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Abstract

Advanced diffusion MRI methods have recently been proposed for detection of pathologies such 

as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex 

cortical brain regions. However, radiological-pathological correlations in human brain tissue that 

detail the relationship between the multi-component diffusion signal and underlying pathology are 

lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful 

for matching diffusion signals to quantitative metrics of high resolution histological images. When 

validated in ex vivo human cortical tissue at a 250 × 250 × 500 micron spatial resolution, the 

method proved robust in correlations between generalized q-sampling imaging and histologically 

based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for 

secondary fiber direction in each voxel. Importantly, however, the correlation was substantially 

worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor 

model. Furthermore, we have detailed a quantitative histological metric of white matter fiber 

integrity termed power coherence capable of distinguishing between architecturally complex but 

intact white matter from disrupted white matter regions. These methods may allow for more 

sensitive and specific radiological-pathological correlations of neurodegenerative diseases 

affecting complex gray and white matter.
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1. Introduction

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that has 

been increasingly linked to patients who have been exposed to repetitive mild brain trauma 

in sports or blast related injuries (McKee et al., 2009; McKee et al., 2013). While the initial 

injuries that trigger CTE are often sustained earlier in life, behavioral symptoms of CTE 

manifest at later stages, including mood changes, cognitive impairment, and dementia 

(McKee et al., 2009; McKee et al., 2015; Stern et al., 2013). Neuropathological features of 

CTE include irregularly distributed hyperphosphorylated tau (p-tau) neurofibrillary tangles 

and astrocytic tangles prominently distributed in the depths of cortical sulci and around 

cortical blood vessels (McKee et al., 2016; McKee et al., 2009; McKee et al., 2015; McKee 

et al., 2013). These features, which increase in quantity and severity through stages I–IV, 

classify CTE as a tauopathy, can only be definitively detected at the present time by post-

mortem examination. In addition to characteristic tau pathology, there is also evidence of 

axonopathy in CTE (McKee et al., 2015; McKee et al., 2013). There is a concerted effort to 

develop methods to diagnose CTE and impact related axon injury in vivo using blood based 

or imaging biomarkers (Barrio et al., 2015; Bogoslovsky et al., 2016; Mitsis et al., 2014). 

One potential imaging modality that is currently under consideration as a means to 

noninvasively detect axon injury and diagnose CTE in vivo is diffusion MRI (Arfanakis et 

al., 2002; Niogi et al., 2008; Rutgers et al., 2008).

Diffusion MRI is widely used for fiber tracking, brain connectivity, and the diagnosis of 

neurological diseases, however, the underlying interpretation of diffusion MRI signals is 

often unknown especially in complex white matter. The diffusion MRI signal is based on the 

microscopic movement of water in brain tissue (Le Bihan, 1995). Water molecules in fluid 

such as CSF are free to move in any direction, while diffusion of water in gray matter is 

hindered by cellular components such as neuronal and glial membranes (Edgar and Griffiths, 

2014; Le Bihan, 1995). In simple white matter tracts, the high density of axons restricts 

water diffusion to the preferential axes of the fiber tracts (Behrens et al., 2014; Le Bihan, 

1995; Pierpaoli et al., 2001). This property of water diffusion has opened the door to use 

diffusion MRI to map and assess the fiber integrity of large brain white matter tracts. 

Regardless of the algorithm, diffusion MRI based tracking relies on the assumption that 

water diffusion is least hindered on a path parallel to white matter fiber tracts (Behrens et al., 

2014). For example, in the streamline tractography method, local fiber orientation is 

modeled on a voxel-wise level. The tract is then reconstructed by starting with a seed point 

and then following local fiber orientation (Behrens et al., 2014). Another strategy which can 

reduce the error propagations commonly encountered in streamline tractography is to use a 

probabilistic method (Behrens et al., 2014). Such methods are often more successful when 

attempting to track white matter fibers where there is a higher degree of uncertainty of the 
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local directionality of the track, a situation where streamline tractography can fail (Hubbard 

and Parker, 2014).

Fundamentally, all approaches implementing models such as diffusion tensor imaging (DTI) 

that use a single tensor estimation inevitably fail when there are multiple fiber populations 

within a single voxel (Behrens et al., 2014; Hubbard and Parker, 2014; Wiegell et al., 2000). 

White matter in the healthy human brain is estimated to consist of at least 63% complex 

fiber populations, defined as crossing, bending, branching or kissing fibers (Jeurissen et al., 

2013). Therefore, DTI is inadequate when used to model diffusion in the majority of human 

brain white matter. For example, Reveley et al. (2015) demonstrated that probabilistic 

tractography based on DTI data could not be performed in approximately 50% of cortical 

surface structures, most commonly in sulci and gyri (Reveley et al., 2015) due to the rapidly 

changing fiber orientation, a finding that they further supported using injected dyes to trace 

axonal projections. In the context of CTE and impact related axonal injury, the white matter 

regions most susceptible to injury may be adjacent to cortical sulci (Blumbergs et al., 1994; 

McKee et al., 2009), though the exact patterns in concussive injury have not yet been fully 

investigated. These white matter tracts are classified as complex due to the high prevalence 

of curving U-fibers. Modeling diffusion as an orientation distribution function (ODF) has 

been proposed as an alternative solution to the multiple fiber populations dilemma, but such 

models require data collection in more directions, are prone to loss of signal and increased 

noise due the higher degree of diffusion weighting and require small voxel sizes for precise 

ODFs (Jones and Cercignani, 2010; Jones et al., 1999). Validation of the fiber directionality 

central to diffusion tractography has proven successful in radiological-pathological 

correlations of large relatively simple white matter tracts, but remains under investigated in 

complex white matter regions (Behrens et al., 2014; Budde and Annese, 2013; Hubbard and 

Parker, 2014; Kier et al., 2004). Furthermore, the complexity of white matter directionality 

can confound the interpretation of quantitative diffusion imaging parameters if the issue of 

directionality is not adequately addressed (Hubbard and Parker, 2014). Specifically, without 

accurate interpretation of directionality, complex but intact white matter cannot be 

distinguished from white matter with disrupted microstructural integrity. A radiological 

pathological correlation approach which accounts for complex white matter architecture 

would therefore be highly useful when interpreting the sensitivity and specificity of changes 

in the diffusion MRI signal.

A key component and challenge in performing radiological-pathological correlations lies in 

the area of coregistration of histology to MRI data. First, coregistration is highly dependent 

on the placement of fiducials that are clear in both the MRI and histology data. Initial studies 

typically involved drawing regions of interest based on the anatomical locations of the 

suspected pathology of interest in corresponding locations for both MRI and histology 

datasets using a brain atlas or clear anatomical boundaries as reference (Donahue et al., 

2016; Herrera et al., 2016; Mac Donald et al., 2007; Weiss et al., 2015). However, in the 

more general case for arbitrary neuropathological features of interest, such as white matter 

underlying a specific sulcus, regions of interest that are visually distinguishable based on 

anatomical landmarks would not provide sufficient specificity. Another option is the use of 

exogeneous fiducial markers that can be injected into the tissue prior to imaging, and used as 

reference points following sectioning and staining however, this approach is highly 
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vulnerable to inaccurate injections and subsequent migration of the markers resulting in 

displacement errors as high as 600 μm (Lazebnik et al., 2003; White et al., 2011; Zemmoura 

et al., 2014). Strategies to perform automated feature extraction have been successful in 

cases where the gradient of the histological image has a high degree of correspondence with 

the structural MRI image (Goubran et al., 2013; Goubran et al., 2015). However, an edge 

detection based approach often fails when coregistering tissue stained for pathological 

markers which are only localized to specific regions, such as AT8 for tau tangles in sulcal 

depths, because of high reliance on similar contrast properties of MRI and histology data 

(Goubran et al., 2013; Goubran et al., 2015).

