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Abstract

Temporal signal-to-noise ratio (tSNR) is a key metric for assessing the ability to detect brain 

activation in fMRI data. A recent study has shown substantial variation of tSNR between multiple 

runs of accelerated EPI acquisitions reconstructed with the GRAPPA method using protocols 

commonly used for fMRI experiments. Across-run changes in the location of high-tSNR regions 

could lead to misinterpretation of the observed brain activation patterns, reduced sensitivity of the 

fMRI studies, and biased results. We compared conventional EPI autocalibration (ACS) methods 

with the recently-introduced FLEET ACS method, measuring their tSNR variability, as well as 

spatial overlap and displacement of high-tSNR clusters across runs in datasets acquired from 

human subjects at 7T and 3T. FLEET ACS reconstructed data had higher tSNR levels, as 

previously reported, as well as better temporal consistency and larger overlap of the high-tSNR 

clusters across runs compared with reconstructions using conventional multi-shot (ms) EPI ACS 

data. tSNR variability across two different runs of the same protocol using ms-EPI ACS data was 

about two times larger than for the protocol using FLEET ACS for acceleration factors (R) 2 and 

3, and one and half times larger for R=4. The level of across-run tSNR consistency for data 

reconstructed with FLEET ACS was similar to within-run tSNR consistency. The displacement of 

high-tSNR clusters across two runs (inter-cluster distance) decreased from ~8 mm in the time-

series reconstructed using conventional ms-EPI ACS data to ~4 mm for images reconstructed 

using FLEET ACS. However, the performance gap between conventional ms-EPI ACS and 

FLEET ACS narrowed with increasing parallel imaging acceleration factor. Overall, the FLEET 

ACS method provides a simple solution to the problem of varying tSNR across runs, and therefore 

helps ensure that an assumption of fMRI analysis—that tSNR is largely consistent across runs—is 

met for accelerated acquisitions.
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Introduction

Temporal signal-to-noise ratio (tSNR) provides a crucial metric for assessing ability of an 

fMRI acquisition to detect subtle neuronally-driven changes in the measured time-series 

data. The detectability of a signal fluctuation of interest can be characterized by the 

functional contrast-to-noise ratio (fCNR), which is a joint function of both the tSNR and the 

percent signal change of the fluctuation of interest: fCNR = tSNR •S/S (Krüger et al., 2001; 

Wald, 2012; Wald and Polimeni, 2015). While the percent signal change (ΔS/S) induced by 

local brain activation in fMRI measurements using the blood oxygenation level-dependent 

(BOLD) contrast depends only on the efficacy of the stimulation and the neurovascular 

coupling and on the TE value (since ΔS/S =1−exp(TE ΔR2
*)), the tSNR provides a 

convenient metric that characterizes the detection power of the fMRI measurement in a way 

that is independent of the specifics of the stimulation, neuronal activation, and local 

physiology. Therefore, tSNR is a practically useful metric that can be employed when 

optimizing the sensitivity of the functional acquisition. There are several sources of noise 

captured by the tSNR metric that may affect fMRI signal. Physiological noise (e.g., 

respiratory changes and cardiac pulsation), instrumental noise (thermal noise and low 

frequency drifts due to the scanner or hardware instabilities), as well as noise originating 

from spontaneous neuronal activity have different relative influence on the fMRI signal 

fluctuations (Bianciardi et al., 2009). Because tSNR is also a function of the static image 

signal-to-noise ratio (SNR0), it is affected by acquisition parameters such as the receive coil, 

flip angle, TE and voxel size. The relative contribution of thermal and physiological noise 

depending on these parameters has been investigated in different tissues and at different 

magnetic field strengths and receive coil combinations (Bodurka et al., 2007; Triantafyllou 

et al., 2016, 2011, 2005).
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Single-shot echo-planar imaging (EPI) has become the imaging technique of choice for 

functional, diffusion, and perfusion MRI due to its ability to quickly and repeatedly image 

the entire brain. Parallel imaging (PI) techniques (Griswold et al., 2002; Pruessmann et al., 

1999; Sodickson and Manning, 1997) allow decreased echo spacing and readout time in EPI 

acquisitions, therefore reducing geometric distortion artifacts, signal losses and T2
* blurring 

(de Zwart et al., 2006; Griswold et al., 1999). Since the severity of these artifacts increases 

with the magnetic field strength, PI acceleration methods are especially beneficial for high-

field fMRI leading to improved data quality and higher spatial resolution (de Zwart et al., 

2002; Setsompop et al., 2016). The two most commonly used PI methods, sensitivity 

encoding (SENSE) (Pruessmann et al., 1999) and generalized autocalibrating partially 

parallel acquisitions (GRAPPA) (Griswold et al., 2002), undersample the k-space data 

during the acquisition by skipping encoding steps, thereby shortening the total readout time, 

then estimate the fully-sampled dataset using a small amount of calibration data. For 

anatomical imaging techniques (such as MPRAGE) the PI reconstruction can be 

“autocalibrated” by acquiring a small amount of fully-sampled autocalibration signal (ACS) 

data during the acquisition (consisting of a set of additional k-space lines) which can be used 

to estimate coil sensitivities or derive GRAPPA kernel weights to reconstruct the 

undersampled data. However, for accelerated fMRI acquisitions where the under-sampled 

image data measurement is repeated many times during the time series, a fully sampled pre-

scan can be acquired once per time-series to serve as calibration data, with the assumption 

that the calibration data remains valid throughout the time series and thus changes related to 

subject motion over time are negligible.

Functional imaging studies often consist of multiple runs of the same fMRI protocol 

performed with varying paradigms (such as different tasks) or the same paradigm repeated 

multiple times to increase sensitivity of the measurements. In conventional fMRI analysis it 

is typically implicitly assumed that the tSNR is largely consistent across runs, and therefore 

runs are often either simply concatenated or contrasted using straightforward fixed-effects 

analyses. However, recent work has shown that tSNR may indeed vary dramatically between 

multiple runs of accelerated single-shot EPI acquisitions reconstructed with the GRAPPA 

method, which is commonly used for fMRI acquisitions (Cheng, 2012). Large differences in 

the spatial distribution of tSNR values across multiple runs, such as varying location of the 

high-tSNR regions where the detection sensitivity is the highest, will cause false positives 

and negatives (if an activation is located in a high-tSNR region in one run and in a low-tSNR 

region in the next one) leading to misinterpretation of the brain activation patterns therefore 

reducing the accuracy of fMRI studies.

For accelerated EPI reconstructions, ACS data for GRAPPA kernel calibration are 

conventionally acquired as multi-shot segmented EPI (ms-EPI), with the number of 

segments equal to the acceleration factor (R) of the data acquisition. This is conventionally 

done on a consecutive-slice manner which allows for longitudinal magnetization recovery 

before proceeding to the next segment. Namely the first interleave is acquired for all the 

slices before acquiring the second interleave. Thus, any two interleaves are acquired a time 

TR apart, which can lead to artifacts related to the subject’s breathing and head motion 

during the TR period. Since the ACS data are used to calculate the GRAPPA kernel applied 

to the time-series images, errors introduced by motion or breathing may result in lower 
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tSNR in a subset of the slices. In conventional slice-interleaved acquisitions (where slices 

are acquired first stepping through the odd-numbered slices and then the even), this ACS 

data artifact is propagated to the reconstructed images as an “alternating” tSNR level across 

the adjacent slices. If the tSNR map is reformatted into another plane, alternating high/low 

tSNR stripes are readily seen (Polimeni et al., 2016). This spatially varying tSNR pattern is 

therefore likely to change depending on the timing of head motion or respiration relative to 

the ACS acquisition and thus is expected to change across runs.

