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A B S T R A C T

Cognition is hypothesized to require the globally coordinated, functionally relevant integration of otherwise
segregated information processing carried out by specialized brain regions. Studies of the macroscopic
connectome as well as recent neuroimaging and neuromodeling research have suggested a densely connected
collective of cortical hubs, termed the rich club, to provide a central workspace for such integration. In order for
rich club regions to fulfill this role they must dispose of a dynamic mechanism by which they can actively shape
networks of brain regions whose information processing needs to be integrated. A potential candidate for such a
mechanism comes in the form of oscillations which might be employed to establish communication channels
among relevant brain regions. We explore this possibility using an integrative approach combining whole-brain
computational modeling with neuroimaging, wherein we investigate the local dynamics model brain regions
need to exhibit in order to fit (dynamic) network behavior empirically observed for resting as well as a range of
task states. We find that rich club regions largely exhibit oscillations during task performance but not during
rest. Furthermore, oscillations exhibited by rich club regions can harmonize a set of asynchronous brain regions
thus supporting functional coupling among them. These findings are in line with the hypothesis that the rich
club can actively shape integration using oscillations.

Introduction

The human brain is characterized by a high degree of structural
segregation allowing for designated information processing within
specialized brain regions (Bear et al., 2006; Flourens, 1842; Lashley,
1929). While this is beneficial for unimodal and automatic processing,
higher cognition is hypothesized to require the globally coordinated
integration of segregated brain regions into temporal functional net-
works (Baars, 2005; Deco et al., 2011; Dehaene and Naccache, 2001;
Ghosh et al., 2008). A high degree of integration is thus additionally
required for efficient information processing (Damasio, 1989; Tononi,

2004). Studies of human, macaque, and other mammal cortices have
shown the presence of a hierarchically higher module termed the rich
club which is characterized by hubs with dense intra- and inter-
modular connectivity (Colizza et al., 2006; van den Heuvel and
Sporns, 2011; Zamora-López et al., 2009). The rich club forms a
structural backbone mediating a majority of all anatomical paths
between pairs of brain regions (van den Heuvel et al., 2012; Zamora-
López et al., 2009), suggesting a prominent role for it in functional
integration.

In accordance with this, recent functional magnetic resonance
imaging (fMRI) studies have shown that cortical hubs carry traces of
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blood oxygen-level dependent (BOLD) activity of resting- and task
related functional networks (Braga et al., 2013; Leech et al., 2012),
indicative of communication among brain regions being mediated by
rich club regions. fMRI research has further shown that cortical hubs
update their pattern of global functional connectivity in response to
changing task demands (Cole et al., 2013). Additionally, simulation
studies employing a steady-state attractor model have suggested that
cortical hubs, and specifically the rich club, may allow the brain to
sustain a large functional repertoire characterized by diverse config-
urations of peripheral, i.e. low degree, regions around a stable high-
degree core (Deco et al., 2012; Senden et al., 2014). Similar observa-
tions have been made in studies using oscillatory neural mass models
showing that the rich club can facilitate the synchronization among
groups of cortical regions (Gollo et al., 2015; Schmidt et al., 2015). The
latter is especially interesting given that cortical regions can undergo
transitions from asynchronous to oscillatory behavior as a result of
interactions between cortical and thalamic neuronal populations in the
presence of noise (Breakspear et al., 2006).

These findings suggest that rich club regions may utilize oscillations
as a local control mechanism to organize brain regions into functional
networks as they dynamically adjust their oscillatory behavior in
response to changing task demands. Furthermore, if rich club regions
are generally involved in functional integration, these adjustments
should occur irrespective of cognitive domain. The aim of the present
study is to investigate this possibility by combining fMRI measure-
ments of resting and task states with simulations of a whole-brain
model whose cortical regions can exhibit local dynamics ranging from
asynchronous fluctuations (noise diffusion) to structured oscillations.
We restrict our investigations to oscillations falling within the infraslow
frequency band (defined as the range from .01 Hz to .2 Hz; Vanhatalo
et al., 2004) due to the slow nature of the BOLD signal. These
oscillations might be a proxy for low-pass filtered oscillatory behavior
at higher frequency bands. However, prior research suggests that the
infraslow frequency band might also be relevant for functional network
formation in its own right since oscillatory behavior in this band has
been shown to modulate regions’ excitability states and has been
implicated in resting state and task execution (Hiltunen et al., 2014;
Monto et al., 2008; Vanhatalo et al., 2004). To study the relevance of
local oscillatory behavior for whole-brain dynamics related to cognition
irrespective of a specific cognitive domain, we obtained fMRI data for a
range of tasks, including an n-Back task (Kirchner, 1958), the Eriksen
Flanker task (Eriksen and Eriksen, 1974), a mental rotation task
(Shepard and Metzler, 1971), and a verbal odd-man-out task
(Flowers and Robertson, 1985). These tasks were chosen to tap into
working memory, executive function and inhibition, mental rotation,
and semantic reasoning, respectively. These cognitive domains are
conceptually different and their associated functional connectivity
profiles have been shown to be minimally overlapping (Smith et al.,
2009). The combined simulation and fMRI approach allows us to
investigate the local dynamics of rich club regions as opposed to other
cortical regions, whether rich club regions adapt their local dynamics in
response to task performance as compared to rest, and how this relates
to whole-brain functional coupling.

Materials and methods

Participants

Fourteen healthy subjects (8 females, age range=22–43 years, mean
age=28.76 years) were recruited for resting state and task related fMRI
measurements. All subjects had normal or corrected-to-normal visual
acuity, were screened, and provided written informed consent prior to
scanning.

