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Abstract

Several strategies have been proposed to model and remove physiological noise from resting-state 

fMRI (rs-fMRI) data, particularly at ultrahigh fields (7 Tesla), including contributions from 

respiratory volume (RV) and heart rate (HR) signal fluctuations. Recent studies suggest that these 

contributions are highly variable across subjects and that physiological noise correction may thus 

benefit from optimization at the subject or even voxel level. Here, we systematically investigated 

the impact of the degree of spatial specificity (group, subject, newly proposed cluster, and voxel 

levels) on the optimization of RV and HR models. For each degree of spatial specificity, we 

measured the fMRI signal variance explained (VE) by each model, as well as the functional 

connectivity underlying three well-known resting-state networks (RSNs) obtained from the fMRI 

data after removal of RV+HR contributions. Whole-brain, high-resolution rs-fMRI data were 

acquired from twelve healthy volunteers at 7 Tesla, while simultaneously recording their cardiac 

and respiratory signals. Although VE increased with spatial specificity up to the voxel level, the 

accuracy of functional connectivity measurements improved only up to the cluster level, and 

subsequently decreased at the voxel level. This suggests that voxelwise modeling over-fits to local 

fluctuations with no physiological meaning. In conclusion, our results indicate that 7 Tesla rs-

fMRI connectivity measurements improve if a cluster-based physiological noise correction 

approach is employed in order to take into account the individual spatial variability in the HR and 

RV contributions.
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1 Introduction

The last years have seen an increasing interest in the study of the brain’s intrinsic functional 

connectivity, based on non-invasive, whole-brain measurements performed during resting-

state by functional magnetic resonance imaging (rs-fMRI). Functional connections are 

inferred from time synchronous fluctuations in the blood-oxygen level dependent (BOLD) 

signal across different brain regions (Biswal et al., 1995; Kwong et al., 1992; Ogawa et al., 

1992). The hemodynamically-driven changes in tissue and vessel oxygenation underlying 

the BOLD signal are, however, caused by a combination of neuronal activity and non-

neuronal mechanisms, the latter usually referred to as physiological noise (Birn, 2012; Fox 

et al., 2005; Greicius et al., 2003). Being able to unequivocally identify and eliminate the 

synchronous activity arising from sources of no interest is thus crucial to obtain accurate 

measurements of functional connectivity. A significant fraction of the spurious BOLD 

fluctuations is caused by cardiac and respiration mechanisms (Biswal et al., n.d.; Cordes et 

al., 2001; Dagli et al., 1999; de Munck et al., 2008), inducing changes in cerebral blood flow 

(CBF), cerebral blood volume (CBV), arterial pulsatility and arterial CO2 partial pressure 

(Dagli et al., 1999; Greitz et al., 1993; Krüger and Glover, 2001; Murphy et al., 2013; 

Purdon and Weisskoff, 1998), as well as in the static magnetic field (Abhishek Raj et al., 

2011). Various methods have been proposed in the literature to account for these effects, 

ranging from simply band-pass filtering the signal (Zhang et al., 2011) in the frequency band 

of interest (typically 0.01–0.1 Hz) to modeling and regressing out spurious signals (inferred 

directly from the fMRI data or from externally acquired physiological data) in a general 

linear modeling (GLM) framework (Harvey et al., 2008; Jo et al., 2010; Kong et al., 2012; 

Murphy et al., 2009).

Techniques based on externally acquired cardiac and respiratory signals have been shown to 

explain significant variance of the BOLD signal and improve the accuracy of the resulting 

functional connectivity measurements (Bianciardi et al., 2009b; Birn et al., 2014; Chang et 

al., 2009). Periodic fluctuations arising from the cardiac and respiratory cycles are 

commonly modeled by “RETROICOR”, a well-established technique that fits a low-order 

Fourier series of the phase of each cycle to the BOLD signal (Glover et al., 2000). In 

addition, the respiratory volume (RV) per unit time is typically used to model non-periodic 

low-frequency respiratory fluctuations, which are associated with slow changes in the end-

tidal CO2 pressure, a surrogate marker of the arterial CO2 partial pressure (Birn et al., 2006). 

Similarly, non-periodic cardiac fluctuations are usually modeled by the heart rate (HR) 

temporal variation (Shmueli et al., 2007). However, the relationship between the BOLD 

signal and these subtle changes in the respiration depth and frequency, as well as in the 

cardiac rate, is still not fully understood. Respiratory and cardiac response functions have 

been empirically determined and proposed to describe these relations. Specifically, their 

contributions to the BOLD signal are modeled by convolving the RV and HR time courses 
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with a respiratory response function (RRF) (Birn et al., 2008) and a cardiac response 

function (CRF) (Chang et al., 2009), respectively. Another strategy has also been proposed, 

which follows a finite impulse response (FIR) filtering approach whereby a number of 

temporally lagged versions of the RV and HR time courses are included in the model 

(Bianciardi et al., 2009b; Shmueli et al., 2007). Both approaches have been shown to 

significantly explain BOLD signal variance in addition to RETROICOR.

Most critically, in both cases a high degree of variability across subjects and brain regions 

has been reported in the RV and HR models that best explain BOLD signal fluctuations 

(Birn et al., 2014; Falahpour et al., 2013; Golestani et al., 2015; Nunes et al., 2015). Birn 

and colleagues hypothesized that physiological noise contributions modeled using different 

approaches were in general more variable across subjects than within subjects, by observing 

that their removal reduced the within-subject variability more than the between-subjects 

variability in the ensuing functional connectivity measurements (Birn et al., 2014). Such 

variability is supported by the findings of Falahpour and colleagues, where the derivation of 

subject-specific RV and HR response functions improved physiological noise correction 

(Falahpour et al., 2013). More recently, Golestani and colleagues reported high spatial and 

inter-subject variability in the timing of the estimated RV, HR and PETCO2 response 

functions, especially when using a long repetition time (2500 ms) (Golestani et al., 2015).

Optimization at the voxel level, either by maximizing the BOLD signal variance explained 

(VE) through temporal lagging of the HR and RV signals, or by maximizing a cost function 

in a response function deconvolution method, has also been employed in some studies (Birn 

et al., 2006; Chang et al., 2009; Golestani et al., 2015). Although significantly explaining 

more variance in the data, it is not clear whether the apparent improved performance of 

voxelwise models is due to truly increased model sensitivity or to overfitting to very 

localized effects with no physiological meaning. This issue is particularly problematic for 

higher spatial resolution fMRI data collected at high field strengths, where thermal noise 

dominates over physiological noise (Krüger et al., 2001; Krüger and Glover, 2001; 

Triantafyllou et al., 2005). Thus, being able to identify the level of spatial specificity of the 

physiological noise model that optimizes, not only the VE of spurious signal fluctuations but 

also the accuracy of the resulting functional connectivity measurements becomes a necessity.

In this paper, we compared a large set (14 different types) of physiological noise modeling 

approaches based on externally acquired cardiac and respiratory data, optimized at different 

levels of spatial specificity (group, subject, newly proposed cluster and voxel). This 

comparison was performed on whole-brain high spatial resolution rs-fMRI data collected at 

7 Tesla, both in terms of the VE in the BOLD data and of the ensuing improvements in the 

accuracy of the functional connectivity measurements obtained in three well-known resting-

state networks (RSNs).

