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Low-frequency cortical oscillations are modulated by temporal prediction and
temporal error coding
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Abstract

Monitoring and updating temporal predictions are critical abilities for adaptive behavior. Here, we investigated
whether neural oscillations are related to violation and updating of temporal predictions. Human participants per-
formed an experiment in which they had to generate a target at an expected time point, by pressing a button while
taking into account a variable delay between the act and the stimulus occurrence. Our behavioral results showed that
participants quickly adapted their temporal predictions in face of an error. Concurrent electrophysiological (EEG) data
showed that temporal errors elicited markers that are classically related to error coding. Furthermore, intertrial phase
coherence of frontal theta oscillations was modulated by error magnitude, possibly indexing the degree of surprise.
Finally, we found that delta phase at stimulus onset was correlated with future behavioral adjustments. Together, our
findings suggest that low frequency oscillations play a key role in monitoring and in updating temporal predictions.
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1. Introduction

Several environmental events occur regularly in time.
We can take advantage of these regularities to gener-
ate temporal predictions that can enhance performance
(Nobre et al., 2007; Rohenkohl et al., 2012; |Vangkilde
et al., 2012). For a prediction system to be successful,
it is important to keep it constantly updated by monitor-
ing when errors take place and applying the appropriate
corrections. However, most temporal prediction studies
have focused on situations in which there is an estab-
lished temporal relation between events and little need
for error monitoring and prediction updates.

Although rare in the temporal domain, several stud-
ies have investigated how our brain codes other types
of prediction errors. In reinforcement learning, nega-
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tive feedback has been linked to an electroencephalo-
graphic component called feedback related negativity
(FRN) (Walsh and Anderson, 2012). The FRN is a
frontal-central negative deflection in the event-related
potential (ERP) that peaks at around 300 ms following
a feedback that indicates losses or an error (Walsh and!
Anderson, |2012). More recently, it has been hypothe-
sized that the FRN could be generated by perturbations
in local theta band oscillations (Cavanagh et al., 2010;
Cohen et al., [2007). Such perturbations are described
as an increase in power and phase coherence in this fre-
quency band in frontocentral regions (Cavanagh et al.|
2010). In this view, theta oscillations would serve as
a communication mechanism between brain networks,
by which errors would alter oscillatory patterns and op-
timize the communication and the computation of rele-
vant information (Cavanagh and Frank2014;/Cavanagh
et al., 2009). However, whether such mechanism can
also be used for temporal error coding is still unknown.

As previously mentioned, the majority of studies that
investigate how temporal predictions modulate perfor-
mance have participants performing a task after the tem-
poral relation between events has been learned. These
studies have shown that low-frequency oscillatory brain
activity (as delta, from 1 to 4 Hz) can optimize cortical
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excitability and enhance the processing of stimuli oc-

curring at predicted moments (Cravo et al} 2013 2011},
[Cakatos et all, [2008}; [Schroeder and Lakatos| [2009),
as well as impair processing of temporally unexpected
stimuli (Stefanics et al. 2010; [van den Brink et all
2014). Importantly, a recent study has shown that sim-
ilar mechanisms seem to be involved in tasks that re-
quire a temporal judgment about the interval itself, and
not just the use of the temporal information to form ex-
pectations (Arnal et al., 2014). This result supports the
hypothesis that neural oscillations might serve as a pos-
sible neural mechanism for temporal predictions
[and Giraud}, 2012} [Morillon and Barbot, 2013).
Therefore, although oscillatory mechanisms have
been proposed to be important in error coding and tem-
poral predictions, it remains largely unknown whether
or not they are used when we need to learn and monitor
a temporal prediction. Here, we investigated the neural
mechanisms underlying violation and updating of tem-
poral predictions. We developed a behavioral task in
which participants had to monitor whether a temporal
error had been made. We analyzed ERPs and oscillatory
changes evoked by temporal errors in EEG recordings
and investigated whether they were linked to theta oscil-
lations. Finally, we looked for correlations between be-
havioral adjustment and the phase of delta oscillations.