An alternative solution is to use the fast low-angle shot (FLASH) (Haase et al., 1986) 

method to acquire ACS data for the accelerated EPI reconstruction. FLASH ACS for 

accelerated EPI has been proposed (Griswold et al., 2006), and a non-interleaved version in 

which the data for each slice is acquired in full before moving onto the next slice has been 

recently demonstrated to reduce g-factor penalties in EPI reconstructions (Talagala et al., 

2016). However, while it may improve tSNR consistency across runs it does not provide 

matching geometric distortion between the ACS data and accelerated image data, and 

therefore may only be appropriate in cases where the EPI distortion is small.

A recent study has employed the Fast Low-angle Excitation Echo-planar Technique 

(FLEET) (Chapman et al., 1987) for acquiring ACS data to calibrate GRAPPA kernels for 

accelerated EPI reconstructions; the FLEET acquisition is simply a reordering of the 

acquisition of the multi-shot EPI segments that acquires the complete set of segments within 

a slice before proceeding to acquire the next slice, and has been proposed as an acquisition 

method for fMRI (Guilfoyle and Hrabe, 2006; Kang et al., 2015; Menon et al., 1997). This 

acquisition approach minimizes the time interval between the acquisition of all the segments 

of one slice, which, when applied to acquiring accelerated EPI ACS data, minimizes 

sensitivity to dynamic changes occurring during the ACS acquisition (such as subject motion 

and respiration) to increase the robustness of the ACS data and, consequently, the PI 

calibration (Polimeni et al., 2016). The resulting reduction in longitudinal recovery time 

necessitates lower flip angles to achieve equal magnetization across segments; empirically 

this loss of signal in the ACS data has not prevented the FLEET ACS data from providing 

high-quality EPI reconstructions, even for high-resolution acquisitions. This new FLEET 

ACS method has been shown to improve tSNR of the acquisition and eliminate the “slice-

alternating” tSNR artifact in accelerated EPI by providing robustness to subject motion and 

respiration related artifacts (Polimeni et al., 2016). In this work we hypothesize that FLEET 

may additionally remove the aforementioned inconsistency of tSNR across multiple 

accelerated EPI runs.

In this work we investigated the effect of autocalibration acquisition strategy on tSNR 

variation between multiple runs of accelerated EPI acquisitions, and tested whether FLEET 

ACS could reduce this variability while maintaining high-quality image reconstructions. To 

characterize the performance of different autocalibration methods, we employed an across-

run tSNR consistency measure as well as examined changes in the spatial distribution of 

high-tSNR voxels across the runs.
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Methods

Five healthy volunteers (3F/2M, mean age 26±4 y.o.) were scanned on a whole-body 7T 

scanner (Siemens Healthcare, Erlangen, Germany) using a set of seven single-shot gradient-

echo EPI protocols—three with FLEET ACS: acceleration factor R=2,3,4, and the number 

of ACS lines set to 46, 90, 76, respectively; four with conventional ACS, including: a single-

shot EPI ACS acquisition for R=2 and 48 ACS lines (ss-EPI ACS), and standard segmented 

multi-shot EPI for R=2,3,4, and 94, 90, and 88 ACS lines respectively (ms-EPI ACS). 

Protocol parameters were: TE/TR=25/2000 ms, FOV=192 mm, matrix=96×96, 39 slices, 

spatial resolution 2.0×2.0 mm, slice thickness 2.0 mm, flip angle 67°, bandwidth 2264 Hz/

pix, echo spacing 0.53−0.57 ms (depending on R), 4 dummy scans, no partial Fourier, 

acquisition time approximately 2 min 10 s. For FLEET ACS protocols the excitation flip 

angle was 10° (with 5 preparation pulses). Additionally, three healthy subjects (2F/1M, 

mean age 26±2 y.o.) were scanned on a 3T scanner (MAGNETOM Tim-Trio Siemens 

Healthcare, Erlangen, Germany) with a set of seven protocols matching the parameters used 

in 7T, except for: TE/TR=30/2000 ms, FOV=240 mm, 34 slices, spatial resolution 2.5×2.5 

mm, slice thickness 2.5 mm, flip angle 77°, echo spacing 0.53−0.55 ms (depending on R). 
Before each of the scanning sessions subjects were asked to remain still during the scans and 

throughout the session. Finally, an agar gel phantom was also scanned at 3T using identical 

protocols. All seven protocols, consisting of 60 measurements (i.e., Ntp=60) each, were 

repeated four times in a randomized order for each subject to quantify the tSNR consistency 

across repeated scans.

Preprocessing

Motion correction was performed for all data sets (using the MCFLIRT tool from the FSL 

software package, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) with normalized correlation as a cost 

function and a trilinear interpolation method (the default options), using as reference the 

average volume taken across all the time points for each acquisition. tSNR maps were 

calculated as the temporal mean divided by the temporal standard deviation after linear 

detrending, and were generated for all acquisitions (i.e., all Ntp=60 time points) and for two 

halves of each acquisition (Ntp=30) in order to investigate tSNR changes occurring between 

separate runs as well as within a specific run. All tSNR maps were subsequently spatially 

smoothed in 2D with a 3-by-3 voxel Gaussian kernel to help identify spatial trends in the 

maps. Brain masks were created automatically (using the FSL tool BET) for each 

acquisition based on a mean volume previously used for motion correction, and CSF was 

removed using automatically obtained masks (using the FSL tool FAST, probability 

threshold of 0.99, only for human brain data). Multiple runs of the same protocol were then 

aligned to the first acquired run (using the FSL tool FLIRT) and the same transformations 

were applied to the corresponding brain masks and smooth tSNR maps. Spatial-mean values 

of tSNR were taken from within the brain masks and normalized for each session to the 

highest tSNR among four runs of the protocol using ss-EPI ACS in order account for 

differences in absolute tSNR between the subjects. In addition, the ratio of standard 

deviation divided by mean calculated across the normalized spatial-mean tSNR values of all 

runs and all subjects was used to quantify the tSNR percent variation across repeated trials 

for each protocol.
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Relative tSNR change (ΔtSNR)

In order to investigate tSNR consistency within and across different runs of the same scan 

protocol and, in particular, the spatial pattern of the tSNR variations, relative tSNR change 

(ΔtSNR) maps were computed voxelwise as follows. For each pair of smoothed tSNR maps 

the ratio of the tSNR difference was divided by the tSNR sum, such that the ΔtSNR between 

run A and run B can be expressed by the following equation: ΔtSNR(runA, runB) = 

[tSNR(runA)−tSNR(runB)]/[tSNR(runA)+tSNR(runB)].

