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FAST BAYESIAN WHOLE-BRAIN FMRI ANALYSIS WITH SPATIAL 3D PRIORS

PER SIDÉN, ANDERS EKLUND, DAVID BOLIN AND MATTIAS VILLANI

ABSTRACT. Spatial whole-brain Bayesian modeling of task-related functional magnetic res-
onance imaging (fMRI) is a great computational challenge. Most of the currently proposed
methods therefore do inference in subregions of the brain separately or do approximate infer-
ence without comparison to the true posterior distribution. A popular such method, which is
now the standard method for Bayesian single subject analysis in the SPM software, is intro-
duced in Penny et al. (2005b). The method processes the data slice-by-slice and uses an ap-
proximate variational Bayes (VB) estimation algorithm that enforces posterior independence
between activity coefficients in different voxels. We introduce a fast and practical Markov
chain Monte Carlo (MCMC) scheme for exact inference in the same model, both slice-wise and
for the whole brain using a 3D prior on activity coefficients. The algorithm exploits sparsity
and uses modern techniques for efficient sampling from high-dimensional Gaussian distribu-
tions, leading to speed-ups without which MCMC would not be a practical option. Using
MCMC, we are for the first time able to evaluate the approximate VB posterior against the
exact MCMC posterior, and show that VB can lead to spurious activation. In addition, we
develop an improved VB method that drops the assumption of independent voxels a posteri-
ori. This algorithm is shown to be much faster than both MCMC and the original VB for large
datasets, with negligible error compared to the MCMC posterior.

1. INTRODUCTION

Over the past fifteen years, there has been much work devoted to Bayesian spatial mod-
eling of task-related functional magnetic resonance imaging (fMRI) data. The motivation
to this line of work has been to develop an extension to the classical general linear model
(GLM) approach (Friston et al., 1995). The idea is to replace pre-smoothing of data and post-
correction of multiple hypothesis testing – an approach that was recently shown to be prob-
lematic for cluster inference (Eklund et al., 2016) – with a proper spatial model. A corner
stone in the field is a series of papers (Penny et al., 2003, 2005a,b, 2007; Penny and Flandin,
2005) upon which the Bayesian spatial single-subject analysis method in the Statistical Para-
metric Mapping (SPM) software (SPM, 2002) is built. The method extends the classical GLM
approach to a Bayesian framework with a spatial Gaussian Markov Random Field (GMRF)
prior on the activity parameters and the temporal noise parameters, encouraging them to
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vary smoothly across the brain. The prior is formulated such that the optimal amount of
smoothness can be estimated from the data. A fast variational Bayes (VB) algorithm is
used for inference, but makes the assumptions that (i) the posterior factorizes over differ-
ent types of parameters and (ii) the posterior for the activity parameters and the temporal
noise model parameters factorizes over voxels. Assumption (i) is validated in the univariate
(single-voxel) case in Penny et al. (2003) by comparing the VB posterior to the exact posterior
obtained from MCMC sampling, but the error from assumption (ii) has to our knowledge
never been properly examined. The VB framework also allows Bayesian model comparison
based on the model evidence lower bound (Penny et al., 2007), but the computation of de-
terminants of spatial precision matrices limits these types of analyses to be performed slice
by slice or to sub-volumes containing > 10000 voxels. Even without the model comparison,
the SPM method would be considered too time consuming for the full 3D brain analysis for
most practitioners.

A number of extensions of the SPM method have been developed. Harrison et al. (2008a)
replace the stationary spatial prior in Penny et al. (2005b) with a non-stationary prior which
is more adaptive and find evidence for this in data from an fMRI study of the auditory sys-
tem. Groves et al. (2009) note that the spatial prior in Penny et al. (2005b) actually performs
simultaneous smoothing and shrinkage of activity parameters in a rather non-flexible way.
They separate these two effects using a Gaussian Process (GP) prior with a squared exponen-
tial kernel function, and infer the kernel length scale using Evidence Optimization (EO). The
same issue is targeted in Yue et al. (2014), who use the GMRF representation of a Matérn field
(Lindgren et al., 2011) and perform estimation using Integrated Nested Laplace Approxima-
tion (INLA) (Rue et al., 2009).

Even though all of these extensions seem like improvements from a modeling perspective
they all struggle with computational complexity and inference is only performed slice by
slice. A computationally attractive approach towards spatial 3D modeling is to first partition
the brain into sub-volumes or parcels (Thirion et al., 2014), and then estimate a separate 3D
model for each parcel, which can also be done in parallel, see for example Harrison et al.
(2008b); Vincent et al. (2010); Musgrove et al. (2016). The inability to model dependencies
between parcels is a bit unnatural, however, and Harrison et al. (2008b) notice discontinuities
in posterior estimates along partition boundaries when using their model. Full 3D brain
analysis with reasonable speed is achieved by Harrison and Green (2010) who approximate
the zero mean spatial prior in Penny et al. (2005b) with a non-zero mean empirical prior, with
the cost of no longer having a true generative model.

An alternative route to a spatial model is to view selecting active voxels as a variable se-
lection problem, with a spatial prior on the probability of activation in a certain voxel, see for
example Smith and Fahrmeir (2007) and Zhang et al. (2014). A comparison between estima-
tion by VB and MCMC for this kind of model is available in the recent paper by Zhang et al.
(2016). In a related line of work (Vincent et al., 2010; Risser et al., 2011; Chaari et al., 2013),
voxel activations are modeled using a spatial mixture model of Gaussian distributions, where
one of the mixture components has mean zero, corresponding to non-active voxels. This
framework has the benefit of allowing for simultaneous estimation of the hemodynamic
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response function (HRF), using both MCMC and variational methods which are applied
parcel-wise. Another possibility is to model not only the activity parameters, but also the
noise as spatially dependent (see for example Woolrich et al. (2004)), an assumption that
seems natural but which comes with computational trouble because of the spatio-temporal
structure.

A typical goal with these types of analyses is to compute Posterior Probability Maps
(PPMs) (Friston and Penny, 2003), that is, brain maps showing the marginal probability of
activation under a certain stimuli in each voxel. It is also common that these PPMs are thresh-
olded at some level, for example at p > 0.9, to display active voxels or regions. However,
such thresholding implicitly defines a hypothesis test in each voxel and these multiple tests
must be corrected for. Given a spatially dependent posterior, a natural way to do this is us-
ing theory on excursion sets (Bolin and Lindgren, 2015) as in Yue et al. (2014) who define the
term joint PPM based on the joint posterior, as opposed to marginal PPMs.

Our paper makes a number of contributions. First, we propose a fast and practical MCMC
algorithm for slice-by-slice and whole brain task-fMRI analysis with spatial priors on the ac-
tivity fields and the autoregressive noise parameters. The algorithm makes efficient use of
sparsity and sampling from high-dimensional Gaussian distributions using preconditioned
conjugate gradient (PCG) methods. These efficiency improvements reduce the computa-
tional complexity by several orders of magnitude. Collectively, they make it possible to per-
form posterior whole-brain analysis with spatial priors on problems where MCMC was pre-
viously simply not a practical option. Second, we develop a very fast VB approach that main-
tains the weaker independence assumption (i) in SPM’s VB method, but drops the stronger
assumption (ii). Letting go of the assumption of spatially a posteriori independent voxels is
non-trivial from a computational standpoint, and we employ several numerical techniques
that together make the non-factorized VB approximation a very fast alternative to MCMC.
The approximation errors from this non-factorized VB are shown to be essentially negligi-
ble for practical applications. Third, we demonstrate that the completely factorized VB in
SPM12 can lead to spurious activations via a hitherto unexplored channel. Factorized VBs
are well known to underestimate posterior variances, but we highlight and explain why the
factorization over voxels can also result in a quite distorted smoothing of the activations.

The paper is organized as follows. We give a short background on the spatial model in
SPM and the VB method used there to estimate the model. We then introduce the MCMC
algorithm and the improved VB method and put extra emphasis on how to make these
methods computationally efficient. In the next section we show results for simulated and
real experiment data, and illustrate how the parameter estimates and PPMs differ between
the different methods. The speed and convergence properties across methods are also com-
pared. The last section contains a discussion and our conclusions. Derivation of results and
implementation details can be found in the appendices.