2 Methods

2.1 Data Acquisition

A group of 12 healthy subjects (6M/6F, 28±1 years old) was studied on a 7 T Siemens 

whole-body scanner equipped with a custom-built 32-channel radiofrequency loop coil head 
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array for signal reception, and a detunable band-pass birdcage coil for radiofrequency 

transmission. A rs-fMRI dataset with a duration of approximately 5 minutes, was collected 

using a simultaneous-multi-slice (SMS) echo-planar-imaging (EPI) sequence, with echo 

time (TE) = 32 ms, repetition time (TR) = 2500 ms, flip angle = 75°, field of view=264 × 

198 mm2. A total of 123 sagittal slices, covering the whole brain with 1.1 mm isotropic 

resolution, were acquired in an interleaved order with a GRAPPA acceleration factor of 3 

(Griswold et al., 2002), echo-spacing = 0.82 ms, and SMS factor = 3. A whole-brain T1-

weighted structural image was also collected using a multi-echo MPRAGE sequence with 1 

mm isotropic resolution (van der Kouwe et al., 2008) . Cardiac and respiratory data were 

simultaneously recorded using a pulse transducer (TN1012/ST, ADInstruments) placed on 

the subject’s left index finger, and a pneumatic belt (UFI Model 1132 Pneumotrace II, UFI) 

strapped around the subjects’ upper abdomen, respectively. Both cardiac and respiratory 

recordings were acquired with a sampling rate of 1000 Hz, simultaneously with a tag 

signaling the fMRI volume triggers.

2.2 Data pre-processing

Data analysis was performed using FSL 5.0 (Jenkinson et al., 2012; Smith et al., 2004) tools 

and in-house software implemented in Matlab2013a®. For the fMRI data, quasi-periodic 

cardiac and respiratory fluctuations were first regressed out using RETROICOR (up to the 

2nd order), synchronized in time with each acquisition slice. The following pre-processing 

steps were then applied: correction for slice acquisition timings by interpolation to the center 

of each TR interval; head motion correction by volume-to-volume re-alignment; removal of 

slow drifts by regressing out using a set of polynomials (up to the 3rd order); and spatial 

smoothing by low-pass filtering using a Gaussian kernel with FWHM = 3 mm. A second 

analysis was also performed using a larger smoothing kernel (FWHM = 5 mm), in order to 

test the impact of spatial smoothing on the effects of physiological noise modeling at 

different levels of spatial specificity.

Linear registration between the functional and structural images was performed using 

Boundary-Based Registration (BBR), and the structural images were normalized to the MNI 

standard space by non-linear registration (FLIRT and FNIRT tools from FSL) (Greve and 

Fischl, 2009; Jenkinson et al., 2002; Jenkinson and Smith, 2001). Gray matter (GM), white 

matter (WM) and cerebral spinal fluid (CSF) masks were obtained by segmentation of the 

T1-weighted structural image (FAST tool from FSL), and subsequently adding the brainstem 

from the MNI atlas to the GM mask (Collins et al., 1995; Mazziotta et al., 2001). Both 

masks were then eroded using a 3 mm spherical kernel as recommended in (Jo et al., 2010), 

so that partial volume effects were minimized. Additionally, the eroded CSF mask was 

intersected with a large ventricle’s mask extracted from the MNI space, following the 

rationale described in (Chang and Glover, 2009). The concurrently acquired respiratory and 

cardiac signals were low-pass filtered at 0.5 and 1.6 Hz, respectively, and peak detection was 

performed on the filtered cardiac signal for posterior construction of the physiological 

regressors.
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2.3 Physiological noise models

A set of competing models was tested for the physiological noise contributions from non-

periodic fluctuations of cardiac and respiratory signals based on HR and RV, respectively. 

RV was defined as the standard deviation of the respiratory waveform in a 5 s sliding 

window (corresponding to 2 TR’s) centered at each time point (Chang et al., 2009). HR was 

defined as the inverse of the peak-to-peak interval of the filtered cardiac signal; HR values 

more than 1.96 standard deviations away from the median were considered spurious, and 

were replaced by linear interpolation (Bianciardi et al., 2009b; Shmueli et al., 2007).

Variability in the timings and shape of the BOLD response to HR and RV fluctuations was 

taken into account through a time-lagging optimization procedure, whereby the RV and HR 

regressors were time-lagged in a [−20 20] s interval in 1 s steps; for each lagged time course, 

a GLM analysis was carried out and the VE was computed (Bianciardi et al., 2009b; Jorge et 

al., 2013). Two models were then built: 1) a Single-Lag model based on the lagged time 

course yielding the maximum VE value; and 2) a Dual-Lag model comprising the two 

lagged time courses yielding the two greatest VE values corresponding to a positive and a 

negative fMRI signal change (the purpose of selecting one lag yielding a positive and 

another one yielding a negative signal change is to taken into account the commonly 

observed biphasic shape of the VE vs. lag curves). The same process was repeated after 

convolving RV and HR with the previously proposed impulse response functions (IRF), RRF 

(Birn et al., 2008) and CRF (Chang et al., 2009), respectively, yielding the Standard IRF 
Convolution model. Subject-specific IRF’s were also derived by simultaneously 

deconvolving RV and HR from the GM global signal (GS) using a Gaussian process (Chang 

et al., 2009; Falahpour et al., 2013), yielding the GS-derived IRF Convolution model. No lag 

optimization was performed in this case, as the deconvolution process intrinsically adapts 

the response for temporal differences.

2.4 Lag optimization at different levels of spatial specificity

The lag optimization methodology based on maximizing the VE was applied to both RV and 

HR, at each of the four different levels of spatial specificity tested here (group, subject, 

newly proposed cluster and voxel), as described next. VE averages were solely computed 

across GM voxels, where BOLD fluctuations of neuronal origin are expected to occur.

1. Group: The GM average VE vs. lag curves were averaged across all subjects in 

the group, and the resulting group average VE vs. lag curves were then used to 

obtain a unique model of each type (Single-Lag, Dual-Lag, Standard IRF 
Convolution) for the whole group. Group IRF’s were computed as the group 

average of the IRF’s obtained for each subject from the GM average fMRI GS, 

and used to generate the GS-derived IRF Convolution models. This level of 

specificity assumes a homogeneous behavior of RV and HR responses across 

subjects, as well as across the brain.

2. Subject: The GM average VE vs. lag curves were used to obtain a unique model 

of each type (Single-Lag, Dual-Lag, Standard IRF Convolution) for each subject. 

Subject-specific IRF’s were derived from the GM average fMRI GS’s and used 

to generate the GS-derived IRF Convolution models. In contrast with the group 
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level of specificity, this level of specificity takes into account differences across 

subjects, but it still assumes a homogenous behavior across the brain.

3. Cluster: In order to account for the spatial variability of RV and HR contributions 

within across the brain, a novel approach was proposed to obtain clusters of 

voxels with temporally distinct responses to RV and HR fluctuations by 

clustering the normalized VE vs. lag curves of all GM voxels in each dataset 

using a k-means algorithm with k = {2,3,4,5,6} clusters (the squared Euclidean 

distance was used as the distance metric; and local minima were minimized by 

performing 10 replicates using different initial cluster centroid positions chosen 

at random (https://www.mathworks.com/help/stats/kmeans.html)). The optimal 

lags were then extracted from the average VE vs. lag curve of each cluster. 