Relative tSNR change (ΔtSNR) is a symmetrized equivalent of the noise-to-noise ratio 

(NNR) introduced in earlier work by Cheng (Cheng, 2012), modified to achieve symmetry 

of the metric such that values fall within the range of −1 to 1 symmetrically about the 0 

value. tSNR maps of halves of individual runs were used to calculate within-run ΔtSNR and 

tSNR maps of two different runs (aligned to the first run) were used to calculate across-run 

ΔtSNR for every pair of runs of the same scan protocol (six possible combinations of four 

runs). To quantify the range of ΔtSNR values in a way that avoids outlier values influencing 

the summary statistics (see Supplementary Figure 5), the full-width at half-maximum 

(FWHM) of the histogram of ΔtSNR values within the brain mask were calculated for each 

pair of runs for across-run ΔtSNR and for each run for within-run ΔtSNR. This provided a 

measure of the spread of values in the histograms, which were consistently uni-modal but 

tended to have non-Gaussian tails. In order to check for any unexpected trends in ΔtSNR 

with time, we calculated median values for each pair of runs.

Spatial clusters

The spatial consistency of high-tSNR regions across the runs was examined by quantifying 

both the overlap of high-tSNR regions across runs as well as the spatial displacement of 

high-tSNR regions between runs. This was accomplished by identifying clusters of high 

tSNR values within a given slice and run using thresholding, where the threshold was 

iteratively adjusted until it provided 10 clusters. The threshold search range was the 70–

100th percentile of the tSNR for a given slice (because a low threshold could result in large 

clusters containing most of the voxels). The minimum cluster size was constrained to 9 

voxels in order to avoid very small clusters corresponding to spurious, isolated peaks in the 

tSNR maps caused by noise. To confirm the consistency of these metrics based on these 

high-tSNR clusterings, we calculated cluster overlap and cluster displacement using 8 and 

12 clusters as well.

The clusterings of all runs were then aligned to the first run using previously obtained 

registration transformations. In order to measure spatial overlap between all pairs of 

clusterings corresponding to pairs of runs for each protocol, Dice coefficients were 

calculated using the total number of voxels in two clusterings and the number of voxels 

which fall into their intersection. This measure ranges from 0 to 1, where 1 corresponds to 

the highest similarity and in our case represents an ideal overlap of two clusterings. The two 

top-most and two bottom-most slices were omitted from the analysis because very little or 

no overlap between these extremal slices are observed after alignment (see Supplementary 

Figure 1).
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To measure potential displacements of the high-tSNR voxels cluster across two runs we 

calculated the average inter-cluster distance: a distance of clustering A from the clustering B 
and the other way around (see Supplementary Figure 2 for further explanation). Finally, the 

overlaps between clusterings obtained for all runs of a given protocol were calculated, and 

the voxel clusters having high tSNR in one, two, three and four runs were counted.

The significance of all performance metrics—including normalized tSNR, FWHM of 

ΔtSNR, Dice coefficient and inter-cluster distance—was tested statistically using Wilcoxon 

rank-sum test (non-parametric, independent variables).

Results

tSNR

Example slices of tSNR maps calculated for FLEET ACS and ms-and ss-EPI ACS 

reconstructed EPI data acquired at 7T with R=2 for a representative human subject are 

presented in Figure 1 (and analogous results for 3T human data are presented in 

Supplementary Figure 3). Stripes of lower and higher tSNR corresponding to adjacent slices 

can be seen in the sagittal reformats of the dataset reconstructed with ms-EPI ACS, and 

correspond to the aforementioned “slice-alternating” tSNR artifact. Note that subset of low-

tSNR slices will vary from run to run of the same acquisition protocol (see Discussion for 

more details). The slice-alternating tSNR was not seen in time series reconstructed using ss-

EPI or FLEET ACS data, as reported previously (Polimeni et al., 2016). The slice-

alternating tSNR effect was not present in the 3T phantom images reconstructed using any 

of the ACS acquisition methods tested (Supplementary Figure 4). Mean normalized tSNR 

values across the brain are summarized in Table 1, with the tSNR values observed in time-

series reconstructed with FLEET ACS data for both 7T and 3T acquisitions being 

statistically significantly higher than those reconstructed with ss-EPI ACS and ms-EPI ACS 

for the corresponding R factors (p<0.01, also see Supplementary Table 1). This could be 

partially due to the SNR differences in the ACS data acquired by these techniques (see 

Polimeni et al., 2016, and Supporting Figures 4 and 5 therein). Normalized tSNR percent 

variation was also larger for reconstructions using ms-EPI ACS acquisitions than for 

reconstructions using FLEET ACS (Table 1). Note that tSNR of the datasets acquired at 3T 

was higher than for those from 7T, presumably due to the larger voxel size used at 3T (2.5 

mm vs. 2.0 mm) and the higher physiological noise levels at 7T (Triantafyllou et al., 2005).

Relative tSNR change (ΔtSNR)

To quantify the variability of tSNR, within-and across-run ΔtSNR maps were computed. 

Values of within-run ΔtSNR were relatively low and spatially uniform (Figure 2), as 

previously reported (Cheng, 2012), and were similar for all ACS techniques suggesting high 

consistency of GRAPPA reconstructions within each time series.

The across-run ΔtSNR was lower for images reconstructed with FLEET ACS than for 

images reconstructed with ms-EPI ACS acquisitions, as presented in both Figure 3 for our 

7T data (also see Supplementary Figure 6) and in Figure 4 for our 3T data, indicating 

improved across-run consistency of tSNR when using reconstructions based on FLEET 
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ACS. In addition, across-run ΔtSNR maps calculated for ms-EPI ACS acquisitions suffered 

from spatial inhomogeneity effects, specifically a “slice-alternating” effect, similar to the 

aforementioned slice-alternating tSNR artifact, as well as patches of higher/lower values in 

the reconstructions based on ms-EPI ACS acquisitions. This discontinuity effect was not 

present at the across-run ΔtSNR maps calculated for the 3T gel phantom data (Figure 5). 

Visual comparison of ΔtSNR maps presented for 7T data in Figures 2 and 3 suggests that 

FLEET ACS with R=4 can provide across-run tSNR consistency approaching a similar level

—but still lower than—the within-run tSNR consistency. Ideally the within-run and across-

run tSNR consistencies would be identical.

The FWHM of within-and across-run ΔtSNR values, computed to summarize the spatial 

heterogeneity of the pattern of tSNR differences within and across runs, are presented in 

Table 1 (also see Supplementary Figure 7). Within-run ΔtSNR FWHM values were 

relatively low for all protocols with a tendency to be higher for data reconstructed using 

FLEET ACS technique (see Table 1). A significantly reduced spatial heterogeneity in 

across-run ΔtSNR was seen in images reconstructed using FLEET ACS or ss-EPI ACS 

compared to those reconstructed using ms-EPI ACS for corresponding R factors, in all data 

from 7T (p<0.01) as well as for data acquired at 3T (p<0.01), as summarized in Table 2. The 

heterogeneity observed in the 3T data was overall about two times smaller than that found 

for 7T data. A trend can be seen of decreasing across-run ΔtSNR heterogeneity with 

increasing R factor for both ACS acquisition types and both field strengths, indicating that 

the across-run consistency improves with higher acceleration. This also shows that the 

performance of the conventional ms-EPI ACS method and the proposed FLEET ACS 

method becomes similar for higher R factors. Interestingly, for data reconstructed using EPI 

ACS, the ΔtSNR heterogeneity was found to worsen as a function of time when comparing 

runs separated by longer time intervals, as plotted in Figure 6. This suggests that some 

portion of the ΔtSNR heterogeneity may be caused by longer-term effects, such as slow, 

gradual changes in head position occurring during the experimental session. No patterns or 

trends were found for median ΔtSNR values.