Second, the choice of method to warp the histology data to the MRI image can also 

drastically change the accuracy of registration. Linear transformations such as similarity or 

affine transforms lead to high registration errors at the curving cortical sulci, due to the 

sudden change in tissue architecture and potential histological processing differences in the 

adjacent gray and white matter (Breen et al., 2005a; Breen et al., 2005b; Choe et al., 2011; 

Goubran et al., 2015). Importantly, registration errors in these areas, the primary locations of 

CTE related pathology, would create a further loss of sensitivity while performing 

radiological pathological correlations. A nonlinear approach can provide higher accuracy of 

registration in cases where a single transformation function does not describe the geometry 

across all of the tissue, particularly in local changes of tissue architecture (Choe et al., 2011; 

Dauguet et al., 2007; Goshtasby, 1988; Zagorchev and Goshtasby, 2006). Finally, most 

automated registration algorithms typically involve downsampling histological data to match 

MRI data resolution (Wang et al., 2015), or upsampling MRI data to match the high 

resolution histology (Schilling et al., 2016). Thus, typical coregistration approaches result in 

a loss of sensitivity in situations where the MRI signal may be affected by changes in the 

tissue microstructure that are not reflected by measures available in downsampled data, most 

commonly area fraction of positive staining. Because of the technical challenges listed 

above, validations of radiological pathological coregistration on a voxel wise level have yet 

to be performed, resulting in a lack of knowledge of how quantitative histological measures 

directly reflect corresponding MRI metrics.

In the course of our radiological-pathological investigations of brain tissue from subjects 

with CTE (Gangolli et al., 2015; Holleran et al., 2015) we have recently developed a method 

to coregister histology and MRI data at a voxel-by-voxel level so that correlations can be 

performed between high spatial resolution diffusion MRI and quantitative histological data. 

We validated the method using a variety of measures, most notably an initial radiological 

pathological correlation of fiber directionality in complex white matter regions. The 

registration workflow is not restricted to high contrast stains, thus providing a means of 

assessing subtle morphological changes in histology, and can be applied to perform highly 

sensitive and specific radiological pathological correlations in CTE and potentially other 

applications to extract ground truth relationships between the MRI signal and underlying 

tissue pathology.
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2. Methods

2.1 Diffusion MRI Acquisition

Ex vivo human brain tissue blocks of superior frontal cortex (Brodmann Area 8/9), 

approximately 1×2×3 cm, with a confirmed neuropathological diagnosis of Stage III or IV 

CTE (ACM, TDS, VEA) were obtained through the VA-BU-CLF brain bank. All brain 

tissue samples were stored in periodate-lysine-paraformaldehyde (PLP) fixative, but then 

refixed in 10% neutral buffered formalin and refrigerated for one week (Fig. 1). Meninges 

and blood vessels were trimmed from the cortical surface to remove potential artifacts in the 

MRI data acquisition, such as blood iron and air bubble induced artifacts. Image artifacts 

were examined using the T2* images. Tissue blocks were rehydrated in 1x phosphate buffer 

solution (1x PBS) with 0.01% NaN3 for two weeks prior to MRI data acquisition and stored 

at 4°Celsius, changing the solution every three days to assure equilibrated rehydration. This 

rehydration time was determined empirically by finding the time during rehydration at 

which the T2 relaxation time reached steady state (Supplementary Figure 1). The volume 

ratio of tissue and 1xPBS was 1:40.

Diffusion MRI data were acquired using an 11.74 T MRI scanner with 120 G/cm gradient 

(Agilent, Palo Alto, CA), using a two dimensional standard spin echo sequence, which was 

optimized to produce high spatial resolution data with an in plane resolution of 250 μm × 

250 μm and slice thickness of 500 μm. An in-house built cylindrical radio frequency (RF) 

coil with 2.60 cm diameter and 4.0 cm length was used to obtain diffusion MR data 

(Supplementary Figure 2). The main axis of the RF coil (resonant) was parallel to the 

longest axis of each tissue block to improve B1 field inhomogeneity. While a long repetition 

time (TR) is typically preferred to collect MRI data with high SNR, this also results in 

longer scan times and therefore requires optimization of the TR time. To address this 

concern, MRI data of the same tissue section was collected at multiple TR times and the 

optimal TR time was found to be greater than one second (Supplementary Figure 3). To 

minimize artifactual MR signal (Miller et al., 2011; Thelwall et al., 2006), tissue blocks 

were stored in a proton free solution (Fluorinert) prior to scanning (Supplementary Figure 

4A). The tissue samples were stored at room temperature twenty-four hours prior to 

scanning to reduce temperature related diffusion artifacts (D’Arceuil et al., 2007; Kim et al., 

2007; Thelwall et al., 2006). Furthermore, multiple slice collection requires multiple RF 

pulse excitations, which can heat the tissue resulting in increases in diffusivity 

(Supplementary Figure 4B). Therefore, each MRI data acquisition consisted of 13 slices 

irrespective of the tissue block thickness to maintain consistent temperature throughout the 

study. Approximately seven MRI slices per tissue of the collected data were used for 

analysis to ensure minimal artifacts caused by partial voluming near the top and bottom of 

the often irregularly shaped tissues.

With these parameters, both DTI (Jones et al., 1999) and Generalized Q-Sampling Imaging 

(GQI) (Yeh et al., 2010) data were collected. DTI data were acquired using 30 diffusion 

sensitized gradients (Supplementary Table 1), a b value of 4,000 s/mm2, four non-diffusion 

weighted images (b = 0 s/mm2) and TR/TE = 1400/30 ms with a total scan time of 1.5 hours. 

Fixed ex vivo tissue has reduced water diffusivity compared to in vivo tissue, thus requiring 
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higher b values to compensate for the reduced diffusivity (D’Arceuil et al., 2007; Thelwall et 

al., 2006). GQI data were acquired using 202 diffusion sensitized gradients (Supplementary 

Table 2), a maximum b value of 8,000 s/mm2, ten non-diffusion weighted images (b = 0 

s/mm2) and TR/TE = 1400/30 ms, resulting in a total scan time of 11 hours. The data was 

filtered using a standard periodic Hamming window to filter any Gibbs ringing artifact 

(Supplementary Figure 5) of size 160-point × 128-point to match the readout encoding and 

phase encoding directions. DTI data were reconstructed using the BrainSuitev16a1 diffusion 

pipeline (Shattuck and Leahy, 2002) to generate eigenvalue and eigenvector files. GQI data 

were reconstructed in DSI studio (http://dsi-studio.labsolver.org/) using a diffusion sampling 

length ratio (LΔ) of 0.70, a 4-fold tessellated icosahedron resulting in 162 sampling 

directions, a maximum of three resolved fibers per voxel, and a balanced full sphere scheme. 

The orientation distribution function (ODF) calculation was weighted by the square of the 

diffusion displacement. These parameters were chosen empirically in order to maximize the 

sharpness of calculated ODFs, which were then exported into MATLAB (Mathworks 2014a) 

for remaining analysis. As an additional comparison, the DTI data were also reconstructed in 

DSI studio based on the higher angular resolution data.