Because some clusters obtained in this way present a monophasic behavior 

(purely positive or negative responses), defining a Dual-Lag model is not always 

possible; in such clusters, a Single-Lag model was chosen. Cluster-specific IRF’s 

were derived from the cluster average fMRI GS’s and used to generate the GS-
derived IRF Convolution models.

4. Voxel: The VE vs. lag curve measured in each voxel was used to determine the 

optimal lags for the model applied to that voxel. The Dual-Lag model was not 

tested at this level because it is not possible to clearly identify the second peak 

corresponding to a biphasic curve consistently in all voxels due to noise. This 

level of specificity takes into account differences in the RV and HR responses 

across subjects and voxels.

2.5 Variance explained in the fMRI data

Model performance was first evaluated by computing the VE by each competing 

physiological model. Functional connectivity fluctuations are usually evaluated in GM, thus, 

for optimization purposes, average VE results were restricted to the whole GM. The 

percentage fMRI signal VE was defined as the adjusted coefficient of determination (R2
adj) 

multiplied by 100. R2
adj increases only if the addition of a regressor explains more 

information that what would be expected by chance, penalizing the unnecessary loss of 

degrees of freedom. This is an important requirement in our comparison since models with 

different levels of complexity, i.e. with a variable number of regressors, were compared 

against each other. For each level of spatial specificity, the model explaining the highest 

percentage of variance in the GM was subsequently used for the functional connectivity 

analysis. In order to further inform the choice of the optimal number of clusters in addition 

to the model’s VE, we also used a silhouette clustering evaluation criterion. The silhouette 

value is computed for each point in a cluster, and it measures how similar that point is to 

points within the same cluster when compared to points in other clusters (Kaufman and 

Rousseeuw, 1990). If most points have a high silhouette value, then the clustering solution is 

appropriate.

2.6 Impact on functional connectivity measurements

To assess the impact of the physiological noise correction methods on the accuracy of 

functional connectivity measurements, three commonly identified RSNs were analyzed 
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based on the following seeds: posterior cingulate cortex (PCC) (MNI coordinates: −6 −58 

28), supplementary motor area (SMA) (MNI coordinates: −2 10 48) and intra-parietal sulcus 

(IPS) (MNI coordinates: 26 −58 48) (Toro et al., 2008). For each dataset, and for each 

physiological noise correction method tested (Group-, Subject-, Cluster-, and Voxel-level 
correction), the average time course in each seed (5 mm sphere centered at the specified 

MNI coordinates) was extracted and orthogonalized against each other, by removing from 

each one the variability shared with the other two, as implemented in the FEAT tool in FSL 

(fsl.fmrib.ox.ac.uk/fsl). For comparison purposes, data pre-processed but without any 

physiological noise correction (Uncorrected) was also included in the analysis. A multiple 

regression analysis was then performed, in a GLM framework, in order to obtain a map of 

the correlations with each seed, expressed by the respective GLM parameter estimates (PE), 

or coefficients of fit. Group-level RSNs were obtained by entering each of the three PE maps 

from each subject, and for each physiological noise correction tested, into a higher-level 

statistical analysis using a mixed-effects model (as implemented in FSL’s FLAME), and 

correcting for multiple comparisons at the cluster level using Gaussian random field theory 

(voxel Z>2.3 and cluster p<0.05) (Shehzad et al., 2009, Margulies et al., 2007).

For each dataset, and for each model specificity tested, the functional connectivity strength 

(FCS) of a given RSN (how strongly the voxels are correlated with the corresponding seed) 

was computed as the average across the respective group-level thresholded Z-statistic map of 

the percent signal change (PSC) associated with the respective seed (fit coefficient 

normalized by the mean signal amplitude over time). In order to assess the specificity of 

these functional connectivity measurements, we computed the ratio between the FCS of a 

given RSN and the average PSC across the whole gray matter for the different physiological 

noise correction methods. The rationale is that an accurate functional connectivity 

measurement should reflect fluctuations of neuronal origin that are specific to the RSN, and 

hence this ratio should increase as generic fluctuations of non-neuronal origin are better 

removed from the data, while RSN-specific fluctuations are preserved. Besides this outcome 

measure, we also computed the average PSC across a region where no fluctuations of 

neuronal origin are expected, consisting of the WM and CSF masks obtained by image 

segmentation.

3 Results

The results obtained for the lag optimization of the contributions of HR and RV fluctuations 

to the fMRI signal, in terms of the VE values obtained across subjects and brain regions, are 

first presented. These motivate the exploration of the different levels of spatial specificity 

tested for physiological noise modeling and correction. Their impact on the accuracy of 

functional connectivity measurements of three RSNs is then presented.

3.1 Physiological noise modeling lag optimization

The variation as a function of time-lag of the fMRI signal VE associated with the RV and 

HR physiological noise model contributions, is shown in Fig. 1 (top), averaged across GM 

for each individual subject as well as across subjects. The individual optimal time-lags, 

yielding the maxima VE values, vary significantly across subjects for both RV and HR, as 
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evidenced by the wide error bounds defined by the mean and the standard errors of the mean 

(7.9 ± 2.5 s and 5.3 ± 1.9 s, respectively). Although the shape of the individual VE vs lag 

curves is also quite variable across subjects, a biphasic behavior emerges at the group level, 

with a major peak at approximately +11/+9 s and a minor peak at approximately −7/−3 s, for 

RV/HR, respectively. Individual HR curves are in general noisier: while a large positive peak 

is consistently observed, inter-individual differences dilute the position of the average 

negative peak. Furthermore, the biphasic behavior is also less clear at the subject level, with 

more than two peaks being observed in some subjects. The RRF and CRF estimated for each 

subject based on the deconvolution of their global GM signal, using a Subject-specific 

optimization, are also shown in Fig. 1 (bottom), together with the standard RRF and CRF 

(Birn et al., 2008; Chang et al., 2009). We found that both responses are highly variable 

across subjects. Nevertheless, overall, we obtained faster responses than previously reported, 

presenting earlier 1st and 2nd peaks for both RV and HR (on average, ~2 and 8 s).

The optimal time-lag maps, for both RV and HR regressors, are shown in Fig. 2, for the 

group average with the respective standard error (SE). Although some inter-subject 

variability is apparent from the SE maps, time-lags significantly different from zero are 

nevertheless found in different brain regions, with consistent patterns across subjects. For 

RV, large positive time-lags are found in the occipital cortex and along the interhemispheric 

fissure. For HR, positive time-lags are found in posterior regions adjacent to the sinus rectus. 

For both RV and HR, predominantly negative time-lags are observed in WM, in contrast 

with mainly positive time-lags in GM.

3.2 Clustering based on VE vs lag curves

The newly proposed spatial clustering of GM voxels based on the shape of the VE vs lag 

curves is illustrated in Fig. 3, for k=3 (the optimal number of clusters found in this study, as 

described in the next sub-section). The spatial distribution and average VE curves of the 

three clusters obtained for a representative subject, for both RV and HR, are shown. In both 

cases, the biphasic behavior (one negative and one positive VE peak) is present in two of the 

three clusters, while the third cluster reveals a monophasic behavior, with the VE peak 

centered close to 0 s. Biphasic curves are, however, very asymmetric with respect to the 

peaks amplitude, exhibiting a clearly dominating negative or positive peak. In general, three 

clusters with clear structural differences were found for every dataset; most clusters retained 

a biphasic curve (59/61 out of 72 for RV/HR, respectively), but with considerably different 

peak times.