2. Materials and methods

2.1. Participants

Twenty volunteers (18-30 years old; 11 female) gave
informed consent to participate in the study. All par-
ticipants had normal or corrected-to-normal vision and
were free from psychological or neurological diseases.
The experimental protocol was approved by the Univer-
sity Research Ethics Committee. Three participants did
not reach the minimal performance criterion and had
their data excluded from the analyses (see below for cri-
terion of exclusion).

2.2. Stimuli and procedures

Stimuli were presented using the Psychtoolbox v.3.0
package for MATLAB on a 17-inch
CRT monitor with a vertical refresh rate of 60 Hz,
placed 50 cm in front of the participant. Each trial
started with a fixation point. After an interval of 1.5 s,
two identical audiovisual cues were presented sequen-
tially separated by an interval of 1 second. These cues
consisted of a bulls-eye (3 degrees of visual angle) pre-
sented in the center of the screen and an auditory tone
(1000 Hz, 70 dB) both presented for 100 ms.
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} } } t
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B Block
Standard Delay Trials New Delay Trials
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Trial } } } |
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Figure 1: Schematic illustration of task structure. A) The main task
was to generate a third stimulus (target) at an expected time point, by
pressing a button while taking into account the delay between the act
and target occurrence. Participants were instructed that the interval
between the second cue and the target should be identical as the inter-
val between the first and second cues. B) All blocks started with trials
where the action-target delay was 50 ms (standard delay trials). At a
given trial, a new delay (between 300 ms and 700 ms) was inserted
and kept constant for five trials. In trial -1 (before the new delay is
inserted), participants are adapted to the delay of 50 ms between their
action and outcome and perform the button press at the appropriate
moment. In trial O (when the new delay is inserted), the outcome
comes later than expected. Based on this error, in the following tri-
als (1 to 4) participants have to update their temporal prediction and
anticipate their action.
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A third stimulus (which we refer to as the target) was
an auditory tone (500 Hz, 70 dB) presented for 100 ms.
The temporal onset of this target was controlled by the
participants. Their main task was to generate the tar-
get (tone) at an expected time point by pressing a but-
ton while taking into account the inserted delay between
their press and the target occurrence. Participants were
instructed that the interval between the second cue and
the target should be identical to the interval between the
first and second cues. Therefore, in order to produce
the target at the correct moment, they had to consider
the delay between their action and target presentation.
Participants were told that the interval between the two
cues was constant throughout the experiment, but the
exact interval value (1 s) was never mentioned (Figure
).

A delay was inserted between each button press and
the occurrence of the target. In the first few trials of
each block, the delay between action and target was 50
ms (standard delay). However a new delay between 300
ms and 700 ms was inserted in a given trial within the
block and remained fixed for five trials. The change in
the action-target delay was intended to cause a tempo-
ral prediction violation and have the target appear latter
than expected by the participant. Once the new delay
had been inserted, participants had to update their tem-
poral model and anticipate their action in order to make
the target appear at the appropriate moment in the re-
maining trials of the block. After the five trials with
the new delay had been presented, that particular block
ended. Thus, each experimental block started with stan-
dard delay trials and ended with five new delay trials
(Figure [IB).

Participants were informed that the action-target de-
lay would change in a given trial and remain fixed for
five trials, after which the current block would end. Im-
portantly, they could not predict when or by how much
the delay would change, as the new delay could be in-
serted randomly between the 4th and 15th trial in each
block. Moreover, a change in delay was made only if
participants absolute errors in the previous three stan-
dard delay trials were smaller than 100 ms (i.e., if the
target appeared between 900-1100 ms after the second
cue). If the participant did not reach this criterion until
the 15th standard delay trial, a new delay was inserted
in the 16th trial. These two rules inhibited behavioral
anticipation to the new delay.