2.2 Histology

Following diffusion MRI data acquisition, tissue blocks were refixed in 4% 

paraformaldehyde, incubated for a minimum of three days in 30% sucrose solution, 

sectioned into sequential 50 μm sections on a freezing sliding microtome and stored in 

individual wells to preserve slice location. The tissue blocks were placed on the platform in 

the same orientation as the acquired MRI images, with the MRI image planning used as a 

reference to slicing plane and orientation. Every sixth section (250 μm interslice interval) 

was stained using the Myelin Black Gold II stain for myelinated fibers (Millipore, Billerica, 

MA), resulting in two Black Gold II sections for each MRI slice. Free floating sections were 

incubated in six well plates (Corning) filled with Black Gold II solution (Black Gold II 

powder, resuspended in 0.9% saline solution) pre-heated to 60°Celsius and monitored until 

they had reached the optimum amount of staining, approximately eight minutes, which was 

determined by assessing whether fibers could be readily distinguished at x5 magnification 

(Supplementary Figure 6). To maintain uniform quality of staining across tissue sections, 

fresh Black Gold II solution was used for each section. Sections were washed with MilliQ 

water for two minutes and then incubated in 1% sodium thiosulfate pre-heated to 60°Celsius 

for three minutes to remove excess staining. After three washes in 1xTBS, stained sections 

were mounted on Superfrost-Plus microscope slides (Fisher, Houston, TX) in an orientation 

matching that of the corresponding MRI slices and allowed to dry at room temperature 

overnight. The mounted sections were dehydrated in a series of graded ethanol solutions 

(50%–70%–95%–95%–100% for two minutes each), and then incubated in two treatments 

of Xylene for three minutes each. Slides were coverslipped with Cytoseal 60 (Richard Allan 

Scientific, Kalamazoo, MI), and digital images of the slides were acquired with a 

Hamamatsu NanoZoomer 2.0 HT System (Hamamatsu) with an x20 objective and stored in 

an NDPI file format.
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2.3 Co-Registration of Histology to MRI

Due to the large files sizes of the originally acquired x20 magnification images, where the 

linear dimension of the image pixels was 0.52 μm, the NDPI images of the stained sections 

were downsampled in ImageJ (NIH, Bethesda, MD) using the NDPI tools plugin (Deroulers 

et al., 2013) to x5 magnification. This magnification preserved morphological details for 

quantification where the linear dimension of image pixels was 1.84 microns, and the smaller 

file size allowed for more efficient registration and quantification. Because this 

downsampled image was still at a higher resolution than the MRI image, co-registration was 

then performed to warp the histological data to the MRI space. A minimum of 55 anatomical 

landmarks were manually placed on the x5 image of the Myelin Black Gold II stained 

section and the same landmarks were placed on the corresponding non-diffusion weighted (b 

= 0 s/mm2) diffusion MRI slice which had T2 contrast characteristics. Landmarks were 

placed at readily identifiable locations along the tissue edges, border between gray and white 

matter, and at matching features in both gray and white matter. A forward nonlinear moving 

least squares transformation (Goshtasby, 1988) was applied to transform the MBGII section 

to the MRI data. An inverse transform was then applied to transform each MRI voxel of the 

histological data, resulting in a warped grid of regions of interest (each region of interest 

corresponding to one MRI voxel) that was used to quantify the higher resolution x5 

histological image in ImageJ (Fig. 2). Both forward and inverse transforms were performed 

using a custom script (Supplementary File 1) written in Matlab.

2.4 Validation of Registration

Following co-registration, and generation of voxel-based grids, the accuracy of registration 

was validated using tools in ImageJ. First, the agreement between MRI and histology to 

classify voxels into tissue categories was evaluated. To classify Black Gold II registered 

voxels, a histologically derived trinary white matter mask was generated (Fig. 3). Each 

Black Gold II image was converted to a 32 bit (grayscale) image, manually thresholded 

based on staining intensity and blurred using a Gaussian filter with a radius that matched the 

in plane resolution of the MRI data (250 μm). The coregistered grid obtained from the 

inverse transformation was then overlaid onto the white matter mask, and the mean intensity 

within each voxel-based ROI was measured. ROIs with a mean intensity of zero were 

classified as gray matter, while voxels with a mean intensity of one were classified as white 

matter. Finally, voxels with a mean intensity that was between zero and one reflected the 

partial voluming of white and gray matter and were classified as boundary voxels. The 

gradient of the non-diffusion weighted (b = 0 s/mm2) MRI image was used to classify MRI 

voxels into the same three categories. To compare the efficacy of a nonlinear approach to 

linear transformations which have typically been applied in previous radiological-

pathological correlation studies (Choe et al., 2011; Wang et al., 2015), voxel-based grids 

were generated using an affine transformation included in Matlab. The kappa coefficients of 

the grids resulting from nonlinear moving least squares vs affine transformations were then 

compared to determine whether our registration approach provides superior sensitivity when 

parceling tissue into gray, white, and gray/white matter boundary regions.

Because the registration algorithm relies on user defined landmarks, we carefully tested the 

susceptibility of nonlinear registration to variability when presented with landmarks with 
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small shifts of their in plane locations. Intra-user and inter-user reliability was tested by 

comparing the shift of each registered voxel between two pairs of grids generated by 

landmarks placed by the same user at two different time points (five days apart). Inter-user 

reliability was tested by performing the same procedure for landmarks placed by two 

different users. The shift was calculated as the Euclidean distance between the centroid of 

corresponding voxels from the first and second grid. A computer simulation was additionally 

used to test the effects of shifting landmarks between 0 to 1000 μm along both the x and y 

direction. Random numbers were selected from a uniform distribution and applied to a 

baseline set of landmarks in Matlab. The total number of registered voxels from the resulting 

registrations that had not shifted more than the in plane MRI voxel resolution (250 μm 

isotropic) was then calculated for each interval.

The final validation was a test of the registration method to perform a radiological 

pathological correlation for a parameter where the relationship between histology and 

diffusion measure is expected to be very strong. This parameter of interest was fiber 

directionality, which can be calculated from both the histological data and the diffusion data. 

Fiber directionality of each ROI corresponding to each white matter voxel was derived from 

the Myelin Black Gold II data using a custom written macro (Supplementary File 2) in 

ImageJ (NIH, Bethesda, MD). Each voxel was zero mean normalized and multiplied with a 

Tukey window (α = 0.5) to reduce background and Gibbs ringing artifacts (Fig. 4). A two 

dimensional discrete Fourier transformation was then applied to each voxel-corresponding 

ROI to calculate the associated power spectrum, which contains information about fiber 

directionality and the degree of fiber coherency within an equivalent voxel (Appendix I). 

Fiber directionality and coherency were extracted by fitting two ellipses to the power 

spectrum, where each ellipse represented a fiber population. The angle of the preferential 

axis of each ellipse relative to the main axis of each registered histological voxel was used as 

the primary orientation of fibers within each voxel. The degree of coherency of each fiber 

population was calculated as the ratio of the radial (minor axis) to preferential axes to obtain 

a measure between zero and one, where a higher coherency measure (closer to one) was 

thought to represent high fiber integrity. For example, a power coherency of 0.17 indicates 

two fitted ellipses, where the major and minor axes of both ellipses are relatively equal in 

length, making the ellipses nearly circular. Conversely, a power coherency of 0.81 indicates 

two ellipses that both have minor axes which are much smaller than their respective major 

axes. In parallel, the diffusion based fiber directionality was extracted in Matlab from the 

generalized q-sampling imaging (GQI) data based on the orientation distribution function 

(ODF) of each MRI voxel. The ODF was stored as a series of three dimensional directional 

vectors of size 3 × N, where N is the number of fiber directions at a subvoxel level, here 

defined as two. After obtaining the directional vectors of the primary and secondary major 

fiber components, the orientation angles, θn, along the xy plane were calculated using

(Eq. 1)
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(Eq. 2)

where a is the equation of the xy plane (0,0,1) and bn is the directional vector of either the 

primary (n = 1) or secondary (n = 2) orientation. White matter voxels were classified as 

simple (n =1) or complex (n = 1) for all analysis. Furthermore, because the two-dimensional 

Fourier transformation can only be used to quantify fibers that are in the histological plane, 

all analysis was restricted to only include voxels where the primary and secondary major 

fiber components were either fully in plane or made an angle with the z-axis that was less 

than 45°.