To test whether within-run changes in tSNR were indeed smaller than across-run changes in 

tSNR, the FWHM of within-run ΔtSNR values was compared to across-run ΔtSNR; these 

results are presented in Supplementary Table 3. In summary, the within-run tSNR changes 

were found to be similar to the across-run tSNR changes in the FLEET ACS data for R=2 

and R=4 (p=0.91 and p=0.10) and ss-EPI ACS (p=0.41), weakly significantly higher for 

FLEET ACS with R=3 (p<0.05) (see Discussion for explanation), but significantly lower for 

all ms-EPI ACS data (p<0.01). This suggests that the main source of variability in tSNR 

maps between runs is related to across-scan effects rather than within-scan effects, in 

agreement with previous observations (Cheng, 2012).

In summary, images reconstructed with FLEET ACS outperformed those reconstructed with 

ms-EPI ACS for all the temporal consistency measures, but were comparable to those 

reconstructed with ss-EPI ACS data (albeit ss-EPI ACS data were only acquired for R=2 

protocols). The across-run inconsistency increased with the increasing field strength, and 

was not observed in the phantom data.
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Spatial clusters

Overlap between high-tSNR clusters (quantified using the Dice coefficient) was significantly 

higher for images reconstructed using FLEET ACS or ss-EPI ACS than for images 

reconstructed using ms-EPI ACS (p<0.01, see Supplementary Table 4), and this calculated 

overlap increased with the higher acceleration factor R (Table 3). The possible displacement 

of the high-tSNR clusters across two runs (expressed as the inter-cluster distance) was ~4 

mm for images reconstructed with FLEET ACS, slightly higher for images reconstructed 

with ss-EPI ACS, and about twice as high (~8 mm) for images reconstructed with ms-EPI 

ACS (Table 3 and Supplementary Table 6). Displacement also decreased with the increasing 

acceleration factor for both images reconstructed with FLEET ACS and those with ms-EPI 

ACS. The overlap as well as the cluster displacement measure were consistently better for 

slices located within the bottom half of the brain (see discussion). Figure 7 summarizes the 

results quantifying the percentages of voxels belonging to high-tSNR clusterings in one, 

two, three or four runs of the same protocol. The percentage of voxels which were clustered 

as having high tSNR in all four runs (red in Figure 7B) was higher in images reconstructed 

with FLEET ACS and ss-EPI ACS than in images reconstructed with ms-EPI ACS. Example 

slices of two sets of overlapped clusterings obtained for four R=3 runs of images 

reconstructed with FLEET ACS and corresponding images reconstructed with ms-EPI ACS 

are also presented (Figure 7A).

Discussion

In this work we reproduced the across-run tSNR variability previously reported for 

conventional GRAPPA-accelerated EPI acquisitions (Cheng, 2012) and demonstrated that 

images reconstructed using FLEET ACS show improved across-run tSNR consistency and 

reduced spatial displacement of the high-tSNR regions across runs compared to images 

reconstructed using conventional ms-EPI ACS. Inconsistency of the tSNR occurring 

between different runs of the same fMRI experiment arising from signal variability or noise 

could strongly influence fixed-or random-effects analyses used to combine the runs, 

potentially leading to biased interpretation of the resulting activation maps. As we showed, 

FLEET ACS not only provides smoother tSNR than conventional methods, thereby 

decreasing spatial detection bias, but it also increases overall tSNR levels, improving 

sensitivity of the acquisition to detect subtle signal changes.

The ΔtSNR metric used in our study to assess tSNR variability is a modified version of the 

noise-to-noise ratio (NNR) presented in the earlier work by Cheng (Cheng, 2012). In order 

to simplify the interpretation of the results, we introduced a symmetry about 0 for the 

ΔtSNR values calculated between two tSNR maps by dividing the tSNR difference in each 

voxel by the tSNR sum. The ΔtSNR maps are useful in this context because they depict how 

the spatial pattern of tSNR varies between two runs. While we also summarize the change in 

tSNR seen across runs for quantitative comparison, these voxelwise ΔtSNR maps help to 

identify cases where two runs may each have the same degree of spatial variability of tSNR, 

but the exact spatial pattern of variability changes from one run to the next, which can 

impact the interpretation of the results. While the shifting pattern of tSNR across multiple 

runs could “average out” if runs are combined, the shifting pattern of tSNR would have a 
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much more serious impact on experiments where multiple tasks are presented across the 

runs and the fMRI responses measured in these runs are compared.

Similar to the earlier study, we found that within-run ΔtSNR was relatively low (Figure 2, 

Table 1) compared to across-run ΔtSNR of data reconstructed with ms-EPI ACS method 

(Figures 3 and 4, Table 1, Supplementary Table 3), indicating decreased tSNR consistency 

between two separate runs of the same protocol in an experimental session. The FWHM of 

within-run ΔtSNR values was found weakly significantly higher than FWHM of across-run 

ΔtSNR for FLEET ACS R=3 data, however the FWHM of across-run ΔtSNR values were 

much more spread (larger standard deviations) for all EPI ACS data than for FLEET ACS 

data (see Table 1), and significantly higher than FWHM of within-run ΔtSNR (see 

Supplementary Table 3). This suggests that tSNR inconsistency originates from the 

independent autocalibration of the GRAPPA reconstruction coefficients for each run, and the 

ACS data acquired at the beginning of each run affecting the performance of GRAPPA 

reconstruction kernel, rather than from any effect occurring in the actual image data 

acquisition (such as drift) causing incompatibility between the kernel and the data over a 

short period of time. A similar conclusion was reached by Cheng from experiments that 

reconstructed offline the time-series data from two different runs using the same calibration 

data for each reconstruction (Cheng, 2012).

Because the GRAPPA reconstruction coefficients are regenerated for each run, the observed 

tSNR inconsistency across runs is unlikely to be caused by subject motion occurring 

throughout the experimental session with respect to the strongly spatially varying B1
− fields 

(inhomogeneous receive sensitivity profiles), which would be expected to cause both within-

and across-run tSNR variance. The across-run ΔtSNR FWHM values obtained for data 

reconstructed using FLEET ACS were similar to within-run ΔtSNR, and for FLEET ACS 

with R=3 across-run ΔtSNR FWHM was significantly lower than within-run ΔtSNR FWHM 

(p=0.02). This last, surprising result could possibly be explained by the fact that tSNR maps 

used to quantify within-run ΔtSNR were calculated using only half (30) time points. This 

caused the effects of even slight head motion occurring within the run to be more severe in 

these tSNR maps than in tSNR maps used to calculate across-run ΔtSNR where full time 

series (60 time points) were included.