Participants who failed to perform well with the stan-
dard delay for more than 10% of the blocks were ex-
cluded from the analyses. Blocks in which the partic-
ipant did not reach the performance criterion until the
15th trial were excluded from both behavioral and EEG

analyses. Temporal errors over 1.5 seconds were con-
sidered omission errors and removed from subsequent
analyses (three trials in total, one omission error for
three different participants). Importantly, explicit feed-
back about the participants performance was given only
at the end of each experimental block. Therefore, no in-
formation about errors was shown throughout a block
and participants could only extract information about
their performance based on their own temporal predic-
tions. Each session consisted of 50 blocks, and lasted
between 40 to 60 min. Each block consisted of 8 to 20
trials. Participants underwent two blocks of practice tri-
als before the experimental session began.

2.3. EEG recordings and pre-processing

EEG was recorded continuously from 64 ActiCap
Electrodes (Brain Products) at 1000 Hz by a QuickAmp
amplifier (Brain Products). All sites were referenced to
FCz and grounded to AFz. The electrodes were posi-
tioned according to the International 10-10 system. Ad-
ditional bipolar electrodes registered the electrooculo-
gram (EOQG).

EEG pre-processing was carried out using BrainVi-
sion Analyzer (Brain Products). All data were down-
sampled to 250 Hz, re-referenced to the averaged ear-
lobes, and epoched from -3500 ms to 2000 ms relative
to targets onset. An independent component analysis
(ICA) was performed on filtered data (0.5 Hz to 30 Hz)
to reject eye movement artifacts and the resulting com-
ponent coeflicients were applied to the unfiltered data.
Eye-related components were identified by comparing
individual ICA components with EOG channels and by
visual inspection. The number of trials rejected for each
subject was small (an average of 1.3% of trials across
subjects, maximum of 4.7%). For the feedback related
negativity (FRN) analyses, continuous EEG was filtered
off-line with a 1-30Hz band-pass filter (24 db/oct) and
epoched from -250 and 700 ms relative to target presen-
tation.

Time-frequency analyses were performed on unfil-
tered data using the SPM8 and Fieldtrip toolbox for
MATLAB (Oostenveld et al.l 2011). Individual fre-
quency bands (delta, 0.5-4 Hz; theta, 4-8 Hz; alpha, 8-
16 Hz; low-beta, 16-24 Hz; high-beta, 24-32 Hz) were
extracted using third-order dual-pass Butterworth fil-
ters, and the phase and power of these narrow-band sig-
nals were calculated using the Hilbert transform (Besle
et al., 2011} Kayser et al) [2009; [Ng et al., 2012alb).
For delta phase, the Butterworth filters were applied to
the continuous data, while for other frequencies the fil-
ter was applied to the epoched data (-3500 ms to 2000
ms relative to target presentation). Power was defined
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as the squared absolute value, and phase was defined as
the phase angle of the Hilbert signal. To characterize the
phase distribution across trials, we calculated the inter-
trial coherence (ITC) for each frequency and time point
(Lachaux et al.,[1999; [Tallon-Baudry et al.,|{1996).

For each frequency band, electrodes of interest were
chosen based on the grand-averaged activity for trials
0 to 4. Cluster-based analyses were performed by cal-
culating permutation tests in which experimental condi-
tions were intermixed within each subject in 1000 ran-
dom permutations (Oostenveld et al.,[2011)).

2.4. Statistical analyses

In the majority of analyses, the dependent variable of
interest was submitted to a repeated-measures ANOVA
with trial as the main factor. When there was a signif-
icant effect of trial, a multiple contrasts procedure, as
proposed by Scheffé’s, was used to compare selected
contrasts (Zar, |1999). Specifically, the following con-
trasts were tested: (1) if the measured value in trial O
was different from the average of trials 1 to 4; (2) if the
measured value in trial 1 was different from the average
of trials 2 to 4; (3) if the measured value in trial 2 was
different from the average of trials 3 and 4; (4) if the
measured value in trial 3 was different from trial 4. The
tested contrasts were selected to measure if and when
the dependent variable of interest stopped changing as
a function of trial. For example, if learning is instan-
taneous, one would expect a significant main effect of
trial and only the first contrast to be significantly dif-
ferent from zero. If, on the other hand, learning keeps
taking place until the end of the block, one would ex-
pect a significant main effect of trial and all contrasts to
be significant.

