceptual 

decision trials modeled with the same duration as for i; (iv) same onsets and duration as iii 

but modulated by response (1 for single item and 2 for several items outside of packaging) 

demeaned across these trials within each run for each participant; (v) onsets for memory 

retrieval trials modeled with the same duration as for i; (vi) same onsets and duration as v 

but modulated by response (1 never saw this item in a store to 4 seen it within the last week) 

demeaned across these trials within each run for each participant; (vii) to account for any 

differences in RT between trial types we added a regressor with the onsets of all valid trials 

and the same duration as all other regressors (average RT across all trials and participants), 

while the modulator was the demeaned RT across all valid trials; (viii) onsets for missed 

trials. We included the six x, y, z translation and rotation motion parameters obtained from 

MCFLIRT, framewise displacement (FD) and RMS intensity difference from one volume to 

the next (DVARS, Power et al., 2012) as confound regressors. We also modeled out volumes 

with FD and DVARS that exceeded a threshold of 0.5 by adding a single time point 

regressor for each “to-be-scrubbed” volume (Siegel et al., 2013). All regressors were entered 

at the first level of analysis and all (but the added confound regressors) were convolved with 

a canonical double-gamma hemodynamic response function. The temporal derivative of 

each regressor (except for the added confound regressors) was included in the model. The 

model was estimated separately for each participant and each run. The raw parameter 

estimates from this model were used to train a classifier to decode the three localizer task 

conditions (i.e. perceptual decision, memory retrieval, and valuation).
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2.4.2.3. Training: The GLM during the training phase included 4 regressors for each of Go 

and NoGo trial types broken down by the two subsequent probe trial types (high-value Go 

versus high-value NoGo and low-value Go versus low-value NoGo): (i) onsets of the Go 

trial, modeled with a fixed duration of 1.2 seconds; (ii) same onset and duration as i but 

modulated by subsequent number of times chosen during probe; (iii) same onset and 

duration as i but modulated by initial WTP; (iv) same onset and duration as i but modulated 

by the Go-signal delay for that trial. Thus there were two different Go trials (high and low) 

and for each there were four regressors yielding a total of 8 regressors. Then for each of the 

different types of NoGo trials there were three regressors similar to above except for 

modulation by Go signal delay as there was no go-signal in the NoGo trials. There were two 

different NoGo trial types (high- and low-value) and for each there were three regressors, 

thus yielding a total of 6 additional regressors. Additionally, for each high-value and low-

value item that was not used during probe, we included the equivalent to regressors i and iii 

above to yield four additional regressors. To account for RT differences between all trials we 

added a regressor with the onsets of all Go trials and the modulator was the demeaned RT 

across all these trials. We further added a missed trial regressor each for high-value Go and 

low-value Go as well as two regressors for an erroneous response for high-value and low-

value NoGo trials. There were a total of 23 regressors. We added the same covariates as in 

the probe design matrix, including the six motion regressors described above, along with FD 

and DVARS as confound regressors. This analysis did not yield significant results in our 

original study, but we found that we had increased power in the current study.

2.4.2.4. Multivariate Pattern Analysis: Localizer task: We performed a multivariate pattern 

analysis (MVPA) to classify the pattern of activation during each of the three cognitive 

processes engaged during the three trial types in the cognitive localizer task. We used whole 

brain raw parameter estimates obtained from the cognitive localizer task GLM described 

above as input into a three-class SVM classifier to classify the pattern for each of valuation, 

perceptual decision and memory retrieval cognitive processes. We then conducted two-way 

cross validation, where we trained the classifier on the first half of the cognitive localizer 

neural data and tested it on the second half (different runs), then vice versa to obtain average 

classifier cross-validation accuracy.

Cue-approach training: Once we ascertained that the cross-validation accuracy surpassed 

chance classification (i.e. within-localizer task cross-validation accuracy significantly above 

33%), we trained the classifier on all the neural data and applied the classifier to raw 

parameter estimates extracted from the GLM on cue-approach training task data. We 

obtained classifier evidence scores (i.e. the classifier’s estimate of the match between the test 

pattern and the trained patterns) for the valuation, perceptual-decision and memory-retrieval 

processes on each cue-approach training trial per participant. We ran this analysis in order to 

study changes in classifier evidence corresponding to each of the cognitive processes 

thought to be engaged during cue-approach training and to determine whether the increase in 

memory-retrieval and valuation classifier evidence across training predicts later choice at 

probe.
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2.4.2.5. Probe: In line with the work we had previously carried out exploring the neural 

signature of value change following cue-approach training (Schonberg et al., 2014a), we 

focused our univariate analysis in the current study on the probe phase. We used a general 

linear model (GLM) for the probe phase that included seven regressors for each of the two 

trial types. For high-value Go versus high-value NoGo, (i) onsets of trials when high-value 

Go items were chosen with fixed duration, which was the average RT across all trials and 

participants; (ii) to explore the preference for each item, we used the demeaned total number 

of choices (on all probe trials where this item appeared) for the chosen item as a parametric 

modulator of the above onset regressor, with the same average RT as above used for 

duration; (iii) to account for the difference in pre-training WTP between the items in each 

pair we added the WTP difference as a parametric modulator with the same onsets and 

durations as regressor i. All of the above three regressors were added for trials when 

participants chose the NoGo item in a pair. To account for RT differences between choices 

of the Go and NoGo items we added a regressor with the onsets of all high-value Go and 

NoGo trials but as the modulator we added the demeaned RT across all these trials. We 

defined the same seven regressors for the probe trials that compared low-value Go to low-

value NoGo, which resulted in a total of 15 regressors (two trial types times seven) and an 

additional regressor for missed trials of all types. The same motion, FD and DVARS 

confound regressors described above were included.

To test which regions showed greater modulation by preference for an item, we contrasted 

the parametric modulator of the chosen high-value Go items (regressor (ii) above) with the 

same regressor for the high-value NoGo items. We masked this contrast by our a priori 

anatomical mPFC region. The mask was the same as that previously used in Schonberg et al. 

