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Abstract  

Over	 the	 last	 decade,	 we	 have	 observed	 a	 revolution	 in	 brain	 structural	 and	

functional	 Connectomics.	 On	 one	 hand,	 we	 have	 an	 ever-more	 detailed	

characterization	of	the	brain’s	white	matter	structural	connectome.	On	the	other,	

we	have	a	repertoire	of	consistent	 functional	networks	 that	 form	and	dissipate	

over	time	during	rest.	Despite	the	evident	spatial	similarities	between	structural	

and	 functional	 connectivity,	 understanding	 how	 different	 time-evolving	

functional	 networks	 spontaneously	 emerge	 from	 a	 single	 structural	 network	

requires	 analyzing	 the	 problem	 from	 the	 perspective	 of	 complex	 network	

dynamics	 and	 dynamical	 system’s	 theory.	 In	 that	 direction,	 bottom-up	

computational	models	 are	 useful	 tools	 to	 test	 theoretical	 scenarios	 and	 depict	

the	 mechanisms	 at	 the	 genesis	 of	 resting-state	 activity,	 beyond	 serving	 as	

predictive	tools	to	estimate	functional	connectivity.		

Here,	we	provide	 an	overview	of	 the	different	mechanistic	 scenarios	proposed	

over	 the	 last	 decade	 via	 computational	 models.	 Importantly,	 we	 reinforce	 the	

need	of	 implementing	additional	 validation	 steps	 in	order	 to	 refresh	 the	 list	 of	

candidate	scenarios	in	the	light	of	empirical	evidence	from	MEG-based	Envelope	

Functional	Connectivity	and	Functional	Connectivity	Dynamics.	
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Introduction 

Within	 the	 rapidly	 growing	 field	 of	 brain	 Connectomics,	 two	 main	 modes	 of	

connectivity	emerge:	Structural	and	Functional	(Biswal	et	al.,	1995,	Sporns	et	al.,	

2005,	 Hagmann	 et	 al.,	 2008,	 Sporns,	 2011).	 While	 the	 first	 refers	 to	 the	

anatomical	white-matter	 fibers	connecting	brain	areas,	which	remain	relatively	

constant	over	short	time	scales,	the	latter	refers	to	any	measure	of	co-variation	

between	 brain	 signals	 at	 different	 locations	 and	 depends	 strongly	 on	 the	

paradigm	and	the	time-window	considered	(Figure	1).		

		

Figure	 1	 –	 Structural	 vs	 functional	 connectivity.	 (Left)	 Advanced	 tractography	 algorithms	 allow	
reconstructing	the	white	matter	fiber	tracts	from	Diffusion-MRI.	The	structural	connectivity	matrix	SC(n,p)	
is	 estimated	 in	 proportion	 to	 the	 number	 of	 fiber	 tracts	 detected	 between	 any	 two	 brain	 areas	 n	 and	 p.	
(Right)	 On	 the	 other	 hand,	 the	 functional	 connectivity	 matrix	 FC(n,p)	 is	 computed	 as	 the	 correlation	
between	 the	 brain	 activity	 (e.g.	 BOLD	 signal)	 estimated	 in	 areas	 n	 and	 p	 over	 the	whole	 recording	 time.	
Here,	the	areas	refer	to	90	non-cerebellar	brain	areas	from	the	AAL	template.	

When	computed	over	sufficiently	 long	sessions	at	 rest,	 the	whole-brain	map	of	

functional	 connections,	 generally	 termed	 Functional	 Connectome,	 reveals	 some	

similarities	with	the	Structural	Connectome	(Greicius	et	al.,	2009,	van	den	Heuvel	

et	 al.,	 2009,	 Biswal	 et	 al.,	 2010,	 Hermundstad	 et	 al.,	 2013).	 However,	 this	
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relationship	 is	 not	 trivial	 and	 has	 been	 subject	 of	 investigation	 from	 several	

theoretical	and	computational	research	groups	over	the	last	decade	(Honey	et	al.,	

2007,	 Ghosh	 et	 al.,	 2008b,	 Izhikevich	 and	 Edelman,	 2008,	 Deco	 et	 al.,	 2009,	

Honey	 et	 al.,	 2009,	 Cabral	 et	 al.,	 2011,	Deco	 and	 Jirsa,	 2012,	Deco	 et	 al.,	 2013,	

Cabral	et	al.,	2014a,	Messe	et	al.,	2015,	Ponce-Alvarez	et	al.,	2015,	Atasoy	et	al.,	

2016,	Robinson	et	al.,	2016,	Spiegler	et	al.,	2016).	Following	different	reduction	

lines	 and	 alternative	 mechanistic	 approaches	 (which	 we	 will	 review	 below),	

these	 works	 have	 demonstrated	 via	 whole-brain	 network	 models	 how	 the	

neuroanatomical	 network	 structure	 can	 shape	 spontaneous	 brain	 activity	 on	

very	 slow	 time-scales,	 giving	 rise	 to	 consistent	 patterns	 of	 Functional	

Connectivity	(FC).		

Given	 the	wide	 variety	of	 candidate	 scenarios	 to	 explain	 the	 source	of	 resting-

state	FC	patterns,	it	becomes	necessary	to	establish	further	model	constrains	in	

order	to	refresh	the	 list	of	candidate	scenarios	and	foster	our	understanding	of	

the	 network	 mechanisms	 underlying	 resting-state	 activity.	 Novel	 insights	 into	

resting-state	 FC	 have	 been	 revealed	 by	MEG	 studies	 (de	 Pasquale	 et	 al.,	 2010,	

Brookes	 et	 al.,	 2011b,	 Hipp	 et	 al.,	 2012,	 Hipp	 and	 Siegel,	 2015)	 and	 by	

investigations	 on	 the	 temporal	 dynamics	 of	 FC	 (Chang	 and	 Glover,	 2010,	

Handwerker	et	al.,	2012,	Smith	et	al.,	2012,	Hutchison	et	al.,	2013a,	Allen	et	al.,	

2014,	Zalesky	et	al.,	2014).	

In	 the	 present	 work,	 we	 provide	 an	 overview	 of	 the	 latest	 findings	 in	 the	

literature	 of	 resting-state	 FC,	 focusing	 on	 the	 properties	 observed	 at	 finer	

temporal	scales	with	MEG	and	the	dynamical	properties	of	FC.	Then,	we	review	

existing	whole-brain	 generative	models	 of	 resting-state	 activity,	with	 a	 special	

focus	on	their	mechanistic	scenarios.	Finally,	we	compare	the	different	candidate	
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models	 and	 comment	 on	 their	 capacity	 to	 survive	 the	 constrains	 imposed	 by	

novel	empirical	evidence.	

1. Static	Structural	Connectivity	

The	development	of	advanced	tractography	algorithms	applied	to	Diffusion-MRI	

has	allowed	detecting	 -	non-invasively	and	at	 the	whole-brain	 level	 -	 the	white	

matter	 fiber	 tracts	 connecting	brain	areas	 (Sporns	et	al.,	2005,	Hagmann	et	al.,	

2008).	 This	 permits	 the	 construction	 of	 large-scale	 networks	 where	 nodes	

represent	 brain	 areas	 and	 links	 reflect	 the	 anatomical	 connectivity	 between	

them.	Considering	macro-scale	 brain	parcellations	 in	 the	 order	 of	 100	 regions,	

the	 Structural	 Connectome	 of	 healthy	 adults	 remains	 relatively	 stable	 across	

sessions	when	compared	with	the	rapid	changes	occurring	at	the	dynamical	level	

(Sporns,	2011).	Any	alterations	occurring	at	 this	macro-scale	are	 typically	very	

slow,	either	when	associated	to	the	brain’s	natural	development	and	aging,	or	to	

disease	(Bartzokis	et	al.,	2003,	Hagmann	et	al.,	2010,	Takeuchi	et	al.,	2010).	Note	

however,	 that	 the	 entire	map	of	 neural	 connections	 ambitioned	by	 the	Human	

Connectome	 Project	 (www.humanconnectomeproject.org)	 may	 reveal	 higher	

individual	 variability	 and	 changes	 on	 shorter	 time-scales.	 Yet,	 it	 remains	

acceptable	 to	 consider	 that	 the	 Structural	 Connectivity	 (SC)	 is	 static	 when	

compared	to	the	fast	changes	observed	in	FC.		

2. Functional	Connectivity	

Functional	 Connectivity	 is	 defined	 as	 the	 temporal	 dependence	 of	 neuronal	

activity	patterns	of	anatomically	separated	brain	regions	 typically	measured	as	

the	co-variation	between	brain	signals	originating	at	different	locations	(Aertsen	

et	 al.,	 1989,	 Friston	 et	 al.,	 1993,	 van	 den	Heuvel	 and	Hulshoff	 Pol,	 2010).	 The	
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term	 Functional	 Connectome	 is	 generally	 used	 to	 refer	 to	 the	 whole	 map	 of	

functional	 connections	 across	 the	 whole	 brain	 (Biswal	 et	 al.,	 2010).	 Since	

meaningful	 large-scale	 functional	 networks	 have	 been	 detected	 from	

correlations	between	slow	(<0.1Hz)	BOLD	signal	 fluctuations	at	 rest	 (Biswal	et	

al.,	1995,	Lowe	et	al.,	1998,	Damoiseaux	et	al.,	2006),	resting-state	fMRI	has	been	

the	 leading	 technique	 to	measure	 brain-wide	 FC	 (Biswal	 et	 al.,	 2010,	 van	 den	

Heuvel	and	Hulshoff	Pol,	2010).	Assuming	a	stationary	perspective,	correlations	

are	 commonly	measured	 over	 the	 whole	 recording	 time,	 resulting	 in	 a	 single,	

temporally	 invariant	 Functional	 Connectome,	 which	 can	 be	 expressed	 in	

mathematical	 terms	 as	 a	 grand-average	 FC	 matrix,	 where	 each	 entry	 FC(n,p)	

refers	 to	 the	 correlation	 between	 the	 signals	 averaged	 over	 all	 voxels	 in	 brain	

areas	n	and	p.	This	approach	allows	for	a	direct	comparison	with	the	Structural	

Connectome	defined	over	 the	same	parcellation	scheme	(van	den	Heuvel	et	al.,	

2009)	 and	 has	 been	 particularly	 useful	 for	 the	 optimization	 and	 validation	 of	

resting-state	 models	 through	 the	 comparison	 with	 the	 simulated	 FC	 matrix	

(Honey	et	al.,	2009,	Cabral	et	al.,	2011,	Deco	and	 Jirsa,	2012,	Deco	et	al.,	2013,	

Messe	et	al.,	2015,	Ponce-Alvarez	et	al.,	2015).	