Task and stimulus description

In the present study subjects underwent six functional runs. These
runs consisted of a resting-state measurement, four individual task
measurements including an n-Back (n=2) task (Kirchner, 1958), the
Eriksen Flanker task (Eriksen and Eriksen, 1974), a mental rotation
task (Shepard and Metzler, 1971), an odd-man-out task (Flowers and
Robertson, 1985), and a task-switching paradigm wherein participants
repeatedly performed each of the four tasks. Using the cognitive atlas
(http://www.cognitiveatlas.org; Poldrack et al., 2011), tasks were
selected based on how well they reflect a specific cognitive domain.
The cognitive domains (working memory, executive function &
inhibition, mental rotation, and semantic reasoning), in turn, were
chosen because they show distinctive patterns of mapping to the ten
primary resting-state functional networks (Smith et al., 2009). All
resting-state measurements preceded task-related measurements to
prevent carry-over effects (Grigg and Grady, 2010). Resting-state runs
lasted for 8 minutes during which subjects were instructed to close
their eyes. The four individual task runs followed rest, lasted ~7 min
each, and were counter-balanced across participants. The task-
switching run lasted 9 min and was always performed last to allow
participants to get familiar with performing each task in the scanner
before being required to switch between them. Since this run was not
the object of the present study it will not be discussed further.
Descriptions of the remaining four tasks are as follows:

N-back Task
In a visual 2-back task subjects were presented with a sequence of

abstract shape stimuli and instructed to indicate whether the currently
presented stimulus matches the second to last stimulus in the sequence
presented before. Abstract, snowflake-like, shapes were used in order
to prevent subjects from translating a visual into a verbal representa-
tion and thus minimizing representational overlap with the verbal odd-
man-out task. A total of 9 different snowflake-like shapes were shown
in a quasi-random order. Shape presentation trials lasted for 1 s
followed by a 1 s inter-trial interval. In total there were 192 trials
forming a single task block preceded and followed by a 16 s rest period
leading to a total run length of 416 s. Of the 192 trials 48 (25%)
required a response indicating a match.

Flanker Task
In a modified version of the Eriksen Flanker task (Eriksen and

Eriksen, 1974) subjects were presented with three rows of arrow
stimuli pointing either to the right or the left. The center arrow was
the target stimulus indicating whether a left or right response was
required. The arrows surrounding the target stimulus were distractors
whose direction was either congruent or incongruent with that of the
target stimulus. Trials lasted for 1 s followed by a 1 s inter-trial
interval. In total there were 192 trials forming a single task block
preceded and followed by a 16 s rest period leading to a total run length
of 416 s. Of the 192 trials 96 (50%) were incongruent thus requiring
response inhibition.

3D Mental rotation task
In a mental rotation task subjects were required to mentally rotate a

three-dimensional probe stimulus in order to confirm or deny an
identity match with a target stimulus. Subjects could indicate a match
between the two by pressing the ‘right’ button and a mismatch by
pressing the ‘left’ button. Trials lasted for 3 s followed by a 1 s inter-
trial interval. In total there were 96 trials forming a single task block
preceded and followed by a 16 s rest period leading to a total run length
of 416 s. Of the 96 trials 24 (25%) presented matching probe and target
stimuli.

Odd-Man-Out task
In a verbal odd-man-out task subjects were presented with three
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words and had to indicate which of the three semantically fits least with
the others. The word being the odd-man-out in a specific trial was
always either presented on the outer left or the outer right with the
middle word forming a semantic anchor. Hence, the required response
was a ‘left’ or ‘right’ button press, if the odd-man-out was presented on
the left or the right of the anchor, respectively. Trials lasted for 3 s
followed by a 1 s inter-trial interval. In total there were 96 trials
forming a single task block preceded and followed by a 16 s rest period
leading to a total run length of 416 s.

Stimulus presentation

All tasks were programmed in Presentation® (Version 10; www.
neurobs.com). Stimuli were presented to the subjects at a resolution of
1920×1200 pixels. All experiments were performed on a hardware
configuration containing a Dell Optiplex 970 computer with a NVIDIA
NVS 300 graphics card with OpenGL > 2.0 support connected to a
Panasonic PT EZ570E wuxga projector. The projected stimuli were first
reflected off a mirror positioned behind the bore of the magnet before
they were reflected off a second mirror located above the head coil. The
projection pathway together with the scanner table positioning created
a fixed maximum visual angle of 18.76° for all subjects.

Magnetic resonance imaging

Images were acquired at Maastricht Brain Imaging Centre
(Maastricht University) on a 3 T scanner (Tim Trio/upgraded to
Prisma Fit, Siemens Healthcare, Germany). Anatomical data were
collected prior to functional data with a T1-weighted MPRAGE imaging
sequence (192 sagittal slices; Repetition Time [TR]=2250 ms; Echo
Time [TE]=2.21 ms; Flip Angle [FA]=9°; Field of View [FoV]
=256×256 mm2; 1 mm isotropic resolution. Functional images were
acquired using a gradient-echo echo-planar imaging sequence (38
transversal slices; TR=2000 ms; TE=30 ms; FA=77°;
FoV=216×216 mm2; voxel-size=3×3×3.5 mm³; no slice gap;
GRAPPA=3).

Processing of (f)MRI data

Anatomical images were automatically processed with the long-
itudinal stream in FreeSurfer (Reuter et al., 2012; http://surfer.nmr.
mgh.harvard.edu/) including probabilistic atlas based cortical
parcellation according to the Desikan-Killany (DK) atlas (Desikan
et al., 2006). Initial preprocessing of each functional dataset was
performed in BrainVoyager QX (v2.6; Brain Innovation, Maastricht,
the Netherlands) and included slice scan time correction, (rigid body)
motion correction, and high-pass filtering with a frequency cutoff of
.01 Hz. Due to the use of preparation scans, none of the initial volumes
needed to be discarded related to T1 equilibrium effects. Subsequently,
functional images were registered to the subject's anatomical images.
Using MATLAB (2013a, The MathWorks,Natick, MA), signals were
then cleaned further by performing wavelet despiking (Patel and
Bullmore, 2015) and regressing out a global noise signal given by the
first principal component of signals observed within the cerebrospinal
fluid of the ventricles. Next, voxels were uniquely assigned to one of 68
cortical regions and an average BOLD signal for each region was
computed as the mean time-series over all voxels of that region.
Finally, since the initial and final 8 data points of all task runs
constitute a rest-period, these data points were removed leaving 192
data points during which a task was continuously performed. For
reasons of comparability, resting state BOLD signal was equally
reduced to 192 data points. However, all analyses and simulations
were repeated with the full resting state data set and did not produce
different results.

Structural connectivity

High-quality diffusion-weighted MRI data of 215 subjects was
obtained from the human connectome project's (HCP) Q3 release

Table 1
Cortical regions (ordered).