(2014a) and encompassed the medial PFC by combining Harvard-Oxford regions (frontal 

pole, frontal medial cortex, paracingulate gyrus and subcallosal cortex) falling between x = 

14, y = −14 and z < 0.

Ten participants were excluded from the imaging analysis because their parametric 

modulator of choices was a vector of zeroes. Two chose all high-value Go items in exactly 

the same proportions and three chose all high-value NoGo items in the same proportions 

during probe. One participant chose all low-value Go and four others chose all low-value 

NoGo items in exactly the same proportions. We mean-centered the choice regressors, 

resulting in a column of zeroes when they chose items in a particular category (e.g. high-

value Go items) the same number of times. Thus, the parametric modulator was perfectly 

correlated with the intercept regressor (column of ones) resulting in a rank-deficient design 

matrix. For all group analyses we averaged across individual participants by performing a 

one-sample t-test to obtain the overall effects for the group. All reported statistical maps 

were corrected at the whole-brain level using a cluster-based Gaussian random field 

correction for multiple comparisons, with an uncorrected cluster-forming threshold of z = 

2.3 and corrected extent threshold of p < 0.05, except for the comparison between preference 

modulation of Go and NoGo during probe, which was small volume corrected only for the 

anatomical mPFC mask (as was used in Schonberg et al., 2014a).
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3. Results

3.1. Behavioral Results

Consistent with previous findings, we found an effect of cue-approach training on choices 

during the probe phase (Figure 3A). Participants chose high-value Go over high-value NoGo 

items on 65% of trials (odds ratio (O.R) = 2.21, 95% Confidence Interval (C.I) = [1.48 3.29], 

p < 0.0001). Also consistent with some previous findings when cue-approach training 

included a reduced stimulus set as is the case in this study, participants chose low-value Go 

over low-value NoGo items on 60% of trials (O.R = 1.7, C.I = [1.13 2.56], p = 0.01). 

However, the Go choice effect was larger for high-value than for low-value pairs (O.R = 

1.28, C.I = [1.06 1.55], p = 0.01).

We repeated the initial auction after probe to test whether the subjective value placed on 

individual items changed after training. Although we had previously reported evidence that 

cue-approach training influenced the value of individual items, we did not replicate that 

finding in this study. WTP for high-value Go and NoGo items regressed equally toward the 

mean and WTP for low-value Go and NoGo items also increased equally and regressed 

toward the mean. There was a main effect of time (pre- to post-training, p < 0.0001), but no 

main effect of training condition (Go or NoGo) or interaction between the factors on WTP 

(p’s > 0.5).

3.2. Imaging Results

3.2.1. MVPA Results—Localizer: Whole-brain pattern classifiers reliably distinguished 

fMRI activity (separately for each participant) from trials designed to elicit the cognitive 

processes of valuation, perceptual decision making, and memory retrieval of appetitive food 

items. We obtained above-chance classification accuracy (65.8% on average; chance is 33%) 

for each class. Thus, the classifiers can be applied to cue-approach task data to estimate the 

engagement of these three cognitive processes during training.

Cue-approach training: After training the classifier on all the cognitive localizer task fMRI 

data, we applied the classifier to fMRI data acquired during the cue-approach training task to 

predict the extent to which each of the cognitive processes of interest were elicited across 

training trials. In this analysis, we did not obtain any notable increases in the estimates 

across training (i.e. relatively flat lines in Figure 4 and no main effect of repetition number 

on classifier evidence for any of the three classes). In a mixed-effects linear regression 

model testing the interaction between repetition number (i.e. x-axis on plots in Figure 4) and 

Go status (Go solid green lines vs. NoGo dashed red lines in Figure 4) on valuation classifier 

evidence, we found no significant interaction and no main effects. Testing the same 

interaction on the memory classifier evidence, we found a trend-level interaction (β = 

−0.002, C.I = [−0.0054 0.0003], p = 0.08) and a main effect of Go status (β = −0.023, C.I = 

[−0.033 −0.013], p < 0.0001), but no main effect of repetition number on memory classifier 

evidence. Finally, testing the interaction on perceptual classifier evidence, we found a trend-

level interaction (β = 0.003, C.I = [−0.0002 0.006], p = 0.06) and a main effect of go status 

(β = 0.015, C.I = [0.004 0.026], p = 0.006), but no effect of repetition number on perceptual 

classifier evidence.
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Given that classification of cognitive processes did not vary meaningfully across the training 

period, we tested whether we at least had above-chance cross-task classification accuracy for 

the valuation process, which should be central to the cue-approach task. That is, we assessed 

whether valuation processes engaged during the localizer task were also engaged to some 

extent, and could be identified by the classifier, in the training task. To obtain a measure of 

cross-task classification accuracy, we trained a classifier on the localizer task data to 

distinguish between low-, medium-, and high-valued items from the auction. We trained a 

classifier to distinguish patterns of activity during the localizer task elicited by three levels of 

value during valuation trials (low/medium/high value), then tested the classifier on the cue-

approach task data. The within-localizer task two-way cross-validation accuracy for this 

value-level classifier was 61.9% (chance is 33%). However, the cross-task classification 

accuracy was only 31.24%, which was no different than chance accuracy. Thus, we did not 

achieve proper cross-task classification accuracy using the item value-level classifier. This 

suggests that valuation was not elicited similarly during the localizer task and the cue-

approach training task. Despite non-satisfactory cross-task validation, we found that there 

was a significant trial-by-trial variance in classifier evidence during the training phase, we 

sought to test whether trial-by-trial variance explained behavior during the later probe phase.

In a mixed-effects linear regression model, there was no main effect of valuation classifier 

evidence from the last presentation during the training phase on subsequent choice during 

probe, but there was an interaction between valuation classifier evidence from the last 

presentation during training and item type (high-value Go/NoGo) on subsequent choice 

during probe (Figure 5, p = 0.03). This suggests that the item-by-item relationship between 

valuation classifier evidence on the last presentation during the training phase and 

subsequent choices during probe was different for high-value Go and NoGo items. This 

interaction effect did not hold for the first training presentation (there was no three-way 

interaction between valuation classifier evidence by item type [high-value Go/NoGo] by 

presentation number [first/last]). The interaction also did not hold for low-value Go vs. 