 Frequency-specific	Envelope	FC		a.

Although	 BOLD	 signal	 correlations	 have	 proved	 meaningful	 in	 the	 study	 of	

resting-state	FC	(Biswal	et	al.,	2010,	van	den	Heuvel	and	Hulshoff	Pol,	2010),	an	

important	shortcoming	of	fMRI	approaches	is	that	fluctuations	occurring	on	the	

faster	 timescales	of	neurophysiological	processes	 (~2-100Hz)	are	not	captured	

(Engel	et	al.,	2013).	For	this	reason,	the	fast	local	dynamics	has	been	left	largely	

unconstrained	in	models	of	resting-state	activity	(Honey	et	al.,	2009,	Deco	et	al.,	
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2011,	Deco	 et	 al.,	 2013,	 Cabral	 et	 al.,	 2014a).	 Exploring	 the	neurophysiological	

counterpart	 of	 BOLD	 signal	 activations,	 experimental	 studies	 have	 shown	 a	

relationship	with	local	 increases	in	the	power	of	neural	activity,	not	only	in	the	

gamma-frequency	band	 (Logothetis	 et	 al.,	 2001,	Leopold	et	 al.,	 2003,	Nir	 et	 al.,	

2007),	 but	 also	 at	 lower	 frequencies	 (He	 et	 al.,	 2008,	 Scholvinck	 et	 al.,	 2010,	

Magri	 et	 al.,	 2012,	Tagliazucchi	et	 al.,	 2012b,	Keller	et	 al.,	 2013).	  However,	 for	

accurately	 measuring	 resting-state	 FC	 non-invasively	 and	 at	 the	 whole-brain	

level	using	MEG,	the	correlation	patterns	resulting	from	volume	conduction	need	

to	 be	 suppressed	 before	 analyzing	 functional	 connectivity.	 Such	methods	 have	

only	 recently	 become	 available	 bringing	 insightful	 information	 for	 the	

investigation	 of	 resting-state	 FC	 occurring	 at	 faster	 time-scales	 (Brookes	 et	 al.,	

2011a,	Brookes	et	al.,	2011b,	Hipp	et	al.,	2012,	Engel	et	al.,	2013,	Marzetti	et	al.,	

2013,	Hipp	and	Siegel,	2015).	These	studies	point	in	the	direction	that	the	BOLD	

signal	 fluctuations	 observed	 in	 the	 brain	 at	 rest	 are	 associated	 to	 aperiodic	

fluctuations	 in	 the	 power	 of	 neural	 oscillations	 occurring	 in	 a	 particular	

frequency	range	(see	Figure	2).	Since	the	information	is	assumed	to	be	carried	in	

the	power	(or	squared	amplitude)	of	the	oscillations	in	a	given	frequency	band,	

these	oscillations	are	generally	termed	carrier	oscillations.	
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Figure	 2	 –	 Functional	 Connectivity	 assessed	 with	 fMRI	 or	 MEG.	 (Top)	 fMRI-based	 functional	
connectivity	 is	 assessed	 as	 the	 correlation	 between	 the	 BOLD	 signals	 recorded	 at	 different	 locations.	
(Bottom)	 Resting-state	 functional	 connectivity	 in	 MEG	 is	 assessed	 by	 first	 band-pass	 filtering	 the	 MEG	
signal	(before	or	after	the	source	estimation),	extracting	the	amplitude	envelope	(red	and	blue	lines)	of	the	
underlying	carrier	oscillation	(black)	and	subsequently	computing	the	correlation	between	envelopes.	This	
strategy	results	in	a	set	of	frequency-specific	FC	maps.	

According	to	Brookes	et	al.	 (2011b)	and	Hipp	et	al.	 (2012),	 the	best	agreement	

between	MEG-based	and	fMRI-based	FC	is	obtained	for	carrier	oscillations	in	the	

alpha	 and	 beta	 frequency	 ranges	 (8-32Hz).	 However,	 a	 wider	 range	 of	

frequencies	 between	 2	 to	 128Hz	 has	 been	 found	 to	 play	 a	 role	 in	 shaping	 the	

large-scale	dynamical	interactions	yielding	functional	networks	(Hipp	and	Siegel,	

2015).	Notably,	different	 fMRI-based	 functional	connections	were	associated	 to	

different	 carrier	 frequencies,	 showing	 that	 BOLD	 correlation	 reflects	 different	

types	of	neuronal	interactions	across	the	brain	(Hipp	and	Siegel,	2015).	

	In	 order	 to	 consider	 the	 FC	 occurring	 at	 different	 carrier	 frequencies,	 one	

approach	is	to	consider	a	range	of	frequency	bands	(sufficiently	narrow	to	allow	

for	a	 correct	estimation	of	 the	Hilbert	envelope)	and	compute	 the	envelope	FC	

for	each	frequency	band	(Figure	3).	This	results	in	a	series	of	frequency-specific	

Envelope	FC	matrices	that	can	be	used	as	a	heuristic	measure	to	fit	resting-state	

models	(Cabral	et	al.,	2014b,	Deco	et	al.,	2016a)	
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Figure	3	-	Frequency-specific	envelope	FC	from	MEG	data.	(A)	The	MEG	signals	are	filtered	into	different	
frequency	bands	and	projected	 into	a	number	of	 source	 locations	using	a	beamformer	 technique.	 (B)	For	
each	frequency	band,	the	amplitude	envelopes	are	estimated	for	each	brain	area	and	the	correlation	matrix	
between	envelopes	is	computed,	resulting	in	a	set	of	frequency-specific	envelope	FC	matrices.	Adapted	from	
Cabral	et	al.	(2014b).	

 FC	Dynamics	b.

In	recent	years,	several	works	have	shown	that	the	Functional	Connectome	is	not	

stationary,	but	instead	evolves	over	time	(Chang	and	Glover,	2010,	Handwerker	

et	 al.,	 2012,	 Jones	 et	 al.,	 2012,	Hutchison	et	 al.,	 2013a,	Hutchison	et	 al.,	 2013b,	

Allen	et	al.,	2014,	Calhoun	et	al.,	2014,	Leonardi	et	al.,	2014,	Zalesky	et	al.,	2014,	

Hansen	et	al.,	2015).	This	has	brought	a	new	perspective	 to	study	resting-state	

activity	by	considering	the	temporal	dimension	of	FC.	In	that	direction,	Calhoun	

et	 al.	 (2014)	 proposed	 the	 term	 Chronnectome	 to	 describe	 the	 time-varying	

properties	 of	 the	 Functional	 Connectome.	 Interestingly,	 the	 expanding	 idea	 is	

that	 the	 FC	 evolves	 as	 a	 multi-stable	 process	 passing	 through	 multiple	 and	

reoccurring	discrete	FC	states,	 rather	 than	varying	 in	a	more	continuous	sense	

(Hutchison	et	al.,	2013a,	Allen	et	al.,	2014,	Hansen	et	al.,	2015,	Preti	et	al.,	2016).	

While	different	methodological	 approaches	have	been	proposed	 to	 analyze	 the	

FC	in	the	temporal	domain	(see	Preti	et	al.	(2016)	for	a	comprehensive	review)	

and	to	test	for	its	statistical	significance	(Hutchison	et	al.,	2013b,	Hindriks	et	al.,	

2015a,	Leonardi	and	Van	De	Ville,	2015,	Zalesky	and	Breakspear,	2015),	the	best	

methodology	 to	 explore	 dynamic	 changes	 in	 FC	 is	 still	 to	 be	 decided.	 In	 the	
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following,	we	briefly	describe	some	of	the	methods	to	assess	dynamic	FC,	which	

we	find	useful	to	apply	in	the	analysis	of	whole-brain	resting-state	models.	

i. Assessing	dynamic	FC	

The	 most	 common	 and	 straightforward	 approach	 to	 investigate	 the	 temporal	

evolution	 of	 FC	 is	 the	 Sliding-Window	Correlation	 (SWC)	 (Sakoglu	 et	 al.,	 2010,	

Handwerker	et	al.,	2012,	 Jones	et	al.,	2012,	Hutchison	et	al.,	2013b,	Allen	et	al.,	

2014,	Hansen	et	al.,	2015).	This	is	achieved	by	calculating	the	correlation	matrix,	

FC(t),	 within	 a	 given	 time-window,	 shifting	 this	 window	 and	 recalculating	 the	

correlation	matrix	at	time	t+1	(see	Figure	4	for	an	illustration).	This	procedure	is	

successively	repeated	over	the	whole	recording	time,	resulting	in	a	time-varying	

FCNxNxT	matrix	(where	N	is	the	number	of	brain	areas	and	T	the	number	of	time	

points).	Yet,	the	fundamental	nature	of	the	SWC	technique,	implying	the	choice	of	

a	 fixed	window	 length,	 limits	 the	 analysis	 to	 the	 fluctuations	 in	 the	 frequency	

range	 below	 the	 window	 period,	 so	 the	 ideal	 window	 length	 to	 use	 remains	

under	debate	(Sakoglu	et	al.,	2010)(Leonardi	and	Van	De	Ville,	2015,	Zalesky	and	

Breakspear,	 2015,	 Laumann	 et	 al.,	 2016)(Hutchison	 et	 al.,	 2013a,	 Preti	 et	 al.,	

2016).	