3. Results

Results are presented and discussed separately for
each of the three main goals: 1) to describe behavioral
adjustments following a temporal error; 2) to identify
whether temporal errors evoke activity related to error
processing (as the FRN and theta oscillations); and 3)
to determine whether behavioral adjustments are biased
by delta oscillations.

3.1. Behavioral Results

The main dependent variable for the behavioral anal-
ysis was the error committed by participants following a
change in the action-target delay. This error was calcu-
lated with signed and absolute values in separate analy-
ses. In both cases, we calculated the difference between

the moment the target should have been presented (1s
after the second cue) and the moment it actually was
presented, where zero represents perfect performance.
For signed errors negative/positive values indicate that
the target was presented earlier/later, corresponding to
anticipated or delayed action, respectively. We used
both types of analyses to investigate whether results
were due to positive and negative errors canceling each
other out. All of our analyses focuses on the five trials
with the new inserted delays in each block (which we
refer to as trial O to trial 4). Trial O represents the first
trial with new delay and trial 4 the last trial with that
delay.

For the signed errors, average error for trials 0 to 4
were submitted to a repeated-measures ANOVA with
trial as a factor. There was a significant effect of trial
(F(4,64) = 302.38, p <0.001; Figure 2JA). We applied
Schefté’s method on the four multiple contrasts previ-
ously described. Error in trial O was significantly larger
than in subsequent trials (p <0.001), while no other con-
trasts were statistically significant (p >0.9). We per-
formed a similar analyses to the averaged absolute er-
rors and found a similar pattern: there was a main effect
of trial (F(4,64) = 350.84, p <0.001), with absolute er-
rors in trial O being significantly larger than errors in
subsequent trials (p <0.001). Likewise, no other con-
trasts were statistically significant (p >0.4). These re-
sults suggest that participants quickly adjusted perfor-
mance after a single exposure to the new delay.

To confirm that participants were indeed using infor-
mation from the previous trial to update their actions,
we analyzed how the delay on trial O in each block mod-
ulated the time of their action on the subsequent trial. A
linear regression between delay on trial O and time of
action on trial 1 was estimated for each participant, and
slope estimates were submitted to a one-sample t-test.
We found that the slopes were significantly smaller than
zero (average slope = -0.43, t(16) = -5.99, p <0.001),
indicating that larger delays in trial 0 were followed by
larger anticipations of action.

Next, we investigated the effect of delay magnitude
on temporal update. Given that the inserted delay could
vary from 300 ms to 700 ms, we investigated if the mag-
nitude of the delay influenced learning rate and final per-
formance in each block. We binned delays in four quan-
tiles, each with 25% of the data (midpoints 0.35 s, 0.46
s, 0.59 s, and 0.67 s,) and performed a similar analysis
as described above (Figure 2B). For the signed errors,
all delay bins had a similar learning pattern with a main
effect of trial (Bin 1: F(4,64) = 66.61, p <0.001; Bin 2:
F(4,64) = 160.31, p <0.001; Bin 3: F(4,64) = 232.76, p
<0.001; Bin 4: F(4,64) = 300.07, p <0.001). Scheffé’s
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Figure 2: A) Temporal error (mean + standard deviation) as a function of trial. The two last standard delay trials of each block are represented by
negative values in the x-axis. The first trial with the new delay is represented as trial 0, while the remaining trials with the new delay are represented
by positive values in the x-axis. Upper panel shows the relative error and the lower panel the absolute error. B) Temporal error (mean + standard
deviation) for the shortest and longest delay bins as a function of trial. C) Event-related potential evoked by the target (zero on the x-axis indicates
target onset). The number of the trial with the new delay is color coded, with darker/lighter colors representing the first/last trials with the new
delay. The inset shows the topography of the Feedback Related Negativity, for the period between 200 ms and 400 ms after target onset.