The new methods presented in this article have been implemented as an extension to the
SPM software, available at http://www.fil.ion.ucl.ac.uk/spm/ext/#BFAST3D.
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2. BACKGROUND

We will consider single-subject fMRI-data containing T volumes with N voxels ordered
in a T × N matrix Y. The experiment is described by the T × K design matrix X, with K

regressors. The model in Penny et al. (2007) is written as

Y = XW + E, (2.1)

where W is a K × N matrix of regression coefficients and E is a T × N matrix of error terms.
Since this is the same model that will be considered here, we will use the same notation
throughout, unless stated otherwise. Voxel-specific, normally distributed Pth order AR mod-
els are assumed for the error terms, but for a clearer presentation here we will consider the
special case P = 0 and handle the more general case in Appendix A. The likelihood then
becomes

p (Y|W, λ) =
N

∏
n=1

N
(

Y·,n; XW·,n, λ−1
n IT

)

, (2.2)

with Y·,n and W·,n denoting the nth column of Y and W, λn as the noise precision of voxel n

and IT a T × T identity matrix. The likelihood factorizes over voxels, which is an assumption
of non-spatial measurement noise that is made because the opposite assumption would be
very computationally challenging. Instead, the spatial part of the model will enter via the
prior on the regression coefficients

W′
k,·|αk ∼ N

(

0, α−1
k D−1

w

)

, (2.3)

p (W|α) =
K

∏
k=1

p
(

W′
k,·|αk

)

,

where W′
k,· denotes the transposed kth row of W, Dw is a fixed spatial N × N precision matrix

and α = (α1, . . . , αK)
′ are hyperparameters to be estimated from the data. There are several

possible choices for Dw, but we will here focus on the SPM12 default choice, the unweighted
graph-Laplacian (UGL) (called L in Penny et al. (2005b)) which for each voxel has the number
of adjacent voxels on the diagonal and Dw(i, j) = −1 if i and j are adjacent. For voxels in the
interior part of the brain we will thus have 6’s on the diagonal when modeling the whole 3D
brain, and 4’s when modeling each 2D slice separately. The main focus in Penny et al. (2005b)
is on a different prior defined as Dw = L′L. It is straightforward to use that prior also in our
framework, but our experience is that it leads to too smooth posteriors, which is probably
the reason why it is not the default option in SPM12. It also leads to slower inference since
Dw is less sparse when using this prior. The assumption of a sparse Dw is the key to fast
inference for this type of model using any method.

The hyperparameter αk will be estimated for each regressor to put the appropriate weight
on the prior, depending on what smoothness is supported by the data. A higher αk brings
the regression coefficient in each voxel closer to the mean of the coefficients in neighboring
voxels (more smoothness), and globally all coefficients closer to zero (more shrinkage). The
precision parameters αk and λn are assigned conjugate Gamma priors. For all the details
on the generative model and the priors, see Figure 1 and Appendix A in Penny et al. (2007)
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which also gives the values of the prior parameters that are default in SPM12 which are also
used here (except r1 = 10000 in SPM12). That is, we use q1 = u1 = 10, r1 = 10000 and
q2 = r2 = u2 = 0.1.

The VB algorithm for inference presented in Penny et al. (2005b) makes two independence
assumptions for the joint posterior distribution. Firstly, the posterior is assumed to factorize
over the different kinds of parameters, that is

q (W, α, λ|Y) = q (W|Y) q (α|Y) q (λ|Y) , (2.4)

with q denoting VB posteriors. Secondly, the regression parameters (and the AR-parameters
in the general case) are assumed to factorize over voxels

q (W|Y) =
N

∏
n=1

q (W·,n|Y) . (2.5)

The second assumption is possibly the strongest and most counter-intuitive since it is clear
that the spatial prior will generate dependence between voxels in the posterior. In the fol-
lowing section we will present an efficient MCMC (Gibbs) algorithm that performs inference
without any of these two assumptions and an improved VB algorithm that drops only the
second one. For an introduction to MCMC and VB, see Penny et al. (2003), who introduce
these methods for the one-voxel case.

3. THEORY

Penny et al. (2005b) motivate the second independence assumption by noting that the pos-
terior distribution for W will otherwise have a full covariance matrix of size KN ×KN, which
is prohibitively large. This is certainly true, and our algorithms are therefore designed to
never compute the covariance matrix explicitly, but work with precision matrices instead.
The posterior precision matrix is also of size KN × KN, but it is sparse and can therefore be
stored and used for computations quite cheaply. For example, the full conditional posterior
distribution for wr = vec (W′) will be multivariate normal and can be characterized by (see
Appendix A for the derivation)

p (wr|Y, α, λ) ∝ exp
(

−1
2

w′
rB̃wr + b′

wwr

)

, (3.1)

bw = vec
(

diag (λ)Y′X
)

,

B̃ = X′X ⊗ diag (λ) + diag (α)⊗ Dw,

where B̃ is a precision matrix which will maximally have K + 6 non-zero elements in any
row when the UGL prior is used in 3D. In other words, wr|Y, λ, α ∼ N (

B̃−1bw, B̃−1
)

.
As all the matrix inversions are avoided, the computational bottleneck of the algorithms

developed in this paper will instead be to generate random samples from this and similar
normal distributions, and to solve equation systems of the form B̃x = b, given some KN × 1
vector b. We will approach these problems in two ways, using Cholesky decomposition-
based exact methods and preconditioned conjugate gradient (PCG) approximate methods.
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3.1. GMRF sampling.

Rue and Held (2005) give a nice introduction to inference in latent Gaussian spatial models
with sparse precision matrices, so called Gaussian Markov Random Fields (GMRFs), and
also provide a good list of historical references, for example Besag (1974) and Woods (1972).
In particular, they give computationally effective algorithms for sampling and equation solv-
ing for GMRFs based on first computing the Cholesky factor of the precision matrix, that
is for a precision matrix B̃ compute a lower triangular matrix L such that LL′ = B̃. Us-
ing so called reordering methods, such as the approximate minimum degree permutation
(Amestoy et al., 1996), one can find a way to reorder the rows and columns of a sparse B̃

such that L will be reasonably sparse as well, which will be important for speed. We can
sample from the distribution in equation (3.1) and calculate E (wr|Y, α, λ) = µw = B̃−1bw

using Algorithm 1. A key notion here is that, algorithmically, solving equations involving L

or L′ (called forward or backward substitution) is much faster than solving equations involv-
ing B̃ directly. In practice, this algorithm works well for GMRFs of dimension up to ≈ 10000,
but then starts to become too slow for practical use, the bottleneck being the Cholesky de-
composition. This means that it can be used for slice- or parcel-wise inference in many cases,
but not for whole 3D brain inference.

Papandreou and Yuille (2010) offer a method to sample from the posterior for W that
avoids the Cholesky decomposition, see Algorithm 2. To use it in our setting we first have to
rewrite the prior density for W′

k,· according to

p
(

W′
k,·|αk

)

∝ N
(√

αkGwW′
k,·; 0, INGw

)

∝ exp
(

−1
2

Wk,·αkG′
wGwW′

k,·

)

, (3.2)

for some NGw × N matrix Gw. For this prior to be equal to the one in equation (2.3), Gw

needs to be chosen such that Dw = G′
wGw. Fortunately, many priors are naturally specified

through Gw directly. In our case, we construct Gw based on the interpretation of the UGL as
a priori saying that the differences between adjacent voxels are i.i.d. normal, that is

Wk,i −Wk,j
iid

∼ N
(

0, α−1
k

)

, (3.3)

for all adjacent i and j. Thus, we can construct Gw as having one row for every pair of
adjacent voxels i and j with 1 in column i and −1 in column j. A similar construction is
possible for the main prior in Penny et al. (2005b). In cases where the prior is instead spec-
ified through Dw, one way to obtain a Gw is always available as the Cholesky factor of Dw,
as long as this is computable. Further, we construct Bdata = diag (λ)⊗ X′X and Ldata as its
Cholesky factor which is cheap to compute since Bdata will be banded with bandwidth K and
also block diagonal. We define Hw as in Penny et al. (2007) as the permutation matrix such
that vec (W) = Hwvec (W′).

The last piece of the second sampling method is to use PCG for solving equations of the
form B̃x = b approximately (Barrett et al., 1994; Manteuffel, 1980), with a computationally
cheap incomplete Cholesky pre-conditioner M. The efficiency of the PCG method increases
if given a starting value xstart that is close to the solution. The PCG algorithm will iterate until
the relative residual

∥

∥B̃x − b
∥

∥ / ‖b‖ becomes less than a user specified tolerance level δ, e.g.
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10−8, why PCG can be set to approximate the true solution arbitrarily well. This means
that the approximation error that comes from PCG will be negligible in practice, which is
exemplified in Figure 4.1b below, where the difference in posterior mean for the MCMC
method using δ = 10−6 and δ = 10−8 is very close to zero. PCG can be used both as in
Algorithm 2 for sampling or simply to compute the mean µw = B̃−1bw.