To test the effects of lower in plane voxel resolution on the histological measure of voxel 

based power coherency, the open source software MIPAV (NIH, Bethesda, Maryland) was 

used to downsample the raw diffusion data voxels to 500 μm and 1000 μm isotropic 

resolution. In accordance with the methods described in section 2.3 landmarks were placed 

on the x5 histology image and the associated slice of the downsampled unweighted (b = 0 

s/mm2) diffusion dataset to generate voxel based grids corresponding to these lower 

resolutions. A region of interest starting at the gray/white matter boundary and extending 2 

mm into adjacent white matter of a sulcus with known fiber disruption was assessed for 

power coherence on a voxel wise basis using grids with isotropic in plane resolutions of 250 

μm, 500 μm, and 1000 μm. ODFs were reconstructed in DSI studio with the parameters 

described in Section 2.1for the downsampled diffusion data. A two tensor fit was applied on 

a voxel wise basis to each corresponding Black Gold II sections to calculate fiber 

orientation. A correlation between GQI based and Black Gold II based fiber orientation was 

performed, only on white matter voxels that did not have a z-axis angle greater than 45°.

Similarly, the effects of implementing a DTI model with both coarse angular resolution and 

high angular resolution matching that of the GQI data were tested. DTI based fiber 

orientation was calculated on a voxel-wise basis. The eigenvector corresponding the largest 

eigenvalue for each calculated tensor was used as the measure of fiber orientation of each 

MRI voxel. The orientation angle θ was calculated using

(Eq. 3)

(Eq. 4)

where a is the equation of the xy plane (0,0,1) and b is the eigenvector corresponding to the 

largest eigenvalue of the diffusion tensor. The same landmarks used to coregister GQI data 

to Black Gold II data were used to coregister the DTI data.
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To test that power coherence is indeed a measure of white matter disruption, a 2 mm 

controlled cortical impact (CCI) injury was applied to a male mouse, as previously described 

(Brody et al., 2007). This level of injury is known to result in thinning of hippocampal and 

cortical layers, along with positive staining for amyloid precursor protein (APP) and other 

markers of axonal injury in the acute phase following injury. Twenty-four hours after injury, 

the mouse was transaortically perfused and the brain was surgically removed from the skull 

and fixed in 4% paraformaldefyde (PFA) in 1x PBS overnight. The whole brain was then 

incubated in 30% sucrose for three days, sectioned on a freezing sliding microtome into 50 

μm thick sections, and stained for myelinated white matter using Myelin Black Gold II.

2.4 Statistical Analysis

All statistical analysis was performed in Statistica 13.1 (Statsoft Inc., Tulsa, OK). A one-

tailed Spearman’s correlation coefficient was calculated to measure the correlation between 

GQI based and Black Gold II based primary and secondary fiber orientations. A one-tailed 

F-test was used to determine whether there was a significant reduction in power coherence 

variation across samples when comparing voxels with isotropic in plane resolutions of 250 

μm vs 500 μm and 250 μm vs 1000 μm.

3. Results

3.1 Agreement between MRI and histology based tissue classification

A total of 113 MyelinBlack Gold II stained sections from ten tissue blocks were registered 

to their corresponding MRI slices. Every registered voxel was classified as gray matter, 

white matter, or gray/white matter boundary, and a Cohen’s kappa coefficient was calculated 

for each registered section to determine the agreement between MRI based and Myelin 

Black Gold II based voxel classification. Nonlinear transformations resulted in higher kappa 

coefficients compared with affine transformations (Table 1), measured by calculating the 

mean kappa coefficient across sections for each tissue block. The difference in registration 

methods could also be qualitatively observed, in particular at sulci and gray/white matter 

boundaries (Fig. 5). A linear affine transformation applied the same transformation to each 

registered voxel, whereas our nonlinear method better compensates for tissue warping and 

shrinkage that is not uniform across heterogeneous tissue regions. Notably, nonlinear 

registration results in a high classification agreement of boundary voxels. This indicates that 

a nonlinear registration method is more reliable than a linear (affine) method when 

coregistering tissue sections in regions characterized by abrupt in-plane changes in tissue 

architecture.

3.2 Robustness of landmark placement-based registration

Two sets of registered grids were generated for a subset of registered Myelin Black Gold II 

sections for each of the ten human ex vivo cortical tissue blocks. The nonlinear registration 

algorithm remained consistent between the two sets of landmarks, so any variability of the 

grids and registration would be due to a change in the in plane position of the manually 

placed landmarks. The Euclidian distance was used as a metric of voxel-wise shift and 

reliability of registration was determined by plotting the cumulative histogram of the shift of 

all voxels (Fig. 6A–B). Because the MRI in plane resolution was 250 μm × 250 μm, the 
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percentage of voxels that had shifted less than 250 μm was used as a metric of inter and 

intra-rater reliability of landmark placement. To maintain registration quality control, a 

minimum intra-user and inter-user reliability was set to 90%. All investigators placing 

landmarks showed inter and intra-reliability of landmark placement that was above this 

threshold.

An additional simulation was performed on established sets of landmarks to determine the 

robustness of registration, or the tendency of voxels to shift due to increasing changes in 

landmark placement (Fig. 6C). Landmarks placed on Myelin Black Gold II were shifted 

along both the x and y axis by drawing random numbers from a uniform distribution where 

the interval of the distribution reflected the maximum amount of shift. For each distribution 

and maximum landmark shift, the percentage of registered ROIs equivalent to MRI voxels 

that had shifted more than 250 μm was calculated and plotted as a function of the 

distribution interval. As expected, larger amounts of shift in landmarks decreased the 

percentage of registered ROIs that were below this threshold. However, landmark shifts 

below 350 μm did not cause the percentage of registered ROIs to fall below 80%. These 

results indicated a high degree of reliability for our manual landmark-based coregistration 

method.

3.3 Correlation of diffusion derived and histologically derived fiber orientations

The strength of the relationship between diffusion based and histologically based primary 

and secondary fiber orientations was used to determine the accuracy of histology to MRI co-

registration. Fiber orientations derived from the Myelin Black Gold II data were compared 

on a voxel wise basis with fiber orientations of corresponding voxels derived from the 

diffusion data. Because the GQI data had higher angular resolution compared to DTI data, 

GQI data were the basis for comparison. Strong edges in gray/white matter boundary regions 

could not be removed by zero mean normalization or windowing, consequently, only 

registered regions of interest classified as white matter were included in analysis. = When 

plotting the Myelin Black Gold II based fiber orientations as a function of the corresponding 

GQI based fiber orientations (Fig. 7), there was nearly a one to one linear relationship 

between both primary (p < 0.0001, r = 0.94) and secondary (p<0.0001, r = 0.88) fiber 

populations. The agreement between primary fiber directionality was then compared 

utilizing an affine transformation (Fig. 8). The spread of Black Gold II based fiber 

orientations for each GQI fiber orientation bin was much broader when comparing primary 

fiber orientation, but the affine still provided reasonable agreement (p < 0.0001, r2 = 0.87). 