	

Figure	4	–	FC	dynamics	based	on	sliding-window	correlation.	(A)	BOLD	signal	at	90	locations	from	one	
healthy	adult	at	rest	(350seconds,	TR=2s).	(B)	The	static	FC	is	computed	as	the	correlation	matrix	(90x90)	
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of	BOLD	time	courses	over	the	whole	recording	time.	(C)	Example	of	correlation	matrices	FC(t)	obtained	for	
sliding-windows	of	60	seconds	centered	at	different	 time	points	 t.	 (D)	The	 time-versus-time	matrix	of	FC	
Dynamics,	 FCD(tx,ty)	 is	 obtained	by	 correlating	 any	FC(tx)	 centered	at	 time	 tx	with	 any	FC(ty)	 centered	 at	
time	ty.	

Following	the	limitations	of	sliding-window	analysis,	a	number	of	methods	have	

been	 proposed	 to	 estimate	 the	 FC(t)	 at	 the	 instantaneous	 level.	 For	 instance,	

Coherence	Connectivity	(CC)	consists	in	computing	the	phase	coherence	between	

time	 series	 at	 each	 recording	 frame	 (Glerean	 et	 al.,	 2012,	 Ponce-Alvarez	 et	 al.,	

2015,	Deco	 and	Kringelbach,	 2016).	 In	 brief,	 the	 instantaneous	BOLD	phase	 of	

area	n	at	time	t,	θn(t),	is	estimated	using	the	Hilbert	transform,	which	expresses	a	

given	 signal	 x	 in	 polar	 coordinates	 as	 x=A.*cos(θ).	 Given	 the	 phase,	 the	 angle	

between	two	BOLD	signals	is	given	by	their	absolute	phase	difference:	𝛩!"(𝑡) =

𝜃! 𝑡 − 𝜃! 𝑡 .	 Then,	 the	 CC(t)	 between	 a	 pair	 of	 brain	 areas	 n	 and	 p	 is	

calculated	as:	

𝐶𝐶!" 𝑡 = cos Θ!"(𝑡) ,𝑛,𝑝 ∈ 𝑁 = 1,… ,90.		

where	values	range	between	-1	(areas	in	anti-phase)	and	1	(in-phase).	

Another	 simple	 and	 quasi-instantaneous	 measure	 of	 coupling	 is	 the	

Multiplication	 of	 Temporal	 Derivatives	 (MTD)	 (Shine	 et	 al.,	 2015).	 The	 MTD	

measure	consists	 in	 first	calculating	the	 temporal	derivative	(TDn)	of	each	time	

series	 (sn)	 of	 length	 t	 by	 performing	 a	 first-order	 differencing	 TDn=dsn/dt	 (i.e.	

subtracting	 the	value	of	s(t	–	1)	from	the	value	of	s(t)).	For	each	pair	of	areas	n	

and	p,	the	MTD	at	time	t	is	given	by:	

𝑀𝑇𝐷!"(𝑡) =
𝑇𝐷!(𝑡)×𝑇𝐷!(𝑡)
𝑆𝐷!×𝑆𝐷!

	

where	SDn	is	the	standard	deviation	of	TDn.	Positive	MTD	scores	reflect	‘coupling’	

in	 the	 same	 direction	 of	 signal	 change	 across	 nodes,	 whereas	 negative	 scores	
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reflect	 ‘anti-coupling’	 (that	 is,	 signal	 in	 one	 node	 increasing	while	 the	 other	 is	

decreasing).		

Although	instantaneous	measures	are	more	susceptible	to	high-frequency	noise	

fluctuations,	they	can	be	smoothed	(using	e.g.	a	simple	moving-average)	without	

the	methodological	constrains	imposed	by	the	correlation	measure.	

Beyond	 the	 methods	 described	 above,	 other	approaches	 worth	 noting	 include	

time-frequency	analysis	(Chang	and	Glover,	2010,	Yaesoubi	et	al.,	2015),	phase-

dependent	eigenconnectivities	(Preti	et	al.,	2016),	or	point	process	analysis	(Liu	

and	Duyn,	2013)(Tagliazucchi	et	al.,	2012a).	

ii. FCD	matrix	

To	analyse	the	time-evolving	FC	matrices	-	defined	either	using	SWC,	CC,	MTD	or	

other	 -	 it	 is	 useful	 to	 compute	 a	 time-versus-time	 matrix	 representing	 the	

functional	connectivity	dynamics	 (FCD),	where	each	entry	FCD(t1,	t2)	 is	defined	

by	a	measure	of	 resemblance	between	FC(t1)	and	FC(t2)	 (see	Figure	4D).	Since	

the	 FC(t)	matrices	 are	 symmetric	 across	 the	 diagonal,	 resemblance	 is	 typically	

estimated	between	vectors	containing	all	values	above	the	diagonal	(or	below)	of	

each	 FC(t)	 matrix.	 This	 resemblance	 can	 be	 quantified	 using	 Pearson’s	

correlation	or	cosine	similarity	(i.e.	normalized	inner	product)	between	the	FC(t)	

vectors	 at	 times	 t1	and	 t2.	 Epochs	 of	 stable	 FC	patterns	 are	 reflected	 as	 square	

blocks	around	the	FCD	diagonal	and	reoccurrences	of	the	same	pattern	appear	as	

square	blocks	distant	from	the	diagonal.	Hence,	the	typical	FCD	matrix	during	the	

resting-state	has	a	checkerboard	appearance	(Hutchison	et	al.,	2013a,	Hansen	et	

al.,	2015).	

iii. FC	states	
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Although	the	FCD	matrix	contains	rich	information	about	the	time-dependencies	

of	the	FC(t),	in	order	to	define	a	discrete	number	of	FC	states	that	reoccur	over	

time	and	across	subjects,	it	is	necessary	to	the	apply	a	clustering	algorithm.	The	

different	FC	states	may	then	be	characterized	in	different	aspects,	namely	their	

spatial	 configuration,	 duration	 (or	 dwell	 time/lifetime),	 probability	 of	

occurrence	 (or	 fractional	 occupancy)	 or	 switching	 trajectories.	 Following	 the	

work	of	Allen	et	al.	(2014),	Hansen	et	al.	(2015)	applied	unsupervised	k-means	

clustering	to	all	FC(t)	across	all	subjects	to	characterize	the	switching	dynamics	

of	 FC,	 which	 revealed	 a	 number	 of	 FC	 patterns	 that	 temporarily	 emerge	 -and	

often	 reoccur-	 within	 the	 same	 session.	 Using	 another	 approach,	 Baker	 et	 al.	

(2014)	 applied	 Hidden	 Markov	 Models	 (HMM)	 to	 the	 amplitude	 envelopes	 of	

MEG	signals	and	identified	fast	transient	FC	states	in	spontaneous	human	brain	

activity	with	 spatial	 topographies	 similar	 to	 those	 of	well-known	 resting	 state	

networks.	Notably,	 the	 FC	 states	were	 found	 to	 last	 very	 shortly	 (100-200ms),	

suggesting	 that	 the	 resting	 brain	 is	 constantly	 changing	 between	 different	

patterns	of	activity	much	more	rapidly	than	previously	thought	(Vidaurre	et	al.,	

2016).	

3. Models	of	Resting-state	activity	

Given	 the	 evident	 network	 dynamics	 emerging	 spontaneously	 at	 rest	 and	 its	

spatial	 similarity	 with	 the	 underlying	 structural	 connectivity,	 whole-brain	

network	 models	 are	 a	 useful	 tool	 to	 investigate	 the	 biophysical	 mechanisms	

underlying	 resting-state	 activity.	 By	 considering	 the	 dynamics	 emerging	

spontaneously	 from	 the	 interplay	 between	 brain	 areas	 when	 these	 are	

embedded	 in	 the	 neuroanatomical	 network,	 one	 can	 analyze	 the	 observed	
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phenomena	 in	 the	 light	 of	 empirical	 data	 and	 formulate	 scenarios	 for	 the	

physiological	 origin	 of	 resting-state	 activity.	 This	 is	 achieved	 by	 considering	 a	

whole-brain	network	model	where	nodes	refer	to	brain	areas	and	links	refer	to	

the	 connections	 between	 them	 (Figure	 5).	 The	 activity	 of	 each	 brain	 area	 is	

represented	 by	 one	 or	 more	 mathematical	 expressions	 representing	 the	

spontaneous	behavior	of	isolated	brain	areas	with	an	additive	term	representing	

the	 input	 received	by	anatomically	 connected	areas	 (the	main	equations	of	 the	

models	discussed	herein	are	reported	in	the	Supplementary	Information).		

	

Figure	 5	 –	 In	 whole-brain	 network	 models,	 nodes	 refer	 to	 brain	 areas	 defined	 according	 to	 a	 given	
parcellation	 scheme,	 and	 links	 refer	 to	 the	 connections	between	 them,	 typically	obtained	 from	DTI/DSI	 –
based	tractography.	Adapted	from	(Cabral	et	al.,	2014b)	

 Generative	mechanistic	scenarios	a.