# Region Name

1 left banks of the superior temporal sulcus
2 left caudalanterior-cingulate cortex
3 left caudalmiddle frontal gyrus
4 left cuneus
5 left entorhinal cortex
6 left fusiform gyrus
7 left inferior parietal cortex
8 left inferior temporal cortex
9 left isthmus–cingulate cortex
10 left lateral occipitalcortex
11 left lateral orbital frontal cortex
12 left lingual gyrus
13 left medial orbital frontal cortex
14 left middle temporal gyrus
15 left parahippocampal gyrus
16 left paracentral lobule
17 left pars opercularis
18 left pars orbitalis
19 left pars triangularis
20 left pericalcarine cortex
21 left postcentral gyrus
22 left posterior-cingulate cortex
23 left precentral gyrus
24 left rostralanterior cingulate cortex
25 left rostralmiddle frontal gyrus
26 left superior temporal gyrus
27 left supramarginal gyrus
28 left frontal pole
29 left temporal pole
30 left transverse temporal cortex
31 left insula
32 left precuneus
33 left superior frontal cortex
34 left superior parietal cortex
35 right superior parietal cortex
36 right superior frontal cortex
37 right precuneus
38 right insula
39 right transverse temporal cortex
40 right temporal pole
41 right frontal pole
42 right supramarginal gyrus
43 right superior temporal gyrus
44 right rostralmiddle frontal gyrus
45 right rostralanterior cingulate cortex
46 right precentral gyrus
47 right posterior-cingulate cortex
48 right postcentral gyrus
49 right pericalcarine cortex
50 right pars triangularis
51 right pars orbitalis
52 right pars opercularis
53 right paracentral lobule
54 right parahippocampal gyrus
55 right middle temporal gyrus
56 right medial orbital frontal cortex
57 right lingual gyrus
58 right lateral orbital frontal cortex
59 right lateral occipitalcortex
60 right isthmus–cingulate cortex
61 right inferior temporal cortex
62 right inferior parietal cortex
63 right fusiform gyrus
64 right entorhinal cortex
65 right cuneus
66 right caudalmiddle frontal gyrus
67 right caudalanterior-cingulate cortex
68 right banks of the superior temporal sulcus
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(Glasser et al., 2013; Van Essen et al., 2012). White matter fibers were
traced for each subject using generalized q-sampling imaging (GQI)
and streamline tractography (Yeh et al., 2010) and the cortex was
parcellated into 68 cortical regions based on the DK atlas (Desikan
et al., 2006). More details on these processing steps can be found
elsewhere (de Reus and van den Heuvel, 2014). A weighted structural
connectivity matrix was then generated by averaging streamlines over
subjects, keeping only those entries which had positive values for at
least 60% of subjects (de Reus and van den Heuvel, 2013), and
resampling the data to follow a Gaussian distribution with a mean of
.5 and a standard deviation of .15 (Honey et al., 2009). Gaussian
resampling of, or alternatively log transforming, the data has recently
been shown to enhance correspondence between diffusion tractography
and in vivo animal tract-tracing measurements of anatomical connec-
tivity (van den Heuvel et al., 2015) (Table 1).

Whole-brain model

To examine the interplay of local and global dynamics during rest as
well as in response to task demands we studied the behavior of
interconnected regions represented by a neural mass model character-
ized by the normal form of a supercritical Hopf bifurcation and
connected according to an anatomical structural connectivity matrix.
We chose this description because it can capture transitions from
asynchronous to oscillatory behavior. Neural mass models character-
ized by the normal form of a Hopf bifurcation had previously been

shown to provide a good characterization of regional dynamics (Freyer
et al., 2011, 2012). Briefly, the dynamic behavior of each region j was
given by

dz
dt

z a iω z βη t= [ + − ] + ( )j
j j j j j

2
(1)

with zj being complex and hence separable into a real (xj) and
imaginary (yj) part

z r e x iy= = +j j
iθ

j j
j (2)

and η being Gaussian white noise implemented as a Wiener process
scaled by a factor β=.02. In Eq. (1) the bifurcation parameter aj
represents a local control variable which determined whether a region
was primarily dominated by noisy fluctuations (a < 0j ) or by a stable
limit cycle with frequency f ω π= /2j j (a > 0j ). The bifurcation para-
meter is thus meaningfully interpretable as it gives an indication as to
whether brain regions exhibit oscillatory behavior. Supplementary Fig
1 gives a detailed account of a single region thusly described. We also
provide code for simulating the interaction among two mutually
coupled regions online (https://github.com/MSenden/Hopf.git).
Embedding these local dynamics into a large-scale model and
separating real from imaginary parts of z leads to whole-brain
dynamics defined by the following set of coupled equations:

∑dx
dt

a x y x ω y G C x x βη t= [ − − ] − + ( − ) + ( )j
j j j j j j

i
ij i j j

2 2

(3)

Fig. 1. Schematic Overview of Parameter Optimization. Panel A) gives a brief overview of the optimization procedure for global parameter settings. Two parameters, coupling strength G
and global bifurcation parameter A (both encircled in red), were adjusted in order for the model to reproduce empirically observed grand average functional connectivity (FC), the
cumulative distribution of dynamic functional connectivity (DFC), and mean MS across subjects. Metastability is the standard deviation of the Kuramoto parameter R(t) across time.
Panel B) gives a brief overview of the optimization procedure of local bifurcation parameter aj (encircled in red). After initializing all aj to A (given the optimal working point A,G
resulting from prior global optimization), values were adjusted according to a gradient descent strategy in order to capture the proportion p of power in a narrow frequency band with
respect to a broad band observed for each cortical region j. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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∑
dy
dt

a x y y ω x G C y y βη t= [ − − ] + + ( − ) + ( )j
j j j j j j

i
ij i j j

2 2

(4)

In Eqs. (3) and (4), the coupling strength G scaled the adjacency
matrix C. Coupling strength is a global control variable separating
global dynamics into a unistable regime in the form of a low activity
ground state and a multistable regime. Optimal coupling generally
occurs close to a bifurcation separating these regimes (Deco et al.,
2011; Deco and Jirsa, 2012). Simulated BOLD signal of each area j was
directly given by the real part of z (i.e. by x) with each region having its
own characteristic frequency ωj in the range from .04 Hz to .07 Hz (a
subset of the infraslow frequency range) given by the averaged peak
frequency of the empirical BOLD signals in that range (for a distribu-
tion of characteristic frequencies per task see supplementary Fig 2). We
chose this frequency range as it had previously been identified as
reliably reflecting gray matter signals and being minimally affected by
aliased physiological noise (Glerean et al., 2012).

Optimization of global control variables

In order to find the working point for which the model reproduces
global dynamics exhibited by the cortex during rest, as well as in
response to task demands, two parameters (control variables) needed
to be optimized. The first was the previously mentioned global coupling
strength G scaling the structural connectivity. The second global
parameter was the bifurcation parameter A, a fixed value substituted
for all local bifurcation parameters aj. We characterized global cortex
dynamics in terms of grand average functional connectivity (FC),
dynamic functional connectivity (DFC), and metastability (MS).
Optimization of global control variables involved finding those values
of G and A for which the model faithfully reproduced all three metrics
as observed in our dataset (see Fig. 1a for a schematic overview).