In slice-interleaved acquisitions, anatomically adjacent slices of the segmented EPI ACS 

acquisition may be acquired at different phases of the respiratory cycle, leading to 

discontinuous tSNR in the slice direction. Since two repeated runs of the same protocol are 

likely to initiate the ACS data acquisition at different phases of the subject’s respiratory 

cycle, and the rate of the cycle is not expected to be perfectly constant over time, the affected 

subset of slices that exhibit lower tSNR will differ between the two runs, causing a spatial 

mismatch in the spatial pattern of tSNR in the two runs that can be seen in ΔtSNR maps as 

between-slice discontinuity. This effect does not occur in images reconstructed using the 

ACS acquired with single-shot EPI (ss-EPI ACS), which in this study reached tSNR levels 

and consistency closest to the FLEET ACS reconstructions. However, typical 

implementations of the ss-EPI ACS technique only allow it to be used with R=2 acceleration 

factor, presumably because for low acceleration the effective echo spacing between the ACS 

and accelerated data will be roughly similar, leading to a more approximate distortion match 
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between the ACS and accelerated data. For higher acceleration factors of R≥3, the distortion 

mismatch becomes more severe, preventing the ss-EPI ACS technique from being used for 

ACS data. Both breath-holding during the ~20 s ms-EPI ACS acquisition has been 

previously shown to reduce the “slice-alternating” effect within the single scan (Polimeni et 

al., 2016).

Here we demonstrated that this improved spatial smoothness of tSNR has an important 

impact on tSNR consistency between separate runs of the same scan, as reflected in the 

smooth ΔtSNR maps corresponding to runs reconstructed with FLEET ACS shown in 

Figures 3 and 4. The derived ΔtSNR maps corresponding to acquisitions reconstructed using 

ms-EPI ACS from both 7T and 3T human data were strongly affected by the “slice-

alternating” discontinuous tSNR artifact (Figures 3 and 4). This effect can be in part 

attributed to respiratory-driven chest motion, which can differentially affect EPI segments of 

a segmented EPI ACS acquisition acquired at different phases of subject’s respiratory cycle 

and corrupts the GRAPPA kernel fitting in affected slices, as previously demonstrated 

(Polimeni et al., 2016).

It should be noted that the ΔtSNR maps presented in Figure 3 and 4 were taken from 

different run pairs and therefore the effects other than those due to the ACS data, such as 

head motion occurring during the time-series acquisition, could impact tSNR and cause its 

across-run variability. In the example map presented in Figure 3 comparing tSNR for an 

FLEET-ACS R=3 acquisition in one subject between run 2 to run 4, the ΔtSNR map 

demonstrates that the tSNR was overall lower in run 2 than for run 4, however the ΔtSNR 

map exhibits a high degree of spatial uniformity reflecting that runs 2 and 4 have similar 

spatial pattern of tSNR—indeed, when comparing these runs the ΔtSNR map is almost 

entirely blue (indicating a ΔtSNR < 0), whereas inspection of similar comparisons from the 

ms-EPI ACS data in the bottom panel of Fig. 3 shows ΔtSNR maps with a mixture of red 

and blue regions indicating differing spatial patterns of tSNR and therefore lower across-run 

tSNR consistency between the two runs. As a whole, the trends and statistical tests 

confirmed that there is an effect of ACS acquisition strategy on the tSNR and tSNR 

variability and FLEET ACS provides a substantial improvement in across-run tSNR 

consistency (also see Supplementary Figure 6).

The previous study investigating across-run tSNR variation in accelerated EPI acquisitions 

performed quantitative analysis on a slice-wise manner (Cheng, 2012). However, in case of 

the human data, such an approach could potentially skew the resulting values because slices 

containing only very bottom or very top parts the brain tend to exhibit relatively higher 

tSNR variability across runs, potentially due to strong B0 nonuniformity and/or spin history 

effects seen in these outermost boundary slices. In our work we performed ΔtSNR 

calculations on a whole volume of the acquired data, skipping two top and two bottom slices 

for each brain.

The metric quantifying the range of ΔtSNR values, i.e., the FWHM of the ΔtSNR histogram, 

was chosen based on examination of the ΔtSNR value distributions and the tails of these 

distributions, which varied substantially between different acquisitions, posing a challenge 

to selecting an appropriate range of values that could successfully discount outliers in all 

Blazejewska et al. Page 11

Neuroimage. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cases. The outliers rejected using a percentile range tended to yield slightly different 

outcomes in the datasets reconstructed with FLEET ACS, where the identified outliers 

tended to appear as spurious peaks in the tSNR falling mostly with CSF regions, compared 

to those reconstructed with ss-or ms-EPI ACS, where the identified outliers often appeared 

as spatial patches of very high/low tSNR within the slices (as shown in Supplementary 

Figure 5). Therefore, the FWHM approach was adopted to be less arbitrary and also the 

most intuitive to interpret.

We examined the FWHM ΔtSNR values and found less spatial heterogeneity in images 

reconstructed with FLEET ACS than for those reconstructed with ms-EPI ACS, indicating 

lower tSNR variability between the runs while using FLEET ACS (Table 1), and also that 

spatial heterogeneity decreases with the increasing acceleration factor R. Across-run tSNR 

inconsistency increased with the field strength, which was reflected in generally narrower 

ranges of ΔtSNR found in 3T than in 7T data. These results provide a quantitative 

confirmation of advantages of reconstructions using FLEET ACS seen through visual 

assessment of the ΔtSNR maps. The trend for across-run tSNR variability to improve with 

increasing acceleration factor R was expected for compliant subjects (who largely remain 

still during the scan). For patient populations prone to head movement, this trend may not 

hold, since ms-EPI ACS is extremely vulnerable to head motion—and the vulnerability 

becomes greater with higher acceleration factors which necessitate higher segmentation 

factors and more shots—while FLEET ACS has been shown to be robust (Polimeni et al., 

2016); thus for non-compliant subjects or in cases of overt motion (Cardoso et al., 2016) ms-

EPI ACS is expected to perform worse for higher acceleration factors. It can be also partly 

explained by the increased thermal noise contributions in the accelerated data relative to 

physiological noise when using higher R factors, which causes the spatial profile of tSNR to 

become more smoothly varying in space (Triantafyllou et al., 2011; Wald and Polimeni, 

2016).

The time interval separating pairs of compared runs also affected spatial heterogeneity of 

tSNR differences for data reconstructed with EPI ACS, and stronger effects were seen for 

scans acquired further apart in time (Figure 6). This suggests the existence of additional 

effects impacting across-run tSNR consistency (e.g. small, slow shifting of head position) 

that accumulate with time.

Unlike the previous study (Cheng, 2012), we did not find a noticeable tSNR inconsistency 

between different runs of scans acquired for a gel phantom at 3T (Figure 5 and 

Supplementary Figure 4). Using a volume-based approach instead of a slice-based approach 

could potentially contribute to this difference. More likely, it suggests that the inconsistency 

reported for a phantom in the previous work was caused by additional spatial effects that 

accumulate with time (since in this previous work 1st and 10th runs, separated by a long time 

interval, were compared) which were not present in our data. From the perspective of this 

study, the lack of or the minimal across-run tSNR inconsistency in the phantom data 

confirms the hypothesis about tSNR variation being related to dynamic changes seen in 

subjects such as bulk head or respiratory motion.
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The across-run tSNR inconsistency seen in images reconstructed with the conventional ms-

EPI ACS could impact the consistent detection and localization of BOLD activation across 

runs and subjects. If regions of high and low tSNR shift between runs, a true activation could 

be missed in runs in which the activation occurs in a region of low tSNR, and therefore this 

inconsistency would not only introduce additional variability into the comparison of 

activation maps across runs but could also potentially cause a detection bias whose spatial 

pattern shifts with time, leading to misinterpretation of the observed activation maps. The 

detection power of fMRI experiment directly depends on tSNR of the acquisition (Cheng, 

2012; Murphy et al., 2007) and can be calculated straightforwardly as: 

, where erfc is the complementary error function, eff is the 

effect size (activation related signal change divided by the baseline signal) and N is a total 

number of degrees of freedom in the time-series data (assuming that task was performed in 

half of them). Using this expression, we can see the impact of the changes detection power 

expected based on the observed changes in tSNR across runs when using an image 

reconstruction using the conventional ms-EPI ACS. For the example, assuming a typical 

effect size of 1% and an acquisition including 100 time points, a tSNR decrease of 10%, 

from 40 to 36 (realistic values obtained in this study for data acquired at 7T, see Figure 1), 

will result in significance level decrease from p=0.046 to p=0.072. Thus a voxel exhibiting 

this effect size would be counted as a significant activation in one run and a non-significant 

activation in the other due to a flaw in conventional image reconstruction strategies.