Following	different	 lines	of	 thought,	a	variety	of	 scenarios	have	been	proposed	

for	 the	 genesis	 of	 resting-state	 activity,	 including	 multi-stability,	 supercritical	

bifurcations,	 chimera	 synchronization,	 self-organizing	 patterns,	 connectome-

specific	 harmonics	 or	 simply	 correlated	 noise-induced	 deviations	 from	 the	

equilibrium	 (studies	 proposing	 these	 scenarios	 are	 reviewed	 in	 the	 following	

and	summarized	in	Table	1).	To	test	and	validate	these	scenarios,	theoreticians	

make	 use	 of	 computational	 models	 where	 similar	 behaviors	 can	 be	 obtained	
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from	very	reduced	network	models.	Depending	on	 the	reduction	 line,	 the	node	

dynamics	 can	 be	 represented	with	 different	 degree	 of	 biophysical	 realism	 and	

complexity,	 ranging	 from	 detailed	 populations	 of	 neurons	 with	 specific	

neurotransmitter	 receptor	 types,	 neural-field	 or	 neural-mass	 models,	 to	

phenomenological	mesoscopic	models.	Importantly,	different	generative	models	

may	 be	 used	 to	 test	 the	 same	 mechanistic	 scenario	 and	 vice-versa.	 As	 such,	

beyond	 their	 mathematical	 definitions	 (which	 can	 be	 found	 in	 detail	 in	 the	

Supplementary	 Information),	 we	 focus	 here	 on	 the	 mechanistic	 scenarios	

proposed	 by	 the	 different	 studies	 for	 the	 genesis	 of	 resting-state	 activity.	 In	

Table	1,	we	made	an	attempt	 to	 summarize	 and	 compare	 the	different	models	

focusing	on	their	biophysical	and	dynamical	properties.	However,	it	is	important	

to	note	that	other	relevant	models	(including	variations	of	 the	ones	considered	

herein)	have	been	used	to	explain	different	phenomenological	aspects	of	resting-

state	activity	not	considered	in	the	current	review	(Petkoski	and	Jirsa,	Freyer	et	

al.,	2011,	Deco	et	al.,	2012,	Senden	et	al.,	2012,	Nakagawa	et	al.,	2014,	Hindriks	et	

al.,	2015b,	Vasa	et	al.,	2015,	Vuksanovic	and	Hovel,	2015,	Robinson	et	al.,	2016).	
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Table	1	–	Comparison	between	different	models	of	resting-state	in	terms	of	biophysical	properties,	
dynamical	scenario	and	validation	steps.		
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i. At	the	brink	of	multi-stability		

Starting	with	the	most	detailed	generative	model,	Deco	and	Jirsa	(2012)	used	a	

network	of	 spiking	neurons	 (Izhikevich	and	Edelman,	2008)	representing	each	

brain	 area	 as	 a	 pool	 of	 mutually	 interconnected	 excitatory	 and	inhibitory	

neurons	 (Brunel	 and	 Wang,	 2001).	 When	 uncoupled,	 the	 neural	 pools	 are	

characterized	by	a	stable	pattern	of	low	firing	activity	in	all	cortical	areas.	As	the	

coupling	between	areas	increases,	the	collective	behavior	of	spiking	neurons	can	

settle	 into	 new	 patterns	 of	 high	 firing	 activity	 (the	 so-called	 ghost	 attractors),	

while	 the	 state	 of	 low	 firing	 activity	 is	 still	 stable.	 In	 this	 critical	 range	 of	

coupling,	 the	 system	 is	 at	 the	 brink	 of	 multi-stability	 (where	 different	 stable	

states	 co-exist)	 and	 small	 noisy	 perturbations	 can	 induce	 transitions	 between	

states,	 leading	 to	 slow	 fluctuations	 that	 modulate	 the	 hemodynamic	 signal,	

reproducing	the	empirical	FC	obtained	from	fMRI.	

With	a	similar	bifurcation	diagram,	the	Dynamic	Mean	Field	Model	(DMF)	(Deco	

and	Jirsa,	2012,	Deco	et	al.,	2013,	Hansen	et	al.,	2015)	reduces	the	complexity	of	

the	spiking	neurons	model	 to	a	 small	 set	of	differential	equations	representing	

the	ensemble	dynamics	in	each	cortical	area,	leading	to	similar	results.		

In	Hansen	 et	 al.	 (2015),	 the	 dynamic	mean-field	model	was	modified	 to	 adopt	

enhanced	non-linearity	in	order	to	obtain	a	better	fit	with	the	FCD	matrix. 

In	brief,	these	works	propose	a	common	scenario	in	which	the	brain	is	a	multi-

stable	dynamical	 system	and	 the	phenomena	observed	at	 rest	are	 the	 result	of	

noise-driven	 explorations	 of	 its	 dynamical	 repertoire.	 So	 far,	 the	 dynamics	

occurring	 at	 the	 faster	 timescales	 of	 neurophysiological	 rhythms	 has	 not	 been	

explored.		
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ii. Intermittent	self-organization	from	chaos	

Considering	 the	 biophysical	 properties	 of	 the	 neuronal	 membrane,	 the	

conductance-based	 model	 defines	 the	 membrane	 potential	 of	 excitatory	 and	

inhibitory	 populations	 of	 neurons	 as	 a	 function	 of	 ionic	 conductance	 through	

voltage-gated	 and	 ligand-gated	 ion	 channels	 as	well	 as	 passive	 conductance	 of	

leaky	 ions	 (Hodgkin	 and	 Huxley,	 1952,	 Breakspear	 et	 al.,	 2003,	 Honey	 et	 al.,	

2007,	Honey	et	al.,	2009).	Simulated	activity	at	the	 local	 level	was	described	as	

chaotic	with	self-organizing	patterns	emerging	spontaneously	and	intermittently	

from	the	chaotic	system	(Honey	et	al.,	2007,	Honey	et	al.,	2009).	Notably,	when	

computing	 inter-area	 correlations	 between	 the	 simulated	 hemodynamic	

responses,	significant	agreement	with	fMRI	FC	was	found.		

Investigating	 the	 temporal	 dynamics	 of	 FC,	 Zalesky	 et	 al.	 (2014)	 used	 the	

conductance-based	model	on	macaque	connectivity	and	showed	the	emergence	

of	 coordinated	 fluctuations	 in	 FC	 akin	 to	 those	 seen	 in	 human	 data	 from	 the	

Human	 Connectome	 Project.	 Addressing	 the	 faster	 timescales	 of	

neurophysiological	rhythms,	Gollo	and	Breakspear	(2014)	and	Gollo	et	al.	(2014)	

found	that,	for	intermediate	coupling	strengths	where	resonance	and	frustration	

coexist,	 different	meta-stable	 synchronization	 patterns	 arise	 depending	 on	 the	

time	delay	between	brain	areas	and	the	network	size.		

Taken	together,	these	studies	make	proof	of	the	powerful	dynamical	complexity	

of	 the	 conductance-based	 model	 to	 study	 the	 emergence	 of	 self-organizing	

patterns	from	chaos,	a	likely	scenario	to	explain	resting-state	activity.	

iii. In	the	vicinity	of	a	supercritical	bifurcation	
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Adopting	 a	 perspective	 from	 dynamical	 systems’	 theory	 Ghosh	 et	 al.	 (2008b)	

proposed	 a	 reduced	 model	 where	 each	 brain	 area,	 when	 uncoupled,	 is	 a	

dynamical	 system	operating	 in	 an	 equilibrium	 state	 (fixed	point).	On	 receiving	

sufficient	 input,	 the	 neural	 population	 is	 perturbed	 from	 its	 equilibrium	 state	

and	 starts	 oscillating	 (engaging	 in	 a	 limit-cycle).	 This	 type	 of	 behavior	 can	 be	

represented	mathematically	by	a	supercritical	bifurcation,	which	represents	the	

transition	 between	 a	 fixed	 point	 and	 a	 limit-cycle.	 The	 system	 returns	 to	 the	

equilibrium	 in	 a	 characteristic	 transient	manner	 that	 depends	 on	 the	 dynamic	

repertoire	of	the	system,	which	is	shaped	by	the	spatial	and	temporal	properties	

of	 the	 SC	 (links	 and	 transmission	 delays).	 Given	 the	 frequency	 of	 oscillations	

observed	 with	 EEG	 (most	 power	 at	 10Hz	 during	 rest)	 and	 the	 large-scale	

structure	 of	 resting-state	 networks	 (up	 to	 20cm),	 the	 authors	 report	 the	

importance	 of	 considering	 the	 time	 delays	 between	 brain	 areas	 induced	 by	 a	

finite	 propagation	 speed.	 The	 authors	 test	 this	 scenario	with	 different	 neural-

mass	models	with	 a	 supercritical	 bifurcation,	 namely	 Hopf	 oscillators,	Wilson-

Cowan	systems,	and	FitzHugh-Nagumo	systems,	all	providing	similar	results. In	

brief,	 in	 this	 approach	 each	 population	 is	 characterized	 by	 a	 degree	 of	

excitability,	 in	 which	 the	 increase	 of	 excitation	 parameterizes	 the	 onset	 of	

oscillations	 emerging	 from	 a	 quiescent	 state.	 When	 the	 populations	 are	

embedded	 in	 a	 network	 and	 operating	 near	 the	 critical	 boundary,	 oscillations	

emerge	and	dissipate,	leading	to	slow	envelope	fluctuations	shaped	by	the	space-

time	structure	of	the	couplings.		

This	dynamical	scenario	was	also	considered	in	the	works	by	Deco	et	al.	(2016b)	

and	(Deco	et	al.,	2016a),	where	brain	areas	operate	near	the	critical	border	of	a	

supercritical	Hopf	bifurcation.	While	Ghosh	et	al.	(2008b)	consider	a	fundamental	
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frequency	 at	 10Hz	 (to	match	 the	peak	of	EEG	 resting-state	 frequency	 spectra),	

Deco	et	al.	(2016b)	consider	a	fundamental	frequency	in	the	range	of	meaningful	

resting-state	BOLD	fluctuations,	i.e.	around	0.05Hz.	Since	it	focused	on	the	slow	

mesoscopic	 behavior	 observed	 in	 fMRI,	 time	 delays	 were	 neglected.	 Notably,	

simulations	with	 this	Ultra-slow	Hopf	model	not	only	show	an	excellent	 fit	with	

the	 empirical	 FC	 but	 also	 display	 a	 rich	 FC	 dynamics,	 with	 time-dependencies	

that	fit	the	empirical	observations.		