Grand average functional connectivity
This metric reflects the static component of the relationships

Fig. 2. Schematic Overview of Dynamic Functional Connectivity Pipeline. Panel A) shows exemplary time signals as well as instantaneous functional connectivity (iFC) matrices at
different moments in time. These iFC matrices reflect the cosine of instantaneous phase differences between all pairs of cortical regions at a given moment in time. Panel B) illustrates a
time×time dynamic functional connectivity (DFC) matrix whose entry at t1,t2 is given by the cosine similarity between the upper triangular of iFC matrices observed at these moments in
time. Panel C) depicts the full DFC matrix once the cosine similarity for all possible pairs of time points has been computed. Panel C) shows the distribution of cosine similarities
observed in the upper triangular of the DFC matrix. The Kolmogorov-Smirnoff distance between empirically observed and simulated distributions indicates how well the model
reproduces empirical DFC.
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between region-specific activation patterns. A grand average FC matrix
per task (and rest) was obtained by calculating individual FC matrices
in the form of pairwise Pearson correlation coefficients of bandpass-
filtered (in the range from .04 Hz to .07 Hz) regional BOLD signals for
each subject, and subsequently averaging across individual subject's
FCs. The same general logic applied to the grand average FC obtained
for the simulated BOLD signal with the difference that rather than
simulating separate subjects, simulation time corresponded to acquisi-
tion time multiplied by the number of subjects. The fit between
empirical and simulated grand average FC was considered to be the
Pearson correlation coefficient between the entries falling in the upper
triangular of the respective matrices. Alternatively, model fit might be
considered as the average of Pearson correlations between individual
subject's FC and simulated grand average FC. The latter is worth noting
since averaging over individual subjects’ FCs can affect network
characteristics (Moussa et al., 2012). However, both approaches lead
to identical fit distributions across parameter space and we only report
results from using the grand average FC.

Dynamic functional connectivity
This metric reflects the dynamics of functional couplings as short-

lived global network states dissolve and may re-emerge at different
moments in time (Hutchison et al., 2013). The DFC for each task (and
rest) was given by the cumulative distribution of the pairwise similarity
between instantaneous functional networks across subjects.
Specifically, in an individual subject we first computed the analytic
signal of each cortical region by applying the Hilbert transformation to
its bandpass-filtered BOLD signal. This allowed for the calculation of
instantaneous phases (i.e. phases observed at each moment in time) of
cortical regions. Next, a phase difference matrix was obtained at each
point in time by calculating the instantaneous phase differences
between all pairs of cortical regions. These difference matrices were
then transformed to similarity matrices by computing the cosine of
their entries (Fig. 2a). A single phase similarity matrix reflects the
functional connectivity among cortical regions observed at a single
moment in time; i.e. the instantaneous functional connectivity (iFC).
To estimate the similarity between functional connectivity observed at
different moments in time, we calculated the cosine similarity of the
upper triangular of iFC matrices between all pairs of time points
(Fig. 2b). This results in a DFC matrix (Fig. 2c). The entries falling in
the upper triangular of this matrix form the distribution of similarity
among pairs of time points in terms of the functional connectivity
observed at these moments in time (Fig. 2d). This procedure was
repeated for all subjects with the final distribution of cosine similarity
values being the aggregated distributions observed for individual
subjects. We followed the same logic when calculating the DFC for
simulated data. We calculated the Kolmogorov-Smirnoff distance
between empirical and simulated distributions in order to evaluate
their agreement.

Metastability
The final metric used here reflects the overall variability of network

states of the system; i.e. in how far the system exhibits transient
synchronization dynamics (Wildie and Shanahan, 2012). While this
metric cannot reveal details with regard to the number or shape of
distinct synchronization states, it has previously been shown to be a
good constraint for models whose nodes exhibit oscillatory behavior
(Cabral et al., 2011;Cabral et al., 2014; Váša et al., 2015). Metastability
in each task (and rest) was measured as the standard deviation of the
Kuramoto order parameter observed over time. The Kuramoto order
parameter R(t) reflects the extent of synchronization exhibited among
brain regions at a specific moment in time and is given by

∑R t e n( ) = /
j

n
iφ t

=1

( )j

(5)

with φj(t) being the instantaneous phase of each bandpass-filtered
BOLD signal of regions j at time t and n the total number of brain
regions. As for the estimation of DFC, instantaneous phases were
calculated from analytic signals. For empirical data, MS was estimated
for each subject separately and subsequently averaged. In the model it
was obtained from the full-length signal. The difference between
average empirical MS and model MS reflects how well the model
reproduces this metric.

Optimization of the local control variable

The region specific bifurcation parameter aj was optimized by
fitting spectral information of the empirical BOLD signals in each
region (see Fig. 1b for a schematic overview). Specifically, local
parameters were tuned to reproduce the region-specific proportions
of power in a narrow band (0.04–0.07 Hz) with respect to a broad band
(0.04–0.25 Hz). To do so, the power spectrum P f( )j for each node j in
the narrow as well as in the broad band was calculated to obtain the
proportion

∫

∫
p

P f df

P f df
=

( )

( )
j

j

j

.04

.07

.04

.25
(6)

Subsequently, the local bifurcation parameter was updated accord-
ing to a gradient descendent strategy

a a η p p= + ( − )j j j empirical j simulated, , (7)

A learning rate of η=.1 was used. Adjustment of this local parameter
was only carried out after global parameters had been fit to assure that
the procedure started with values in the vicinity of a global optimum.
As for the optimization of global control variables, adjustment of the
local bifurcation parameter was based on group data.