When comparing the correlations of affine vs nonlinear transformations using a difference 

test, there was a significant difference between the two correlation coefficients (p = 0.0026). 

The results of the linear regression showed that there was a bias in the nonlinear 

transformation (y = 1.0x + 10.47), compared to the affine transformation (y = 1.0x + 1.952). 

Fiber orientation correlations based on nonlinear coregistration had small variance and 

moderate bias, while correlations based on the affine transformation had larger variance and 

smaller bias. However, while addition of more sample voxels would reduce the variance of 

fiber orientation correlation, this would be less applicable when performing correlations in 

human tissue, where each sample only has a finite number of voxels.
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3.4 Limitations of spatial and angular resolution on radiological-pathological correlations

To assess the effects of spatial resolution on the correlation between diffusion derived and 

histologically derived fiber orientation, Black Gold II stained sections were registered to 

corresponding GQI diffusion data that was downsampled to either 500μm or 1000 μm 

isotropic resolution. At these spatial resolutions, the relationship between GQI based and 

Black Gold II based primary fiber orientations using the two tensor fit resulted in limitations 

when calculating histologically based fiber orientation (Fig. 9), particularly at 1000 μm 

isotropic resolution with a low correlation (r = 0.35).

The importance of angular resolution was tested by coregistering Black Gold II stained 

sections to corresponding DTI data using the original MRI spatial resolution (250 μm in 

plane). The DTI based fiber orientations were calculated on a voxel-wise basis and 

compared with fiber orientations derived from corresponding histological data. The tissue 

block used for this analysis was composed of 4.40% simple white matter and 22.6% 

complex white matter only with in plane fiber components. 12.11% of the voxels in the 

tissue block were classified as having one or more major 3D fiber components, and the 

remaining 60.89% voxels were classified as gray matter. Assessments of the relationship 

between fiber orientation derived from a low angular resolution diffusion tensor model (30 

directions) resulted in low correlations in both simple (r=0.41) and complex (r=0.53) white 

matter (Fig. 10A–B). Similarly, correlations of DTI based and Black Gold II based fiber 

orientations resulted in low correlations in both simple (r=0.42) and complex (r=0.54) white 

matter (Fig. 10C–D) when implementing DTI reconstruction using diffusion data with an 

angular resolution matching that of the GQI data.

3.5 Assessment of fiber integrity using power coherence

To demonstrate the potential utility of the fully coregistered approach, the power spectrum 

calculated from the voxel-wise two dimensional Fourier transformation was also used to 

assess the degree of fiber organization, and whether fiber disorganization could be 

quantitatively distinguished from crossing fibers. The measure of power coherency was 

calculated for each voxel classified as white matter based on Myelin Black Gold II staining. 

Power coherency was calibrated to remain between 0 and 1, where a higher power 

coherency reflects increased fiber organization. Conversely, decreased power coherency 

reflects decreased directionality within a registered ROI, and therefore decreased fiber 

organization. In voxels where fiber components were either fully in plane or had a primary z 

axis component of less than 45°, we were able to readily distinguish regions of simple, 

crossing, and disrupted fibers when analyzing white matter adjacent to cortical sulcal depths 

(Fig. 11). Voxels with simple and crossing fibers had power spectra that spread across 

narrow ranges of spatial frequencies, reflecting intact fiber integrity with strong directional 

components. Voxels with disrupted fibers had power spectra that spread across a broad range 

of spatial frequencies, reflecting reduced fiber integrity with fibers distributed in random 

orientations.

Because the human tissue used for this study had known CTE pathology with prior history 

of concussive injury, we also tested whether power coherence would be able to distinguish 

between uninjured white matter and a positive control of axon injury. This was performed in 
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a mouse model using a 2 mm controlled cortical impact (CCI) injury as previously described 

by Brody et al. (2007) (Brody et al., 2007). White matter in the corpus callosum ipsilateral 

to the injury site showed reduced power coherence compared to the corresponding region of 

interest in an uninjured animal (Fig. 12).

To test whether spatial resolution limits the ability to measure power coherence in complex 

human white matter, Black Gold II stained sections were registered to corresponding 

diffusion data that was downsampled to either 500 μm or 1000 μm isotropic resolution. 

Power coherence was calculated in regions of interest defined as extending 2 mm into white 

matter adjacent to sulcal gray matter. At 250 μm, the heterogeneity of these white matter 

regions was apparent by the large variance of the voxel wise measures of power coherence 

(Fig. 13). However, as spatial resolution was decreased, both to 500 μm and 1000 μm, there 

was an observed reduction in the amount of variance of voxel based power coherence, while 

the mean power coherence did not change. A one-tailed F-test to assess a decrease in 

variance resulted in significance both when comparing a decrease from 250 μm to 500 μm 

(F(1185,395) = 5.43, p < 0.001) and 250 μm to 1000 μm (F(1185,79) = 1.53, p< 0.001).

4. Discussion

In summary, we have developed a histology to MRI image coregistration workflow that can 

be applied to explore the neuropathological features that drive MRI signal changes in the 

brain. This method is not limited to diffusion MRI, and could be applied to various other 

imaging modalities, provided that there is a corresponding structural image dataset for the 

basis of registration. Registration results in voxel-based grids that are highly robust due to 

shifting landmarks, highly sensitive when parceling tissue types, and show strong accuracy 

when correlating histologically derived measures with MRI parameters. Furthermore, our 

registration provides an efficient approach to perform arbitrary region of interest based 

analysis, with manually drawn regions from histology automatically referenced to 

corresponding MRI voxels.

In this study, the agreement between histological and diffusion based fiber orientations was 

used throughout as the primary means of validating coregistration accuracy on a voxel wise 

basis. Prior comparisons of directionality have been performed both in human and mouse 

tissue, calculating histologically based fiber direction using a Fourier transformation or 

gradient based approach (Budde and Annese, 2013; Budde and Frank, 2012; Budde et al., 

2011; Nazaran et al., 2016), and validating DTI based tractography at high resolutions. At 

similar spatial resolution, we found that the fiber orientation derived from DTI tensors did 

not reflect underlying fiber architecture, particularly in complex white matter regions, at 

both coarse and high angular resolutions. This finding indicates that alternative local 

reconstruction methods that do not rely on a single tensor assumption are necessary to 

accurately perform tractography. Because our intent is to perform correlations primarily in 

cortical tissue which has a complex fiber architecture, we turned to more advanced diffusion 

methods which could still produce measures of fiber orientation. GQI based ODF peaks 

were used here as this metric because in white matter, each ODF is been directly calculated 

based on water displacement (Yeh et al., 2010) compared to alternative q-space methods 

such as diffusion spectrum imaging, which often requires additional filtering to counter 
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cutoff effects in the frequency domain (Hagmann et al., 2006). The GQI reconstruction 

method is therefore able to compensate for rapid changes in fiber orientation in complex 

white matter between voxels. Consequently, correlations proved to be most robust when 

comparing fiber orientations calculated using the GQI reconstruction method. 

Fundamentally, these correlational studies would not have been successful without careful 

optimization of the method parameters, such as spatial resolution and choice of histology-

MRI transformation.