More	recently,	Deco	et	al.	 (2016a)	have	proposed	a	Multi-frequency	Hopf	Model	

where	 this	same	scenario	 is	contemplated	but	considering	 that	brain	areas	can	

resonate	 at	 one	 or	 multiple	 fundamental	 frequencies,	 ranging	 between	 2	 and	

30Hz	in	agreement	with	the	spectral	profile	of	resting-state	activity	revealed	by	

MEG.	In	this	model,	sporadic	transitions	to	the	oscillatory	state	are	accompanied	

by	 an	 increase	 in	 the	 power	 of	 the	 corresponding	 oscillations,	 leading	 to	 slow	

and	aperiodic	envelope	fluctuations	of	narrow-band	carrier	oscillations.	

Exploring	the	network	dynamics	beyond	the	resting-state,	Spiegler	et	al.	(2016)	

investigated	the	result	of	focal	stimulation	on	a	whole-brain	network	model	with	

long-range	 heterogeneous	 SC	 together	 with	 short-range	 homogeneous	 SC.	 At	

rest,	 the	 operating	 point	 of	 each	 network	 node	 is	 at	 the	 same	 distance	 to	 a	

supercritical	 Andronov-Hopf	 bifurcation.	 An	 excitatory	 stimulation	 pushes	 the	

system	closer	to	criticality	by	selectively	moving	the	operating	point	of	particular	

network	nodes	closer	to	the	Andronov-Hopf	bifurcation.	Because	the	stimulation	

propagates	 via	 the	 heterogeneous	 SC,	 some	 stimulation	 sites	 result	 in	

widespread	 and	 long-lasting	 patterns	 that	 shape	 dynamically	 responsive	 brain	

networks,	 some	 of	 which	 corresponding	 to	 known	 resting-state	 networks	

(Spiegler	et	al.,	2016).			
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In	 sum,	 this	 simple	 scenario	 where	 brain	 areas	 operate	 in	 the	 vicinity	 of	 a	

supercritical	 bifurcation	 provides	 a	 mechanistic	 explanation	 for	 the	 different	

spatial,	temporal	and	spectral	phenomena	observed	in	the	brain,	not	only	at	rest	

but	also	following	stimulation,	so	it	is	likely	to	become	a	strong	candidate	in	the	

new	generation	of	whole-brain	network	models.	

iv. Meta-stable	Chimera	Synchronization	

From	 a	 different	 mechanistic	 perspective,	 Deco	 et	 al.	 (2009)	 considered	 the	

behavior	 of	 coupled	Wilson-Cowan	 units	 with	 self-sustained	 oscillations	 in	 the	

gamma-frequency	 band	 in	 agreement	 with	 experimental	 (Buhl	 et	 al.,	 1998,	

Fisahn	 et	 al.,	 1998)	 and	 theoretical	 neurophysiological	 studies	 (Brunel	 and	

Wang,	 2003).	 When	 coupled	 in	 a	 neuroanatomical	 network	 structure	 and	 for	

sufficiently	weak	coupling,	different	sub-networks	can	temporarily	synchronize	

while	 the	 whole	 network	 never	 fully	 synchronizes	 (in	 a	 so-called	 Chimera	

regime)(Shanahan,	2010).	With	 a	 sufficient	degree	of	noise	 and	 for	 sufficiently	

large	 delays,	 the	 system	 switches	 between	 different	 partially	 synchronized	

network	 states	 (defined	 by	 the	 SC),	 which	 results	 in	 correlated	 BOLD	 signal	

within	sub-networks.	

In	order	to	further	explore	the	mechanisms	of	Chimera	synchronization,	Cabral	

et	al.	(2011)	used	coupled	Kuramoto	Gamma-band	Oscillators	to	show	that,	even	

in	 the	 absence	 of	 noise,	 the	 space-time	 structure	 of	 the	 human	 brain	 network	

supports	 a	 robust	 meta-stable	 dynamics	 where	 different	 sub-networks	

temporally	 synchronize	 and	 desynchronize	 over	 time,	 on	 a	 time-scale	 much	

slower	 (<0.1Hz)	 than	 the	 local	 fast	 gamma-band	 oscillations.	 This	meta-stable	

regime	 (where	 partially	 synchronized	 states	 are	 only	 stable	 for	 a	 limited	 time	
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period)	induces	spontaneous	(noise-free)	fluctuations	in	the	synchrony	degree	of	

sub-networks	leading	to	correlated	slow	BOLD-signal	fluctuations	(Cabral	et	al.,	

2011,	Wildie	and	Shanahan,	2012).		

In	 the	 light	 of	 MEG	 observations,	 metastable	 Chimera	 synchronization	 was	

further	 found	 to	 generate	 slow	 envelope	 fluctuations	 at	 different	 carrier	

frequencies	 fairly	 reproducing	 frequency-specific	 envelope	 FC	 (Cabral	 et	 al.,	

2014b).	This	occurs	because	brain	areas	alternate	between	their	intrinsic	limit-

cycle	 at	 40Hz	 and	 the	 collective	 limit-cycles	 of	 synchronized	 sub-networks	

(which	occur	at	reduced	frequencies	due	to	the	time	delays	between	brain	areas	

(Niebur	 et	 al.,	 1991)).	 In	 this	 scenario,	 resting-state	brain	 rhythms	are	divided	

into:	 i)	 gamma-band	 oscillations	 as	 the	 intrinsic	 frequency	 of	 a	 brain	 area,	 ii)	

alpha-	 and	 beta-band	 oscillations	 as	 collective	 network	 frequencies,	 and	 iii)	

ultra-slow	 aperiodic	 envelope	 fluctuations	 generated	 by	 meta-stability	 of	

synchronized	sub-systems.	

More	 recently,	 Ponce-Alvarez	 et	 al.	 (2015)	 considered	 Ultra-slow	 Kuramoto	

Oscillators	 with	 fundamental	 frequency	 at	 0.05Hz,	 revealing	 the	 transient	

formation	 and	 dissolution	 of	 multiple	 communities	 of	 synchronized	 brain	

regions. Although	 this	 approach	 explicitly	 neglected	 the	 contribution	 of	 faster		

neurophysiological	 rhythms,	 it	 found	consistent	approximation	of	 the	 temporal	

and	spatial	FC	patterns	of	empirical	fMRI	data.	

In	sum,	these	studies	show	that	resting-state	activity	can	be	interpreted	from	the	

perspective	of	synchronization	phenomena	in	complex	networks.	

v. Connectome-specific	harmonic	waves	
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Recently,	 Atasoy	 et	 al.	 (2016)	 demonstrated	 that	 the	 collective	 dynamics	 of	

human	 cortical	 activity	 at	 the	 macroscopic	 scale	 can	 be	 predicted	 by	 the	

eigendecomposition	of	the	Laplace	operator	of	the	Structural	Connectome.	This	

mathematical	 framework	 lies	 at	 the	 heart	 of	 most	 self-organizing	 patterns	 in	

nature,	including	theories	of	heat,	light,	sound,	electricity,	magnetism,	gravitation	

and	 fluid	 mechanics	 (Stewart,	 1999).	 Remarkably,	 different	 resting-state	

networks	 are	 matched	 by	 the	 spatial	 patterns	 (Laplacian	 eigenfunctions)	

corresponding	 to	 certain	 natural	 frequencies	 (Laplacian	 eigenvalues)	 of	 the	

Structural	 Connectome	 (obtained	 at	 high-resolution,	 with	 more	 than	 20,484	

nodes)(Atasoy	 et	 al.,	 2016).	 This	 work	 presents	 evidence	 that	 Laplacian	

eigenfunctions	can	provide	a	simple	yet	almost	universal	description	for	patterns	

of	synchrony	throughout	the	cortex	in	the	resting	state.	In	order	to	demonstrate	

the	 emergence	 of	 these	patterns	 from	 the	 cortico-cortical	 and	 thalamo-cortical	

interactions,	 the	 global	 network	 behaviour	 was	 modelled	 with	 a	 neural	 field	

model	 of	 coupled	 excitatory	 and	 inhibitory	 neural	 populations	 (see	 the	

Supplementary	Information	for	further	model	details).	

vi. Noise	deviations	around	the	equilibrium	

A	different	approach	to	explain	resting-state	activity	was	proposed	in	Cabral	et	

al.	(2012)	where	noise-induced	perturbations	at	rest	are	assumed	to	be	so	small	

that	they	only	induce	firing	rate	deviations	around	the	stable	asynchronous	state	

(fixed	 point),	 with	 a	 characteristic	 exponentially	 decaying	 damping	 time-scale	

back	 to	 the	 fixed	 point.	 The	 firing	 rate	 deviations	 around	 the	 fixed	 point	 are	

described	by	a	Linear	Stochastic	Model	(see	Supplementary	Information),	which	

can	 be	 reduced	 from	 a	 Wilson-Cowan	 system	 by	 removing	 the	 inhibitory	
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populations	and	saturation	function	(Fernandez	Galan,	2008,	Goni	et	al.,	2014).	