The results of the clustering-based measures of spatial tSNR consistency and shifting 

patterns of tSNR introduced in this study followed the same trends as those obtained based 

on ΔtSNR maps (Table 1, Figure 7). Both overlap between high-tSNR clusters (Dice 

coefficient) and high-tSNR cluster displacement (inter-cluster distance) demonstrated the 

advantages of image reconstructions using FLEET ACS acquisitions over those using 

conventional ms-EPI ACS, with the highest acceleration factor acquisitions yielding the 

most consistent maps. This could be clearly seen in the comparison of the average high-

tSNR cluster displacement, which was doubled in the R=2 case between images 

reconstructed with ms-EPI ACS compared with those reconstructed with FLEET ACS—a 

shift of high-tSNR regions up to 8 mm was detected in reconstructions using ms-EPI ACS 

versus a 4 mm shift in reconstructions using FLEET ACS. Slices located within the bottom 

half of the brain consisting of fewer voxels had better cluster overlap and displacement 

measures. In addition, higher improvement of both consistency measures was found in the 

mid/bottom part of the brain, which may be explained by the larger numbers of brain voxels 

included in these central slices compared to the slices located near the top or bottom of the 

brain.

Our use of spatial clusters to perform this analysis was inspired in part by the cluster 

analysis commonly used in fMRI. Correction for multiple comparisons in conventional 

fMRI data analysis often employs clustering approaches to discard false positives to help 

identify and locate genuine activations (Beckmann et al., 2006; Friston et al., 1994; Hagler 

et al., 2006). While our use of clusters was motivated by the need to track how regions of 

high tSNR shift across runs, observations of contiguous regions of low and high tSNR seen 

in the data (e.g., in Figure 1) justify our use of high-tSNR clusters. Furthermore, because 
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tSNR may change globally across runs even if the spatial patterns remain constant, we 

adapted our tSNR threshold that defined the high-tSNR clusters to each run. By ensuring 

that the same number of clusters was identified in each run, and the cluster sizes were small, 

we could compute the overlap of clusters between runs as a measure how far the high-tSNR 

regions moved. While the absolute overlap will be a function of the tSNR threshold, because 

this threshold was set in a consistent way across all runs the relative changes in overlap 

provided a meaningful measure of how each ACS acquisition strategy impacts across-run 

tSNR variability.

Because of the spatial correlation of physiological noise (Triantafyllou et al., 2006), the 

different physiological noise levels in different tissue classes such as gray matter, white 

matter, and CSF (Bodurka et al., 2007), and the smoothly varying image SNR that is largely 

a function of the receiver coil sensitivity (Triantafyllou et al., 2011), it is expected that tSNR 

should vary relatively smoothly over space. In some cases, we identified high-tSNR clusters 

in white matter regions (Figure 7A), which, due to the relatively low-levels of physiological 

noise found in cerebral white matter, tend to have relatively high tSNR compared to adjacent 

gray matter. Interestingly, the tSNR differences between different tissue classes were largely 

absent in ΔtSNR maps (which are essentially a ratio of two tSNR maps), therefore the 

spatial patterns of tSNR changes from run to run appear to be unrelated to the anatomy and 

tissue type (see Figures 3 and 4).

Displacement of the high-tSNR regions across different runs of the same scan protocol can 

be partially related to the aforementioned “slice-alternating” tSNR artifact. In order to 

compute tSNR consistency maps between pairs of runs, these multiple runs have to be 

spatially aligned to one another using a rigid body transformation. The “slice-alternating” 

tSNR effect leads to the adjacent slices having significantly varying tSNR levels, which, 

after alignment (for example tilting or shifting the volume along the slice-axis), low-tSNR 

slices of one run can be partially resampled into high-tSNR slices of the other run and vice 

versa, introducing patches of high and low ΔtSNR values within a given slice after 

alignment. Since slice tSNR discontinuity differs between the runs, this effect will impact 

each run differently, providing a potential source of tSNR changes observed within a 

particular slice.

Several recent studies have investigated new methods for acquiring ACS data for GRAPPA 

reconstructions, and these modern, robust ACS acquisitions may also provide improved 

tSNR consistency across runs. A FLASH-based approach (critically, 2D FLASH with no 

slice interleaving, therefore equivalent to FLEET but with the number of shots equal to the 

number of phase encoding lines rather than the acceleration factor) has been shown to 

reduce g-factor penalties in EPI reconstructions (Griswold et al., 2006; Talagala et al., 2016; 

Vu et al., 2014) similarly to FLEET ACS (Polimeni et al., 2016). Recent work by Talagala et 

al. has also shown that g-factor values calculated for FLASH ACS data remain constant and 

low over a wide image SNR range of the ACS data, while for EPI ACS data g-factor 

increases rapidly with increasing SNR (Talagala et al., 2016). However, the FLASH ACS 

data are undistorted, whereas the accelerated EPI has distortions, therefore the FLASH ACS 

data are not distortion-matched to the image data, which limits applicability of this 

technique to cases of small/negligible distortion. In addition, images reconstructed using 
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FLASH ACS have been shown to have similar or lower tSNR than those using FLEET ACS 

(Polimeni et al., 2016). Readout-segmented EPI was recently proposed as ACS data for 

GRAPPA reconstructions of accelerated EPI data and was shown to significantly improve 

ghosting levels in reconstructed data compared to conventional ms-EPI ACS methods 

(Baron and Beaulieu, 2016); this method used distortion-matched ACS segments allowing 

reduction of motion-related artifacts (including respiratory and eye motion) in ms-EPI ACS 

based reconstructions, however it assumed GRAPPA kernel consistency across segments 

even in the presence of motion. In addition, using this new readout-segmented ACS method 

did not improve tSNR of reconstructed data compared to ss-EPI ACS. In this work we 

showed that FLEET ACS not only increased run-to-run tSNR consistency of the scans, but 

also improved the overall tSNR values (see Table 1) compared to ms-EPI and more 

importantly ss-EPI ACS (p<0.01, see Supplementary Tables 1, 2, 3 and 4 for more details). 