3.3 Variance explained in the fMRI data

The VE by each of the physiological noise models tested, averaged across GM and subjects, 

is shown in Fig. 4, as a function of the level of specificity (Group/Dataset/Cluster/Voxel).

A global statistical analysis on VE, averaged across GM, was performed in order to test for 

differences and interactions between model type (Single-Lag, Dual-Lag, Standard IRF 
Convolution, GS-derived IRF Convolution), specificity level (Group, Subject, Cluster k=2, 

Cluster k=3, Cluster k=4, Cluster k=5, Cluster k=6), and physiological variable (RV/HR), 

using a 3-way repeated measures analyses of variance (ANOVA). In this analysis, the 

Pinto et al. Page 8

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specificity level Voxel was not included since this level was considered only for two of the 

four model types. A significant main effect was found for the specificity level (F=113, 

η2=0.926, p<0.001) and the model type (F=77, η2=0.875, p<0.001), but not for the 

physiological variable (F=4.5, η2=0.292, p>0.05). There was a significant interaction 

between specificity level and model type (F=25, η2=0.697, p<0.001), with only marginally 

significant interactions of physiological variable with both level of specificity and model 

type (F~3, η2~0.2, p>0.01). For this reason, further statistical analyses were performed 

separately for model type and specificity level.

In terms of model type, a significant main effect was found for all specificity levels tested 

(p<0.001) and Dual-Lag, for specificity levels Group, Subject, Cluster k=2 and Cluster k=3, 

and between GS-derived IRF Convolution and all other models, for all specificity levels, 

while no significant differences were found between Dual-Lag and Standard IRF 
Convolution models. At the Voxel level, no statistical main effect was found for model type 

(F=0.015, η2=0.001, p=0.905).

Since the Dual-Lag model type generally outperformed the other model types, this was 

selected for subsequent analysis of specificity level; for consistency, for the Voxel level, the 

single-lag model was chosen (rather than Standard IRF Convolution). A significant main 

effect was found for specificity level, for all model types (F=31, η2=0.739, p<0.001). Post-

hoc analysis yielded significant differences between successive specificity levels up to 

Cluster k=3; subsequent to this, only the Voxel level was significantly different from Cluster 
k=3; furthermore, the Voxel level was significantly different from Group, Subject, Cluster 
k=2 and Cluster k=3 levels, but not from Cluster k=4, 5 or 6 levels. We therefore conclude 

that k=3 is the “optimum” number of clusters when using the Cluster specificity level.

The group average VE maps obtained with the deemed optimal models at each specificity 

level are shown in Fig. 5. On average (across GM), 6.9±1.1% of variance was explained by a 

model optimized at the group level, while nearly two times more variance (13.7±0.9%) was 

explained when optimizing time lags at the voxel level. Subject- and cluster–level optimized 

models explained 8.8±1.1% and 10±1.2% variance in the GM, respectively. Irrespective of 

spatial specificity level, all models accounted for the most variance within the occipital and 

parietal lobes.

The VE results obtained using data smoothed with a larger kernel (FWHM=5 mm) are 

shown in Fig. S2. As expected, we found generally higher VE values for the physiological 

noise models in this case. Nevertheless, the increase of VE with specificity level was still 

observed.

3.4 Impact on functional connectivity measurements

The group results for the FCS measurements obtained inside the RSN, across the whole GM 

and across WM+CSF, using the different spatial specificity levels of the physiological 

correction model, are shown in Fig. 6. A 3-way repeated measures ANOVA was performed 

on the FCS values with factors: spatial specificity (Uncorrected, Group-, Subject-, Cluster-, 
and Voxel-level correction), brain region (RSN, GM, WM+CSF), and RSN seed 

(PCC/SMA/IPS). A statistically significant main effect was found for spatial specificity level 
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(but not brain region or RSN seed), reflecting a general decrease of temporal correlations 

with the seed as more temporal fluctuations are removed from the data with increasingly 

more specific physiological noise models. This general decrease was, however, relatively 

less accentuated inside the RSNs (i.e., in brain areas that are expected to exhibit true 

neuronal correlations with the seed), when compared with the whole GM or WM+CSF 

regions.

Accordingly, the ratio between the average FCS inside the RSN and average FCS in the 

whole GM generally increased with specificity level. Most importantly, however, this 

increase was significant only up to the subject level and a decrease was then observed at the 

voxel level (Fig. 6, Right). A 2-way repeated measures ANOVA was performed on the FCS 

ratios with factors: specificity level (Uncorrected, Group-, Subject-, Cluster-, and Voxel-
level correction) and RSN seed (PCC/SMA/IPS). A significant main effect was found for 

specificity level (F=9.2 η2=0.455, p<0.001), and for RSN seed (F=6.6 η2=0.377, p<0.006), 

with no interactions. Post-hoc comparisons showed significant improvements at all 

correction specificity levels relative to the Uncorrected condition (p<0.001), and also 

between the Cluster level correction and the Group and Voxel levels (p=0.009 and p=0.01, 

respectively) (with no significant change relative to the Subject level). The functional 

connectivity maps obtained with the PCC seed at the group-level are shown in Fig. 7, for 

each physiological noise correction condition. It may be observed that, consistently with the 

FCS ratio variation with correction level, FCS changes are slightly globally more 

pronounced outside the RSN, with no specific spatial distribution. We also computed FCS 

and corresponding ratios for all the numbers of clusters tested (k=2, 3, 4, 5 and 6), and we 

verified there was no significant main effect in the FCS ratio of the different number of 

clusters (F=0.498, p=0.6, η2=0.043) (Fig. S3).

4 Discussion

We systematically compared different models of the RV and HR physiological noise 

contributions in whole-brain high spatial resolution rs-fMRI data collected at 7 Tesla. We 

found that the optimal time-lags of these models varied considerably between subjects and 

across the brain. Consistently, models optimized at greater degrees of spatial specificity, 

from group to subject, cluster and voxel levels, generally explained more signal variance, as 

expected. However, the accuracy of FCS measurements in three common RSNs improved 

with optimization specificity only up to the cluster level, and subsequently decreased at the 

voxel level, suggesting that the latter incurs in over-fitting to local fluctuations with no 

physiological meaning.

Lag optimization specificity

In our time-lag optimization, we identified two main peaks at approximately −7/+11 s and 

−3/+9 s for RV and HR, respectively, which closely matches the results in Bianciardi et al., 

2009b (−9/+9 s and at −3/+9 s for RV and HR, respectively). The asymmetry in amplitude 

between the positive and negative peaks in the RV response, as well as the less defined 

biphasic behavior for HR are also in agreement with (Bianciardi et al., 2009b). Moreover, 

we found high inter-subject variability in the optimal time-lags, which is also consistent with 

Pinto et al. Page 10

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Bianciardi et al., 2009b). In their case, the presence of a negative peak in the average GM 

VE curve was not apparent, and could only be detected based on the average t-statistic 

(Bianciardi et al., 2009b). Golestani and colleagues also reported a high inter-subject 

variability in the derived CRF response, with an oscillatory behavior observed after the 2nd 

(negative) peak, further evidencing the difficulties in the identification of the negative peak 

in this case (Golestani et al., 2015).