Since	brain	areas	within	a	sub-network	receive	correlated	noisy	input	from	the	

structural	 connectivity,	 for	a	 critical	degree	of	 coupling	 they	display	correlated	

fluctuations	in	firing	rate,	leading	to	a	fair	approximation	of	the	empirical	grand-

average	 FC	 (Cabral	 et	 al.,	 2012,	 Messe	 et	 al.,	 2014).	 However,	 the	 Linear	

Stochastic	Model	fails	to	reproduce	the	typical	FCD	patterns	(Hansen	et	al.,	2015)	

and	faster	neurophysiological	rhythms	are	neglected.	

vii. Spatial	autoregression	

Without	 any	 implicit	 dynamics,	 the	 simultaneous	 autoregressive	 (SAR)	 model	

expresses	the	BOLD	signal	as	a	purely	linear	combination	of	noise	fluctuations	in	

all	regions	(Messe	et	al.,	2014,	Messe	et	al.,	2015).	Notably,	this	‘model’	performs	

as	good	or	even	better	than	other	models	in	predicting	the	empirical	FC	from	the	

SC	(Messe	et	al.,	2015).	 	This	happens	because	the	ability	of	different	models	to	

predict	 the	 grand-average	 FC	 from	 SC	 can	 be	 reduced	 to	 a	 simple	 stationary	

linear	process	associated	to	the	SC	matrix	that	is	implicit	to	all	models.	Although	

this	 study	 is	 important	 to	 depict	 the	 core	 similarity	 between	 all	 models,	 the	

investigation	 of	 the	 genesis	 of	 resting-state	 activity	 cannot	 be	 assessed	 in	

phenomenological	 terms	 with	 this	 model,	 since	 it	 disregards	 any	 dynamical	

aspect.	

 Validation	of	Resting-state	models	b.

With	 the	 availability	 of	 human	 Structural	 Connectivity	 and	 the	 corresponding	

fMRI-based	 Functional	 Connectivity,	 a	 number	 of	 whole-brain	 computational	

models	have	focused	in	predicting	the	FC	from	the	underlying	SC	and	thus,	led	to	

the	idea	that	model	performance	consists	in	optimizing	the	correlation	between	
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the	simulated	and	empirical	FC	patterns	(Honey	et	al.,	2009,	Cabral	et	al.,	2011,	

Deco	et	al.,	2013,	Messe	et	al.,	2015,	Ponce-Alvarez	et	al.,	2015).	This	has	misled	

some	 to	 believe	 that	 models	 serve	 (only)	 as	 a	 tool	 to	 predict	 function	 from	

structure	(Messe	et	al.,	2014),	disregarding	the	powerful	capacity	of	bottom-up	

computational	 models	 to	 investigate	 physiological	 mechanisms	 occurring	 in	

nature.	 Indeed,	 Messe	 et	 al.	 (2015)	 have	 shown	 that	 even	 a	 linear	 stochastic	

model	can	successfully	predict	the	grand-average	FC.	Although	this	simple	model	

can	be	useful	to	make	specific	predictions	of	SC	effects	on	FC,	it	does	not	generate	

any	tyoe	of	dynamics	so	it	is	useless	in	phenomenological	terms.		

Before	the	availability	of	whole-brain	human	SC-FC,	the	models	were	adjusted	to	

fit	 other	 aspects	 of	 resting-state	 dynamics,	 namely	 in	 terms	 of	 complexity,	

number	 of	 components,	 cluster	 synchronization	 and	 frequency	 of	 slow	

fluctuations	 (Honey	 et	 al.,	 2007,	 Ghosh	 et	 al.,	 2008a,	 b,	 Deco	 et	 al.,	 2009).	 The	

focus	 of	 such	 whole-brain	 network	 models	 was	 to	 investigate	 the	 biophysical	

mechanisms	leading	to	the	emergence	of	slow	spatiotemporal	patterns,	without	

any	 heuristic	measure	 to	 fit	 beyond	 the	 0.1Hz.	 Notably,	 all	 these	models	were	

later	 found	 to	 successfully	 predict	 the	 FC	 from	 SC,	 reinforcing	 their	

phenomenological	potential	(Messe	et	al.,	2015).	

Given	the	growing	experimental	evidence	reviewed	in	the	previous	sections	and	

the	wide	range	of	candidate	scenarios	described	above,	we	consider	that	resting-

state	 models	 must	 go	 through	 a	 common	 set	 of	 validation	 steps	 in	 order	 to	

refresh	 the	 list	 of	 accepted	 candidates.	 We	 consider	 this	 validation	 must	

contemplate	3	dimensions:	Spatial,	Spectral	and	Temporal	(in	Table	1	we	report	

whether	any	of	these	3	validation	steps	has	been	successfully	addressed):	

i. Spatial	Validation	
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The	Grand-average	FC	matrix	contains	 important	spatial	 information	regarding	

which	 areas	 appear	more	 correlated	 over	 time.	 This	 matrix	 is	 strongly	 linked	

with	the	SC	and	the	accuracy	of	the	fitting	between	simulated	and	empirical	FC	

patterns	 may	 vary	 widely	 according	 to	 the	 parcellation	 considered	 or	 to	 the	

quality	of	the	SC,	so	any	quantitative	comparison	between	models	must	rely	on	

the	same	empirical	data.	In	other	words,	in	purely	bottom-up	models,	the	lack	of	

important	 inter-hemispheric	 links	 in	 the	 SC	 will	 impose	 a	 limit	 up	 to	 which	

models	 can	 reach	 in	 fitting	 the	 FC.	 The	 same	 occurs	 if	 important	 networks	

structures	 are	 not	 captured	 with	 sufficient	 detail	 in	 the	 parcellation	 scheme.	

Nevertheless,	 if	 caution	 is	 taken	 in	 its	 interpretation,	 the	 prediction	 of	 FC	

patterns	in	spatial	terms	should	remain	an	important	step	towards	the	heuristic	

validation	of	computational	models.	

Beyond	 the	 FC	 matrix,	 the	 spatial	 maps	 of	 resting-state	 networks	 have	 been	

consistently	 identified	 in	 fMRI	 studies	 using	 ICA-based	methods	 (Beckmann	 et	

al.,	 2005,	Damoiseaux	 et	 al.,	 2006).	Moreover,	 the	 same	 resting-state	networks	

have	 been	 identified	 by	 applying	 ICA	 to	 the	 power	 envelopes	 of	 MEG	 signals	

(Brookes	 et	 al.,	 2011b).	 As	 such,	 an	 additional	 step	 towards	 the	 validation	 of	

resting-state	 models	 in	 spatial	 terms	 would	 be	 the	 detection	 of	 meaningful	

functional	networks	using	ICA.	

	

ii. Temporal	Validation	

As	 discussed	 above,	 resting-state	 FC	 is	 known	 to	 evolve	 over	 time,	with	 time-

dependencies	 being	 revealed	 by	 reoccurring	 patterns	 in	 the	 FCD	 matrix.	

However,	 the	methods	 for	 the	 analysis	 of	 FCD	have	only	 recently	begun	 to	 get	

established.	 While	 there	 is	 controversy	 regarding	 the	 accurate	 methods	 to	
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measure	 time-evolving	 FC	 (either	 using	 sliding-window	 correlation,	 coherence	

connectivity	or	multiplication	of	 temporal	derivatives),	 it	 is	 important	 to	verify	

which	of	 the	 existing	models	 are	 able	 to	 replicate	 the	 checkerboard	pattern	of	

FCD	matrices.	Since	the	FCD	matrices	are	computed	on	a	time-versus-time	basis,	

comparison	 between	 simulated	 and	 empirical	 FCD	 matrices	 cannot	 be	

performed	 using	 similarity	 or	 correlation	 measures.	 As	 such,	 the	 current	

approach	is	to	compare	the	histograms	of	FCD	values	(Hansen	et	al.,	2015,	Deco	

et	 al.,	 2016a,	 Deco	 and	 Kringelbach,	 2016,	 Deco	 et	 al.,	 2016b).	 Indeed,	 the	

difference	between	FCD	histograms	has	 shown	 to	be	a	 sensitive	measure	 to	 fit	

the	 models	 as	 it	 considers	 the	 time-dependencies	 of	 the	 FC	 (Figure	 6).	 If	 the	

patterns	of	FC(t)	are	constant	over	time	(i.e.	no	FC	dynamics),	the	histogram	of	

FCD	 values	 appears	 shifted	 to	 1.	 On	 the	 other	 hand,	 if	 FC(t)	 patterns	 are	

unrelated	 over	 time,	 the	 FCD	 distributions	 are	 shifted	 to	 zero.	 Instead,	 the	

histogram	of	empirical	resting-state	FCD	matrices	(shown	in	Figure	6B)	displays	

a	peak	at	 intermediate	values	 (corresponding	 to	 the	periods	of	weak	 temporal	

similarities)	 together	 with	 a	 long	 tail	 towards	 high	 FCD	 values,	 indicating	 the	

existence	 of	 periods	 of	 high	 similarity	 between	 FC(t)	 patterns.	 Computing	 the	

Kolmogorov-Smirnov	 distance	 (KS-distance)	 between	 empirical	 and	 simulated	

FCD	 histograms	 (Figure	 6A,	 blue	 line)	 allows	 searching	 for	 the	 range	 of	

parameters	 where	 the	 models	 generate	 time-evolving	 FC(t)	 patterns	 with	

temporal	similarities	matching	the	empirical	ones	(Hansen	et	al.,	2015,	Deco	et	

al.,	2016a,	Deco	and	Kringelbach,	2016,	Deco	et	al.,	2016b).	
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Figure	6	–	Fitting	the	model	to	the	histogram	of	FCD	values.	(A)	The	figure	shows	the	fitting	of	the	Hopf	
Model	(Deco	 et	 al.,	 2016b)	 to	 empirical	 fMRI	 data	 as	 a	 function	 of	 the	 global	 coupling	 parameter,	 G.	 The	
fitting	is	evaluated	either	as	the	correlation	with	the	empirical	FC	matrix	(black	line)	or	as	the	KS-distance	
between	 histograms	 of	 FCD	 values	 (blue	 line).	 Below,	 the	 grand-average	 FC	matrix,	 FCD	matrix	 and	 FCD	
histogram	are	shown	for	3	working	points	(weak,	optimal	and	strong	G).	(B)	Empirical	FC	and	FCD	matrices	
together	with	the	FCD	histogram	obtained	from	a	single	healthy	subject.	Figure	reproduced	from	(Deco	et	
al.,	2016b).	