Results

Rich club

Rich club regions were identified from a binarized SC matrix
obtained from setting all its non-zero entries to one. From this binary
adjacency matrix rich club coefficients were calculated as the fraction of
the number of existing connections between regions with degree larger
than k to the possible number of connections among these regions
(Colizza et al., 2006; Zhou and Mondragon, 2004). Next, the statistical
significance of rich club coefficients for each degree k was determined
by calculating the rich club coefficients for a set of 1000 degree-
preserving rewired adjacency matrices (Maslov and Sneppen, 2002)
and identifying the first k for which the rich club coefficient of the
binarized SC was larger than the 95th percentile of the rich club
coefficients corresponding to the rewired matrices (see Fig. 3).
Candidate rich club regions were subsequently identified as those
whose degree exceeded the first k level for which the rich club
coefficient reached statistical significance. These candidate regions
included the bilateral precuneus, the bilateral superior frontal cortex,
the bilateral superior parietal cortex, and the right insula. To ensure
that these regions were not only individually rich but also formed a
dense club we calculated the internal density of this set of regions.
Subsequently, we, in turn, removed each region and re-evaluated the
internal density of the remaining set. If a region is part of the rich club
its removal should hardly affect internal density. On the other hand, if a
region is not part of the rich club its removal should lead to a sharp rise
in density. Removal of the left precuneus, the right superior frontal
cortex, left superior parietal, and right superior parietal each lead to
decreases in internal density by 6.67%. Removal of the right precuneus
and left superior frontal cortex each lead to a slight increase in internal
density by 2.67%. These regions, therefore, form a dense club.
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However, removal of the right insula lead to an increase in internal
density by 21.33%. Since ninety-five percent of density changes lay
within ± 8.31% and density changes produced by removal of the right
insula fell outside this interval, it was not considered a rich club region
in this study. We validated this decision by removing the right insula
from the SC matrix and observing no changes with regard to the rich
club phenomenon. While exclusion of the right insula from the rich
club was thus justified in our study, other studies using a different data
set or employing a different parcellation scheme might still identify it
as part of the rich club.

Whole-brain functional dynamics and model fitting

Fig. 4 shows the group level FC (A), DFC (B), and MS (C) observed
for rest as well as for the four tasks which the model needed to
reproduce. As can be appreciated from the figure, whole-brain FC
patterns were highly similar. Indeed, all pairs correlated strongly with
Pearson correlations in the range from .84 (rest with mental rotation)
to .88 (flanker with mental rotation). Dynamic FC representing the
dissolution and re-assembly of short-lived functional connectivity
patterns showed differences between resting and task states as well
as among different task states. The distributions of cosine similarities

(see methods for details) were significantly different according to a
paired Kolmogorov-Smirnoff test for all pairs of rest to task as well as
among tasks (P-values for all paired tests were ≪.001). Finally,
metastability did not differ between resting and task states nor among
different task states with the lowest P-value in a paired t-test equal to
.26 (rest vs n-back).

In order to find the optimal parameter settings for each task, we
performed an exhaustive search of the parameter space. We examined
global coupling G in the range from zero to .175 in 100 steps and global
bifurcation parameter A in the range from minus to plus .5 in 30 steps.
For all functional states, Fig. 5 shows the Pearson correlation between
model and empirical FC (A), the Kolmogorov-Smirnoff distance
between model and empirical DFC (B), and model MS (C) for the
entire parameter space (i.e. all combinations of explored values for A
and G). Supplementary Figs. 3–5 give a more detailed account of the
three metrics obtained from simulations at different working points for
resting state data. To obtain an overall measure of how well our
simulations reproduce empirical data, we combined the three metrics.
First we converted each metric to a distance between model and
empirical data. For FC this involved subtracting the Pearson correla-
tion from one. For MS this involved computing the difference between
model and empirical MS values. The Kolmogorov-Smirnoff distance
remained unchanged. Next we normalized each metric with respect to
its range to adjust for differences in scales. Finally, we averaged across
these three normalized distance measures (Fig. 5d). Alternatively, the
maximum across the normalized distance measures might be taken.
Optimal parameter values correspond to the region where this global
measure is minimized. We identified the same region using the average
and the maximum to aggregate distance measures. This region was
highly similar across tasks with a broad range of global coupling values
but only a narrow band of bifurcation parameter values leading to good
model fit. The latter was especially due to the Kolmogorov-Smirnoff
distance between model and empirical DFC distributions as well as MS.
In both resting and all task states, we found the optimal value for A to
be just below zero implying that overall brain regions operated close to
a transition from asynchronous to oscillatory dynamics (i.e., at the
brink of a supercritical Hopf bifurcation) for all functional states.

Local dynamics

Next, we continued with the estimation of local bifurcation para-
meters aj for all regions j within each functional state. Given the broad
range of good global coupling values, we chose to estimate local
bifurcation parameters for each task for a number of optimal global
coupling values ranging from .04 to .16. However, since results were
not qualitatively affected by this choice and since global coupling is
conceptually a non-changing structural scaling factor, we present
results only for the higher end of the range (G=.16). Local bifurcation
parameter values were initialized to the average of optimal global
bifurcation parameters values obtained across the range of optimal
global coupling (aj=Aopt=-.0517) thus ensuring that values were in the
vicinity of a global optimum before starting the gradient descent. To
evaluate the robustness of our local optimization procedure we also
initialized aj to random values in the range from −.5 to .5 (the results
can be found in supplementary Fig 6).

The results of local parameter estimations are shown in Fig. 6. For
resting state, 60% of peripheral regions present with a bifurcation
parameter above zero. As can be seen from the figure, rich club regions
present with negative bifurcation parameters during rest. During task
performance the number of peripheral regions presenting with a
positive bifurcation parameter decreases. For the n-back, flanker,
mental rotation, and odd-man out tasks 30%, 44%, 34%, and 44% of
peripheral regions present with a positive bifurcation parameter,
respectively. The mean bifurcation parameter across peripheral regions
was a =p −.03 (95% CI [−.10, .04]) for rest, a =p −.31 (95% CI [−.41,
−.20]) for the n-back task,a =p −.13 (95% CI [−.19, −.07]) for the flanker

Fig. 3. Structural data. Panel A) shows the weighted structural connectivity matrix
consisting of 68 cortical regions. Regions are arranged according to the ordering given in
Table 1 with the rich club in the center of the matrix. Panel B) shows the rich club
coefficient of the structural connectivity matrix as a function of degree cutoff k (black
line). The shaded region depicts the threshold the rich club coefficient needs to exceed to
reach significance. Significance was reached for k=21 (marked with an asterisk).
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Fig. 4. Empirical metrics. Panel A) shows the grand average FC for resting state as well as for the n-back, flanker, mental rotation, and odd-man out tasks. Regions are arranged
according to the ordering given in Table 1. Panel B) shows the distribution of cosine similarity as a metric of dynamic functional connectivity (DFC) for resting and all task states. Finally,
panel C) shows boxplots of the standard deviation of the Kuramoto order parameter R as a metric of metastability observed in all functional states.