A primary advantage of our coregistration approach is that histological parameters for 

correlation can be based on high resolution digital image of histology, so analysis is not 

limited to area fraction of positive staining. For example, in this study, we compared fiber 

orientation on a voxel-wise basis in both simple and complex white matter regions to 

validate the registration technique, which would not have been possible in downsampled 

histological data that is compressed to match MRI resolution. When applied to analysis of 

additional histological markers, such as immunostaining for hyperphosphorylated tau, 

injured axons, and activated astrocytes or microglia, we can explore morphological features 

of neuropathological markers, such as circularity, and randomness of cells within regions of 

interest that correspond to voxels in MRI space. This may provide increased specificity in 

radiological-pathological correlations for both gray and white matter pathology which 

contain multiple cellular components that may contribute to the diffusion MRI signal (Edgar 

and Griffiths, 2014; Le Bihan, 1995).

Our derived measure of power coherence also reflects an advantage of high resolution 

histological analysis. When exploring axon injury at acute time points, markers such as 

Myelin Basic Protein (MBP) and β-APP have been successful (Blumbergs et al., 1989; 

Blumbergs et al., 1994; Johnson et al., 2013; Ryu et al., 2014) while chronic white matter 

demyelination has been used as a metric of injury in severe cases of traumatic brain injury 

(Strich, 1956), and multiple sclerosis (Wang et al., 2015). For both cases, the primary 

quantitative metric is area fraction of positive staining. In the CTE cases that we have 

examined, there was no detectable staining for markers such as β-APP or compacted 

neurofilament (not shown); such staining may not be detectable in the chronic phase of 

injury which is years after the initial insults to tissue (McKee et al., 2009; Stern et al., 2013). 

Similarly, Bennett et al. (2012) determined that β-APP was unable to distinguish between 

uninjured and injured mice in a mouse model of repetitive concussive injury, suggesting a 

different mechanism of axonal injury (Bennett et al., 2012). Stains such as Black Gold II for 

myelin do show demyelination, again in severe cases of white matter injury (Savaskan et al., 

2009). As an alternative to demyelination and decreased area fraction of staining, power 

coherence is applicable when examining fibers that are disrupted due to residual effects of 

axon injury. Coherence shows evidence of chronic white matter injury, which has been 

found as late as 60 days following repetitive traumatic brain injury in a mouse model 

(Donovan et al., 2014). Furthermore, coherence is advantageous because of its ability to 

differentiate between complex fibers and injured fibers, a well-known dilemma encountered 

in the single tensor model of diffusion imaging (Arfanakis et al., 2002; Behrens et al., 2014; 

Pierpaoli et al., 1996). The single tensor model used in DTI results in complex fibers and 

injured fibers being indistinguishable by metrics such as fractional anisotropy (Arfanakis et 

al., 2002; Behrens et al., 2014; Yeh et al., 2010) but readily addressed with GQI and other 
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more advanced diffusion imaging methods (Yeh et al., 2010). Application of power 

coherence to histological measures may be able help to resolve the interpretation of 

diffusion imaging signals in otherwise ambiguous situations, particularly in regions where 

injury occurs in white matter regions that have crossing fibers.

A second major advantage of this study is the high quality of the diffusion MRI data, notably 

the high spatial resolution (250 μm × 250 μm in plane) and high angular resolution of the 

GQI data (202 directions). The optimized spatial and angular resolutions were key during 

the validation by comparing fiber orientation on a voxel-wise basis. Our method of 

calculating fiber orientation using the two dimensional Fourier transform was successful 

because of its ability to discern between crossing and simple fiber populations at these high 

spatial resolutions. Implementation of a two dimensional Fourier transformation, which does 

not take into account the fiber orientation of the surrounding voxels was also complementary 

to the GQI reconstruction method, where fiber orientations within a single MRI voxel are 

based solely on the diffusion of water within that single voxel. At lower spatial resolutions, 

such as those approaching clinically feasible levels, application of the Fourier transformation 

to validate tractography would be challenging in complex white matter regions (Budde and 

Frank, 2012; Budde et al., 2011). Furthermore, the measure of power coherence used here to 

distinguish between disrupted and crossing fibers would no longer be applicable due to 

signal averaging within a larger voxel volume. We have shown that the true heterogeneity of 

cortical white matter is lost at lower resolutions, a factor which must be considered if 

performing radiological pathological correlations in a disease where the primary pathology 

is located in such complex white matter regions. While this finding is not surprising, it does 

make explicit the need for either alternative imaging modalities that can provide clinically 

achievable high spatial resolutions, or the development of an injury specific imaging marker 

which would allow for more sensitive diagnostic imaging at current spatial resolutions.

We must also consider the limitations of our registration method. First, manual landmark 

placement is an inherent source of variability in registration, and would be increasingly 

difficult at low resolutions where the gray/white matter boundary and anatomical features 

become less visually salient (Choe et al., 2011). An additional confound of our landmark 

based registration method is that registration is most accurate in a region with a high density 

of landmarks, and may be more prone to errors in regions with sparse landmark placement, 

or in regions far away from the landmarks. Therefore, further validation steps should be 

considered, such as evaluating the accuracy of registration as a function of distance from 

landmarks placed along the gray/white matter boundary and tissue boundary. Second, 

because the workflow is a two dimensional registration, any correlation analysis that uses 

our technique is limited to in plane histological features. When considering three 

dimensional histology to MRI registration, parameters such as inter-slice sampling interval 

and tissue sectioning thickness would need to be optimized (Absinta et al., 2014; Breen et 

al., 2005b; Goubran et al., 2013; Zarow et al., 2004) because of rapid changes in tissue 

architecture between slices. At high spatial resolutions and small slice thicknesses, 

validation of three dimensional histological registration could then be performed using three 

dimensional structure tensor analysis (Schilling et al., 2016). Despite this possibility, the z-

axis changes between MRI slices may not be able to be sufficiently accounted for using 

current imaging resolutions, particularly in human cortical tissue where sulci change or even 
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disappear within our current 500 μm slice thickness. These rapid z-axis changes would 

create challenges when attempting to register and match histological sections with the 

associated MRI slices. Our current validation method of determining the correlation of fiber 

direction is therefore only valid when considering features that are in the histological plane. 

While there may be agreement between in plane fiber orientations, the strongest evidence of 

robust 3D coregistration would be correlation of fibers that have a primary directional 

component along the z-axis. Aligned to the issue of three dimensional coregistration and 

validation is the application power coherence to distinguish between disrupted white matter 

and fibers that are perpendicular to the plane of histology. In this study, we limited our 

analyses to voxels with in plane major fiber components, using GQI data to identify voxels 

with primary or secondary fiber components perpendicular to the plane of histology. Without 

this exclusionary criteria, using power coherence is not sufficient to distinguish between 

disrupted and intact white matter which is out of plane. Using a technique such as serial two 

photon microscopy, where the tissue section is imaged below the block surface before 

sectioning would prevent the issues of z-axis warping that commonly occurs in the serial 

sectioning method that we have used here (Amato et al., 2016). Alternatively, an approach 

such as CLARITY (Chung and Deisseroth, 2013) combined with a stain for myelinated 

fibers would be able to distinguish between out of plane, intact and disrupted white matter. 

Third, while we have been able to show that complex fiber orientations can be discerned 

using quantitative histology methods, there may be a dependency, yet to be characterized, on 

the quality of the ex vivo tissue, fixation methods, and post-mortem interval. Finally, while 

our coregistration has been extensively validated in white matter, this approach has not been 

fully validated for complex gray matter.