Although	 the	histogram	of	FCD	values	provides	valuable	 information	regarding	

the	 temporal	 dependencies	 of	 FC	 patterns	 in	 general	 terms,	 it	 misses	 several	

aspects	 of	 the	 FC	 dynamics,	 namely	 the	 characterization	 of	 the	 different	 FC	

patterns	 in	 terms	 of	 lifetime,	 probability	 and	 switching	 profiles.	 In	 that	 sense,	

assessing	 different	 FC	 states	 by	 applying	 a	 k-means	 clustering	 or	 HMM	 to	

simulated	 data	 would	 provide	 an	 important	 validation	 of	 the	 FC	 dynamics	

generated	by	resting-state	models	(Allen	et	al.,	2014,	Baker	et	al.,	2014,	Hansen	

et	al.,	2015).		
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iii. Spectral	Validation	

We	understand	by	spectral	validation	any	measure	that	considers	the	frequency	

spectrum	 of	 resting-state	 rhythms,	 ranging	 from	 the	 fast	 oscillations	 observed	

with	 electrophysiology,	 EEG	 and	 MEG	 (mainly	 in	 the	 alpha,	 beta	 and	 gamma	

ranges)	 to	 the	 slow	 aperiodic	 fluctuations	 of	 BOLD	 signals	 and	 narrow-band	

envelopes	 (typically	 below	 0.1Hz)	 (Engel	 et	 al.,	 2013).	 Although	 most	 models	

have	 proposed	 mechanisms	 for	 the	 origin	 of	 slow	 aperiodic	 BOLD	 signal	

fluctuations,	the	dynamics	at	the	local	level	has	been	left	largely	unconstrained.	

Messe	 et	 al.	 (2015)	 have	 made	 an	 attempt	 to	 compare	 the	 power	 spectra	 of	

simulated	data	obtained	with	different	computational	models	showing	a	variety	

of	oscillatory	behaviors	 (Figure	7Error!	 Reference	 source	 not	 found.).	While	

the	aim	of	resting-state	models	is	not	necessarily	to	quantitatively	replicate	the	

power	 spectrum	 of	 brain	 activity	 during	 rest,	 it	 is	 important	 to	 consider	 it	 at	

least	 qualitatively,	 in	 order	 to	 investigate	 the	 link	 between	 slow	 envelope	

fluctuations	 and	 the	 underlying	 oscillatory	 activity	 observed	 in	 resting-state	

MEG	studies.	
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Figure	7	-		Power	spectra	of	simulated	activity	obtained	with	different	computational	models	(Messe	
et	 al.,	 2015).	 Spectra	 were	 obtained	 at	 the	 point	 of	 optimal	 fit	 with	 the	 grand-average	 FC	 matrix	 and	
averaged	across	all	regions.	Figure	reproduced	from	(Messe	et	al.,	2015).	

One	 approach	 to	 perform	 a	 validation	 in	 the	 spectral	 domain	 is	 to	 obtain	 the	

frequency-specific	envelope	FC	matrices	(see	section	2.a)	and	compare	with	the	

ones	 obtained	 empirically	 from	MEG	 (Cabral	 et	 al.,	 2014b,	 Deco	 et	 al.,	 2016a).	

Importantly,	 rather	 than	 aiming	 at	 an	 optimal	 quantitative	 fit	 (which	 largely	

depends	on	the	bands	and	the	number	of	brain	areas	considered),	this	measure	

should	be	used	 to	search	 for	 the	range	of	parameters	where	 the	models	better	

explain	the	data	in	phenomenological	terms.	

 A	new	generation	of	resting-state	models	c.

By	 refreshing	 the	 list	 of	 candidate	models	 of	 resting-state	 activity	 through	 the	

incorporation	of	the	spatial,	temporal	and	spectral	constrains	proposed	herein,	a	

better	 insight	about	 the	mechanisms	occurring	 in	 the	complexity	of	 the	resting	

brain	may	be	assessed.	As	can	be	seen	in	Table	1,	different	models	have	shown	to	

generate	 simulated	 brain	 activity	 with	 a)	 a	 grand-average	 FC	 matrix	 of	 BOLD	

signals	 fitting	 the	empirical	one,	b)	 slow	aperiodic	power	 fluctuations	of	 faster	

oscillatory	 signals,	 and/or	 c)	 time-evolving	 patterns	 of	 FC.	 Since	 all	 models	

achieve	 a	 fairly	 good	 prediction	 of	 the	 static	 FC,	 the	 selective	 process	 of	

candidate	models	occurs	at	the	level	of	FC	Dynamics	and	Envelope	FC.		

In	general	terms,	FC	Dynamics	is	obtained	when	the	simulated	dynamics	displays	

different	(at	 least	 two)	states	of	FC	and	the	system	switches	between	FC	states	

on	a	slow	time-scale.	This	is	achieved	when	models	operate	in	a	critical	regime,	

such	 that	sporadic	 transitions	at	 the	critical	border	 induce	a	reconfiguration	of	

FC	patterns.	Notably,	most	of	the	proposed	mechanistic	scenarios	operate	at	the	

edge	of	 criticality,	 so	 apart	 from	 the	Spatial	Autoregressive	Model	 (Messe	et	 al.,	
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2014)	 which	 has	 clearly	 no	 implicit	 dynamics,	 all	 the	 other	 models	 -even	 the	

ones	 not	 specifically	 tested	 for	 Dynamic	 FC-	 are	 likely	 to	 display	 time-

dependencies	in	the	FCD	matrix.	Note	however,	that	when	the	model	parameters	

have	been	optimized	to	fit	the	static	FC	(which	occurs	for	a	much	broader	range	

of	parameters),	it	is	likely	that	they	need	to	be	further	adjusted	in	order	to	match	

the	histogram	of	empirical	FCD	values	(see	Figure	6).	For	instance,	in	Hansen	et	

al.	 (2015),	 the	 parameters	 of	 the	 dynamical	 mean-field	 model	 were	 slightly	

modified	 to	 enhance	 non-linearities	 and	 obtain	 a	 better	 fit	 of	 the	 empirical	 FC	

Dynamics.	

Regarding	 the	 spectral	 validation,	 Envelope	 FC	 can	 only	 be	 meaningfully	

obtained	if	a)	the	models	generate	oscillations	in	the	range	of	neurophysiological	

rhythms	and	b)	the	power	of	these	oscillations	is	modulated	over	space	and	time	

by	the	SC.	Even	if	arising	from	different	generative	mechanisms,	several	models	

display	 oscillations	 at	 the	 node	 level,	 namely	 the	 conductance-based	 model	

(Honey	et	al.,	2007),	the	FitzHugh-Nagumo	model	(Ghosh	et	al.,	2008b),	the	Hopf	

model	(Deco	et	al.,	2016a),	the	Wilson-Cowan	model	(Deco	et	al.,	2009)	and	the	

Kuramoto	 oscillators	 (Cabral	 et	 al.,	 2014b).	 Fluctuations	 in	 the	 power	 of	 such	

oscillations	occur	due	 to	 the	criticality	of	 the	system	and	can	be	divided	 into	2	

main	scenarios:	a)	damped	oscillations	–i.e.	the	oscillations	emerge	and	dissipate	

from	 a	 quiescent	 equilibrium	 state	 –	 (Honey	 et	 al.,	 2007,	 Ghosh	 et	 al.,	 2008b,	

Deco	et	al.,	2016a)	or	b)	frequency	modulation	of	self-sustained	oscillations	due	

to	 metastable	 synchronization	 in	 the	 presence	 of	 time-delays	 (Cabral	 et	 al.,	

2014b).	

In	addition,	while	in	more	mesoscopic	models	the	fast	oscillations	were	explicitly	

neglected	(Cabral	et	al.,	2012,	Ponce-Alvarez	et	al.,	2015,	Deco	et	al.,	2016b),	they	
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have	been	simply	disregarded	in	the	network	of	spiking	neurons	(Deco	and	Jirsa,	

2012)	 or	 not	 specifically	 addressed	 in	 the	 neural	 field	 model	 by	 Atasoy	 et	 al.	

(2016),	so	these	models	may	be	adapted	and/or	extended	to	include	oscillations	

and	eventually	display	realistic	Envelope	FC	patterns.	

In	 conclusion,	 while	 we	 are	 not	 able	 in	 the	 current	 review	 to	 predict	 which	

mechanism	 is	more	 likely	 to	 be	 at	 the	 genesis	 of	 resting-state	 activity,	we	 can	

predict	which	ones	will	most	 likely	 fail	 and	hence	 restrict	 the	 list	 of	 candidate	

scenarios.	 Indeed,	 models	 that	 explicitly	 neglected	 the	 faster	 time-scales	 of	

neurophysiological	 rhythms	 focusing	 solely	 on	 fMRI	 observations,	 namely	 the	

Spatial	 Autoregressive	 Model,	 the	 Linear	 Stochastic	 Model,	 and	 the	 Hopf	 or	

Kuramoto	Models	with	only	Ultra-Slow	 (<0.1Hz)	oscillations	 are	 likely	 to	be	 left	

out,	since	they	do	not	allow	addressing	all	the	time-scales	implicated	in	resting-

state	activity,	following	to	the	latest	empirical	observations.	

Discussion 

Resting-state	activity	has	been	the	subject	of	investigation	of	many	experimental	

and	theoretical	works	not	only	for	 its	 intriguing	network	dynamics	but	also	for	

its	 implications	 in	 the	 brain’s	 functional	 organization.	 Beyond	 the	 static	

correlation	between	BOLD	signals,	deeper	insights	 into	the	FC	dynamics	at	rest	

and	the	investigation	of	faster	oscillatory	components	using	MEG	have	unveiled	

new	 features	 of	 resting-state	 dynamics	 that	 can	 serve	 as	 novel	 constrains	 to	

depict	the	genesis	of	resting-state	activity	and,	ultimately,	better	understand	the	

dynamical	mechanisms	underlying	functional	connectivity	in	the	brain.		