This could potentially be a consequence of low excitation flip angles decreasing the SNR of 

the FLEET calibration data (Polimeni et al., 2016, Supporting Material), as it has been 

shown that, seemingly paradoxically, lower SNR0 of ACS data has a regularization effect 

and therefore can increase the tSNR of the reconstructed data (Ding et al., 2015; Polimeni et 

al., 2016; Sodickson, 2000). Thus, the somewhat lower SNR0 of FLEET ACS data compared 

to ms-EPI ACS data may not be a disadvantage per se. However, over-regularizing the 

GRAPPA kernel fit through further lowering the SNR0 of the ACS data may increase 

residual aliasing (Polimeni et al., 2016, Supporting Material). The amount of explicit 

Tikhonov regularization applied when computing GRAPPA coefficients during kernel 

training may need to be controlled, reduced if using ACS data with low SNR0 and increased 

for high SNR0 data, to avoid over-/under-regularization. Despite a comparable across-run 

quality of ACS data using FLEET, it is still recommended to acquire ACS data at the 

beginning of each run as a cumulative subject motion could gradually decrease applicability 

of GRAPPA kernels calculated at the beginning of the scanning session.

Conclusions

In this study we show that FLEET ACS technique can reduce across-run variability of tSNR 

in accelerated EPI time-series data and therefore increase sensitivity of BOLD fMRI 

measurements. The FLEET ACS technique is less vulnerable to subject motion and 

respiration effects, and therefore the resulting tSNR of the FLEET ACS reconstructions is 

less influenced by the behavior of the subject. This reduced variability of tSNR is expected 

to yield a direct positive impact on both single-subject and group analyses of fMRI data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Improved across-run tSNR consistency using FLEET ACS reconstruction vs. 

ms-EPI ACS

• High-tSNR cluster displacement decreased by factor of two by using FLEET 

ACS

• FLEET ACS reconstructed data increases sensitivity of BOLD fMRI 

measurements
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Figure 1. 
tSNR maps shown in the native axial views and sagittal reformats calculated for the two runs 

with the lowest overall tSNR of ms-EPI ACS, ss-EPI ACS and FLEET ACS acquisitions 

with acceleration factor R=2, acquired on one subject at 7T.
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Figure 2. 
Within-run ΔtSNR maps calculated between two halves of runs acquired at 7T for the same 

subject using ms-EPI ACS and FLEET ACS data, acceleration factor R=4. The full range of 

values [−1,1] are displayed on a truncated range [−0.5,0.5] for visualization purposes. 

Perfect consistency between the first and second halves of the run corresponds to a within-

run ΔtSNR of 0, whereas higher or lower values indicate that the first half or second half of 

the run had higher or lower tSNR, respectively. The run number and subject number for each 

comparison are provided at left.
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Figure 3. 
Example native axial views and sagittal reformats of the across-run ΔtSNR maps calculated 

between different runs of the same protocol acquired for a human subject at 7T using EPI 

ms-EPI ACS (left) and FLEET ACS (right), with different acceleration factors. The full 

range of values [−1,1] are displayed on a truncated range [−0.5,0.5] for visualization 

purposes. Perfect consistency corresponds to a ΔtSNR of 0, whereas higher or lower values 

indicate that run A exhibits higher or lower tSNR than run B, respectively. The run numbers 
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for each comparison (e.g., run 1 to run 2 indicating comparison of run 1 of 4 to run 2 of 4) 

are provided at left. Each map corresponds to a pair of separate scans.
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Figure 4. 
Across-run ΔtSNR maps calculated between different runs of the same protocol acquired on 

a human subject at 3T using ms-EPI ACS (left) and FLEET ACS (right), with different 

acceleration factors. The full range of values [−1,1] are displayed on a truncated range 

[−0.5,0.5] for visualization purposes. Each map corresponds to a pair of repeated scans.
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Figure 5. 
Example views of the across-run ΔtSNR maps calculated between different runs of the same 

acquisition on a spherical, agar gel phantom at 3T using ms-EPI ACS (left) and FLEET ACS 

(right), with different acceleration factors. The full range of values [−1,1] are displayed on a 

truncated range [−0.5,0.5] for visualization purposes. The across-run consistency of the 

phantom data is markedly higher than what is seen in the human data.
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Figure 6. 
Spatial heterogeneity of tSNR maps compared between runs, quantified by the FWHM of 

the histogram of ΔtSNR values within the brain mask, plotted as a function of time interval 

separating the runs. A broader range of across-run ΔtSNR values indicates higher spatial 

heterogeneity of the tSNR change between runs. The FWHM of ΔtSNR values, and 

therefore the difference in the spatial patterns of tSNR, grows as runs are acquired further 

apart in time.
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Figure 7. 
(A) Example native axial views and sagittal reformats of two sets of clusterings obtained for 

four runs from images reconstructed using either FLEET ACS or ms-EPI ACS. (B) A 

summary of the percentages of voxels belonging to high-tSNR regions in one, two, three or 

four runs of the same protocol. In the images reconstructed with FLEET ACS there is a 

greater percentage of voxels that is consistently within high-tSNR regions across all four 

runs compared to the reconstructions using ss-EPI ACS or ms-EPI ACS.

Blazejewska et al. Page 26

Neuroimage. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Blazejewska et al. Page 27

Ta
b

le
 1

Su
m

m
ar

y 
of

 th
e 

qu
an

tit
at

iv
e 

m
ea

su
re

s 
us

ed
 to

 c
om

pa
re

 w
ith

in
-a

nd
 a

cr
os

s-
ru

n 
tS

N
R

 v
ar

ia
tio

n 
be

tw
ee

n 
di

ff
er

en
t p

ro
to

co
ls

 ta
ke

n 
fr

om
 d

at
a 

ac
qu

ir
ed

 a
t 7

T
 

an
d 

3T
 in

 h
um

an
 s

ub
je

ct
s;

 th
e 

no
rm

al
iz

ed
 tS

N
R

 a
ve

ra
ge

d 
ov

er
 th

e 
br

ai
n 

m
as

k 
an

d 
th

e 
no

rm
al

iz
ed

 tS
N

R
 p

er
ce

nt
 v

ar
ia

tio
n;

 th
e 

FW
H

M
 o

f 
th

e 
hi

st
og

ra
m

 o
f 

w
ith

in
-a

nd
 a

cr
os

s-
ru

n 
Δ

tS
N

R
 v

al
ue

s;
 r

ep
or

te
d 

m
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

(±
) 

va
lu

es
 w

er
e 

ca
lc

ul
at

ed
 a

cr
os

s 
al

l r
un

s 
(t

SN
R

 a
nd

 w
ith

in
-r

un
 Δ

tS
N

R
) 

or
 a

ll 

pa
ir

s 
of

 r
un

s 
(a

cr
os

s-
ru

n 
Δ

tS
N

R
) 

of
 th

e 
sa

m
e 

pr
ot

oc
ol

, a
nd

 a
cr

os
s 

al
l s

ub
je

ct
s 

to
 q

ua
nt

if
y 

tr
ia

l v
ar

ia
bi

lit
y.

F
L

E
E

T
 R

=
2

F
L

E
E

T
 R

=3
F

L
E

E
T

 R
=4

ss
-E

P
I 

R
=2

m
s-

E
P

I 
R

=2
m

s-
E

P
I 

R
=3

m
s-

E
P

I 
R

=4

no
rm

al
iz

ed
 t

SN
R

1.
12

±
0.

09
1.

07
±

0.
06

0.
92

±
0.

05
0.

94
±

0.
05

0.
83

±
0.

10
0.

77
±

0.
07

0.
76

±
0.

08

7T
no

rm
al

iz
ed

 t
SN

R
 %

 v
ar

ia
ti

on
7.

9%
5.

6%
6.

0%
5.