NoGo, and did not hold when using memory retrieval or perceptual decision classifier 

evidence.

3.2.2. Univariate Results

3.2.2.1. Localizer: We tested the parametric modulation of preference level for foods 

measured through a four-alternative forced choice (least to most) to the question “How much 

would you like to eat this item?” We found that this measure of value was related to BOLD 

activity primarily in vmPFC (Figure 6 and Table 1), in line with numerous previous studies 

that have demonstrated a role for vmPFC in coding subjective value (for a meta-analysis, see 

Bartra et al., 2013).

3.2.2.2. Probe: We used the number of times an item was chosen at probe as a parametric 

modulator to test whether the vmPFC represents value change during probe in our task. In 

line with our previous published study (Schonberg et al., 2014a), we limited our analysis to a 

large anatomical area within mPFC. There were no whole-brain corrected or small-volume 

corrected (SVC) results for modulation of vmPFC BOLD by post-training preference for 
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high-value Go items. Additionally, the relationship between preference and BOLD in the 

vmPFC did not differ for choices of high-value Go and high-value NoGo items.

We ran the same analysis on the low value pair trials, since there was a behavioral effect in 

both low-value and high-value pair trials in this sample (unlike in Schonberg et al., 2014a). 

In this analysis, we found an amplified BOLD signal modulation by preference for choices 

of low-value Go over low-value NoGo items when restricting the analysis to an extensive 

anatomical mask of mPFC (SVC, Figure 7 and Table 2). There was no significant effect 

within the vmPFC for the modulation of BOLD by choices of low-value Go or NoGo items 

in the whole brain analysis.

3.2.2.3. Training: Consistent with previous findings, there were no differences in the Go 

stimulus onset driven activations for the last run of training compared to the first run. We 

also used the same parametric modulator as in the probe phase (i.e. the number of times a 

particular item was chosen) to test for preference change related signals during the last run 

of training. There was no effect within the vmPFC for the modulation of BOLD response by 

preference for any of high- or low-value Go or NoGo items. The lack of effect here fails to 

replicate previous findings. Additionally, the relationship between BOLD and preference for 

high-value and low-value Go vs. NoGo were no different, replicating previous lack of 

findings. However, the change in modulation by choice preferences (number of times a 

particular item is later chosen at probe) over time (run 6 minus run 1) is stronger for Go than 

for NoGo items in a number of regions that include left dlPFC and vlPFC (Figure 8 and 

Tables 3 & 4). This analysis includes both high- and low-value item training trials since we 

found a behavioral effect in both trial types. This finding is novel and was not present in the 

original study. The increased trial count may account for the positive finding in the current 

sample compared to the original study.

4. Discussion

Shifting preferences is key to behavioral change. Focus has recently turned to target 

automatic cognitive processes to influence choice behavior (Marteau et al., 2012). Previous 

work by our group has established the cue-approach training task as a viable paradigm to 

influence choice behavior without reverting to effortful self-control and external 

reinforcement (Schonberg et al., 2014a). The full underlying neural mechanism responsible 

for a shift in preferences following cue-approach training remains unknown. In the current 

study, we sought to investigate neural changes during cue-approach training that predict 

subsequent choices using multivariate pattern analysis as well as traditional univariate 

techniques.

We designed a cognitive localizer task that engages three distinct cognitive processes 

assumed to be implicated during cue-approach training to influence subsequent choices: 

valuation, memory and perceptual processing. Previous behavioral findings support the 

involvement of these processes during CAT training (Bakkour et al., 2016). We built a 

classifier to distinguish between whole-brain patterns of activity elicited by these three 

cognitive processes of interest (for a review of decoding techniques applied to fMRI, see 

Norman et al., 2006; Tong and Pratte, 2012). This classifier would in theory then have 
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allowed us to obtain a measure of the degree to which each of these cognitive processes were 

engaged during cue-approach training. Any changes in the obtained classifier evidence 

measures could then be regressed against choices at probe to determine the contribution of 

changes in the involvement of these cognitive processes during training in shifting 

preferences. Previous research supported this design. Indeed, several studies have 

demonstrated robust classification of abstract cognitive processes such as intentions (Haynes 

et al., 2007; Soon et al., 2008), attention (Rosenberg et al., 2015) and valuation (Gross et al., 

2014) to name only a few. Further demonstrating the power of MVPA classifiers, the three-

class classification discriminating the cognitive processes of memory retrieval, valuation and 

perceptual processing performed well above chance in a standard two-way cross-validation 

applied to the localizer task fMRI data. However, to our surprise, this classifier did not 

generalize well from the localizer task to the cue-approach training task. To better quantify 

the cross-task generalization of this classifier technique in our data, we trained another 

classifier to differentiate the patterns of brain activation elicited by three levels of value (low, 

medium, and high) during valuation trials of the localizer task. This value classifier 

performed well above chance in standard cross-validation applied to the localizer task fMRI 

data (for a simple guide on this method, see Mur et al., 2009), consistent with previous 

reports of value representation in the cortex (Krajbich et al., 2009; McNamee et al., 2013). 

However, this classifier did not perform above chance when applied to the cue-approach 

training task fMRI data. It is worth noting that we had a measure of willingness-to-pay for 

all foods presented during the training task and thus accurately labeled each food stimulus in 

terms of its level of value in the same way we labeled the level of value for localizer task 

stimuli. This labeling allowed us to accurately determine cross-task classification accuracy. 

The lack of cross-task value classification suggests that valuation, assumed to be elicited 

during cue-approach training, is not expressed in a similar enough manner in neural 

activation patterns as during the localizer task. One possibility for this discrepancy is that the 

localizer and cue-approach tasks are very different. The localizer task asks participants to 

process images of food items and answer two or four alternative forced choice questions, 

whereas during the cue-approach training task, participants are asked to simply view images 

of food unless they hear a tone that cues them to press a button. It appears that the patterns 

of activity elicited by potentially shared cognitive processes do not overlap enough to solve 

the classification problem posed. The lack of cross-task classification in this study stands in 

contrast to other studies that have demonstrated strong cross-task classification (Eger et al., 

2009; Etzel et al., 2008; Lewis-Peacock and Postle, 2008; Meyer et al., 2010; Shinkareva et 

al., 2011). The lack of cross-task value-level classification success was surprising given 

previous work demonstrating cross-domain value-level classification (Gross et al., 2014). 