Algorithm 1 Cholesky based sampling from p (wr|Y, α, λ)

Require: B̃, bw

1: Compute reordering based on B̃ and reorder B̃ and bw accordingly
2: Compute L as the Cholesky factor of B̃

3: Solve Lx = bw

4: Solve L′µw = x

5: Sample z ∼ N(0, IKN)

6: Solve L′v = z

7: Compute wr = µw + v

8: Reorder wr and µw using the inverse reordering computed in step 1
9: return wr, µw

Algorithm 2 PCG based sampling from p (wr|Y, α, λ)

Require: B̃, bw, Gw, Bdata, wstart
r

1: Compute Ldata as the Cholesky factor of Bdata

2: Sample z1 ∼ N (0, INGw
)

3: Sample z2 ∼ N (0, IKN)

4: Compute b =

(

blkdiag
k∈{1,...,K}

[√
αkGw

]

)′
z1 + H′

wLdataHwz2 + bw

5: Compute reordering based on B̃ and reorder B̃ and b accordingly
6: Compute M as the Incomplete Cholesky factor of B̃

7: Solve B̃wr = b approximately using PCG with preconditioner M and starting value
wstart

r

8: Reorder wr using the inverse reordering computed in step 5
9: return wr

Figure 3.1 shows the average time it takes to produce a single sample from the conditional
posterior of W for the simulated data presented in Section 4.1 (K = 5) for the Cholesky and
PCG based sampling algorithms, as a function of the number of voxels. The Cholesky algo-
rithm runs out of memory (32GB RAM) for N = 105 (which is another issue for the Cholesky
approach), but extending the seemingly linear behavior on the log-log-scale indicates that
the PCG method would be roughly 100 times faster in this case. By providing a good start-
ing value, as in the SVB algorithm presented below, we have observed the PCG timings to
decrease with an additional factor in the range [2, 15], a factor that increases as the algorithm
converges.
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FIGURE 3.1. Average sampling times using Cholesky and PCG based sam-
pling for GMRFs of size KN for the simulated data (K = 5), with two differ-
ent PCG tolerance levels δ. In each case the processing time was computed
as an average over 100 samples. Note that the presented PCG timings can
be reduced by an additional factor in the range [2, 15] when a good starting
value is available. The Cholesky algorithm runs out memory for N = 105.

3.2. MCMC algorithm.

In order to evaluate the true posterior of the model without any independence assumptions
between parameters, we develop an algorithm for MCMC sampling. Since all priors are con-
jugate, we obtain closed form expressions for all full conditionals and can therefore perform
Gibbs sampling. The full conditional posterior for W is given in (3.1) and the full conditionals
for λ and α are given by

λn|Y, W, α ∼ Ga (ũ1n, ũ2) , (3.4)

αk|Y, W, λ ∼ Ga (q̃1k, q̃2) ,

with
1

ũ1n
=

1
2

(

Y′
·,nY·,n − 2Y′

·,nXW·,n + W′
·,nX′XW·,n

)

+
1
u1

, (3.5)

ũ2 =
T

2
+ u2,

1
q̃1k

=
1
2

Wk,·DwW′
k,· +

1
q1

,

q̃2 =
N

2
+ q2.

See Appendix A for the derivation of these and the corresponding full conditionals in the
P > 0 case.

The Gibbs algorithm returns Niter samples from the joint posterior of all parameters, which
can be used for posterior inference about any subset of parameters. For example, given
samples W(1:Niter) we can compute the marginal PPM for any K × 1 contrast vector c as

P
(

c′W·,n > γ|Y
)

≈ 1
Niter

Niter

∑
j=1

I
(

c′W(j)
·,n > γ

)

, (3.6)
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for voxel n and some activity threshold γ. Furthermore, since the MCMC posterior does
not factorize over voxels, it is also meaningful and straightforward to compute the joint
probability of activation for any set of voxels E as

P
(

c′W·,E > γ1′|E||Y
)

≈ 1
Niter

Niter

∑
j=1

I
(

c′W(j)
·,E > γ1′|E|

)

, (3.7)

where 1|E| is a vector of ones of length |E|. Using the theory on excursion sets developed by
Bolin and Lindgren (2015), we can thereby compute the joint PPMs introduced in Yue et al.
(2014) that avoid the problem of multiple hypothesis testing.

3.3. Spatial VB.

Out of the two posterior independence assumptions in Penny et al. (2005b), we view the sec-
ond one as the strongest, that is the assumption that the posterior for W factorizes over vox-
els. The developed MCMC algorithm relieves us from both independence assumptions, but
has its limitations in terms of speed and memory. We therefore seek to develop an improved
VB algorithm that maintains the efficiency gain from the first assumption of independence
between the different types of parameters, but drops the second assumption and models the
joint posterior of W. We will refer to this algorithm as Spatial Variational Bayes (SVB) and to
SPM’s factorized VB algorithm as Independent Variational Bayes (IVB).

The SVB posterior will be computed iteratively, just as in the IVB algorithm, for one pa-
rameter at a time given the approximate posterior of the others. If we denote θ = {W, λ, α},
then (Bishop, 2006)

log q
(

θj

)

= Eθ−j
[log p (Y, θ)] + const, (3.8)

with the expectation taken with respect to the VB posterior q (θ−i). This means that for q (W)

we get (see Appendix B)

log q (wr) = Eλ,α [log p (Y|W, λ) + log p (W|α)] + const (3.9)

= −1
2

w′
rB̃

SVBwr + bSVB′
w wr + const,

bSVB
w = vec

(

diag (Eλ [λ])Y′X
)

,

B̃SVB = X′X ⊗ diag (Eλ [λ]) + diag (Eα [α])⊗ Dw,

that is, we get exactly the same expression as for the full conditionals only the values for λ

and α are replaced by their expectations with respect to their variational posteriors q (λ) and
q (α). This expression is simple because λ and α enter linearly, which will not be the case in
general. For q (α) we get (note that the likelihood p (Y|W, λ) does not depend on α)

log q (α) = EW,λ [log p (Y|W, λ) + log p (W|α) + log p (α)] + const (3.10)

=

(

N

2
+ q2 − 1

) K

∑
k=1

log αk −
K

∑
k=1

αk

[

1
2

EW

[

Wk,·DwW′
k,·
]

+
1
q1

]

+ const.
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So, just as for the full conditionals, αk will be Gamma distributed a posteriori with parameters

1
q̃SVB

1k

=
1
2

EW

[

Wk,·DwW′
k,·
]

+
1
q1

, (3.11)

q̃SVB
2 =

N

2
+ q2.

The problem here is the expectation of the quadratic form

EW

[

Wk,·DwW′
k,·
]

= EW [Wk,·]DwEW

[

W′
k,·
]

+ tr (DwCov [Wk,·, Wk,·]) , (3.12)

where the second term requires inversion (or at least partial inversion) of the posterior pre-
cision for W, B̃SVB, which is computationally infeasible in the general 3D case. To avoid
this, we adopt a Monte Carlo (MC) sampling based approach to compute the expectation.
The PCG sampling method provides an efficient way to generate a number of (Ns) samples
W(1:Ns) from the VB posterior q(W), by simply replacing B̃ and bw in Algorithm 2 with B̃SVB

and bSVB
w . These samples can be used to approximate the expectation as

EW

[

Wk,·DwW′
k,·
]

≈ 1
Ns

Ns

∑
j=1

W
(j)
k,· DwW

(j)′
k,· . (3.13)

Similar MC approximations will be used in the VB update equations of λ and for the other
parameters when P > 0, see Appendix B.

The SVB algorithm is similar to the MCMC algorithm in that the computational bottle-
neck will be the sampling of W, but there are some important differences. The MCMC al-
gorithm runs for a large number of iterations (Niter, thousands) producing one sample from
p (W|Y, λ, α) in each iteration. For SVB it is enough to run for a much smaller number of
iterations (tens), but each iteration draws a larger number of samples (Ns, tens or hundreds)
from q (W) . When PCG based sampling is used SVB is advantageous because (i) the same
pre-conditioner M can be used for all samples in each VB iteration (ii) the same random seeds
(the same z1 and z2 in Algorithm 2) can be used across VB iterations, making the previous
iteration samples very good starting values for the PCG (iii) since the samples are indepen-
dent, the sampling can be fully parallelized within each iteration by running Algorithm 2 on
separate cores. All these points contribute to that SVB can be run much faster than MCMC in
general, with the price being the first assumption of independence between different kinds
of parameters.