Fig. 5. Parameter space exploration. This figure depicts the exploration of the parameter space defined by the global bifurcation parameter G and global coupling strength A for
simulations of all functional states. Panel A) shows the correlation between empirical and simulation FC for all parameter pairings. Panel B) shows the Kolmogorov distance between
empirical and simulated DFC for all parameter combinations. Panel C) shows the MS observed for simulated functional states for all parameter pairings. Finally, panel D) shows an
overall measure of model fit based on an aggregation of the three metrics expressed as a distance between model and empirical data. The range of parameter values for which our model
simulations where performed is marked in white. We report results only for G = .16 and A = −.0517.
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task, a =p −.30 (95% CI [-.41, −.20]) for the mental rotation task, and
a =p −.05 (95% CI [−.10, −.01]) for the odd-man out task. While overall
bifurcation parameter values drop for task states as compared to rest,
rich club regions present with higher bifurcation parameters during
task performance. The mean bifurcation parameter across rich club
regions was a =rc −.53 (95% CI [−.59, −.48]), a =rc .22 (95% CI [.20,
.25]),a =rc −.05 (95% CI [−.12, .01]), a =rc .21 (95% CI [.19, .23]), and
a =rc −.09 (95% CI [−.12, −.06]) for rest and the four tasks, respectively.
To further test whether rich club regions exhibit stronger positive
changes in their bifurcation parameter than other cortical regions, we
performed a cluster-based bootstrapping procedure. To that end we
obtained the differences in bifurcation parameter values between task
and rest for each region and computed the average difference across the
set of rich club regions. Subsequently, we repeatedly (1000 times)
sampled six regions from the entire set of cortical regions with
replacement and calculated the average change within those sample.
For all tasks the set of rich club regions exhibits changes far exceeding
the 99th percentile of the thusly generated null-distribution.
Specifically, the set of rich club regions presented with an average
change of .75, .48, .74, and .45 for the n-back, flanker, mental rotation,
and odd-man out tasks with their respective 99th percentiles being
equal to .27, .28, .28, and .30. Supplementary Fig. 7 show a ranking of
brain regions according to the changes they exhibit in local bifurcation
parameters per task. Next, we evaluated in how far individual rich club
regions presented with an increased bifurcation parameter during task

performance as compared to rest. We evaluated changes at the
individual regions level by performing a blocked bootstrap test. The
null-distribution for each region in each task was created from 1000
simulations of randomly generated rest and task samples and calculat-
ing the difference (task - rest) between local bifurcation parameters.
Samples were created by first randomly drawing from the subject pool
with replacement and then randomly placing one of each subject's two
states in the rest and the other in the task sample repeatedly until each
sample comprised 14 subjects. Local bifurcation parameters were then
optimized in each of these samples. Fig. 7 shows the results. For the n-
back task all rich club regions exhibited a difference (rest-task)
exceeding the 95th percentile of the bootstrap null-distribution.
Furthermore, the difference observed for the left and right superior
parietal cortices and the right superior frontal cortex exceeded the 99th

percentile. For the flanker task differences observed in the left and right
precuneus as well as the left and right superior parietal cortices
exceeded the 95th percentile. Differences observed in the left and right
precuneus exceeded the 99th percentile. For the mental rotation task
differences in all but the left superior frontal cortex exceeded the 95th

percentile and the right superior frontal cortex exceeded the 99th
percentile. Finally, for the odd-man out task only differences observed
for the left and right superior parietal cortices exceeded the 95th
percentile while none exceeded the 99th percentile. The cluster analysis
clearly indicates that rich club regions as a group exhibited more
oscillatory behavior during task performance as compared to rest.

Fig. 6. Local bifurcation parameters. This figure shows local bifurcation parameter aj values observed for each of the 68 regions in the five different states. Regions are arranged
according to the ordering given in Table 1 with rich club regions situated between the two red dashed lines. During rest, rich club regions display largely negative bifurcation parameter
values whereas peripheral regions display positive and negative bifurcation parameters to a similar extent. During task performance, rich club regions largely display increased in their
local bifurcation parameter values as compared to rest. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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However, the analyses of individual rich club regions shows that which
rich club regions increased their oscillatory behavior and to what
degree was task dependent.

Following up on these results we investigated whether cortex-wide
functional connectivity was indeed related to oscillations. First, we
examined the general effect of oscillations on simulated functional
connectivity by calculating average global connectivity resulting from
simulations in which all regions exhibited identical bifurcation para-
meters ranging from -.25 to +.05 with global coupling fixed at G=.16.
Increasing the bifurcation parameter was accompanied by increased
correlations between pairs of brain regions (see Fig. 8). Furthermore,
positive bifurcation parameter values were associated with very strong
correlations. Note that bifurcation parameter values just below zero;
that is, at the optimal point determined previously, showed the largest
range of correlations reflecting the vast dynamic range the system
exhibited at this point. Subsequently, we identified for each functional
state the subset of regions whose bifurcation parameter was estimated
to be above zero as well as the subset of regions whose bifurcation
parameter was estimated to be below zero, and calculated the average
empirical functional connectivity within these two subsets. We ob-
tained bifurcation parameters and functional connectivity separately by
repeatedly (100 times) splitting the data in half and using one half of
the data for the estimation of each. Fig. 8b shows boxplots of the
resulting estimates of average FC for the subsets of oscillating and non-

oscillating regions for each functional state. In agreement with the
finding that oscillations increased simulated functional connectivity
values, average empirical FC was indeed higher among the subset of
regions presenting with a positive bifurcation parameter for all
functional states.

Finally, we used the model to investigate whether oscillations
exhibited by cortical rich club regions can be more effective in bringing
about functional coupling than oscillations exhibited by peripheral
regions alone. To this end we investigated in how far a set of brain
regions exhibiting oscillatory behavior can synchronize cortical activa-
tion across the entire network. Two factors were of interest in this
analysis: the first was the size of the set of brain regions exhibiting
oscillatory behavior, whereas the second was whether this set included
the rich club. The first factor was included since a sufficiently large
number of peripheral (i.e. non rich club) regions exhibiting oscillations
might be able to bring about synchronization without assistance of an
oscillating rich club (as should be the case during rest). In terms of the
first factor (size), a set comprising of 12, 18, 24, or 30 randomly
selected peripheral regions were assigned a positive bifurcation para-
meter value (apos=.5) while the remaining regions were assigned a
negative bifurcation parameter value (aneg=-.5). This constituted at
the same time the condition of only peripheral regions exhibiting
oscillations. For the condition in which the rich club was among the set
of oscillating regions, six randomly selected peripheral regions among