The lack of cross-task classification in the current study calls for future studies aimed at 

better defining the conditions under which cross-task classification is possible.

Despite the lack of expected average classification differences between training task 

conditions, we partially replicated previous behavioral results, and obtained novel imaging 

findings. First and foremost, the current study replicates the now well-established cue-

approach behavioral effect. In the probe phase, participants chose items that were previously 

associated with a cued button press during the training phase over items that were not 

associated with a cue but that were matched for pre-experimental preference (Figure 2A). 
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Several other studies from our group (Bakkour et al., 2016) were conducted in order to 

narrow down the possible mechanisms engaged during cue-approach training to cause a 

preference shift. These studies suggest that a cued motor response that requires sustained 

attention prior to the cue is necessary to induce a change in choice behavior. Indeed, a cue 

alone without a motor response or an uncued motor response alone during the training phase 

are not sufficient to bias choices. Furthermore, eliminating the go-signal delay and sounding 

the cue to make a motor response concurrently with the onset of food stimuli without delay 

during the training phase eliminated the choice effect at probe. Finally, requiring participants 

to make choices using eye movements rather than manual button presses revealed a 

preference shift following standard cue-approach training involving a cued manual motor 

response with the cue sounding after the food stimulus appears. This last result provides 

evidence suggesting that the choice shift was not calculated within manual or ocular motor 

circuits but rather that the shift in preference is likely due to modulation of more general 

value coding regions in the brain such as vmPFC. Current findings further bolster the claim 

that cue-approach training modulates subjective value of individual items. Although cross-

task classification for the level of value (low/medium/high value) from localizer task to cue-

approach training was not significant, we leveraged the trial-by-trial variance in value 

classifier evidence from the three-class (value/memory/percept) classifier and found that the 

relationship between value classifier evidence on the last presentation and the number of 

times each food was later chosen at probe differed for high-value Go and NoGo items 

(Figure 5). Taking these results together, we suggest that cue-approach training engages 

attentional mechanisms during behaviorally relevant points in time in order to modulate 

value coding of items that were associated with the Go signal.

Previous imaging findings point to a more positive relationship between BOLD activation in 

the vmPFC and preference for choices of high-value Go when compared to choices of high-

value NoGo items (Schonberg et al., 2014a). This finding was not replicated in the current 

study. Failure of replication could be due to low power. Our complete sample included 32 

participants, which is considered adequate for fMRI studies. However, our contrasts of 

interest were based on participant behavior and we had to exclude participants who chose 

items within a category at the same rate, which represented a larger proportion of the sample 

than in a previous imaging study, significantly reducing our power to detect an effect in this 

analysis. Indeed, several participants chose items the same number of times during probe. 

This measure was entered as a parametrically modulated regressor in our probe phase GLM. 

In order to ensure that the parametric regressor is not correlated with the unmodulated 

regressor, we demeaned the choice measure entered into the parametric regressor, resulting 

in a column of zeroes when items were chosen the same number of times, and rendering the 

matrix rank deficient. We excluded ten participants from this analysis for this reason, 

reducing our sample size from 32 to 22 for the replication analysis. Furthermore, poor 

signal-to-noise ratio (SNR) in the vmPFC might be another reason for this lack of 

replication (Stenger, 2006). However, there was a strong relationship between ratings of how 

much participants wanted to eat an item during the cognitive localizer task and signal in the 

vmPFC (Figure 6), attesting to adequate SNR in that region. In our original imaging study, 

participants did not choose Go items more often that NoGo items in low-value pairs and we 

saw no difference in the modulation of the number of times lower-value items were chosen 
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during probe in the imaging analysis. However, in the current study, we found a behavioral 

effect in the low-value as well as the high-value pairs (Figure 3A). Consistent with the 

behavioral effect, the imaging analysis revealed that the modulation of probe phase BOLD 

by number of times a particular item was chosen was higher for low-value Go than for low-

value NoGo items in the vmPFC (Figure 7). This suggests that the neural mechanism 

responsible for modulating item values during CAT is similar regardless of the initial value 

of the item.

Beyond the imaging findings during probe, we set out to look for neural changes during cue-

approach training that might predict later choices, thus the motivation for the MVPA 

classifier analyses discussed above. Given that we did not achieve appropriate cross-task 

classification and that we found a behavioral effect in both low- and high-value pairs at 

probe, we pooled across both high- and low-value item trials during training for traditional 

univariate analyses on the training phase data. Consistent with previous findings, there were 

no differences in the Go stimulus onset-driven activations for the last run of training 

compared to the first run. This is likely due to the simple nature of the training phase and the 

fact that no decisions regarding the food were required during the training phase. The 

doubling of training trials for analysis (i.e. combining across high- and low-value item trials) 

increased our power to detect an effect (Liu and Frank, 2004) during training over our 

original study (Schonberg et al., 2014a). Changes in the relationship between BOLD and 

later preference from the beginning to the end of cue-approach training differed between Go 

and NoGo trials mainly in lateral prefrontal cortical areas (Figure 8). These areas are 

typically associated with task control (Dosenbach et al., 2007; 2006). Additionally, activity 

in the dlPFC has been shown to modulate the activity of the vmPFC (Hare et al., 2009), a 

region thought to code for subjective value (Bartra et al., 2013; Padoa-Schioppa and Assad, 

2006). We suggest that task control increases for Go item trials as training progresses, given 

that Go food items are consistently associated with a tone and button press thus participants 

learn that they are in a Go trial when a Go item appears by the end of training. We also 

venture that task control does not change as training progresses for NoGo item trials. We 

further speculate that the increased task control subserved by dlPFC modulates subjective 

value of Go items coded in vmPFC.