The MC approximation introduced in equation (3.13) adds a stochastic approximation er-
ror to the already approximate VB posterior. Figure 4.1b below quantifies the size of this
error with respect to the number of samples Ns on simulated data. Convergence results for
stochastic VB methods (Kingma and Welling, 2014; Gunawan et al., 2016) and for stochastic
variants of the related expectation-maximization (EM) algorithm (Chan and Ledolter, 1995;
Delyon et al., 1999) are available in the literature. However, these results do not apply to
our setting since they build on repeated sampling, while the SVB algorithm presented here
only draws z1 and z2 in Algorithm 2 in the first iteration and then re-uses those same ran-
dom numbers at the subsequent iterations. Re-using the random numbers speeds up SVB
(typically by a factor between 2 and 15) since it allows us to use good PCG starting values,
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and the additional approximation error resulting from fixed random numbers is small in our
applications. See Appendix C for more details about the convergence.

In theory, all SVB posterior statistics, such as PPMs, can be computed from the approx-
imate posterior q (W) in equation (3.9). However, since it is parametrized using the preci-
sion matrix even basic marginal statistics, as variances and posterior probabilities, are not
trivially obtained since this requires the inversion (or at least the Cholesky factor) of the pre-
cision matrix. We can instead use the sample variance of the samples W(1:Ns) to get a fast
approximation (Papandreou and Yuille, 2011), which can be used to compute the marginal
PPMs in each voxel. For contrast PPMs, we similarly use the sample covariance matrix for
each voxel. While a small value of Ns (≤ 100) seems sufficient for convergence of the SVB
algorithm, covariance estimates based on the same number of samples will be quite noisy
(see Figure 4.2 below). A straightforward strategy to reduce the noise would be to generate
additional samples from q (W) in a post-processing step, to further improve the covariance
estimates. Such a step could be time consuming, however, and we are currently working on
a different, more efficient way to compute covariances for a given sparse precision matrix.

4. RESULTS

In this section we present results comparing the three methods (IVB, SVB and MCMC)
on the same data. As MCMC is exact (in the sense of being simulation consistent with a
small and controllable error), we can view this as the ground truth when evaluating the
other methods. IVB is run using SPM12. The SVB algorithm is implemented as an extension
to the original IVB algorithm by manipulating the original SPM12 Matlab code, while the
MCMC algorithm is implemented in a separate Matlab function. The overhead time is low
compared to the main computation steps for all three methods, so all timing comparisons
should be considered fair. We perform the comparison on simulated data with the focus on
computational efficiency as a function of data size, and on two different real data sets with
the focus on the resulting posteriors and PPMs.

For any comparison to be fair, both regarding computing time and estimated posteriors,
we need the different algorithms to reach the same level of convergence. In Appendix C we
discuss some details on the convergence of the different methods and show that the SPM12
default setting of 4 VB iterations is usually not sufficient. In the results below, all methods
including IVB are run until convergence. In Appendix C we also provide some practical
details about the implementation of respective method and about the computers used to
perform the analyses.

4.1. Simulated data.

We simulate synthetic data from the model, with K = 5 and P = 1 and pick parameter values
for the voxel intercept and noise standard deviation that approximately match those of the
face repetition data described below. Several different values of α were used to simulate
conditions with varying informativeness, see Appendix D for details. We run the algorithms
on simulations of N = 103, 104 and 105 voxels to get an idea how they scale and compare
with the number of voxels. Figure 4.1a shows the processing time until convergence, defined
as the time until the estimated posterior mean of α reaches within 1% of its final value, for
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respective algorithm. In Figure 4.1b, the accuracy of respective algorithm is evaluated. This
is based on the root-mean-squared-error (RMSE) of the marginal posterior mean of activation
coefficients W compared to the posterior mean from MCMC with δ = 10−8.
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FIGURE 4.1. (a) Processing time as a function of the number of voxels for the
different algorithms and different PCG tolerance levels δ. For SVB, the num-
ber of MC samples Ns and computing cores are also varied. The computations
were made on simulated data with K = 5 using the 3D prior. (b) RMSE of ac-
tivation coefficient posterior mean for the different algorithms as compared
to the MCMC posterior with δ = 10−8, based on the first 4 regressors.

Figure 4.1 indicates that the SVB and MCMC algorithms scale much better with the num-
ber of voxels than IVB does, and also provide a higher accuracy. Lowering the PCG tolerance
δ from 10−8 to 10−6 gives some speedup while seemingly sacrificing little in accuracy. How-
ever, for δ = 10−4 the RMSE for MCMC increases and for SVB it becomes as high as 0.25 with
very noisy convergence times (not shown), so this tolerance must not be set too high. The
speedup achieved by lowering Ns seems almost linear, but results in a lower accuracy. The
speed gain in parallelizing is small due to overhead costs, but we expect greater speed-ups
for larger data sets when each VB iteration requires more time, which is seen for the real data
in Table 1 below. Note that the timing results in Figure 4.1 (and also in Table 1) need to be
interpreted with caution since they are based on single runs of the stochastic MCMC and
SVB methods, but these graphs provide insight about how the timing largely compares for
the different methods and settings.

4.2. Real data.

Two real task-fMRI data sets are considered, the face repetition data used in Penny et al.
(2005b) and data from a visual object recognition experiment from the OpenfMRI database
(Poldrack et al., 2013), see Appendix D for more details on these data sets.

Approximate processing times for these data are shown in Table 1, both for slice-wise
analysis using the 2D prior, and whole-brain analysis using the 3D prior. The IVB method
scales much worse with the number of voxels and is hence slow in the 3D case, while MCMC
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and SVB are not necessarily slower in 3D than in 2D. For whole-brain inference with the 3D
prior, SVB is generally the fastest option, especially when run in parallel.

Face repetition Object recognition
2D prior 3D prior 2D prior 3D prior

IVB 4.9 190 1.9 26
MCMC 110 150 230 76
SVB 5.3 11 22 20
SVB, 4 cores 2.8 3.8 8.7 7.6

TABLE 1. Approximate processing times (h) for the different real data sets
and algorithms using the 2D/3D prior.

We first consider the face repetition data. Figure 4.2 shows the posterior mean and stan-
dard deviation of the activation contrast, estimated using all three methods for the 2D prior.
Comparing IVB to MCMC, we see bias both in the estimated IVB mean (the maximum error
is 1.4 across all voxels) and standard deviation (maximum error 25%). A separate experiment
with α fixed to the same value for both methods showed the well-known systematic under-
estimation of standard deviations by IVB (roughly by 8%, results not shown). However, IVB
tends to also underestimate α, as shown in Figure 4.6 below, leading to less shrinkage and
VB errors in standard deviation that go in both directions. Comparing SVB to MCMC, we
see that the estimated SVB mean is much more correct than the IVB (maximum error 0.2).
However, the SVB standard deviation estimates are quite inaccurate (maximum error 26%),
but this is mainly due to the noisy covariance estimates discussed in Section 3.3.

Computed marginal PPMs for various settings, thresholded at 0.9, are shown in Figure
4.3. The first row shows estimates for IVB after 4 VB iterations for the 2D prior (which is
the SPM12 default), and after convergence for both the 2D and 3D prior. In the second and
third row one can see the corresponding PPMs estimated using MCMC and SVB, and also
the MCMC based joint PPMs which were computed using the R package excursions. The
2D joint PPM is computed based only on voxels within this slice while the 3D joint PPM is
computed based on all voxels in the brain, so these maps are not directly comparable. The
differences between the non-converged and converged SPM results seem rather small for
this data set. Overall, the PPMs from IVB agree quite well with the PPMs from MCMC; an
exception is a small cluster of activity in IVB which is lacking in the activation map from
MCMC. The MCMC and SVB PPMs are hard to distinguish. Larger differences are found
when comparing results based on the 2D vs. 3D prior and when comparing marginal vs.
joint PPMs.
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FIGURE 4.2. Posterior mean (top row) and standard deviation (second row)
estimated using MCMC (left) and IVB (middle) for the contrast (mean effect
of faces) using the 2D prior. The right column shows the differences in mean
and standard deviation ratio of the estimated posteriors. Row three and four
show the corresponding results for SVB.
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IVB 2D (4 iter) IVB 2D IVB 3D

SVB 2D MCMC 2D MCMC 3D

SVB 3D MCMC 2D (joint PPM) MCMC 3D (joint PPM)
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FIGURE 4.3. PPMs estimated for the face repetition data with different meth-
ods and 2D or 3D spatial priors. The PPMs show probabilities of the contrast
(mean effect of faces) exceeding 1% of the global mean signal, thresholded at
0.9.
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FIGURE 4.4. Posterior mean (top row) and marginal PPMs (bottom row) for
the face repetition data for the MCMC method when using the 2D and 3D
spatial priors for the sagittal slice indicated in the bottom right figure. The
PPMs show probabilities of the contrast (mean effect of faces) exceeding 1%
of the global mean signal, thresholded at 0.9.