method on the four contrasts indicated that in all bins the
average signed error in trial O was larger than in the sub-
sequent trials (p <0.001), while no other contrasts were
statistically significant (p >0.2). For the absolute errors,
we found the same learning pattern. There was an ef-
fect of trial for all delay bins (Bin 1: F(4,64) = 34.35,
p <0.001; Bin 2: F(4,64) = 191.92, p <0.001; Bin 3:
F(4,64) = 296.86, p <0.001; Bin 4: F(4,64) = 355.31,
p <0.001). For all bins, error in trial 0 was larger than
the error of the subsequent 4 trials (p <0.001), while no
other contrasts were statistically significant (p >0.2).

To compare final performance for the different de-
lays, the average error at trial 4 for each bin was sub-
mitted to a repeated-measures ANOVA with Delay as a
factor. For signed errors, there was an effect of delay on
final performance (F(3,48) = 20.04, p <0.001). Pairwise
post-hoc analyses (Tuckey correction) indicated that av-
erage error for the shortest delays (Bin 1 and Bin 2) were
significantly different from average errors of longest de-
lays (Bin 3 and Bin 4), p <0.05. Average errors between
Bin 1 and 2; and between Bin 3 and 4 were not signifi-
cantly different (p >0.1). For absolute errors, however,
there was no significant effect of delay (F(3,48) = 0.27,
p = 0.85). These results suggest that the magnitude of
the inserted delay modulated participants’ final perfor-
mance.

3.2. Target-related activity

In a first step, we investigated broadband ERPs (1 Hz
to 30 Hz) elicited by the target. Data were epoched from
-250 and 700 ms relative to target presentation and av-
eraged separately for trials 0 to 4.

There was a stronger negative component in trial 0
evoked in frontocentral electrodes (F1/Fz/F2, FC2/FCl1,
C1/Cz/C2) compared to other trials. To analyse whether
temporal errors elicited a FRN, we calculated the aver-
age activity in these electrodes for the time period be-
tween 200 ms and 400 ms after target’s presentation for
each trial. A repeated-measures one-way ANOVA indi-
cated a significant modulation of activity as a function
of trial (F(4,64) = 9.56, p <0.001). A similar multi-
ple contrast showed that activity in trial O was different
from subsequent trials (p <0.001) with no other contrast
reaching significance (p >0.77). To show the topogra-
phy of this effect, we subtracted the mean activity of
trial O from the averaged activity of trials 1 to 4 (Figure
[2E). The topography and time period of the effect are
similar to previous reports of FRN (Miltner et al., {1997
‘Walsh and Anderson, [2012).

Given the strong relation between FRN and theta os-
cillations, we looked into theta activity produced by the
target. Targets evoked a strong theta power in fronto-
central electrodes, as commonly found in studies that
investigate theta oscillations and error coding. However,
a one-way ANOVA with cluster correction found no pe-
riods with a significant modulation of theta power as a
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Figure 3: A) Theta ITC evoked by target (zero on the x-axis indicates
target onset). Asterisks indicate the significant temporal cluster. The
topography shows the electrodes with strong theta ITC. The number of
the trial with the new delay is color coded, with darker/lighter colors
representing the first/last trials with the new delay.

B) Average theta ITC during the cluster period (220 ms
to 380 ms) as a function of trial (mean + S.E.M). C)
Theta ITC (mean + S.E.M) as a function of binned de-
lays in trial O during the cluster period. Bin 1 corre-
sponds to shortest delays whereas Bin 4 corresponds to
longest action-target delays.

function of trial (cluster stats 2.64, cluster p >0.9).

We found that targets evoked a high theta phase reset,
as measured by ITC, in similar frontocentral electrodes
(Figure BJA). A cluster analysis indicated a significant
modulation of theta ITC by trial in the period between
220 ms to 380 ms (cluster stats 25.87, cluster p <0.05).
Scheffé’s method on the multiple contrasts at the clus-
ter period indicated that theta ITC in trial O was signifi-
cantly larger than other trial’s ITC (p <0.05). No other
contrasts were statistically significant (p >0.8).