Fig. 7. Differences in local bifurcation parameters values. This figure shows the change of regional bifurcation parameter values from rest for the four tasks aj(task)-aj(rest). Regions are
again arranged according to ordering in Table 1 with rich club regions between the red dashed lines. The shaded region depicts the null distribution of difference values as obtained from
a blocked bootstrapping procedure. Rich club regions largely display increases in their local bifurcation parameter values for tasks as compared to rest. Individual rich club regions
exceeding the 95th percentile of a bootstrap null-distribution in expected differences between task and rest are marked in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the set of oscillating regions were replaced by rich club regions; i.e. the
bifurcation parameter of these selected regions was set to -.5 while the
bifurcation parameter of all rich club regions was set to +.5. All
peripheral regions had characteristic frequencies in the range from
.04 Hz to .07 Hz whereas rich club regions were assigned a character-
istic frequency at the center of this range (.055 Hz) in order to provide
a pulse frequency. Each region's phase was initialized to zero but was
effectively determined by the additive Gaussian noise term in Eq. (1).
We measured synchrony among brain regions both in terms of phase
and in terms of frequency. For synchrony in terms of phase we
calculated the Kuramoto order parameter R (see methods for details)
across brain regions at a frequency of .055 Hz. In terms of frequency
we measured synchrony by calculating the power spectrum for each
region in the aforementioned range normalized with respect to its
maximum value. Subsequently, we averaged the power spectra over
regions. If all brain regions exhibit fluctuations at the same frequency,
the average power spectrum is characterized by a single sharp peak at
the shared frequency (~.055 Hz). If, on the other hand, brain regions
exhibit fluctuations at different frequencies, the average power spec-
trum is characterized by a broader peak. In order to characterize the
breadth of the peak we fitted a Gaussian distribution to it and
calculated its FWHM relative to the considered frequency range. We
performed these simulations for 100 random selections of peripheral
regions to exhibit oscillations nested in 100 randomly generated
distributions of characteristic frequencies across regions. Hence, we
performed 10,000 simulations for each combination of the number of
oscillating peripheral regions and an oscillating or not oscillating rich
club.

Fig. 9 shows the relative FWHM as well as the Kuramoto order
parameter R as a function of the total number of oscillating brain
regions separately for the case that rich club regions exhibited
oscillations and for the case that they did not. Synchronization both
in terms of frequency as well as in terms of phase increased with a
larger number of oscillating regions. Importantly, an oscillating rich
club accelerated this effect. This effect was most pronounced for phase
synchronization, but also apparent for frequency synchronization;
especially if few peripheral regions were supplemented by the rich
club. Such a configuration was characteristic of task performance. A
larger number of oscillating peripheral regions (30 in this simulation)
achieved good synchronization levels even in the absence of an
oscillating rich club.

Discussion

Using a combined computational modeling and fMRI approach we
investigated whether oscillations constitute a viable candidate mechan-
ism through which cortical rich club regions can support functional
network formation. Our results support this idea. First, brain regions
whose local bifurcation parameter suggested that they exhibit oscilla-
tions showed an increased propensity to engage in functional coupling;
both in terms of empirical as well as simulated functional connectivity.
Second, in simulations, oscillations exhibited by the rich club provided
a timing signal sufficient to synchronize brain regions operating at a
range of idiosyncratic frequencies and phases. Finally, increased
oscillatory behavior exhibited by rich club regions with simultaneous
reductions in the number of peripheral regions engaging in oscillations
demarcated empirically observed task states from resting state. In the
present study we used tasks reflecting a wide range of cognitive
functions; namely, working memory, executive function and inhibition,
mental rotation, and semantic reasoning. Given that these cognitive
functions are not only conceptually distinct but minimally overlapping
with respect to their associated functional networks (Smith et al.,
2009), it is reasonable to conclude that the observed changes in
oscillatory behavior among the rich club as a whole are general rather
than limited to specific cognitive processes. At the same time,
differences in the degree to which individual rich club regions exhibit
oscillations indicates that this behavior is adaptive to task demands.
During task performance stable coupling among functionally relevant,
specialized brain regions is required. During task performance, oscil-
lating rich club regions might thus provide a pulse frequency to
facilitate functional coupling among functionally relevant brain regions
involved in task execution. Specifically, the reduced number of
oscillating peripheral regions (compared to rest) might be insufficient
to sustain stable functional coupling unless supported by oscillations
exhibited by rich club regions. This would be in line with previous
simulation findings that the rich club can support functional coupling
among peripheral brain regions (Gollo et al., 2015; Schmidt et al.,
2015; Senden et al., 2014). During rest, on the other hand, rich club
regions were not oscillating and could thus not impose a specific
rhythm on the cortex. This behavior might be more conducive to
flexible re-coupling among peripheral regions since it allows for larger
groups of peripheral regions to engage in oscillatory behavior and
hence to engage in (potentially short-lived) functional coupling without

Fig. 8. Relationship between bifurcation parameter and functional coupling. Panel A) shows the distributions of simulated functional connectivity (pairwise correlation) values for a
range of global bifurcation parameter values A in the form of boxplots. A transition from negative to positive bifurcation parameter values is accompanied by overall higher pairwise
correlation values, i.e. stronger overall coupling. The largest range of pairwise correlation values is observed for global bifurcation parameters just below zero. Panel B) shows boxplots of
empirical FC values observed for regions presenting with a positive as compared to those presenting with a negative bifurcation parameter (a) value for each functional state. Larger FC
values are observed for brain regions presenting with positive as compared to negative bifurcation parameter values, irrespective of the functional sate.
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producing a fully coupled (epileptic) state. This might be advantageous
for the exploration of the brain's functional repertoire (Deco and Jirsa,
2012).

A question at this point is whether the rich club is the origin of this
coordination or provides the means for peripheral regions to exhibit
control over the network. Previous research suggests the latter since
the states of a complex system, and especially those which are difficult
to reach, are controlled by regions of low degree rather than by hubs
(Gu et al., 2015; Liu et al., 2011). Nevertheless, the presence of hubs
largely increases the general controllability of said system (Liu et al.,
2011). Note that controllability of networks in general does not
necessarily require rich club organization but rather some densely
interconnected structural backbone (e.g. a single hyperconnected
node). In the brain this backbone is provided by the cortical rich club
(van den Heuvel et al., 2012) whose role might be to enable peripheral
regions to control the state, i.e. functional network configuration, of the

cortex. As such, the rich club might provide a central workspace of
information integration wherein peripheral brain regions compete for
control of the system as recently proposed by Shanahan (2012). During
rest, such conflict might be unresolved or, at least, recurring whereas
task performance might necessitate a clear winner. This winner might
then recruit the rich club to move the brain into the required functional
state as well as to support communication among regions constituting
this state. Our results suggest that this is dynamically achieved by
moving the rich club into an (infraslow) oscillatory regime.