The smaller activity regions from the 3D prior compared to the 2D prior is due to shrinkage
towards a larger number of non-active voxels nearby in the z-dimension, which is depicted
in Figure 4.4 that compares the posterior mean and PPM for the two priors in a sagittal slice.
It is clear that the posterior mean is generally lower in the active regions when using the 3D
prior, which can only be explained with the assumed dependence with non-active voxels in
the z-dimension. For this particular slice, the effect is nevertheless strong enough for these
voxels to be classified as active in the PPMs, but for other slices the higher smoothness can
bring posterior probabilities below the 0.9-threshold, for voxels classified as active when
using the 2D prior. At the same time, for the 2D prior we observe discontinuous effects
between slices, for example in the inferior part of the largest active blob, while the 3D prior
lends strength to the voxels below, classifying them as active. It should be noted that the
2D and 3D prior lead to rather different models (the 2D prior implies a different covariance
structure and has many more parameters and is therefore more flexible), so the results are not
directly comparable and greatly data dependent. To decide which of these priors (or perhaps
a more flexible 3D prior or parcel based method) is best is a model selection problem, which
we see as important future work.
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FIGURE 4.5. Marginal PPMs estimated for the object recognition data with
different methods and 2D or 3D spatial priors. The PPMs show probabilities
of the contrast (houses vs. faces) exceeding 0.5% of the global mean signal,
thresholded at 0.9.

Although we observe some errors in the posterior mean and standard deviation for IVB as
compared to MCMC, this error is not big enough to make much impact on the PPMs for the
face repetition data set. Our second dataset, the object recognition data, shows a situation
where this error can in fact be severe also for the PPMs. Figure 4.5 shows computed PPMs
for one slice of the object recognition data, for some different methods and using the 2D/3D
prior. It is clear that the independence assumption in IVB can lead to severely distorted
activation maps, and that SVB is a much more accurate approximation for this dataset.

Much of the differences in brain maps between IVB and the other methods can be attrib-
uted to the underestimation of hyperparameters. Figure 4.6 shows the estimated posteriors
of the spatial hyperparameters α and β for the main regressors and AR coefficient for the
different methods and data sets. When data are informative, as for the intercept, the VB
methods generally approximate the hyperparameter posteriors well, but as data become less
informative (this is clearly seen for the simulated data) the approximate posteriors from IVB
underestimate both the location and dispersion of the posterior. The underestimation of
posterior dispersion is a well known issue with VB quite generally (Bishop, 2006), but the in-
ability of IVB to correctly approximate the posterior location is unusual. The answer comes
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from the assumption of posterior independent voxels. Since the noise is assumed to be spa-
tially independent, the posterior dependence between voxel activations comes solely from
the spatial prior. IVB therefore pushes the αk:s to lower values in an attempt to reduce the
influence of the prior. Indeed, SVB is much better at finding the correct location, but, like
most VB methods, tends to underestimate the dispersion.
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FIGURE 4.6. Estimated posteriors for the spatial hyperparameters for the
main regressors and the first AR coefficient for the simulated (a), face repe-
tition (b) and object recognition (c) data by MCMC (histogram), IVB (red) and
SVB (blue).

5. DISCUSSION AND FUTURE WORK

The PCG based GMRF sampling provides a fast way to perform exact inference in high-
dimensional spatial models such as the one considered here for task-fMRI. The presented
results show that our methods scale better than SPM’s IVB, which is simultaneously shown
to generate erroneous results for certain data.

VB approximation error. The IVB error comes from two sources. Firstly, factorized VB is
known to underestimate posterior variances (Bishop, 2006) and we have seen that fixing α

to the same value in both SPM’s VB and the MCMC algorithms results in underestimated W

posterior standard deviation for IVB for the face repetition data. The same type of posterior
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variance underestimation can be seen for the SVB hyperparameters in Figure 4.6, a behavior
that is theoretically motivated in Rue et al. (2009) (Appendix A). Secondly, we have seen that
IVB tends to underestimate also the mean of α for many regressors, resulting in the wrong
level of smoothing/shrinkage.

The SVB method seems to approximate the exact W posterior well in most cases, but the
underestimation of hyperparameter variance is occasionally quite large (sometimes also the
mean is slightly wrong) which could motivate dropping the VB assumptions entirely and
instead optimizing these parameters and perhaps using a Gaussian approximation for the
uncertainty.

Computational improvements and model extensions. There is room for further improvement of
the SVB method, by investigation of the sensitivity to settings like the PCG tolerance δ and
the number of MC samples Ns on a larger number of data sets. Different pre-conditioners
could be used, for example the robust incomplete Cholesky (Ajiz and Jennings, 1984), and
Bolin et al. (2014) discuss other approximations of traces like the one in equation (3.12). The
evaluation should be in relation to the output of interest, for example PPMs, to find the
optimal balance between accuracy and processing time. In addition, a better online criterion
for convergence would be beneficial. In future work we will also investigate if graphics
processing units (GPUs) can be used to reduce the processing time further (Eklund et al.,
2013, 2014).

Even though the MCMC algorithm is probably not fast enough for the everyday practi-
tioner to run on whole-brain data sets with many conditions, it is orders of magnitude faster
than what would be the case without PCG sampling, in which case it would be impractical to
run at all. It fulfills an important purpose as the ground truth when evaluating approximate
methods such as the VB methods in this paper, and could practically be used on sub-volumes
of interest.

For the algorithms presented in this paper we have seen that the convergence rate is de-
termined by the spatial hyperparameters for the least informative regressors. Hence, a small
model change that would increase the convergence rates could be to drop the spatial prior
on regressors that are very non-informative (for example motion regressors, as previously
suggested by Groves et al. (2009)).

In this work, we have for brevity only considered the spatial UGL prior and focused on
exact inference using this approximate model. For example, the UGL prior is stationary,
isotropic and cannot separate shrinkage and smoothing. As mentioned in the introduc-
tion, many alternative, less approximate, priors have been proposed which would be in-
teresting to adopt to the PCG sampling framework for 3D inference. Many of these would
be straightforward to implement, for example the anatomically motivated tissue-type AR-
priors in Penny et al. (2007), while others would require solving additional computational
issues. A particularly interesting alternative would be the Matérn kernel which is a standard
choice in spatial statistics. The Matérn kernel defines a Gaussian field (GF) that in general
is not Markov, however, Lindgren et al. (2011) give an explicit link between GFs and GM-
RFs for the Matérn class such that it can be used in a sparsity exploiting manner, and they
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also provide a possible non-stationary Matérn model. Other parallel model improvements
would be to include a spatial model also for the noise precision λ, to add a spatial prior also
for the probability of activation and to include spatial dependence in the likelihood, which is
motivated by Kriegeskorte et al. (2008) who, using a phantom, demonstrate that noise from
echoplanar imaging is naturally spatial.

While the voxels are normally equally sized in the x and y direction of each slice, this is not
necessarily the case relative to the z direction and one might worry that this leads to more
anisotropic data that cannot be accounted for by the UGL prior. A simple solution to this
is to resample the voxels to have the same size during the pre-processing, which is in fact
what we did for the face repetition data, but not for the object recognition data. The same
solution is possible for the second data set, but another straightforward solution would be
to replace the UGL prior with a weighted graph-Laplacian (WGL) prior, that is to redefine
Dw = G′

wCGw instead of Dw = G′
wGw for a diagonal weight matrix C that can be chosen

based on the Euclidian distances between neighboring voxels as in Harrison et al. (2008a).
This solution would also be simply adapted to the PCG framework by just multiplying row
i in Gw with

√
Cii when using Algorithm 2. Another solution would be change the prior

precision matrix in equation (2.3) from αkG′
wGw to G′

wCkGw with

Ck =







αx,kI

αy,kI

αz,kI






,

with αx,k, αy,k and αz,k being random parameters (to be inferred) that applies to neighboring
pairs of voxels in the x, y and z direction respectively. Adopting such a model to the MCMC
or SVB frameworks would however be difficult for computational reasons.

For inference using this or other more advanced priors than the UGL, Gibbs sampling is
often not feasible. In these situations, or when the mixing of the Gibbs sampling chain is
dissatisfactory, one can instead attempt to perform MCMC using Metropolis-Hastings (MH)
steps or Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2011). These methods
require the computation of acceptance probabilities based on the joint posterior ratio, as
demonstrated for our model in Appendix A. These become computable in practice because
the hyperparameters αk can be factored out of the determinant of the prior precision matrix
as in equation (A.14), but for a more advanced prior the computation of this determinant
would be problematic. In a recent work, independent to ours, Teng et al. (2016) use HMC
to do inference in the same model as the one in our article. They also make comparisons to
SPM’s VB for the face repetition data using the 3D prior, and obtain similar results. Their
reported computing times seem fast, but since they are using a much smaller model (K = 5)
and a different implementation (C++), another number of samples, etc., their computing
times cannot be directly compared to ours. Nevertheless, HMC seems like a competitive
method to the proposed PCG based Gibbs sampling method for MCMC in these models. In
a different, recent and independent article, Rad et al. (2016) use a similar PCG based Gibbs
sampling method to ours in a similar model for other kinds of neuroscientific data. However,
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they use a different spatial edge-preserving Laplace prior, which would be interesting to
apply also to fMRI data within this framework.