To investigate whether theta ITC was higher as a
function of the magnitude of the new delay, we per-
formed a follow-up analysis focusing on the cluster pe-
riod but only on the first trial with the new delay of
each block (trial 0). Notice that, in these trials, partic-
ipants could not foresee that a larger delay would take
place, so they did not anticipate their actions accord-
ingly. Because ITC cannot be measured in single trials,
we performed a similar binning procedure as for the be-
havioral analyses and for each bin calculated theta ITC.

Next, we calculated a Spearman rank order correlation
between delay bin and theta ITC for each participant.
At the group level, participants Spearman correlations
were compared to zero using a one-sample t-test. We
found that longer delays were significantly associated
with stronger theta ITC (Rhos = 0.38 + 0.13, t(16) =
2.99, p <0.01).

3.3. Anticipatory activity: delta oscillations

Given the known effects of delta phase being modu-
lated by temporal expectations, we investigated whether
delta phase was involved in temporal prediction and
adjustment. There was a high ITC of delta phase
at target presentation in left-central electrodes (C5/C3,
CP3/CP5, Figure E]A), similar to previous results of
delta phase effects on temporal processing (Arnal et al.|
2014; [Stefanics et al.| [2010). We investigated whether
delta phase was concentrated around different angles as
participants adapted to the delay between their action
and outcome. Delta phase for the period between -50 ms
and 0 ms around target onset was averaged for each par-
ticipant. Because phase is a circular measure, to use reg-
ular statistical analyses we first performed a normaliza-
tion step for each participant, by subtracting the average
mean of the trial 4 from all other trials (using circular
distance). With this subtraction, it was possible to test
if targets became more concentrated around a specific
phase as participants adapted to the new delay. Our de-
pendent variable was the average distance (in degrees)
between delta phase in each trial from the phase where
the target was presented when participants were adapted
to the delay. These average distances were submitted
to a repeated measures one-way ANOVA and there was
a significant modulation by trial (F(4,64) = 22.531, p
<0.001). Average distance in trial O was significantly
larger than other trials (p <0.001), while no other differ-
ences were statistically significant (p >0.5), suggesting
that, as participants learned the new delay between their
action and target, brain states were realigned, resulting
in the target being consistently presented in a specific
delta phase (Figure @B and d[C).

To investigate further the relation between delta os-
cillations and temporal prediction, we analyzed whether
delta phase on target onset in trial O helped to predict the
adjustment participants made in the subsequent trial. If
delta phase reflects temporal expectations about when
the target will be presented, then having access to this
information should improve our prediction of the adjust-
ments participants will make on the following trial.

We fitted two mixed linear models to determine
whether the moment of action in trial 1 could be ex-
plained better by taking into account delta phase on tar-
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Figure 4: Delta Phase. A) ERP waveforms filtered between 0.5-4 Hz.
The zero label on the time axis represents first cue presentation, 1s
represents second cue presentation and 2s represents the moment tar-
get should have been presented. Here, we plotted ERP from trials O
in which targets appeared after at least 2.55 s. The topography (in-
set) illustrates the electrodes that showed higher delta ITC at target
presentation (C5/C3, CP3/CP5). B) Distance of delta phase to aver-
age phase at trial 4. C) Circular plot illustrating both distance of delta
phase to average phase at trial 4 and ITC. Distance is illustrated by
the angle and delta ITC is represented by arrows magnitude. Circles
inside the plot indicate the ITC scale. The number of the trial with the
new delay is color coded, with darker/lighter colors representing the
first/last trials with the new delay.

get onset on trial 0. Specifically, we compared the fol-
lowing models:

T action = Bo + B1 - Delay + € (D)

Taciion = Bo +B1 - Delay + B, - sing + B3 - cosp + € (2)
where Tacion 1S the moment of the participants action
on trial 1, Delay is the physical interval between action
and target presentation, and ; represents the fitted co-
efficients. In the first model, only the delay between
action and target was used to fit the moment of action of
participants in the following trial. In the second model,
delta phase at target onset in trial 0 was added.