1. A	single	SC	for	multiple	FCs	
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From	the	perspective	of	dynamical	systems’	theory,	the	live	brain	can	be	seen	as	

a	system	exhibiting	multi-stability:	the	same	neuroanatomical	structure	supports	

different	 stable	 dynamical	 states,	 each	 characterized	 by	 the	 activation	 of	 a	

specific	 functionally-relevant	 network	 (i.e.	 visual	 network,	 motor	 network,	

attention	 network,	 default	 mode	 network,	 etc.).	 Sustained	 by	 neuroimaging	

evidence	 it	 is	 now	 widely	 accepted	 that	 the	 brain	 uses	 a	 combination	 of	

specialized	local	processing	(segregation)	and	large-scale	functional	assimilation	

(integration)	to	transform	brain	signals	into	thoughts	or	actions	(Sporns,	2011).	

On	 this	basis,	 segregated	brain	areas	make	use	of	 the	white	matter	anatomical	

pathways	 in	 order	 to	 form	 temporary	 functional	 coalitions	 to	 convey	

information.	However,	how	brain	areas	selectively	 couple	 to	each	other	to	 form	

different	functional	networks	remains	unclear.			

2. The	importance	of	the	resting-state	

Even	 if	 no	 specific	 task	 is	 being	 undertaken	 while	 we	 are	 at	 rest,	 the	 brain	

activity	 in	 this	specific	state	has	unveiled	 intriguing	dynamical	 features	 leading	

to	a	paradigm	shift	in	the	way	we	look	at	brain	function.	Indeed,	instead	of	being	

in	 a	 stable	 low	 firing	 equilibrium	 while	 waiting	 for	 a	 new	 trigger,	 the	 brain	

displays	 the	 activation	 of	 different	 functionally-meaningful	 networks	 of	 brain	

areas,	 which	 are	 believed	 to	 reflect	 the	 dynamical	 repertoire	 of	 macro-scale	

brain	states,	intrinsically	shaped	by	the	neuroanatomical	structure	(Tognoli	and	

Kelso,	2014,	Deco	and	Kringelbach,	2016).	

Following	 the	growing	number	of	 studies	of	 resting-state	 activity,	 a	number	of	

theoretical	 works	 have	 aimed	 at	 investigating	 the	 biophysical	 mechanisms	

leading	 to	 the	 genesis	 of	 a	 similar	 dynamics	 in	 reduced	 network	models	 with	
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realistic	 (but	 low-dimensional)	 cortico-cortical	 connectivity.	 Since	 complex	

network	 dynamics	 cannot	 be	 easily	 assessed	 analytically,	 theoretical	 works	

resource	 to	 computational	 models	 in	 order	 to	 simulate	 the	 interplay	 between	

coupled	neural	masses.	 Importantly,	modeling	 the	 resting-state	 should	be	 seen	

only	 as	 a	 starting	 point	 (yet	 crucial)	 to	 understand	 brain	 network	 dynamics.	

Indeed,	the	resting	brain	can	rapidly	switch	to	a	task	by	activating	a	functionally-

relevant	network	in	response	to	a	specific	trigger.	As	such,	modeling	the	brain	as	

a	dynamical	system	must	ultimately	consider	its	dynamical	flexibility	to	rapidly	

activate	a	specific	brain	state	in	response	to	a	specific	input.	However,	in	order	to	

achieve	 such	 goal,	 it	 is	 important	 to	 first	 obtain	 an	 accurate	 picture	 of	 the	

complex	network	dynamics	occurring	in	the	brain	at	rest.		

3. Validation	of	resting-state	models	

With	 the	 recent	 but	 imperative	 inclusion	 of	 the	 temporal	 dimension	 in	 the	

analysis	 of	 resting-state	 FC	 and	 with	 the	 insights	 from	 MEG	 studies,	 existing	

dynamical	 models	 of	 spontaneous	 activity	 need	 to	 be	 re-evaluated.	 Here,	 we	

provide	an	overview	of	the	different	steps	to	analyse	the	FCD	or	envelope	FC,	so	

that	models	can	be	revised	in	order	to	consider	the	novel	constrains	imposed	by	

the	 latest	 empirical	 evidences.	 	 Indeed,	 even	 if	 these	 constrains	 were	 not	

imposed	when	the	models	were	developed,	and	even	 if	some	adaptations	must	

be	 undertaken,	 their	 mechanistic	 scenarios	 may	 remain	 valid	 in	

phenomenological	terms.	For	instance,	the	networks	of	spiking	neurons	used	by	

Deco	 and	 Jirsa	 (2012)	may	 display	 oscillatory	 behaviour	 in	 some	 of	 the	 ghost	

attractor	 states,	 and	 therefore	 reveal	 power	 fluctuations	 in	 the	 dynamics	 that	

were	 not	 considered	 in	 the	 analysis.	 Similarly,	 the	 self-organizing	 patterns	
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observed	with	 the	 conductance-based	model	 by	 Honey	 et	 al.	 (2009)	may	 also	

reveal	 power	 fluctuations	 in	 a	 given	 frequency	band.	 In	 terms	of	 FC	dynamics,	

the	 Kuramoto	model	with	 gamma	 oscillators	 (Cabral	 et	 al.,	 2014b)	 is	 likely	 to	

display	 different	 FC	 patterns	 when	 the	 different	 sub-networks	 synchronize.	

Therefore,	 all	 these	 models	 may	 potentially	 survive	 the	 validation	 process.	

Moreover,	 even	 a	 reduced	model	with	 no	 implicit	 neurophysiological	 rhythms	

may	 be	 adapted	 to	 include	 oscillations,	 without	 directly	 discarding	 its	

phenomenological	 scenario.	 Nevertheless,	 we	 can	 expect	 that	 a	 purely	 linear	

model	 without	 any	 implicit	 dynamics	 such	 as	 the	 SAR	 (Messe	 et	 al.,	 2014)	 is	

likely	to	fail	in	this	validation	process.	

4. Mechanisms	of	resting-state	activity	

In	 this	work	we	attempted	to	characterize	 the	different	models	of	resting-state	

activity	 according	 to	 the	 dynamical	 scenario	 they	 propose	 for	 the	 genesis	 of	

resting-state	activity.	From	a	general	perspective,	uncoupled	nodes	can	be	 in	3	

different	states:		

- Fixed-point:	 where	 the	 neurons	 fire	 in	 an	 asynchronous	 fashion	

represented	as	white	noise.	

- Limit-cycle:	 where	 neurons	 within	 a	 brain	 area	 are	 engaged	 in	 self-

sustained	oscillations	

- Chaotic:	 where	 the	 diversity	 of	 biophysical	 parameters	 (i.e.	 membrane	

conductance,	time	constants,	etc.)	generates	a	complex	dynamics.	

On	 receiving	 input	 through	 the	 neuroanatomical	 network,	 this	 input	 may	 be	

sufficiently	 strong	 to	 induce	 transitions	 (from	 fixed	 point	 to	 limit	 cycle	 in	 the	

case	of	a	supercritical	bifurcation,	or	between	different	fixed	points	in	the	case	of	
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multiple	 fixed-point	 attractors),	 or	 sufficiently	 weak	 so	 that	 it	 only	 induces	

deviations	from	the	fixed	point.	In	the	case	of	partial	synchronization,	the	input	

from	 connected	 areas	 should	 be	 only	 sufficiently	 strong	 to	 induce	 the	

synchronization	 of	 sub-networks,	 but	 sufficiently	 weak	 to	 avoid	 the	 full	

synchronization	 of	 the	 whole-brain.	 Still	 in	 the	 case	 of	 synchronization,	 the	

switch	 between	 different	 synchronized	 subsystems	 may	 be	 driven	 by	 noise	

(Deco	 et	 al.,	 2009)	 or	 intrinsically	 induced	 (metastability)	 by	 heterogeneity	 in	

the	system	(Cabral	et	al.,	2011,	Cabral	et	al.,	2014b,	Ponce-Alvarez	et	al.,	2015).	

Regarding	the	origin	of	slowness	in	the	system	leading	to	slow	BOLD	or	envelope	

fluctuations,	 these	 originate	 from	 different	 mechanisms	 including	 stochastic	

effects	 (i.e.	 noise	 is	 tuned	 such	 that	 transitions	only	occur	 sporadically),	 to	 the	

distance	 between	 attractors	 (the	 further	 they	 are	 the	 longer	 it	 takes	 for	 a	

transition	to	occur	spontaneously),	due	to	the	damping	time-scale	of	the	system	

(in	the	case	of	the	rate	model),	or	due	to	sufficiently	weak	coupling	in	a	network	

with	heterogenous	delays/frequencies	 (such	 that	 synchronized	subsystems	are	

only	stable	for	a	limited	period,	or	meta-state).	

5. Future	perspectives	

Even	with	a	refreshed	list	of	new-generation	resting-state	models,	it	is	likely	that	

different	 mechanistic	 scenarios	 will	 remain	 acceptable.	 Beyond	 further	

validation	 procedures	 in	 the	 resting-state,	 the	 next	 step	 appears	 to	 be	 to	 start	

perturbing	 the	 models	 in	 order	 to	 investigate	 their	 response	 to	 stimulation,	

namely	 with	 the	 activation/stabilization	 of	 meaningful	 functional	 networks	

(Cocchi	et	al.,	2015,	Gollo	et	al.,	2016,	Spiegler	et	al.,	2016).	It	is	likely	that	such	

approach	 will	 bring	 a	 paradigm	 shift	 in	 whole-brain	 network	 models,	 which,	
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rather	than	being	termed	Resting-State	Models,	will	become	a	new	generation	of	

Whole-Brain	 Functional	 Models.	 Such	 models	 have	 the	 potential	 of	 becoming	

increasingly	helpful	 in	 the	preparation	of	clinical	 interventions,	 including	brain	

stimulation	 techniques	 such	 as	 transcranial	 magnetic/electrical	 stimulation	 or	

deep	brain	stimulation.		
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