Understanding the neural changes during non-reinforced training that underlie a later shift in 

choice preferences is important to the study of behavioral change. In the current study, we 

found that the extent to which a participant’s whole-brain pattern of activity during a Go 

trial at the end of training reflected a valuation process determined the number of times he or 

she later chose that item. We also found that BOLD activity in a network of frontal regions 

was differentially related to later choices for Go and NoGo items as CAT training 

progressed. These findings could help us further increase the effectiveness of CAT training 

in nudging individuals to make lasting, positive changes in their choice behavior.

5. Conclusions

The cue-approach task continues to prove to be a useful paradigm for the study of behavioral 

change and potentially for the development of real-world interventions to help change and 

maintain habits. Its non-reliance on effortful self-control and its targeting of automatic 
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processes in the brain render it particularly appealing. This research shows promise for the 

development of new real-world, non-externally reinforced behavioral change paradigms by 

tapping attentional and memory mechanisms that act at behaviorally relevant points in time 

to modify valuation of particular stimuli. Training regimens that do not rely on external 

reinforcement, such as cue-approach training, could inspire the development of novel, 

lightweight behavioral treatments that help combat addiction, eating disorders and other ills 

by affecting lasting changes in choice behavior.

Acknowledgements

The authors would like to thank Ashleigh Hover, Christina Leuker, Kelly Jameson and Jave Del Rosario for help 
with data collection. This research was supported by grant R01AG041653 from the National Institutes of Health 
awarded to RAP.

References

Bakkour A, Leuker C, Hover AM, Giles N, Poldrack RA, Schonberg T. Mechanisms of Choice 
Behavior Shift Using Cue-approach Training. Front Psychol. 2016; 7:421. doi:10.3389/fpsyg.
2016.00421. [PubMed: 27047435] 

Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD 
fMRI experiments examining neural correlates of subjective value. Neuroimage. 2013; 76:412–427. 
doi:10.1016/j.neuroimage.2013.02.063. [PubMed: 23507394] 

Becker GM, Degroot MH, Marschak J. Measuring utility by a single-response sequential method. 
Behav Sci. 1964; 9:226–232. doi:10.1002/bs.3830090304. [PubMed: 5888778] 

Bjork, RA. Recency and recovery in human memory. In: Roediger, HL.Nairne, JS.Neath, I., 
Surprenant, AM., editors. The Nature of Remembering: Essays in Honor of Robert G. Crowder. 
American Psychological Association Press; Washington, DC: 2001. p. 211-232.

Bouton MEM. Context and behavioral processes in extinction. Learn Memory. 2004; 11:485–494. doi:
10.1101/lm.78804. 

Bouton MEM. Context, time, and memory retrieval in the interference paradigms of Pavlovian 
learning. Psychol Bull. 1993; 114:80–99. [PubMed: 8346330] 

Cahill K, Perera R. Competitions and incentives for smoking cessation. Cochrane Database Syst Rev. 
2011:CD004307. doi:10.1002/14651858.CD004307.pub4. [PubMed: 21491388] 

Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and 
classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage. 2003; 19:261–
270. [PubMed: 12814577] 

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface 
reconstruction. Neuroimage. 1999; 9:179–194. doi:10.1006/nimg.1998.0395. [PubMed: 9931268] 

De Martino B, Kumaran D, Seymour B, Dolan RJ. Frames, biases, and rational decision-making in the 
human brain. Science. 2006; 313:684–687. doi:10.1126/science.1128356. [PubMed: 16888142] 

Deichmann R, Gottfried JA, Hutton C, Turner R. Optimized EPI for fMRI studies of the orbitofrontal 
cortex. Neuroimage. 2003; 19:430–441. [PubMed: 12814592] 

Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder 
AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. Distinct brain networks for adaptive and 
stable task control in humans. Proc Natl Acad Sci USA. 2007; 104:11073–11078. doi:10.1073/
pnas.0704320104. [PubMed: 17576922] 

Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes 
AL, Schlaggar BL, Petersen SE. A core system for the implementation of task sets. Neuron. 2006; 
50:799–812. doi:10.1016/j.neuron.2006.04.031. [PubMed: 16731517] 

Eger E, Michel V, Thirion B, Amadon A, Dehaene S, Kleinschmidt A. Deciphering cortical number 
coding from human brain activity patterns. Curr. Biol. 2009; 19:1608–1615. doi:10.1016/j.cub.
2009.08.047. [PubMed: 19781939] 

Bakkour et al. Page 17

Neuroimage. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Esterman M, Chiu Y-C, Tamber-Rosenau BJ, Yantis S. Decoding cognitive control in human parietal 
cortex. Proc Natl Acad Sci USA. 2009; 106:17974–17979. doi:10.1073/pnas.0903593106. 
[PubMed: 19805050] 

Etzel JA, Gazzola V, Keysers C. Testing simulation theory with cross-modal multivariate classification 
of fMRI data. PLoS ONE. 2008; 3:e3690. doi:10.1371/journal.pone.0003690. [PubMed: 
18997869] 

Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. 
Neuroimage. 2009; 48:63–72. doi:10.1016/j.neuroimage.2009.06.060. [PubMed: 19573611] 

Gross J, Woelbert E, Zimmermann J, Okamoto-Barth S, Riedl A, Goebel R. Value signals in the 
prefrontal cortex predict individual preferences across reward categories. J Neurosci. 2014; 
34:7580–7586. doi:10.1523/JNEUROSCI.5082-13.2014. [PubMed: 24872562] 

Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC 
valuation system. Science. 2009; 324:646–648. doi:10.1126/science.1168450. [PubMed: 
19407204] 

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping 
representations of faces and objects in ventral temporal cortex. Science. 2001; 293:2425–2430. 
doi:10.1126/science.1063736. [PubMed: 11577229] 

Haynes J-D, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE. Reading hidden intentions in the 
human brain. Curr. Biol. 2007; 17:323–328. doi:10.1016/j.cub.2006.11.072. [PubMed: 17291759] 

Higgins ST, Budney AJ, Bickel WK, Badger G, Foerg FE, Ogden D. Outpatient behavioral treatment 
for cocaine dependence: One-year outcome. Exp Clin Psychopharmacol. 1995; 3:205–212.