The fits of the two models were compared using
Akaikes information criterion (AIC) and a likelihood

ratio test. We found that the inclusion of delta phase
significantly improved the fit (no-phase model AIC =
-668.19, phase model AIC = -672.19; log-likelihood ra-
tio test = 12.33, df = 2, p <0.01). This suggests that
not only the delay, but also delta phase at target onset in
trial O significantly modulated participants action in the
following trial (Figure [3)).

A B
035 0.05
2
I =
= 045 é 0 + +++
:
05— 05 06 VST o 2 W

Delay in Trial O (s) Delta Phase in Trial 0

Figure 5: Model comparison. A) Behavioral adjustment in trial 1 as
a function of delay in trial 0, fitted by the mixed linear model with-
out delta phase (Eq. 1). B) Residuals of the first model plotted as a
function of delta phase at target presentation in trial 0.

We also looked at delta power from the same elec-
trodes. At target presentation, there was a significant
modulation of delta power as a function of trial (F(4,64)
=3.73, p <0.05). Scheffé’s method on the four contrasts
indicated that delta power on trial O was larger than in
subsequent trials (p = 0.015). No other contrasts were
statistically significant (p >0.8). However, delta power
in the first trial was not modulated by delay magnitude
(mean Rho = -0.074, t(16) = -1.71, p >0.05).

3.4. Statistical analyses of other frequency bands

We performed similar cluster-based analyses on al-
pha and beta power. A decrease in alpha power
was observed after target presentation in parietal sites
(Pz/P2/P4/PO4/POz). A cluster analysis showed that
this decrease was modulated by trial in the period from
-180 ms to 540 ms around target presentation (cluster
stats 185.71, cluster p <0.001). Scheffé’s method on
the four multiple contrasts indicated that alpha power
in trial 0 was significantly smaller than the average ac-
tivity from all other trials (p <0.001), while no other
differences were significant (p >0.5). We investigated
further to test whether alpha power in the first trial was
modulated by delay, in an analysis similar to theta ITC.
There was no significant correlation between delay and
alpha power (mean rho = -0.20, t(16) = -1.78, p >0.05).

For both low and high beta power, there was a
small increase prior to target presentation at the grand
averaged activity in fronto-central electrodes (F1/Fz,
FC2/FCz/FC1/FC3, C3/C1). However, no significant
modulation of beta power by trial was found.
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4. Discussion

In the present study, we investigated the mechanisms
underlying violation and updating of temporal predic-
tions. We found that participants are able to adapt
quickly to a new temporal relation between their ac-
tion and outcome. Temporal errors elicited electro-
physiological markers classically related to error cod-
ing. These markers were modulated by the magnitude
of the error. Finally, we showed that delta phase at the
moment of target onset is correlated to future behavioral
adjustments.

Several studies have investigated how humans and
non-human animals learn and adapt to new tempo-
ral relations between events (Church, 2014} Reyes and
Buhusi, 2014). As in previous studies, there was a rapid
temporal learning of a new delay (Balsam and Gallistel,
2009; Higal |1997; [Simen et al.l [2011). A single expo-
sure was sufficient for participants to adjust their future
actions and such a rapid and accurate learning suggests
a precise error controlling mechanism.

The electrophysiological results revealed that tempo-
ral errors elicited signals normally related to error pro-
cessing. It has been previously suggested that these sig-
nals, frontal theta oscillations and the feedback related
negativity, are related and may serve as possible mech-
anisms for cognitive control. They have been found
in situations of error, conflict, punishment and novelty
(Cavanagh and Frankl [2014)). Previous studies focus-
ing on the relation between error signals and temporal
processing have used tasks with explicit feedback (Milt-
ner et al., [1997; \van de Vijver et al.,[2011)). In the cur-
rent study, we have shown that an incorrect temporal
prediction by itself, without an explicit feedback, can
lead to an increase in these error-related components,
especially for intertrial phase coherence in the theta
band. Frontal medial theta phase reset has been sug-
gested to be a biologically plausible candidate for neu-
ronal computation and communication (Cavanagh and
Frankl 2014; |Cavanagh et al.l |2011). According to this
hypothesis, the need for cognitive control can instanti-
ate transient functional networks across spatially distal
sites by means of phase alignment. In our results, larger
temporal errors elicited stronger phase reset, possibly
coding the degree of surprise caused by the new delay
(Cavanagh et al.| 2011; |Hauser et al., [2014} Talmi et al.,
2013).