In order to be able to properly motivate any of the above mentioned model improvements,
however, a model selection criterion is required. Penny et al. (2007) used the model evidence
lower bound, which is a good alternative, but requires the computation of determinants of
precision matrices of size KN ×KN, which is infeasible in the 3D case. Good approximations
of such determinants would therefore be an eligible direction for future research. Model
selection criteria based on cross validation or the marginal likelihood could also be explored.

Multiple comparisons. There is currently no consensus on how to control for multiple com-
parisons in Bayesian spatial models for fMRI data. We showed how joint PPMs based on
excursion sets can be computed for the MCMC method, but the large data size is currently
preventing us from computing the same for the SVB method. The joint PPMs control the
family-wise error rate given the spatial model and a threshold, but a separate objective could
be to instead control the false discovery rate (FDR) for which a unified framework within
large-scale spatial models is provided by Sun et al. (2015). An interesting area of future re-
search would thus be to adopt both these approaches to the 3D spatial modeling of fMRI
data when using both the MCMC and SVB method.

Group analysis. Another important area of future work is to extend this single subject anal-
ysis to the group level. The simplest way to do this is to consider the posterior mean maps
from the single subject analysis as spatially processed and use these as input to a voxel-wise
Bayesian regression, which is basically what is done in SPM’s Bayesian second level analy-
sis. This approach has several drawbacks, one being that mis-registration between subjects
causes activation to be located in different voxels, and can therefore be missed when aver-
aging across subjects. The classic GLM approach “handles” this by using smoothing as a
pre-processing step. A more elegant, Bayesian solution is presented in Xu et al. (2009) which
explicitly models population level activation centers. A second drawback is that such a pro-
cedure discards the posterior uncertainty from the subject level analyses. The most natural
way to do the group level analysis would instead be using a Bayesian hierarchical model
with a common group level activation working as a latent prior for each subject, and to also
model the spatial hyperparameters at the group level. However, estimating such a model
would intuitively be very demanding in terms of memory and speed, and an approximate
idea is to instead target the mean of the subject-level activations, as in Yue et al. (2014).

5.1. In conclusion.

A fast and practical MCMC scheme for exact whole-brain spatial inference in task-fMRI is
suggested and implemented. Also, a non-factorizing VB method is developed and shown
to give practically the same results, but in shorter time. The methods are compared to the
popular factorizing VB method in SPM and shown to scale better with problem size. The
comparison with the exact MCMC estimates gives evidence that SPM’s VB can produce false
activity estimates in some settings.
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APPENDIX A. DERIVATION OF FULL CONDITIONAL POSTERIORS FOR THE MCMC
ALGORITHM

This section is divided into two pieces, the first handling the case when the noise in each
voxel is modeled as i.i.d. over time and the second handling the case with auto-regressive
temporal noise. The first part is shorter and basically contains all the concepts needed for
the second part. It should be noted that adding a temporal model does not add much too the
time complexity as long as P < K, which is normally the case. We also provide an expression
for computing the joint posterior ratio.

A.1. i.i.d. noise model.

The likelihood. The likelihood in (2.2) can be expressed in logs as

log p (Y|W, λ) =
T

2

N

∑
n=1

log (λn) (A.1)

−1
2

N

∑
n=1

λn

[

Y′
·,nY·,n − 2Y′

·,nXW·,n + W′
·,nX′XW·,n

]

+ const,

where we have omitted everything that is constant with respect to the parameters. Since Y

and X are data that will not change during the MCMC algorithm, quantities as Y′
·,nY·,n, Y′

·,nX

and X′X can be effectively pre-computed, removing the time dimension from the likelihood
which leads to significant speed up. This is similar to what is done in Penny et al. (2005a).
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Full conditional posterior of W.

log p (W|Y, λ, α) = log p (Y|W, λ) + log p (W|α) + const (A.2)

= −1
2

[

N

∑
n=1

λn

(

W′
·,nX′XW·,n − 2Y′

·,nXW·,n
)

+
K

∑
k=1

Wk,·αkDwW′
k,·

]

+ const

= −1
2

w′
rB̃wr + b′

wwr + const,

bw = vec
(

diag (λ)Y′X
)

,

B̃ = X′X ⊗ diag (λ) + diag (α)⊗ Dw,

or equivalently wr|Y, λ, α ∼ N
(

B̃−1bw, B̃−1
)

, where wr = vec (W′).

Full conditional posterior of λ.

log p (λ|Y, W, α) = log p (Y|W, λ) + log p (λ) + const (A.3)

=
T

2

N

∑
n=1

log (λn)−
1
2

N

∑
n=1

λn

[

Y′
·,nY·,n − 2Y′

·,nXW′
·,n + W′

·,nX′XW·,n
]

+ (u2 − 1)
N

∑
n=1

log (λn)−
N

∑
n=1

λn

u1
+ const

= (ũ2 − 1)
N

∑
n=1

log (λn)−
N

∑
n=1

λn

ũ1n
+ const,

1
ũ1n

=
1
2

(

Y′
·,nY·,n − 2Y′

·,nXW′
·,n + W′

·,nX′XW·,n
)

+
1
u1

,

ũ2 =
T

2
+ u2,

so λn|Y, W ∼ Ga (ũ1n, ũ2) for all n.

Full conditional posterior of α.

log p (α|Y, W, λ) = log p (Y|W, λ) + log p (W|α) + log p (α) + const (A.4)

=
N

2

K

∑
k=1

log (αk)−
1
2

K

∑
k=1

Wk,·αkDwW′
k,·

+ (q2 − 1)
K

∑
k=1

log (αk)−
K

∑
k=1

αk

q1
+ const

= (q̃2 − 1)
K

∑
k=1

log (αk)−
K

∑
k=1

αk

q̃1k
+ const,

1
q̃1k

=
1
2

Wk,·DwW′
k,· +

1
q1

,

q̃2 =
N

2
+ q2,

so αk|W ∼ Ga (q̃1k, q̃2) for all k.

A.2. Temporal noise model.

The derivations of the full conditionals for the temporal noise model follows the same pattern
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as for the i.i.d. model, why we leave out some steps for brevity. Also note that the form of the
posterior for the AR coefficients A will be very similar to that of the regression coefficients W,
and the hyperparameter β has the same form as α. The permutation matrices Hw and Ha are
defined as in Penny et al. (2007) such that vec (W) = Hwvec (W′) and vec (A) = Havec (A′).

The likelihood. Using the temporal noise model, the likelihood can be expressed as

p (Y|W, A, λ) ∝
T

∏
t=P+1

N

∏
n=1

N
(

Ytn − Xt,·W·,n;
(

dtn − X̃tW·,n
)′

A·,n, λ−1
n

)

, (A.5)

where X̃t is a P×K matrix containing the P rows of the design matrix prior to time point t and
dtn is P × 1 and similarly contains the P values of Y·,n just before t. Note that we condition
on the first P time points for simplicity. The non-constant part of the log-likelihood can be
written as

log p (Y|·) =
T − P

2

N

∑
n=1

log (λn)−
1
2

T

∑
t=P+1

N

∑
n=1

[

(Ytn − Xt,·W·,n)−
(

dtn − X̃tW·,n
)′

A·,n
]′

λn

×
[

(Ytn − Xt,·W·,n)−
(

dtn − X̃tW·,n
)′

A·,n
]

+ const

=
T − P

2

N

∑
n=1

log (λn)−
1
2

N

∑
n=1

[

(Y·,n − XW·,n)−
(

dn − X̃W·,n
)′

A·,n
]′

λn

×
[

(Y·,n − XW·,n)−
(

dn − X̃W·,n
)′

A·,n
]

+ const. (A.6)

In the last expression the sums and indexing with respect to t has been removed. Since
none of the parameters depend on the time dimension, this expression can be rewritten
so that sums and matrix multiplications over the time dimension can be isolated to the
data

(

Y, X, d, X̃
)

, so that they can be pre-computed outside the Gibbs algorithm, leading
to a higher computational efficiency as in Penny et al. (2005a). Note that the size of dn is
P × (T − P) and the size of X̃ is P × (T − P) × K. Matrix multiplications including the 3-
dimensional matrix X̃ and other tensors will be carried out over the appropriate dimension
in what follows, even if this is not stated explicitly. The log-likelihood can now be rewritten
as

log p (Y|·) =
T − P

2

N

∑
n=1

log (λn) (A.7)

−1
2

N

∑
n=1

λn

[

Y′
·,nY·,n − 2Y′

·,nXW·,n + W′
·,nX′XW·,n − 2Y′

·,nd′
nA·,n

+A′
·,ndnd′

nA·,n + W′
·,nB′

nA·,n + A′
·,nBnW·,n − W′

·,n
(

RA·,n + (RA·,n)
′)W·,n

−A′
·,n
(

DnW·,n + (DnW·,n)
′)

A·,n + W′
·,n
(

A′
·,nSA·,n

)

W·,n
]

+ const,
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where

Bn = Y′
·,nX̃ + dnX is of size P × K,

R = X′X̃ is of size K × K × P,

Dn = dnX̃ is of size P × K × P,

S = X̃X̃ is of size P × K × K × P.