The most immediate applications of our registration method are in the field of radiological-

pathological correlations in CTE (Holleran et al., 2015), exploring the relationship between 

multiple immunohistochemistry stained markers and associated advanced diffusion MRI 

metrics. The workflow is also applicable to analysis in vivo using animal models of 

concussive injury, by scanning living animals and performing registration and subsequent 

correlation after sacrificing the animals. Because we have shown that histology-MRI 

registration is highly robust in human tissue, ex vivo correlation studies may potentially be 

conducted in cases of acute traumatic brain injury, where pathology is drastically different 

compared to chronic cases. Further applications of this method could be extended to ex vivo 
correlations in Alzheimer’s Disease, frontotemporal dementia, or Parkinson’s disease (Suri 

et al., 2014), where the neuropathology is distinct but the effect on traditional and advanced 

diffusion MRI metrics needs to be further elucidated.
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Appendix I: Calculation of fiber orientation and coherence

Orientation and coherence were calculated as previously described (Budde et al., 2011; 

Gonzalez et al., 2009; Prins and Kingdom, 2003) using a two dimensional discrete Fourier 

transformation. Each grayscale region of interest of size M × N pixels can be described in 

terms of spatial frequencies using the formula

(Eq. 5)

Where x and y are the pixel coordinates in the spatial domain, u and v are the corresponding 

frequency components and  Because we are not sampling infinitely and there is a 

baseline level of background intensity, there will be false peaks due to edge effects and mean 

pixel intensity in the Fourier domain. Consequently, each region of interest in the spatial 

domain must be zero mean normalized and windowed by multiplying the region with a 

Tukey window described as

(Eq. 6)

where α represents the tapering of the window between 0 and 1, selected to maximize the 

sharpness of power spectra peaks for most efficient extraction of orientations, and r is 

defined by

(Eq. 7)

The power spectrum can then be calculated using

(Eq. 8)

where R(u, v) and I(u, v) are the real and imaginary components of the spatial frequencies.

After fitting the resulting power spectrum with two ellipses in ImageJ and measuring 

preferential and radial axes of both ellipses, the power coherence of each ROI was calculated 

as
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(Eq. 9)

Where λ1,λ3 are the preferential axes of the ellipses and λ2,λ4 are the radial axes of the 

ellipses. Power coherence was calculated to be a metric between 0 and 1, where reduced 

power coherence reflects reduced fiber integrity. Fiber orientation was measured as the angle 

between the preferential axes of the ellipses and the horizontal, adding 90° to account for the 

power spectrum rotation in the frequency domain and rotation of each voxel to the 

orientation measured from the elliptical fit.
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Highlights

• A nonlinear histology-MRI coregistration method is proposed

• Quantitative correlations of fiber orientation validate registration accuracy

• Disrupted white matter is quantitatively distinct from complex white matter
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Fig. 1. MRI data acquisition
A. Ten human ex vivo tissue samples from the superior frontal cortex (BA 8/9) were 

requilibrated at 4°Celsius in 1xPBS with 0.01% NaN3 for two weeks after being received 

from Boston University. Prior to MRI data acquisition, tissue was stored overnight at room 

temperature in Fluorinert. B. Tissue was placed in a container which optimized filling factor 

thereby maximizing the tissue signal. C. An inductive coupling coil was used to in order to 

better tune the coil and tissue contained contents to the resonant frequency of the MRI 

scanner. D. GQI data were acquired in an 11.74 T Agilent MRI scanner, requiring a total 

scan time of 11 hours per tissue sample.
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Fig. 2. Workflow of histology to MRI registration
A. Fixed blocks of human cortical tissue were scanned using a spin echo sequence to collect 

GQI data. B. Tissue was sectioned into serial 50 μm thick sections and stained for 

neuropathological markers. Every sixth section (250 μm spacing) was stained for myelin 

using Black Gold II, and digital images of histology were acquired for quantification. C. 
Landmarks were manually placed on the digital image (downsampled to x5 magnification) 

of the Black Gold II image and associated slice on the unweighted diffusion (b = 0 s/mm2) 

data in corresponding locations. C. A nonlinear least squares registration was applied to 

warp the histological image to the same orientation and dimensions as MRI space. D. To 

preserve high resolution needed for further quantitative histology, an inverse transformation 

was applied to each warped histological voxel to generate a grid of ROIs where each region 

of interest represents a voxel of the diffusion data. E. ROIs were then able to be drawn on 

the high resolution (x5 magnification) histology. F. Using the voxel based grid as a 

reference, the corresponding ROIs were automatically selected on the MRI data for other 

investigations of radiological-pathological correlations in specific zones such as sub-sulcal 

white matter (Holleran et al., 2015).
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Fig. 3. Automated generation of white matter masks
A. Histologically derived white matter masks were automatically generated using the high 

gray white matter contrast of the Black Gold II stain. B. Sections were thresholded and 

blurred using a Gaussian filter with a radius matching the MRI in plane resolution (250 μm). 

C. The corresponding voxel-based grid was then overlaid onto the blurred mask. Voxel 

equivalent ROIs with a mean value of 1 (darkest intensity) were classified as white matter, 

while voxels with a mean value of 0 (lightest intensity) were classified as gray matter. 

Voxels with a mean intensity between 0 and 1 were classified as gray/white matter boundary. 

D. MRI voxel classification was based on the unweighted diffusion image (b = 0 s/mm2). E. 
The boundary between gray and white matter was selected using the edge detection feature 

available in ImageJ. F. Voxels within this boundary were classified as white matter, voxels 

outside of this boundary were classified as gray matter, and voxels selected during edge 

detection were classified as boundary voxels.
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Fig. 4. Derivation of fiber orientation from histology
A. Voxel-based grids derived from nonlinear least squares registration were overlaid onto the 

corresponding Black Gold II stained tissue sections in ImageJ. B. Each white matter voxel 

was used as a region of interest. C. The ROI equivalent to each voxel was converted to 

grayscale, zero mean normalized and windowed to remove edge and center spike artifacts. 

D. The power spectrum resulting from a two dimensional discrete Fourier transformation 

shows high amplitude peaks perpendicular to fiber orientation stained by Black Gold II. 

Intensity of the power spectrum corresponds to the amplitude in dB at each spatial 

frequency. In this example, the power spectrum has greatest amplitude at approximately 60 

degrees from the horizontal, perpendicular to the fibers in the spatial domain which are 

oriented at approximately −30 degrees; the direction of maximum change in signal 

amplitude is perpendicular to the fiber orientation.
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Fig. 5. Comparison of nonlinear vs linear transformation methods
A. A nonlinear moving last squares transformation was used to generate voxel-based grids 

corresponding to Black Gold II sections. B. Variation in tissue warping is apparent by the 

non-uniform shape of the grid in gray and matter regions. C. An unweighted Cohen’s kappa 

coefficient was used to evaluate the agreement of voxels classified as white matter, gray 

matter, or boundary voxels using histology and MRI, resulting in very strong agreement 

(kappa = 0.98). D. An affine transformation was used to generate voxel-based grids using the 

same manually placed landmarks as the nonlinear transformations. E. Uniform warping 

across gray and white matter is apparent, particularly at the gray/white matter boundary. F. 
The unweighted kappa coefficient was calculated, resulting in good agreement (kappa = 