Together, our behavioral and electrophysiological re-
sults suggest a precise error monitoring mechanism for
temporal processing. A remaining question is how tem-
poral predictions are represented cortically. Recent pro-
posals have suggested that delta oscillations might play

an important role in temporal predictions (Arnal et al.|
2014} |Arnal and Giraud, 2012). In a recent study, Arnal
and colleagues found that delta phase correlated with
response accuracy in a temporal judgment task (Arnal
et al.l2014). However, in their study participants made
a simple judgment about whether or not a tone was de-
layed with regard to an established rhythm. In our study,
temporal information could not be used to form a simple
categorical response. On the contrary, participants had
to track time continuously to perform the task. More-
over, the moment of action in the following trial is a
more sensitive measure of participants temporal percep-
tion. Our results showed that delta phase was correlated
with participants action in the subsequent trial. This
suggests that delta oscillations might reflect the tempo-
ral prediction of when the target will be presented. It is
not possible, however, to determine whether delta phase
is driving the prediction itself or if it is a downstream
consequence of higher areas tuning to the temporal reg-
ularities of the task.

In both our and Arnals study, the task had an under-
lying rhythm in the delta band. In fact, most studies
that have shown effects of delta phase on performance
had an underlying temporal structure in this frequency
band (Besle et al., [2011} |Cravo et al.| 2013} Schroeder
and Lakatos|, [2009). However, some studies have also
shown a correlation between delta oscillations and tem-
poral processing in tasks without an external rhythm
(Laubach et al.l 2015; [Stefanics et al.l 2010). In both
cases (presence or absence of a rhythm), delta oscilla-
tions seem to be realigned such that relevant information
falls within a similar phase. When a temporal prediction
is wrong, targets will fall in different delta phases, which
can be used, in turn, as a measure of error, resulting in
precise adjustments (Arnal et al., 2014)).

Although our results are in agreement with the gen-
eral finding that delta oscillations are important in tem-
poral expectations, other frequency bands have also
been hypothesized to work as predictive timing mech-
anisms. For example, it has been found that beta oscil-
lations are related to temporal expectations both by its
increased amplitude (Arnal, 2012} |[Fujioka et al.l 2012}
Kilavik et al.|[2013)) and by its coupling with delta phase
(Arnal et al., 2014). However, we did not find any sig-
nificant evidence of beta oscillations being modulated
by temporal expectation or temporal error. Contrary to
delta oscillations, which have been found both in tasks
with and without an underlying rhythm, the relation be-
tween beta oscillations and temporal expectation has
been found more consistently in tasks with rhythmic se-
quences. Thus, it is possible that our experiment was
not ideal for this kind of modulation. Moreover, it is
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still unclear how different rhythms modulate beta power
(Merjer et al., 2016).

Although no other differences were seen in higher
frequency bands, we did observe a significant alpha
power suppression in trial 0. However, contrary to pre-
vious findings, we did not find that alpha power suppres-
sion was correlated with delay magnitude (Arnal et al.,
2014). One possibility for this difference is that our task
did not require an explicit judgement about the tempo-
ral interval, suggesting that the relation between alpha
suppression and time can be task dependent.

In conclusion, we have found that cortical oscillations
are correlated with monitoring and updating of temporal
predictions. Temporal errors elicited known oscillatory
correlates of error. These findings suggest that rhythmic
changes in cortical excitability might reflect temporal
predictions which in turn can be used for behavioral ad-
justments.
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