Houben K, Havermans RC, Nederkoorn C. Beer à no-go: learning to stop responding to alcohol cues 
reduces alcohol intake via reduced affective associations rather than increased response inhibition - 
Houben - 2012 - Addiction - Wiley Online Library. Addiction. 2012

Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. 
Biometrics. 1997; 53:983–997. doi:10.2307/2533558. [PubMed: 9333350] 

Krajbich I, Camerer C, Ledyard J, Rangel A. Using neural measures of economic value to solve the 
public goods free-rider problem. Science. 2009; 326:596–599. doi:10.1126/science.1177302. 
[PubMed: 19745115] 

Lawrence NS, Verbruggen F, Morrison S, Adams RC. Stopping to food can reduce intake. Effects of 
stimulus-specificity and individual differences in dietary restraint. Appetite. 2015

Lemm S, Blankertz B, Dickhaus T, Müller K-R. Introduction to machine learning for brain imaging. 
Neuroimage. 2011; 56:387–399. doi:10.1016/j.neuroimage.2010.11.004. [PubMed: 21172442] 

Lenartowicz A, Verbruggen F, Logan GD, Poldrack RA. Inhibition-related activation in the right 
inferior frontal gyrus in the absence of inhibitory cues. J Cognitive Neurosci. 2011; 23:3388–3399.

Lewis-Peacock JA, Drysdale AT, Oberauer K, Postle BR. Neural evidence for a distinction between 
short-term memory and the focus of attention. J Cognitive Neurosci. 2012; 24:61–79. doi:10.1162/
jocn_a_00140. 

Lewis-Peacock JA, Drysdale AT, Postle BR. Neural Evidence for the Flexible Control of Mental 
Representations. Cereb Cortex. 2015; 25:3303–3313. doi:10.1093/cercor/bhu130. [PubMed: 
24935778] 

Lewis-Peacock JA, Postle BR. Temporary activation of long-term memory supports working memory. 
J Neurosci. 2008; 28:8765–8771. doi:10.1523/JNEUROSCI.1953-08.2008. [PubMed: 18753378] 

Lin JY, Pype AD, Murray SO, Boynton GM. Enhanced memory for scenes presented at behaviorally 
relevant points in time. PLoS Biol. 2010; 8:e1000337. doi:10.1371/journal.pbio.1000337.g004. 
[PubMed: 20305721] 

Liu TT, Frank LR. Efficiency, power, and entropy in event-related FMRI with multiple trial types: Part 
I: theory. Neuroimage. 2004

Logan GD, Cowan WB. On the ability to inhibit thought and action: A theory of an act of control. 
Psychol Rev. 1984; 91:295–327. doi:10.1037/0033-295X.91.3.295. 

Mahmoudi A, Takerkart S, Regragui F, Boussaoud D, Brovelli A. Multivoxel pattern analysis for 
FMRI data: a review. Comput Math Methods Med. 2012; 2012:961257. doi:10.1155/2012/961257. 
[PubMed: 23401720] 

Bakkour et al. Page 18

Neuroimage. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Marteau TM, Hollands GJ, Fletcher PC. Changing human behavior to prevent disease: the importance 
of targeting automatic processes. Science. 2012; 337:1492–1495. doi:10.1126/science.1226918. 
[PubMed: 22997327] 

McNamee D, Rangel A, O’Doherty JP. Category-dependent and category-independent goal-value 
codes in human ventromedial prefrontal cortex. Nat Neurosci. 2013; 16:479–485. doi:10.1038/nn.
3337. [PubMed: 23416449] 

Meyer K, Kaplan JT, Essex R, Webber C, Damasio H, Damasio A. Predicting visual stimuli on the 
basis of activity in auditory cortices. Nat Neurosci. 2010; 13:667–668. doi:10.1038/nn.2533. 
[PubMed: 20436482] 

Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Ugurbil K. Multiband multislice GE-
EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high 
spatial and temporal whole-brain fMRI. Magnet Reson Med. 2010; 63:1144–1153. doi:10.1002/
mrm.22361. 

Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content with pattern-information 
fMRI--an introductory guide. Soc Cogn Affect Neurosci. 2009; 4:101–109. doi:10.1093/scan/
nsn044. [PubMed: 19151374] 

Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mind-reading: multi-voxel pattern analysis of 
fMRI data. Trends Cogn Sci. 2006; 10:424–430. doi:10.1016/j.tics.2006.07.005. [PubMed: 
16899397] 

O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable roles of ventral and 
dorsal striatum in instrumental conditioning. Science. 2004; 304:452–454. doi:10.1126/science.
1094285. [PubMed: 15087550] 

Padoa-Schioppa C, Assad JA. Neurons in the orbitofrontal cortex encode economic value. Nature. 
2006; 441:223–226. doi:10.1038/nature04676. [PubMed: 16633341] 

Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 
1995; 51:768–774. [PubMed: 8778124] 

Plassmann H, O’Doherty J, Rangel A. Orbitofrontal cortex encodes willingness to pay in everyday 
economic transactions. J Neurosci. 2007; 27:9984–9988. doi:10.1523/JNEUROSCI.2131-07.2007. 
[PubMed: 17855612] 

Polyn SM, Natu VS, Cohen JD, Norman KA. Category-specific cortical activity precedes retrieval 
during memory search. Science. 2005; 310:1963–1966. doi:10.1126/science.1117645. [PubMed: 
16373577] 

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in 
functional connectivity MRI networks arise from subject motion. Neuroimage. 2012; 59:2142–
2154. doi:10.1016/j.neuroimage.2011.10.018. [PubMed: 22019881] 

Rosenberg MD, Finn ES, Constable RT, Chun MM. Predicting moment-to-moment attentional state. 
Neuroimage. 2015; 114:249–256. doi:10.1016/j.neuroimage.2015.03.032. [PubMed: 25800207] 

Schonberg T, Bakkour A, Hover AM, Mumford JA, Nagar L, Perez J, Poldrack RA. Changing value 
through cued approach: an automatic mechanism of behavior change. Nat Neurosci. 2014a; 
17:625–630. doi:10.1038/nn.3673. [PubMed: 24609465] 

Schonberg T, Bakkour A, Hover AM, Mumford JA, Poldrack RA. Influencing food choices by 
training: evidence for modulation of frontoparietal control signals. J Cognitive Neurosci. 2014b; 
26:247–268. doi:10.1162/jocn_a_00495. 

Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. A hybrid approach to the skull 
stripping problem in MRI. Neuroimage. 2004; 22:1060–1075. doi:10.1016/j.neuroimage.
2004.03.032. [PubMed: 15219578] 

Shinkareva SV, Malave VL, Mason RA, Mitchell TM, Just MA. Commonality of neural 
representations of words and pictures. Neuroimage. 2011; 54:2418–2425. doi:10.1016/
j.neuroimage.2010.10.042. [PubMed: 20974270] 

Siegel JS, Power JD, Dubis JW, Vogel AC, Church JA, Schlaggar BL, Petersen SE. Statistical 
improvements in functional magnetic resonance imaging analyses produced by censoring high-
motion data points. Hum Brain Mapp. 2013 doi:10.1002/hbm.22307. 

Slovic P. The construction of preference. Am Psychol. 1995; 50:364.

Bakkour et al. Page 19

Neuroimage. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, 
De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, 
Brady JM, Matthews PM. Advances in functional and structural MR image analysis and 
implementation as FSL. Neuroimage. 2004; 23(Suppl 1):S208–19. doi:10.1016/j.neuroimage.
2004.07.051. [PubMed: 15501092] 

Soon CS, Brass M, Heinze H-J, Haynes J-D. Unconscious determinants of free decisions in the human 
brain. Nat Neurosci. 2008; 11:543–545. doi:10.1038/nn.2112. [PubMed: 18408715] 

Stenger, VA. Technical considerations for BOLD fMRI of the orbitofrontal cortex. In: Zald, D., Rauch, 
S., editors. The Orbitofrontal Cortex. Oxford University Press; Oxford: 2006. doi:10.1093/
acprof:oso/9780198565741.001.0001

Swallow KM, Jiang YV. The attentional boost effect: transient increases in attention to one task 
enhance performance in a second task. Cognition. 2010; 115:118–132. doi:10.1016/j.cognition.
2009.12.003. [PubMed: 20080232] 

Thorndike, EL. Animal Intelligence: Experimental Studies. Macmillan; New York: 1911. 

Tong F, Pratte MS. Decoding patterns of human brain activity. Annu Rev Psychol. 2012; 63:483–509. 
doi:10.1146/annurev-psych-120710-100412. [PubMed: 21943172] 

Tricomi E, Balleine BW, O’Doherty JP. A specific role for posterior dorsolateral striatum in human 
habit learning. Eur J Neurosci. 2009; 29:2225–2232. doi:10.1111/j.1460-9568.2009.06796.x. 
[PubMed: 19490086] 

Tversky A, Kahneman D. Rational choice and the framing of decisions. J Bus. 1986:S251–S278.

Veling H, Aarts H, Stroebe W. Stop signals decrease choices for palatable foods through decreased 
food evaluation. Front Psychol. 2013; 4:875. doi:10.3389/fpsyg.2013.00875. [PubMed: 24324451] 

Verbruggen F, Logan GD. Automatic and controlled response inhibition: associative learning in the 
go/no-go and stop-signal paradigms. J Exp Psychol Gen. 2008; 137:649–672. doi:10.1037/
a0013170. [PubMed: 18999358] 

Wessel JR, O’Doherty JP, Berkebile MM, Linderman D, Aron AR. Stimulus devaluation induced by 
stopping action. J Exp Psychol Gen. 2014; 143:2316–2329. doi:10.1037/xge0000022. [PubMed: 
25313953] 

Wood W, Neal DT. A new look at habits and the habit-goal interface. Psychol Rev. 2007; 114:843–863. 
doi:10.1037/0033-295X.114.4.843. [PubMed: 17907866] 

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of 
human functional neuroimaging data. Nat Methods. 2011; 8:665–670. doi:10.1038/nmeth.1635. 
[PubMed: 21706013] 

Bakkour et al. Page 20

Neuroimage. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Sorting and pair matching procedure. A) Items were rank ordered based on bid obtained in 

the auction (Figure 2A). Items were classified into high value (8:18) and low value items 

(39:49). B) 8 High and 8 low value items were assigned to one of two training conditions 

(Go, associated with a go-signal auditory cue and NoGo, not associated with a go-signal). 

Item Go/NoGo condition assignments were counterbalanced across participants.
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Figure 2. 
Task procedure. A) Auction. Participants placed their bid by selecting an amount between $0 

and $3 using the mouse. B) Cognitive localizer task. Food items appeared on the screen one 

at a time, at the bottom of the screen one of three questions appeared. Participants were 

asked to answer the question relevant to the item on the screen within 3.6 seconds, at which 

time the trial ended. Successive stimulus presentations were separated by a fixed ISI of 6 s. 

C) Cue-approach training. Single food items appeared on the screen for a fixed 1.2 s. 

Participants were asked to press a button on the keypad as quickly as possible only when 

they heard a neutral tone that sounded on average 950 ms after food stimulus onset (GSD). 
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Stimulus presentations were separated by a fixed 3.6 s ISI. D) Probe task. Participants chose 

between two items on the screen. They were told that their choice on a random probe trial 

would be honored at the end of the experiment. Choices had to be made within 2 s of trial 

onset.
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Figure 3. 
Behavioral results for cue-approach study. A) Proportion of choices of the Go item in pairs 

of high-value Go versus NoGo and low-value Go versus NoGo items for all participants. 