1%
12

.5
%

9.
0%

10
.7

%

F
W

H
M

 o
f 

w
it

hi
n-

ru
n 

Δ
tS

N
R

0.
12

±
0.

04
0.

12
±

0.
03

0.
11

±
0.

01
0.

11
±

0.
02

0.
10

±
0.

02
0.

11
±

0.
02

0.
10

±
0.

01

F
W

H
M

 o
f 

ac
ro

ss
-r

un
 Δ

tS
N

R
0.

12
±

0.
04

0.
11

±
0.

03
0.

10
±

0.
03

0.
12

±
0.

04
0.

24
±

0.
09

0.
23

±
0.

08
0.

15
±

0.
04

m
ed

ia
n 

of
 a

cr
os

s-
ru

n 
Δ

tS
N

R
0.

02
±

0.
06

0.
00

±
0.

03
0.

00
±

0.
03

−
0.

01
±

0.
03

−
0.

02
±

0.
07

−
0.

01
±

0.
06

0.
00

±
0.

06

no
rm

al
iz

ed
 t

SN
R

1.
07

±
0.

03
0.

97
±

0.
03

0.
79

±
0.

02
0.

98
±

0.
02

0.
95

±
0.

04
0.

86
±

0.
03

0.
73

±
0.

02

3T
no

rm
al

iz
ed

 t
SN

R
 %

 v
ar

ia
ti

on
3.

1%
3.

5%
2.

8%
2.

1%
4.

3%
4.

0%
3.

0%

F
W

H
M

 o
f 

ac
ro

ss
-r

un
 Δ

tS
N

R
0.

07
±

0.
01

0.
07

±
0.

01
0.

06
±

0.
00

0.
06

±
0.

00
0.

12
±

0.
04

0.
09

±
0.

02
0.

07
±

0.
01

Neuroimage. Author manuscript; available in PMC 2018 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Blazejewska et al. Page 28

Ta
b

le
 2

Su
m

m
ar

y 
of

 r
es

ul
ts

 f
ro

m
 a

 W
ilc

ox
on

 r
an

k-
su

m
 te

st
 u

se
d 

to
 c

om
pa

re
 F

W
H

M
 o

f 
ac

ro
ss

-r
un

 Δ
tS

N
R

 b
et

w
ee

n 
di

ff
er

en
t a

cq
ui

si
tio

ns
 a

cq
ui

re
d 

at
 3

T
 a

nd
 7

T.
 

B
ol

de
d 

en
tr

ie
s 

co
rr

es
po

nd
 to

 th
e 

m
ai

n 
co

m
pa

ri
so

ns
 o

f 
in

te
re

st
, i

.e
., 

be
tw

ee
n 

m
s-

E
PI

 A
C

S 
an

d 
FL

E
E

T
 A

C
S 

w
ith

 m
at

ch
in

g 
ac

ce
le

ra
tio

n 
fa

ct
or

, s
ig

ni
fi

ca
nt

 

di
ff

er
en

ce
s 

ar
e 

m
ar

ke
d 

in
 r

ed
.

ac
ro

ss
-r

un
 Δ

tS
N

R
 (

F
W

H
M

)

7T
F

L
E

E
T

 R
=2

F
L

E
E

T
 R

=3
F

L
E

E
T

 R
=4

ss
-E

P
I 

R
=2

m
s-

E
P

I 
R

=2
m

s-
E

P
I 

R
=3

F
L

E
E

T
 R

=3
0.

08

F
L

E
E

T
 R

=4
<

0.
05

0.
31

ss
-E

P
I 

R
=2

0.
71

0.
08

<
0.

05

m
s-

E
P

I 
R

=2
<0

.0
1

<
0.

01
<

0.
01

<
0.

01

m
s-

E
P

I 
R

=3
<

0.
01

<0
.0

1
<

0.
01

<
0.

01
0.

80

m
s-

E
P

I 
R

=4
<

0.
05

<
0.

01
<0

.0
1

<
0.

05
<

0.
05

<
0.

05

3T
F

L
E

E
T

 R
=2

F
L

E
E

T
 R

=3
F

L
E

E
T

 R
=4

ss
-E

P
I 

R
=2

m
s-

E
P

I 
R

=2
m

s-
E

P
I 

R
=3

F
L

E
E

T
 R

=3
0.

20

F
L

E
E

T
 R

=4
<

0.
01

<
0.

05

ss
-E

P
I 

R
=2

0.
06

0.
96

<
0.

01

m
s-

E
P

I 
R

=2
<0

.0
1

<
0.

01
<

0.
01

<
0.

01

m
s-

E
P

I 
R

=3
<

0.
01

<0
.0

1
<

0.
01

<
0.

01
<

0.
05

m
s-

E
P

I 
R

=4
<

0.
05

<
0.

05
<0

.0
1

<
0.

01
<

0.
01

<
0.

01

Neuroimage. Author manuscript; available in PMC 2018 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Blazejewska et al. Page 29

Ta
b

le
 3

Su
m

m
ar

y 
of

 th
e 

cl
us

te
r-

ba
se

d 
m

ea
su

re
s 

us
ed

 to
 c

om
pa

re
 a

cr
os

s-
ru

n 
tS

N
R

 v
ar

ia
tio

n 
be

tw
ee

n 
di

ff
er

en
t p

ro
to

co
ls

 f
or

 d
at

a 
ac

qu
ir

ed
 a

t 7
T

: D
ic

e 
co

ef
fi

ci
en

t 

an
d 

in
te

r-
cl

us
te

r 
di

st
an

ce
 o

f 
th

e 
sp

at
ia

l c
lu

st
er

s 
of

 h
ig

h 
tS

N
R

 v
al

ue
s;

 r
ep

or
te

d 
m

ea
n 

an
d 

st
an

da
rd

 d
ev

ia
tio

n 
(±

) 
va

lu
es

 w
er

e 
ca

lc
ul

at
ed

 a
cr

os
s 

al
l r

un
s 

of
 

th
e 

sa
m

e 
pr

ot
oc

ol
, a

nd
 a

cr
os

s 
al

l s
ub

je
ct

s 
to

 q
ua

nt
if

y 
tr

ia
l v

ar
ia

bi
lit

y.

F
L

E
E

T
 R

=2
F

L
E

E
T

 R
=3

F
L

E
E

T
 R

=4
ss

-E
P

I 
R

=2
m

s-
E

P
I 

R
=2

m
s-

E
P

I 
R

=3
m

s-
E

P
I 

R
=4

D
ic

e 
co

ef
fi

ci
en

t
0.

53
±

0.
06

0.
57

±
0.

06
0.

57
±

0.
09

0.
54

±
0.

08
0.

37
±

0.
06

0.
38

±
0.

06
0.

46
±

0.
08

in
te

r-
cl

us
te

r 
di

st
an

ce
 [

m
m

]
3.

8±
0.

9
3.

5±
0.

9
3.

7±
1.

2
3.

9±
1.

5
8.

2±
1.

9
8.

0±
1.

6
5.

7±
1.

5

Neuroimage. Author manuscript; available in PMC 2018 May 15.


	Abstract
	Graphical abstract
	Introduction
	Methods
	Preprocessing
	Relative tSNR change (ΔtSNR)
	Spatial clusters

	Results
	tSNR
	Relative tSNR change (ΔtSNR)
	Spatial clusters

	Discussion
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3