Most importantly, we found that the optimal time-lags also showed important variations 

across the brain in each individual subject, which motivated the introduction of a further 

level of specificity by finding spatial clusters of the VE vs time-lag curves. These spatial 

variations may at least partially be explained by the fact that the contributions of both RV 

and HR to the fMRI signal are directly related with blood flow and thus with the brain’s 

vasculature characteristics (e.g. location, geometry etc.). We tested different numbers of 

clusters, between 2 and 6, and found that using 3 clusters explained significantly more fMRI 

signal variance across GM than using 2 clusters, and only voxel-level optimization 

outperformed this. Also, 3 clusters provided the overall most favorable values of the 

silhouette criterion. We have further verified that spatially smoothing the fMRI data with a 

larger kernel size (FWHM = 5 mm vs. 3 mm) did not significantly affect these findings. 

Splitting the brain voxels into three clusters based on their VE vs lag optimization curves 

resulted in comparable sized clusters presenting very different average VE curves. While 

most clusters preserved a biphasic behavior, confirming the validity of the more general, 

whole-brain strategies employing two time lags/biphasic IRFs, important differences were 

observed both in terms of peak amplitude and time-to-peak.

As expected, increasing the level of optimization specificity generally resulted in a greater 

fraction of fMRI signal variance being explained by the RV and HR models. The only 

exception occurred for the GS-derived IRF convolution models, which may be explained by 

the fact that the joint deconvolution of RRF and CRF underlying this type of model is not 

fully used in the clustering approach. Indeed, the RV and HR clusters are obtained 

independently based on their respective VE vs lag curves. Thus, each voxel is modeled by 

RV and HR responses that come from an independent deconvolution process (the RV/HR 

responses are respectively deconvolved from the RV/HR clusters’ average signal to which 

each voxel pertains), not taking into account the relationship between the two. As a result, 

the performance of this model, which assumes dependency as it deconvolves both responses 

from the average signal simultaneously, is hindered.

Model types

The Dual-Lag and Standard IRF Convolution models showed comparable performances and 

consistently explained a larger fraction of spurious variance than that by the Single-Lag 
models, supporting the positive impact of modeling a second time-lag in addition to the 

main one. The exception to this trend was observed at the voxel level, where no statistically 

significant differences were observed between the Single-Lag and Standard IRF Convolution 
models. This observation most likely stems from the lack of sufficient SNR at this level to 

identify accurate timings of the RV and HR responses.
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Regarding the GS-derived IRF Convolution models, one could expect that response 

functions derived from the data would account for the lag properly. However, these models 

produced generally lower VE values than the other model types, and did not improve with 

increasing levels of specificity, in contrast to all other models (as seen in Fig. 4). This may 

be due to an insufficiently short TR (2.5 s) to accurately sample the response, as well as to 

the great sensitivity of the deconvolution procedure to the noise in the data, which increases 

with the level of specificity (due to less signal averaging across voxels). If the deconvolution 

does not perform well enough, then the GS-derived IRF Convolution models are at a 

disadvantage relative to all other models tested, for which time-lag optimization is 

performed; this may at least partly explain their relatively lower VE values. However, we 

should note that other papers employing similar approaches have reported responses that 

were also considerably different from the standard (Cordes et al., 2014; Falahpour et al., 

2013). Falahpour used exactly the same technique as Chang’s and reported a much earlier 

negative peak for both RRF and CRF (~10 s for both, relative to 16/12 s, respectively). By 

using a different strategy with the same purpose, Cordes et al. reported a negative peak 

between 11 and 14 s (with an earlier positive peak between 1.5 and 5 s) for CRF, and a 

negative peak between 4 and 9 s for RRF. Importantly, we observed that the estimated RRF 

was quite variable between subjects, more so than the CRF, which is in agreement with the 

findings in both of those studies, particularly when using longer temporal delays. In a related 

study, Golestani et al. used a similar approach to Chang’s to simultaneously estimating three 

response functions, including not only RRF and CRF, but also the response to PETCO2 

changes (Cordes et al., 2014; Falahpour et al., 2013; Golestani et al., 2015). The estimated 

CRF was consistent to Chang’s, but that the RRF was considerably different from previous 

studies, which can probably be explained by the simultaneous estimation of the PetCO2 

response; interestingly, they found slower RRF dynamics in this case.

We also investigated the sensitivity of the deconvolution algorithm to the three 

hyperparameters (l, σf
2, σe

2), by systematically testing the following values: σf (0.5, 1, 2, 3, 

4), σe (0.1, 0.3, 0.5, 0.7, 0.9) and l (1, 2, 3, 4, 5, 6). We observed small differences in the 

IRF’s obtained, as depicted in Fig. S4 (top), for one illustrative subject, where average IRF’s 

across subjects are also shown. When changing σf
2 and σe

2, only negligible changes were 

observed. The impact of changing the l parameter, related to the degree of smoothness, was 

higher: increasing l delayed the negative peak, making it more similar to the standard IRF’s. 

However, when going for much higher l values, the shape of the RRF was smeared out, with 

the positive peak disappearing. Nevertheless, we further tested the impact of using the 

highest l value (l = 6) on the model VE, and we obtained a 28% increase in VE associated 

with RV and a 34% decrease in VE associated with HR, relative to l = 2 (Fig. S4 - bottom). 

In any case, the overall changes in VE were not statistically significant, and for that for 

reason we kept the original value (l = 2).

Data-driven methods

Besides the model-based methods explored in our study, a plethora of data-driven methods 

have also been proposed for physiological noise correction, many of which address 

variability across subjects and brain regions by fitting multiple components to a given 

dataset (e.g., (Abreu et al., 2016; Behzadi et al., 2007; Bianciardi et al., 2009a; Jorge et al., 
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2013; Nunes et al., 2016; Tierney et al., 2016). In general, noise-related regions of interest 

(ROIs) are defined, multiple regressors are extracted, most often using principal component 

analysis (PCA), and a given number of selected components are then regressed out from the 

data. Behzadi and colleagues obtained the ROIs by thresholding the maps of temporal 

standard deviation (Behzadi et al., 2007). Alternatively, a biophysically-inspired measure of 

robust temporal signal-to-noise ratio has also been proposed (Tierney et al., 2016). In a 

different approach, Pamilo and colleagues applied PCA to group fMRI data and extracted 

the signal components that correlate maximally in one subject’s data but minimally in 

another subject’s data (Pamilo et al., 2015), and found that this subject-specific 

physiological noise correction method outperformed methods operating at group level. 

Independent Component Analysis (ICA) is also commonly used for fMRI de-noising by 

separating multiple signal sources, associated with processes such as scanner artifacts, 

physiological noise and brain activity (Beckmann and Smith, 2004; Brooks et al., 2008). 

Non-neuronal fluctuations are usually identified manually or resorting to automatic 

classification tools (Churchill et al., 2012; De Martino et al., 2007; Salimi-Khorshidi et al., 

2014; Tohka et al., 2008).