Significance level reflects odds of choosing the Go to NoGo item. B) WTP before and after 

cue-approach training for Go and NoGo separately for items in the probe high-value Go 

versus high-value NoGo pairs (top) and low-value Go versus low-value NoGo pairs 

(bottom). The sample includes all participants. Error bars represent one standard error of the 

mean (SEM) in A and within-subject SEM in B. ***: p < 0.0001, +: p < 0.05 (two-sided 

tests).
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Figure 4. 
Average MVPA classifier evidence during cue-approach training. Three-class SVM classifier 

was trained on cognitive localizer neural data and applied to each trial of cue-approach 

training to obtain classifier evidence for each class split by training trial type (Go [solid 

green line] or NoGo [dashed red line]) for valuation (left), memory retrieval (middle) and 

perceptual decision (right). The shaded areas represent one within-participant SEM.
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Figure 5. 
Linear mixed-effects regression model interaction of item training type (high-value Go or 

NoGo) and value classifier evidence from the last cue-approach training trial on the number 

of times a particular item was later chosen at probe. The lines depict the group-level linear 

effects and the shaded areas depict 95% confidence curves.
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Figure 6. 
Localizer task imaging results (N=32) for the modulation by preference level measured by a 

four-alternative forced choice (least to most) to the question “How much would you like to 

eat this food?”. Coordinates reported in standard MNI space. Heatmap color bars range from 

z-stat = 2.3 to 3.7. This map was cluster-corrected at a whole-brain level p < 0.05, two sided 

linear regression. To see the full map go to http://neurovault.org/images/24109/
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Figure 7. 
Probe imaging results (N=22) for the modulation by number of times a particular lower-

value Go item was chosen greater than the modulation by number of times a particular 

lower-value NoGo item was chosen. Coordinates reported in standard MNI space. Heatmap 

color bars range from z-stat = 2.3 to 3.2. This map was cluster-corrected within an a priori 
defined anatomical mPFC mask (SVC) p < 0.05, two sided linear regression. To see the full 

SVC map go to http://neurovault.org/images/24110/
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Figure 8. 
Training imaging results (N=27). Changes in BOLD modulation by number of times a 

particular GO item was later chosen at probe from the beginning to the end of training grater 

than changes in BOLD modulation by number of times a particular NOGO item was later 

chosen at probe from beginning to the end of training. Coordinates reported in standard MNI 

space. Heatmap color bars range from z-stat = 2.3 to 3.2. This map was cluster-corrected at a 

whole-brain level p < 0.05, two sided linear regression. To see the full map go to http://

neurovault.org/images/24111/
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Table 1

Regions showing significant activations for the imaging contrast presented in Figure 6. The list shows all 

regions from the Harvard-Oxford atlas that contained more than 10 active voxels within the clusters, along 

with the peak x/y/z location for the cluster in MNI space.

Cluster
Number Region # voxels

in region
Cluster

size x y z peak Z

1

L Lingual Gyrus 872

1989 −10 −74 −2 6.92

L Intracalcarine Cortex 431

L Occipital Fusiform Gyrus 178

L Occipital Pole 102

R Lingual Gyrus 45

L Precuneous Cortex 12

L Supracalcarine Cortex 10

2

L Paracingulate Gyrus 175

538 0 50 2 4.35

R Paracingulate Gyrus 116

L Frontal Pole 79

L Cingulate Gyrus, anterior division 74

R Cingulate Gyrus, anterior division 42

3

R Cingulate Gyrus, anterior division 171

435 −2 36 20 3.98
L Cingulate Gyrus, anterior division 113

L Paracingulate Gyrus 80

R Paracingulate Gyrus 38

4

R Angular Gyrus 156

430 64 −50 18 3.39

R Middle Temporal Gyrus, temporooccipital part 155

R Supramarginal Gyrus, posterior division 73

R Lateral Occipital Cortex, superior division 16

R Lateral Occipital Cortex, inferior division 12

5

L Supramarginal Gyrus, posterior division 241

382 −54 −44 48 4.05
L Angular Gyrus 65

L Supramarginal Gyrus, anterior division 49

L Lateral Occipital Cortex, superior division 18

6

R Inferior Frontal Gyrus, pars triangularis 161

380 50 28 0 3.93

R Inferior Frontal Gyrus, pars opercularis 50

R Insular Cortex 44

R Frontal Operculum Cortex 31

R Frontal Pole 25

R Central Opercular Cortex 21

R Frontal Orbital Cortex 10

7
L Middle Frontal Gyrus 244

378 −34 30 46 4.11
L Superior Frontal Gyrus 80
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Table 2

Regions showing significant activations for the imaging contrast presented in Figure 7. The list shows all 

regions from the Harvard-Oxford atlas that contained more than 10 active voxels within the cluster, along with 

the peak x/y/z location for the cluster in MNI space.

Cluster
Number Region # voxels

in region
Cluster

size x y z peak Z

1
L Frontal Pole 143

237 4 56 −6 3.7
L Inferior Frontal Gyrus, pars triangularis 75
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Table 3

Regions showing significant activations for the imaging contrast presented in Figure 8. The list shows all 

regions from the Harvard-Oxford atlas that contained more than 10 active voxels within the clusters, along 

with the peak x/y/z location for the cluster in MNI space.

Cluster
Number Region # voxels

in region
Cluster

size x y z peak Z

1

R Postcentral Gyrus 565

1365 10 −52 68 3.92

R Superior Parietal Lobule 215

R Precentral Gyrus 193

R Precuneous Cortex 118

L Precentral Gyrus 85

R Supramarginal Gyrus, anterior division 47

2
L Middle Frontal Gyrus 319

373 −42 12 42 3.46
L Precentral Gyrus 26

3
L Frontal Pole 143

258 −44 36 10 3.84
L Inferior Frontal Gyrus, pars triangularis 75
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Table 4

Pearson correlations between the map in Figure 8 and formal term-based reverse inference maps using 

Neurosynth (Yarkoni et al., 2011)

Term Correlation (r)

prefrontal 0.141

semantic 0.125

medial prefrontal 0.12

theory mind 0.11

default 0.107

mind 0.106

default mode 0.098

parietal 0.096

medial 0.094

mode 0.094
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