Our as well as previous findings (Gollo et al., 2015; Hiltunen et al.,
2014; Monto et al., 2008; Schmidt et al., 2015; Vanhatalo et al., 2004)
suggest that oscillations are relevant for global brain communication.
However, it is currently unknown whether infraslow oscillations are
immediately relevant for functional integration or are merely the
filtered manifestation of a faster frequency band. It is principally
conceivable, for instance, that stimuli presented at regular intervals
impose an oscillatory activation pattern on task-relevant brain regions.
While inter-trial intervals do not vary within tasks in our study, they
differ between tasks thus reducing the probability that our results are
due to the stimulation protocol. Furthermore, neither stimulation
frequency aliases into the frequency band of interest (.04 Hz–0.7 Hz).
Finally, if the emergence of oscillations in our simulations were due
purely to stimulation, we would expect largest changes in oscillatory
behavior among task-specific and sensory regions rather than among
rich club regions. These considerations do not rule out, however, that
the observed infraslow oscillations constitute a proxy for oscillations
occurring within alpha/beta or gamma frequency bands. This is a
question that needs to be addressed using empirical data of higher
temporal resolution. Due to the slow time scale of infraslow oscilla-
tions, it is at any rate unlikely that they carry the actual signals to be
communicated between brain regions. A more likely function for them
would be to align excitability states of brain regions (Hiltunen et al.,
2014; Vanhatalo et al., 2004) and hence to establish communication
channels among them. Such an interpretation for the potential role of
infraslow oscillations would agree with recent electrophysiological
findings which showed that the power envelope of higher frequencies,
most prominently in the range from 8 Hz to 32 Hz, is itself modulated
at infraslow frequencies (Hipp et al., 2012). These higher frequencies
are far more likely to reflect the actual signal in line with a commu-
nication through coherence hypothesis (Fries, 2001, 2009; Michalareas
et al., 2016). While our findings thus speak to the potential function of
rich club regions to provide a timing signal for global brain commu-
nication, it remains to be investigated whether rich club regions also
mediate and/or modulate high frequency signals exchanged among
peripheral regions.

Furthermore, if infraslow oscillations are indeed meaningful, a
question arises regarding the neural mechanism giving rise to them.
The neural mass model employed here gives a descriptive rather than a
mechanistic account of local dynamics. This provides the appropriate
level of detail for investigating the question of which local dynamics are
exhibited by interconnected brain regions and how these change from
resting to task states in an fMRI context. However, future work is
needed to address the neural mechanism underlying these local
dynamics. A candidate mechanism comes in the form of interactions
between cortical and thalamic neuronal populations (Breakspear et al.,
2006; Freyer et al., 2011, 2012). A neural mass model implementing
these interactions in the presence of state-dependent noise has recently
been shown to account for known spontaneous transitions between two
distinct modes of power in the alpha frequency band (Freyer et al.,
2009, 2011). Given the relationship between infraslow oscillations and
the alpha and beta rhythms (Hipp et al., 2012), the slow dynamics
examined here might reflect changes in the power envelope resulting
from these transitions. Finally, since relay nuclei in the thalamus can
themselves exhibit infraslow oscillations (Lőrincz et al., 2009), a
straightforward extension of the cortico-thalamic neural mass model
may allow it to account for both spontaneous as well as structured, i.e.

Fig. 9. Synchronization. This figure depicts the extent to which brain regions are
synchronized as a function of the number of brain regions set to have a positive
bifurcation parameter value. Separate lines represent the cases where the set of regions
having a positive bifurcation parameter value include the rich club (green) or do not
include the rich club (red). Panel A) shows the extent of synchronization in terms of
frequency as measured by the full width at half maximum of the power spectrum
averaged across brain regions. Lower values indicate better synchronization. For the
range of ~14–24 regions presenting with a positive bifurcation parameter value, it is
beneficial if this set includes the rich club. Panel B) shows the extent of synchronization
in terms of phases as measured by the Kuramoto order parameter R. Larger values
indicate better synchronization. Unless a large number of regions is oscillating it is
beneficial for synchronization to include the rich club among the oscillating regions. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article).
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infraslow oscillatory, transitions between low and high power modes in
the alpha and/or beta bands.

Apart from the above, our results lead to a number of further
questions and predictions. First, if the rich club is indeed a locus of
competition among peripheral regions for network control, then it
should receive a high degree of input but only provide sparse output;
namely output reflecting communication among the winning set of
regions. Furthermore, this should be task dependent both in terms of
the total amount of input and output each rich club region receives and
sends as well as in terms of the exact patterns of in and out relations.
Second, if coupling via oscillations reflects the establishment of task-
relevant communication channels, then one should expect to find
information transfer among these regions (possibly mediated through
the rich club) coded at higher frequencies, and that the informational
content of these signals is relevant for, and reflects, the task at hand.
Related to this, the information content as well as the degree to which
rich club regions exhibit oscillatory behavior might also reflect task
difficulty, a factor we did not take into account here. Finally, an
important question future research should address is how local and
whole-brain dynamics vary across individuals and how this relates to
individual differences in the underlying structural connectivity. This
would call for fMRI and diffusion-weighted MRI data to be acquired in
the same subjects. Additionally, a larger sample size would be helpful in
characterizing this variability. Furthermore, fitting model parameters
to individual subject data would require longer runs thus putting
practical limits on the number of tasks for which data can be acquired.

In conclusion, we find that (infraslow) oscillations constitute a
potential mechanism for rich club regions to shape whole-brain
functional coupling in a functionally specific manner. In conjunction
with converging results from connectomics (van den Heuvel et al.,
2012; Zamora-López et al., 2009), neuroimaging (Braga et al., 2013;
Leech et al., 2012), and computational modeling (Deco and Jirsa,
2012; Deco et al., 2012; Gollo et al., 2015; Gu et al., 2015; Liu et al.,
2011; Schmidt et al., 2015; Senden et al., 2014), this is in line with the
notion that rich club regions support and shape the concerted interplay
of specialized brain regions required for higher cognition. This leads to
a conceptualization of the rich club as the structural underpinning of a
global neuronal workspace (Dehaene and Changeux, 2011; Harriger
et al., 2012; Shanahan, 2012). Furthermore, our results emphasize the
importance of the integration of large-scale computational models with
locally specific dynamics in conjunction with empirical research for
investigating whole-brain functional network states. While all empiri-
cal metrics could be reproduced by our model using identical global
parameters for each task, fitting and interpretation of parameters
controlling local dynamics enabled us to demarcate resting and task
states.
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