Functional Connectivity

Analysis of three well-known RSNs revealed that increasing model specificity up to the 

cluster level reduced FCS within the networks, but to a smaller extent than it reduced FCS 

across the whole GM. Although the more specific models generally removed more 

correlated signal fluctuations, compared to the whole brain, they removed relatively less 

fluctuations within networks that were expected to display synchronous activity of neuronal 

origin (and not just physiological noise). These results indicate that increasingly specific 

optimizations of the RV and HR response time-lags indeed better modeled the associated 

spurious fMRI signal fluctuations and therefore helped improve the accuracy of subsequent 

functional connectivity measurements assumed to reflect neural sources. The inversion of 

this trend at the voxel level showed that, despite the improvement in model fitting apparent 

from the VE results alone, voxelwise optimization did not benefit the accurate measurement 

of functional connectivity. This behavior may be explained by an over-fitting of the data 

with these models, which might in fact be adjusting to random, unstructured noise 

fluctuations and not strictly the RV/HR contributions to physiological noise. This has a 

direct impact on the specificity of fluctuations regressed out from the data, which makes the 

FCS ratio between network and global GM brain regions closer to 1.

Our results indicate that, even if individual or spatial variations are not taken into account, a 

group level model optimization still significantly improved the accuracy of functional 

connectivity measurements compared with no correction. Thus, if optimizing the models at 

the subject or cluster levels is not an option due to time or computational restraints, using a 

group-level optimization is still highly recommended. Future studies should investigate the 

nature of inter-individual and spatial variations in the RV and HR contributions to 

physiological noise in fMRI data, and propose more accurate methods of differentiating the 

shape and timings of the associated responses across the brain.
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Limitations of the current work

The acquisition protocol used in this study was designed to achieve whole-brain coverage 

with high spatial resolution (1.1 mm isotropic), making the most of the improved sensitivity 

at ultrahigh field (7 Tesla) combined with an ultrafast SMS acquisition sequence. This 

protocol is therefore quite uncommon in the literature of resting-state studies, which are 

most often performed at 3 Tesla with larger voxel sizes, typically ~3.5 mm cubic (e.g., (Birn 

et al., 2014)). These differences may limit the generalizability of our results, and are thus 

discussed here. Physiological noise fluctuations are known to increase with field strength 

(Krüger et al., 2001; Krüger and Glover, 2001; Triantafyllou et al., 2005) Therefore, using 

lower field strengths such as 3 Tesla should reduce the observed RV and HR contributions 

and possibly also the benefit of optimizing the respective models. On the other hand, 1.1 mm 

isotropic fMRI at 7 Tesla might have less physiologic noise contributions than 3.5 mm 

isotropic fMRI at 3 Tesla because it might be dominated by thermal noise. The exact voxel 

size below which thermal noise dominates over physiological noise, for a certain field 

strength, depends on several factors as investigated by Bodurka and colleagues (Bodurka et 

al., 2007). As a consequence, even at 7 Tesla, 1.1 mm isotropic fMRI data smoothed by a 

kernel with FWHM = 3 mm may have lower SNR, and thus be more likely to incur in model 

over-fitting, compared to the more commonly used ~3.5 mm isotropic 3 Tesla data smoothed 

by a kernel with FWHM ~ 6 mm (e.g., (Birn et al., 2014)). However, our analysis of a 

continuum of spatial scales for the model optimization, from the whole brain down to the 

voxel level through different numbers (sizes) of spatial clusters, suggests that over-fitting 

may in fact occur at larger parcel sizes than single ~1 mm3 voxels.

Although the relatively long sampling rate used in our study (TR = 2.5 s) does not alias slow 

physiological signals such as HR and RV (despite aliasing high-frequency cardiac and 

respiratory contributions such as the ones reflected in RETROICOR), it reduces the temporal 

resolution of the VE vs. lag curves potentially hindering their accurate spatiotemporal 

clustering across the brain. Finally, the relatively short duration (5 min) of the fMRI data 

runs in our study may compromise the reliability of the functional connectivity 

measurements. Nevertheless, the fact that we were able to observe significant effects 

indicates that the data duration was sufficient for the proposed study. We are currently 

performing some preliminary tests of our proposed approach on a subset of fMRI data with 

longer duration (10 min) and, as expected, we can appreciate an increase in the sensitivity to 

detect seed-based correlations and hence the respective RSN’s (results not shown because 

preliminary in nature as well as because obtained on a different data-set, thus preventing a 

formal comparison).

Finally, we acknowledge that the sample size of our study (N=12 subjects) could yield 

relatively low statistical power. However, it was sufficient to identify the effects of interest in 

our study, as demonstrated by the effect sizes obtained for the respective statistical tests, 

usually laying within the large range according to (Cohen, 1988). Future studies using larger 

sample sizes should nevertheless be conducted in order to further validate the results.
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5 Conclusions

In this work, we showed that increasing the spatial specificity level of the optimization of 

RV and HR physiological noise model contributions removes increasingly larger fractions of 

putative spurious variance from rs-fMRI data. Most critically, we also showed that the 

impact of the associated physiological noise correction on the ensuing RSN functional 

connectivity measurements improved from the group to the subject and to the cluster levels 

of optimization, but deteriorated at the voxel level. Thus, we conclude that, in order to 

maximize the accuracy of functional connectivity studies, physiological noise correction 

should account for the individual spatial variability in the time-lags of the RV and HR 

contributions.
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Acknowledgments

The authors would like to thank C. Chang for providing us with the code to implement GS-derived models. This 
work was funded by FCT grants PTDC/EEI-ELC/3246/2012, PTDC/BBB-IMG/2137/2012, FCT - UID/EEA/
50009/2013, NIH NIBIB P41-RR014075, and NIH NIBIB K01-EB019474.

References

1. Abhishek Raj, Alankrita, Srivastava, Akansha, Bhateja, Vikrant. Computer Aided Detection of Brain 
Tumor in Magnetic Resonance Images. IACSIT Int J Eng Technol. 2011; 3:523–532.

2. Abreu R, Leite M, Jorge J, Grouiller F, van der Zwaag W, Leal A, Figueiredo P. Ballistocardiogram 
artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI. 
Neuroimage. 2016; 135:45–63. DOI: 10.1016/j.neuroimage.2016.03.034 [PubMed: 27012501] 

3. Beckmann CF, Smith SM. Probabilistic Independent Component Analysis for Functional Magnetic 
Resonance Imaging. IEEE Trans Med Imaging. 2004; 23:137–152. DOI: 10.1109/TMI.2003.822821 
[PubMed: 14964560] 

4. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for 
BOLD and perfusion based fMRI. Neuroimage. 2007; 37:90–101. DOI: 10.1016/j.neuroimage.
2007.04.042 [PubMed: 17560126] 

5. Bianciardi M, Vangelderen P, Duyn J, Fukunaga M, Dezwart J. Making the most of fMRI at 7 T by 
suppressing spontaneous signal fluctuations. Neuroimage. 2009a; 44:448–454. DOI: 10.1016/
j.neuroimage.2008.08.037 [PubMed: 18835582] 

6. Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH. 
Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 
T study. Magn Reson Imaging. 2009b; 27:1019–1029. DOI: 10.1016/j.mri.2009.02.004 [PubMed: 
19375260] 

7. Birn RM. The role of physiological noise in resting-state functional connectivity. Neuroimage. 2012; 
62:864–870. DOI: 10.1016/j.neuroimage.2012.01.016 [PubMed: 22245341] 

8. Birn RM, Cornejo MD, Molloy EK, Patriat R, Meier TB, Kirk GR, Nair Va, Meyerand ME, 
Prabhakaran V. The influence of physiological noise correction on test-retest reliability of resting-
state functional connectivity. Brain Connect. 2014; 4:511–22. DOI: 10.1089/brain.2014.0284 
[PubMed: 25112809] 

9. Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related 
fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006; 31:1536–1548. 
DOI: 10.1016/j.neuroimage.2006.02.048 [PubMed: 16632379] 

Pinto et al. Page 15

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Birn RM, Murphy K, Bandettini PA. The effect of respiration variations on independent component 
analysis results of resting state functional connectivity. Hum Brain Mapp. 2008; 29:740–750. DOI: 
10.1002/hbm.20577 [PubMed: 18438886] 

11. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of 
resting human brain using echo-planar MRI. Magn Reson Med. 1995; 34:537–41. [PubMed: 
8524021] 

12. Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-
state functional connectivity maps. NMR Biomed. n.d; 10:165–70. [PubMed: 9430343] 

13. Bodurka J, Ye F, Petridou N, Murphy K, Bandettini PA. Mapping the MRI voxel volume in which 
thermal noise matches physiological noise—Implications for fMRI. Neuroimage. 2007; 34:542–
549. DOI: 10.1016/j.neuroimage.2006.09.039 [PubMed: 17101280] 

14. Brooks JCW, Beckmann CF, Miller KL, Wise RG, Porro CA, Tracey I, Jenkinson M. Physiological 
noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage. 2008; 
39:680–692. DOI: 10.1016/j.neuroimage.2007.09.018 [PubMed: 17950627] 

15. Chang C, Cunningham JP, Glover GH. Influence of heart rate on the BOLD signal: The cardiac 
response function. Neuroimage. 2009; 44:857–869. DOI: 10.1016/j.neuroimage.2008.09.029 
[PubMed: 18951982] 

16. Chang C, Glover GH. Effects of model-based physiological noise correction on default mode 
network anti-correlations and correlations. Neuroimage. 2009; 47:1448–1459. DOI: 10.1016/
j.neuroimage.2009.05.012 [PubMed: 19446646] 

17. Churchill NW, Yourganov G, Spring R, Rasmussen PM, Lee W, Ween JE, Strother SC. PHYCAA: 
Data-driven measurement and removal of physiological noise in BOLD fMRI. Neuroimage. 2012; 
59:1299–1314. DOI: 10.1016/j.neuroimage.2011.08.021 [PubMed: 21871573] 

18. Cohen, J. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates; 1988. 

19. Collins DL, Holmes CJ, Peters TM, Evans AC. Automatic 3-D model-based neuroanatomical 
segmentation. Hum Brain Mapp. 1995; 3:190–208. DOI: 10.1002/hbm.460030304

20. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand 
ME. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" 
data. AJNR Am J Neuroradiol. 2001; 22:1326–33. [PubMed: 11498421] 

21. Cordes D, Nandy RR, Schafer S, Wager TD. Characterization and reduction of cardiac- and 
respiratory-induced noise as a function of the sampling rate (TR) in fMRI. Neuroimage. 2014; 
89:314–330. DOI: 10.1016/j.neuroimage.2013.12.013 [PubMed: 24355483] 

22. Dagli MS, Ingeholm JE, Haxby JV. Localization of Cardiac-Induced Signal Change in fMRI. 
Neuroimage. 1999; 9:407–415. DOI: 10.1006/nimg.1998.0424 [PubMed: 10191169] 

23. De Martino F, Gentile F, Esposito F, Balsi M, Di Salle F, Goebel R, Formisano E. Classification of 
fMRI independent components using IC-fingerprints and support vector machine classifiers. 
Neuroimage. 2007; 34:177–194. DOI: 10.1016/j.neuroimage.2006.08.041 [PubMed: 17070708] 

24. de Munck JC, Gonçalves SI, Faes TJC, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva 
FH. A study of the brain’s resting state based on alpha band power, heart rate and fMRI. 
Neuroimage. 2008; 42:112–121. DOI: 10.1016/j.neuroimage.2008.04.244 [PubMed: 18539049] 

25. Falahpour M, Refai H, Bodurka J. Subject specific BOLD fMRI respiratory and cardiac response 
functions obtained from global signal. Neuroimage. 2013; 72:252–264. DOI: 10.1016/
j.neuroimage.2013.01.050 [PubMed: 23376493] 

26. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is 
intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S 
A. 2005; 102:9673–8. DOI: 10.1073/pnas.0504136102 [PubMed: 15976020] 

27. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological 
motion effects in fMRI: RETROICOR. Magn Reson Med. 2000; 44:162–167. DOI: 
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E [PubMed: 10893535] 

28. Golestani AM, Chang C, Kwinta JB, Khatamian YB, Jean Chen J. Mapping the end-tidal CO2 
response function in the resting-state BOLD fMRI signal: Spatial specificity, test–retest reliability 
and effect of fMRI sampling rate. Neuroimage. 2015; 104:266–277. DOI: 10.1016/j.neuroimage.
2014.10.031 [PubMed: 25462695] 

Pinto et al. Page 16

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: A 
network analysis of the default mode hypothesis. Proc Natl Acad Sci. 2003; 100:253–258. DOI: 
10.1073/pnas.0135058100 [PubMed: 12506194] 

30. Greitz D, Franck A, Nordell B. On the pulsatile nature of intracranial and spinal CSF-circulation 
demonstrated by MR imaging. Acta Radiol. 1993; 34:321–8. [PubMed: 8318291] 

31. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based 
registration. Neuroimage. 2009; 48:63–72. DOI: 10.1016/j.neuroimage.2009.06.060 [PubMed: 
19573611] 

32. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. 
Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002; 
47:1202–1210. DOI: 10.1002/mrm.10171 [PubMed: 12111967] 

33. Harvey AK, Pattinson KTS, Brooks JCW, Mayhew SD, Jenkinson M, Wise RG. Brainstem 
functional magnetic resonance imaging: Disentangling signal from physiological noise. J Magn 
Reson Imaging. 2008; 28:1337–1344. DOI: 10.1002/jmri.21623 [PubMed: 19025940] 

34. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate 
linear registration and motion correction of brain images. Neuroimage. 2002; 17:825–41. 
[PubMed: 12377157] 

35. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012; 
62:782–790. DOI: 10.1016/j.neuroimage.2011.09.015 [PubMed: 21979382] 

36. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. 
Med Image Anal. 2001; 5:143–56. [PubMed: 11516708] 

37. Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW. Mapping sources of correlation in resting 
state FMRI, with artifact detection and removal. Neuroimage. 2010; 52:571–582. DOI: 10.1016/
j.neuroimage.2010.04.246 [PubMed: 20420926] 

38. Jorge J, Figueiredo P, van der Zwaag W, Marques JP. Signal fluctuations in fMRI data acquired 
with 2D-EPI and 3D-EPI at 7 Tesla. Magn Reson Imaging. 2013; 31:212–20. DOI: 10.1016/j.mri.
2012.07.001 [PubMed: 22921734] 

39. Kaufman, L., Rousseeuw, PJ., editors. Finding Groups in Data, Wiley Series in Probability and 
Statistics. John Wiley & Sons, Inc; Hoboken, NJ, USA: 1990. 