0.77), but there is a large discrepancy in the agreement between boundary voxels, indicating 

that a linear transformation may not be able to account for sudden variations in tissue.
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Fig. 6. Reliability testing
A. Two grids were generated and overlaid onto the corresponding histological images based 

on two sets of landmarks placed by either the same or two different users. B. The cumulative 

histogram of the distance the centroid of each voxel has shifted shows that even when two 

different users have placed separate sets of fiducials based on anatomical landmarks, less 

than 25% of voxels have shifted more than 250 μm, a threshold determined using the MRI in 

plane resolution. C. A simulation was carried out to test the robustness of nonlinear 

registration to variations in landmark placement. The percentage of voxels that had shifted 

less than the MRI in plane resolution (250 μm) was then plotted as a function of the 

maximum distance the landmarks had been shifted. Registration is less prone to variability 

when landmarks have been shifted less than 350 μm, with 80% of voxels having shifted less 

than 250 μm.
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Fig. 7. Correlation of diffusion based and histologically based fiber orientation
A. Fitting two tensors to the power spectrum of each white matter voxel-registered ROI 

resulted in a directionality map, where the color of each registered region of interest 

represents the orientation of the primary fiber population. B. Directionality comparisons 

could then be directly made by comparing the histologically derived fiber orientation from 

the Myelin Black Gold II with the GQI derived orientation. C. There was a strong nearly 

one-to-one linear relationship between the quantitative histological metric and the GQI data 

(red line indicates line of identity). Orientations calculated from the ODFs resulted in 

discrete bins due to the finite angular resolution of the GQI data (202 directions) on the x-

axis, while the Black Gold II based fiber orientations were a continuous measure. Therefore, 

a one-tailed Spearman’s correlation was used, resulting in p values < 0.001 for both primary 

and secondary major fiber components.
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Fig. 8. Performance of nonlinear vs affine transformations when correlating fiber orientation
A. Nonlinear transformation results in a linear relationship, determined using a linear 

regression analysis (p < 0.0001, r2 = 0.94) of ODF derived vs Black Gold II derived primary 

fiber orientations. Red line indicates the fitted line. B. Affine transformation of the same 

data also results in a strong linear relationship, based on linear regression analysis (p < 

0.0001, r2 = 0.87), but the distribution of Black Gold II fiber orientation in each ODF bin is 

wider compared to the results of the nonlinear transformation. A difference test shows that 

the correlation of the primary fiber orientations resulting from a nonlinear transformation is 

superior to the correlation resulting from an affine transformation. The maximum difference 

between the primary in plane peak of the ODF and the secondary in plane peak of the ODF 

was 153.73°.
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Fig. 9. Relationship between spatial resolution and fiber direction correlations
A. Comparison of ODF derived and Black Gold II derived fiber orientations at 500 μm 

isotropic resolution in complex cortical white matter continues to show a strong correlation 

(r = 0.91) but the distribution of histologically based fiber orientations is broader for each 

bin, indicating that a two tensor fit may not be able to account for the increased voxel wise 

white matter heterogeneity. Red line indicates line of identity. B. Comparison of ODF 

derived and Black Gold II derived fiber orientations at 1000 μm isotropic resolution shows a 

low correlation (r = 0.35), where the ability to implement the 2D FFT to discern between 

simple, crossing, and disrupted white matter is lost, showing the limitations of a two tensor 

model. Red line indicates line of identity.
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Fig. 10. Fiber direction correlations in a single tensor model
A. DTI derived fiber orientation based on low angular resolution diffusion data (30 

directions) vs. Black Gold II derived fiber orientation shows a low correlation (r=0.41) in 

simple white matter, defined based on GQI data as having only one fiber population. 4.40% 

of the total voxels in the tissue block were classified as simple white matter. Red line 

indicates line of identity. B. Comparison of DTI and Black Gold II derived fiber orientations 

in complex white matter, defined based on GQI data as having two fiber populations shows a 

modest correlation (r=0.53). 22.60% of the total voxels in the tissue block were classified as 

complex white matter.. C. DTI derived fiber orientation based on high angular resolution 

diffusion data (202 directions) shows a low correlation (r=0.42) with Black Gold II derived 

fiber orientation in simple white matter. D. DTI derived fiber orientation shows a modest (r = 

0.54) correlation with Black Gold II derived fiber orientation in complex white matter. The 

correlations are not affected by using increasing angular resolution, indicating that the single 

tensor assumption of DTI is not sufficient when modeling voxels with more than one fiber 

population.
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Fig. 11. Power coherence distinguishes between complex vs. disrupted white matter
A. Black Gold II stains myelinated fibers aligned in one orientation. B. The power spectrum 

reflects the strong directional component and coherent fiber architecture (power coherency = 

0.74). C. The ODF of the coregistered voxel from GQI shows that the white matter fibers in 

this tract all lie along one direction. D. Black Gold II stained examples of crossing fibers. E. 
The power spectrum of these crossing fibers shows two strong directional components, each 

fitted with two narrow tensors (power coherency = 0.81). F. The crossing tracts are apparent 

in the voxel coregistered to this region, reflected by the two sharp peaks of the function. G. 
Black Gold II stain in a region with disrupted fibers. H. The disorganization of the fibers is 

reflected in the power spectrum, where there is no strong directional component in any 

direction, resulting in low coherency (power coherency = 0.17). I. The ODF from the 

coregistered voxel reflects the broader spread of directionalities that is observed in the power 

spectrum of the histological data.
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Fig. 12. Power coherence in a mouse model of traumatic brain injury as a positive control
A. 50 μm thick sections from an uninjured mouse brain were stained for myelin using Black 

Gold II. A region of interest was drawn to include the corpus callosum, restricted to the 

genu, anterior forceps and external capsule bound by the mideline and the lateral edge of the 

cingulum on the hemisphere ipsilateral to injury for multiple sections (red line). B. Fibers, 

indicated by white arrows, appear to be curving normally throughout the region. C. A high 

power view of the white matter in the corpus callosum shows that there are no irregularities 

in fiber organization. D. 50 μm thick sections from a positive control (2 mm CCI injury) 

mouse model of traumatic brain injury were stained for myelin using Black Gold II. A 

region of interest ipsilateral to the injury site that includes the corpus callosum was drawn 

for each section (red line). E. Fibers, indicated by white arrows, show signs of disruption 

both in the corpus callosum and as they branch into cortical gray matter. F. The high power 

view of the white matter adjacent to the injury site shows disruption of the underlying fibers. 

G. Power coherence of regions of interest from adjacent sections of both the uninjured and 

CCI injured mouse was calculated as described in Appendix I. As expected, white matter 

ipsilateral and close to the injury site in the injured mouse shows signs of disruption, 

reflected by reduced power coherence. In contrast, white matter in the corresponding region 
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of interest of the uninjured mouse shows consistently high power coherence, reflecting 

preserved fiber integrity.
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Fig. 13. Effect of voxel size on estimations of white matter heterogeneity
A. Voxel-based grids were generated at 250 μm isotropic in plane resolution. B. White 

matter adjacent to sulcal gray matter within a region of interest extending 2 mm into white 

matter was analyzed for voxel-wise power coherence. C. Voxel-based grids were generated 

at 500 μm isotropic in plane resolution based on landmarks placed on downsampled MRI 

data. D. A 2 mm region of interest of white matter adjacent to sulcal gray matter was 

analyzed for voxel-wise power coherence. E. Voxel based grids were generated at 1000 μm 

isotropic in plane resolution based on landmarks placed on downsampled MRI data. F. The 

same 2 mm region of interest was analyzed for voxel-wise power coherence. G. High in 

plane spatial resolutions of 250 μm show a large variation in power coherence in white 

matter adjacent to sulcal gray matter. This region of interest may contain a range of 

severities of disrupted vs. intact fibers, which should span the range (0–1) of power 

coherence. As isotropic in plane spatial resolution decreases to 1000 μm, the variation in 

power coherence is reduced (F = 1.53, p<0.001), indicating that low spatial resolutions may 

underestimate the heterogeneity of complex white matter regions.
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