Full conditional posterior of W.

log p (W|Y, ·) = −1
2

w′
rB̃wr + b′

wwr + const, (A.8)

bw = vec



















...
λn

(

Y′
·,nX − A′

·,nBn + A′
·,nDnA·,n

)

...









n∈{1,...,N}











,

B̃ = H′
w blkdiag

n∈{1,...,N}

[

λn

(

X′X − RA·,n − (RA·,n)
′ + A′

·,nSA·,n
)]

Hw

+diag (α)⊗ Dw,

where blkdiag
n∈{1,...,N}

[Cn] is a KN × KN block diagonal matrix with the K ×K matrix Cn as the nth

block. So wr|Y, · ∼ N
(

B̃−1bw, B̃−1
)

.

Full conditional posterior of A.

log p (A|Y, ·) = −1
2

a′r J̃ar + b′
aar + const, (A.9)

ba = vec



















...
λn

(

Y′
·,nd′

n − W′
·,nB′

n + W′
·,nRW·,n

)

...









n∈{1,...,N}











,

J̃ = H′
a blkdiag

n∈{1,...,N}

[

λn

(

dnd′
n − DnW·,n − (DnW·,n)

′ + W′
·,nSW·,n

)]

Ha

+diag (β)⊗ Da,

so ar|Y, · ∼ N (

J̃−1ba, J̃−1
)

.

Full conditional posterior of λ.

log p (λ|Y, ·) = (ũ2 − 1)
N

∑
n=1

log (λn)−
N

∑
n=1

λn

ũ1n
+ const, (A.10)

1
ũ1n

=
1
u1

+
1
2

[

Y′
·,nY·,n − 2Y′

·,nXW·,n + W′
·,nX′XW·,n − 2Y′

·,nd′
nA·,n

+A′
·,ndnd′

nA·,n + W′
·,nB′

nA·,n + A′
·,nBnW·,n − W′

·,n
(

RA·,n + (RA·,n)
′)W·,n

−A′
·,n
(

DnW·,n + (DnW·,n)
′)A·,n + W′

·,n
(

A′
·,nSA·,n

)

W·,n
]

,

ũ2 =
T − P

2
+ u2,
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so λn|Y, · ∼ Ga (ũ1n, ũ2) for all n.

Full conditional posterior of α.

log p (α|·) = (q̃2 − 1)
K

∑
k=1

log (αk)−
K

∑
k=1

αk

q̃1k
+ const, (A.11)

1
q̃1k

=
1
2

Wk,·DwW′
k,· +

1
q1

,

q̃2 =
N

2
+ q2,

so αk|· ∼ Ga (q̃1k, q̃2) for all k. This is exactly the same as for the i.i.d. case.

Full conditional posterior of β.

log p (β|·) = (r̃2 − 1)
P

∑
p=1

log
(

βp

)

−
P

∑
p=1

βp

r̃1p
+ const, (A.12)

1
r̃1p

=
1
2

Ap,·DaA′
p,· +

1
r1

,

r̃2 =
N

2
+ r2,

so βp|· ∼ Ga
(

r̃1p, r̃2
)

for all p.

Joint posterior ratio. The ratio of the joint posterior p (W, A, λ, α, β|Y) evaluated for two differ-
ent sets of parameter values, {W, A, λ, α, β} and {W∗, A∗, λ∗, α∗, β∗}, can be used to compare
the posterior density in different points, even when the normalized joint posterior itself is not
available in closed form. The ratio can be computed as the ratio of the unnormalized joint
posterior p̃ (W, A, λ, α, β|Y) defined by

log p̃ (W, A, λ, α, β|Y) = log p̃ (Y|·) + log p̃ (W|α) + log p̃ (A|β) + log p (λ) (A.13)

+ log p (α) + log p (β) ,

where log p̃ (Y|·) is defined as in equation (A.7) without the constant part,

log p̃ (W|α) =
K

∑
k=1

[

log
(

|αkDw|1/2
)

− 1
2

αkWk,·DwW′
k,·

]

+ const (A.14)

=
K

∑
k=1

[

N

2
log (αk)−

1
2

αkWk,·DwW′
k,·

]

and log p̃ (A|β) is defined correspondingly.

APPENDIX B. DERIVATION OF SPATIAL VB POSTERIORS

From equation (3.8) one sees that the SVB approximate posteriors can be derived from the
full conditionals in Appendix A, since

log q
(

θj

)

= Eθ−j
[log p (Y, θ)] + const = Eθ−j

[

log p
(

θj|Y, θ−j

)]

+ const. (B.1)

The only difference is that we must take the expectation with respect to all other parameters.
It turns out that the dependencies on λ, α and β are always linear, so we can just replace these
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with their expectations λ̄, ᾱ and β̄ under respective SVB gamma posterior. For example,

ᾱk = Eα [αk] = q̃SVB
1k · q̃SVB

2 . (B.2)

For dependencies on W and A we use MC approximations as in (3.13) to compute the expec-
tations, by simulating Ns samples of W and A respectively. For brevity, we do not derive all
approximate posteriors here, only q (W) for the temporal model as an example.

log q (wr) = EA,λ,α,β [log p (W|Y, ·)] + const (B.3)

= −1
2

w′
rEA,λ,α,β

[

B̃
]

wr + EA,λ,α,β [bw]wr + const,

with B̃ and bw from equation (A.8). The expectations are computed as

bSVB
w = EA,λ,α,β [bw] (B.4)

=
1
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vec
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


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










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[

B̃
]

=
1

Ns
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+diag (ᾱ)⊗ Dw. (B.5)

So q (W) ∼ N
(

(

B̃SVB
)−1

bSVB
w ,

(

B̃SVB
)−1
)

.

APPENDIX C. CONVERGENCE AND IMPLEMENTATION DETAILS

Our experience from running the MCMC and VB methods is that the convergence of the
algorithms is largely governed by that of the spatial hyperparameters α and β. Figure C.1a
shows the relative error by iteration number for the hyperparameters for IVB, for the pre-
sented slice of the face repetition data. The relative error is here defined as compared to the
final value after a long run (200 iterations) and if ᾱ

[j]
k denotes the value of ᾱk after j iterations,

then the relative error ǫk =
∣

∣

∣

ᾱ
[j]
k /ᾱ

[200]
k − 1

∣

∣

∣ for the kth parameter. We see that ᾱk converges the
fastest for the intercept, a bit slower for regressors connected to the HRF and its temporal de-
rivative and for the AR coefficients, and the slowest for the head motion nuisance regressors.

To understand why the parameters differ in convergence speed one has to consider how
the VB algorithm works, updating the approximate posterior for W given α and vice versa.
Since α controls the smoothness and shrinkage of W, there will be much dependence be-
tween the estimated posteriors of these two parameters, leading to slower convergence. In
general, the more informative the data are the faster is seemingly the convergence. For ex-
ample, for k corresponding to the intercept in every voxel, Wk,· is quite well defined from
the data, so it will depend relatively little on αk. Given the smoothness of Wk,·, αk is also
well determined, so convergence will be quick. On the other hand, for k corresponding to
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FIGURE C.1. Spatial hyperparameter relative errors by VB iteration number,
relative to the value after 200 iterations, for the face repetition data. The er-
rors for IVB are shown in (a), while the errors for SVB are shown in (b). The
regression coefficient hyperparameters α are divided by regressor type and β
are the hyperparameters for the AR coefficients.

head motion, Wk,· will be non-significant in most voxels, giving more dependence with α

and slower convergence.
It takes almost 50 iterations for all the HRF regressor αk:s (which are the most interesting

ones for PPMs) to reach a relative error smaller than 1% for the IVB algorithm. This is in-
teresting, since the SPM12 default setting is to use 4 VB iterations and the other available
stopping criterion, based on the model evidence lower bound, results in 8 iterations. Even
though this might seem as too few, the effect of this on the PPMs is not necessarily so large
(see Figure 4.3 and 4.5), so keeping the number of iterations low might well be a reasonable
strategy in order to reduce the processing time.