40. Kong Y, Jenkinson M, Andersson J, Tracey I, Brooks JCW. Assessment of physiological noise 
modelling methods for functional imaging of the spinal cord. Neuroimage. 2012; 60:1538–1549. 
DOI: 10.1016/j.neuroimage.2011.11.077 [PubMed: 22178812] 

41. Krüger G, Glover GH. Physiological noise in oxygenation-sensitive magnetic resonance imaging. 
Magn Reson Med. 2001; 46:631–7. [PubMed: 11590638] 

42. Krüger G, Kastrup A, Glover GH. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-
sensitive magnetic resonance imaging. Magn Reson Med. 2001; 45:595–604. [PubMed: 
11283987] 

43. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, 
Hoppel BE, Cohen MS, Turner R. Dynamic magnetic resonance imaging of human brain activity 
during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992; 89:5675–9. [PubMed: 
1608978] 

44. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, 
Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, 
Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, 
Cannon T, Kawashima R, Mazoyer B. A probabilistic atlas and reference system for the human 
brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci. 
2001; 356:1293–322. DOI: 10.1098/rstb.2001.0915 [PubMed: 11545704] 

45. Murphy K, Birn RM, Bandettini PA. Resting-state fMRI confounds and cleanup. Neuroimage. 
2013; 80:349–359. DOI: 10.1016/j.neuroimage.2013.04.001 [PubMed: 23571418] 

46. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal 
regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage. 
2009; 44:893–905. DOI: 10.1016/j.neuroimage.2008.09.036 [PubMed: 18976716] 

Pinto et al. Page 17

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Nunes S, Bianciardi M, Dias A, Abreu R, Rodrigues J, Silveira LM, Wald LL, Figueiredo P. 
Subject-specific modeling of physiological noise in resting-state fMRI at 7T. International Society 
of Magnetic Resonance in Medicine (ISMRM). 2015:23.

48. Nunes S, Bianciardi M, Dias A, Silveira LM, Lawrence L. Physiological Noise Model Comparison 
for Resting-State Fmri At 7 T 1001–1004. 2016

49. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal 
changes accompanying sensory stimulation: functional brain mapping with magnetic resonance 
imaging. Proc Natl Acad Sci U S A. 1992; 89:5951–5. [PubMed: 1631079] 

50. Pamilo S, Malinen S, Hotta J, Seppä M. A correlation-based method for extracting subject-specific 
components and artifacts from group-fMRI data. Eur J Neurosci. 2015; 42:2726–2741. DOI: 
10.1111/ejn.13034 [PubMed: 26226919] 

51. Purdon PL, Weisskoff RM. Effect of temporal autocorrelation due to physiological noise and 
stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp. 1998; 6:239–49. 
[PubMed: 9704263] 

52. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic 
denoising of functional MRI data: Combining independent component analysis and hierarchical 
fusion of classifiers. Neuroimage. 2014; 90:449–468. DOI: 10.1016/j.neuroimage.2013.11.046 
[PubMed: 24389422] 

53. Shmueli K, van Gelderen P, de Zwart JA, Horovitz SG, Fukunaga M, Jansma JM, Duyn JH. Low-
frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD 
signal. Neuroimage. 2007; 38:306–320. DOI: 10.1016/j.neuroimage.2007.07.037 [PubMed: 
17869543] 

54. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister 
PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, 
Brady JM, Matthews PM. Advances in functional and structural MR image analysis and 
implementation as FSL. Neuroimage. 2004; 23:S208–S219. DOI: 10.1016/j.neuroimage.
2004.07.051 [PubMed: 15501092] 

55. Tierney TM, Weiss-Croft LJ, Centeno M, Shamshiri EA, Perani S, Baldeweg T, Clark CA, 
Carmichael DW. FIACH: A biophysical model for automatic retrospective noise control in fMRI. 
Neuroimage. 2016; 124:1009–1020. DOI: 10.1016/j.neuroimage.2015.09.034 [PubMed: 
26416652] 

56. Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. Automatic independent 
component labeling for artifact removal in fMRI. Neuroimage. 2008; 39:1227–1245. DOI: 
10.1016/j.neuroimage.10.013 [PubMed: 18042495] 

57. Toro R, Fox PT, Paus T. Functional Coactivation Map of the Human Brain. Cereb Cortex. 2008; 
18:2553–2559. DOI: 10.1093/cercor/bhn014 [PubMed: 18296434] 

58. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. 
Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition 
parameters. Neuroimage. 2005; 26:243–250. DOI: 10.1016/j.neuroimage.2005.01.007 [PubMed: 
15862224] 

59. van der Kouwe AJW, Benner T, Salat DH, Fischl B. Brain morphometry with multiecho MPRAGE. 
Neuroimage. 2008; 40:559–569. DOI: 10.1016/j.neuroimage.2007.12.025 [PubMed: 18242102] 

60. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q, Lu G. 
Altered functional-structural coupling of large-scale brain networks in idiopathic generalized 
epilepsy. Brain. 2011; 134:2912–2928. DOI: 10.1093/brain/awr223 [PubMed: 21975588] 

Pinto et al. Page 18

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Individual spatial variability is found in RV/HR contributions to the fMRI 

signal.

• We propose spatiotemporal clustering of the fMRI response to RV/HR 

fluctuations.

• We compare RV/HR contribution models optimized at different levels of 

specificity.

• RSN functional connectivity measurements improve with cluster-based 

RV/HR modeling.
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Figure 1. 
Top: Curves of the GM-averaged VE by RV (left) and HR (right) regressors, for each 

individual subject (color) and on average across subjects (black), as a function of the time-

lag that was applied to the RV and HR regressors. Error bars represent the standard error of 

the mean. Bottom: RRF and CRF curves derived from the GM global signal for each subject 

(color), overlayed with the standard RRF and CRF curves reported in Birn et al., 2006 and 

Chang et al., 2009, respectively (black, dashed).
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Figure 2. 
Group average and associated standard error maps of the 1st optimal time-lag value, obtained 

for both RV and HR physiological noise models in 6 representative axial slices (MNI 

coordinates Z = 56, 68, 80, 92, 104, 116).
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Figure 3. 
Illustrative example of the newly proposed GM spatial clustering approach based on each 

voxel’s VE vs lag optimization curve, for both RV and HR physiological noise models: Left) 

Cluster average VE vs lag curves for the three clusters; and Right) spatial maps of the three 

clusters in seven representative axial slices.
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Figure 4. 
Group average VE in GM, for RV (top) and HR (bottom) physiological noise models, and 

for the different model types tested (Single-Lag/Dual-Lag/Standard IRF Convolution/GS-
derived IRF Convolution), as a function of the specificity level (Group/Subject/Cluster (k = 
2, 3, 4, 5, and 6)/Voxel) used for the model optimization. Statistically significant differences 

between different specificity levels are indicated.
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Figure 5. 
Group average VE results by the optimal RV+HR physiological noise model at each level of 

spatial specificity adopted for lag optimization (Dual-Lag for Group, Subject and Cluster, 
and Single-Lag for Voxel): GM mean values (bars represent group average and error bars the 

respective standard error) (left) and VE maps (right).
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Figure 6. 
Group average FCS measurements for each seed (PCC, SMA, IPS), as a function of the 

spatial specificity level of the deemed optimal RV+HR physiological noise: Left) FCS 

averaged inside the RSN (defined by the suprathresholed group Fischer-Z maps), across the 

whole GM, and across WM and CSF; and Right) ratio between the average FCS inside the 

RSNs and the average FCS across the whole GM. Statistically significant differences 

between specificity levels are indicated.
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Figure 7. 
PCC-based functional connectivity maps (group-level Z-stat maps), obtained for each 

physiological noise correction condition.
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