The SVB convergence plot would look similar to that of IVB, if implemented directly as it
is presented above. However, we added some ad hoc steps to the SVB algorithm to speed
up convergence. In contrast to IVB, the posterior update step for q (W) only depends on the
other parameters (in particular on α) and the data, but not on the previous iteration value
of q (W). Therefore, if there is some faster way to approach the optimal value of ᾱ, than
the SVB update equation for q (α), that speedup will transfer to q (W) as well. In the SVB
implementation we use three ad hoc tricks to speed up convergence, which we have noticed
work well in practice:

(1) In every other VB iteration, instead of accepting the q̃
SVB[j]
1k (and hence ᾱ

[j]
k = q̃

SVB[j]
1k ·

q̃SVB
2 ) from the VB update equation, we fit a quadratic function to the values of the

last three iterations, ᾱ
[j−2]
k , ᾱ

[j−1]
k and ᾱ

[j]
k , as a function of the iteration number j. If

the vertex of the quadratic function occurs after j, we take the value of the function
at the vertex as a prediction of what ᾱk will converge to. Otherwise, we assume that

we are far from the final value and set the prediction to ᾱ
[j−1]
k + 20

(

ᾱ
[j]
k − ᾱ

[j−1]
k

)

. We
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set ᾱ
[j]
k to the predicted value but only allow changes in alpha up to a factor 5 from

the value proposed by the VB update equation. This methodology will make the SVB
algorithm behave less stable, but allow for larger steps when ᾱk is far from the final
value which leads to faster convergence, especially when data are not so informative.

(2) We use the prior mean as starting values for all parameters, which is a little different
from what SPM’s IVB does, but leads to faster convergence for the SVB algorithm.

(3) In the first 10 iterations of the SVB algorithm we use Ns = 5, which will make these
iterations quicker, but not as exact.

The effect of using these tricks can be seen in Figure C.1b, showing faster convergence for
the hyperparameters using SVB as compared to IVB.

Different random seeds in the MC approximation (equation (3.13)) make the SVB algo-
rithm converge to slightly different posteriors. We reran SVB several times with Ns = 100
and different seeds, and found very small differences in the results for the simulated data,
but for some real data sets we found that the differences could be slightly larger. SVB appears
to sometimes get stuck in local modes of the model evidence lower bound that is implicitly
optimized by the VB algorithm. The resulting SVB posteriors for all of these modes were
however always closer to the exact MCMC posterior than the IVB posterior was. Since the
model evidence lower bound is computationally intractable, we instead compared the dif-
ferent modes using the joint posterior ratio in equation (A.13) evaluated in the SVB posterior
mean to decide which results to present for these problematic data sets. The same multi-
modal issues were not observed when rerunning MCMC with different seeds or IVB with
different starting values.

The MCMC Gibbs algorithm suffers from the same problem with the dependence between
W and α, slowing down convergence. Inspecting trace plots and the estimated inefficiency
factor IF = 1 + 2 ∑

∞
j=1 ρj, where ρj is the autocorrelation function of the MCMC chain, for

different data sets shows that the convergence for the parameters W, A and λ is generally
excellent. For example, the maximum IF was less than 1.5 across all regression coefficients
W for both the real data sets when using the 3D prior, except for the head motion nuisance
regressors. With 20000 post-burnin iterations and thinning factor 5, this means that we have
at least 4000/1.5 ≈ 2700 effective samples to base the PPMs on, and Monte Carlo standard

deviations less than
√

0.9·0.1
2700 ≈ 0.0058 for posterior probabilities larger that 90%. We also

looked at posterior mean maps and PPMs for the main contrast for the different data sets
and compared to the same maps computed based only on the first 5000, 10000 and 15000
samples respectively, and saw small differences in general, much smaller than for example
when comparing to the VB maps. The spatial hyperparameters α and β can however mix
poorly, especially when the data are non-informative. It would be tempting to improve the
mixing using a collapsed Gibbs sampling step for α (and β), but this would require the com-
putation of the precision matrix determinant

∣

∣B̃
∣

∣ , which would be too time consuming in
general. For the main parameters of interest, the αk:s belonging to the HRF regressors, and
also for the hyperparameters belonging to the intercept and to the first AR coefficients, the
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convergence rates are acceptable in general. A 1000 iteration burnin is usually sufficient to
reach stationarity for these hyperparameters.

In the timing comparisons in the results section, all methods were run for a long time
(200 iterations for IVB, 50 iterations for SVB and 10000 (simulated data) / 20000 (real data)
iterations with thinning factor 5 after 1000 burnin samples for MCMC (an exception was
MCMC in 3D for the face repetition data, which required 3500 burnin samples)) and we
compute the time until the estimated posterior mean of αk reaches within 1% of its final
values for respective algorithm. For VB, this is the same as based on the relative error defined
above, and for MCMC this is based on the relative error of the cumulative mean of MCMC
samples. For the simulated data, this is based on all αk, but for the real data we only consider
the αk corresponding to the intercept and HRF regressors. This is because the convergence
is sometimes extremely slow for αk:s corresponding to the head motion and HRF temporal
derivative regressors, while these have negligible effects on the results. For the real data, we
use δ = 10−8 and Ns = 100 throughout.

The simulated data were analyzed on a computing cluster, using two 8-core (16 threads)
Intel Xeon E5-2660 processors at 2.2GHz. The real data were mainly analyzed on the same
cluster, but some demanding runs were carried out on a faster workstation with a 4-core (8
threads) Intel Xeon E5-1620 processor at 3.5GHz. The workstation ran 46% faster for a large
SVB estimation test and therefore the timings using this computer were multiplied with a
factor 1/0.54 in this report, hence the word “approximate” in Table 1. The operating system
was Linux in both cases.

APPENDIX D. SIMULATED AND REAL DATA DETAILS

The synthetic data are simulated from the model in Section 2, with K = 5 and P = 1
and parameter values that are similar to those of the pre-processed face repetition data.
The design matrix is set to have the first 4 columns equal to the standard canonical HRF
regressors from the paradigm in the face repetition data (so T = 351) and the fifth col-
umn corresponds to the intercept. The intercept of each voxel is sampled i.i.d. from a
N
(

900, 1302
)

-distribution. λ−1
n = 100 for each voxel and the other hyperparameters are

set as α1 = 10−4, α2 = 5 · 10−4, α3 = 2 · 10−3, α4 = 10−2, β1 = 10, which generate reasonable
values of for the W and A, with varying levels of informativeness. Wk,· (and similarly A) are
sampled independently for k ∈ {1, 2, 3, 4} from the UGL prior using PCG with Bdata = 0 and
wstart

r = 0. Even though the UGL prior is improper this works well and generates samples
with mean close to zero. Conditioned on the parameters the simulation of fMRI-data Y is
straightforward using the model. The data are simulated in a big rectangular block of size
53 × 63 × 46 and we follow the SPM default to scale down the value in each voxel to get
mean 100. We then use centered masks of size 10 × 10 × 10, 25 × 20 × 20 and 50 × 50 × 40 to
obtain data of size N = 103, 104 and 105 that we test the methods on.

The real data from the face repetition experiment (Henson et al., 2002), previously used in
Penny et al. (2005b) and available at SPM’s homepage
(http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/), was pre-processed using the same steps
as in Penny et al. (2005b) using SPM12. After masking away voxels outside the brain, this
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results in a data set with N = 57535 voxels of size 3 × 3 × 3 mm and T = 351 volumes. Us-
ing the same design matrix based on the canonical HRF and its temporal derivative, 6 head
motion parameters and an intercept, we have K = 15. The contrast considered is the main
effect of faces which is the mean across the four regressors corresponding to the HRF of each
condition. P = 3 AR parameters are used for all estimations on real data. The presented
PPMs for this data set show axial slice 12, which is approximately the same region shown in
Penny et al. (2005b).

The real data from the visual object recognition experiment (Haxby et al., 2001; Hanson et al.,
2004; O’Toole et al., 2005) was obtained from the OpenfMRI database
(http://openfmri.org/). Its accession number is ds000105 and we consider only subject001,
run001. The data was pre-processed using the same SPM pipeline as for the face repetition
data, except no slice time correction was performed (since the slice order information is miss-
ing) neither was it normalized to a standard brain. This data set has N = 31241 voxels of size
3.125 × 3.125 × 4 mm and T = 121. There are 8 conditions and using the same structure for
the design matrix as for the face experiment data, we have K = 23. The contrast considered
is the difference between seeing houses and faces (c1 = 0.5 and c15 = −0.5). The axial slice
presented in the results is number 30.
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