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Abstract

Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study 

compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who 

stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed 

from passive listening in noise and accurate (same/different) discrimination of tones or syllables in 

quiet and noisy backgrounds. Independent component analysis identified left and/or right μ 
rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 

of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β 
amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-

frequency differences were associated with noisy conditions only. PWS showed increased μ-β 
desynchronization when listening to noise and early in discrimination events, suggesting evidence 

of heightened motor activity that might be related to forward modeling deficits. PWS also showed 

reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. 

Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to 

stuttering. More specifically, these analyses can reveal stuttering-related sensorimotor processing 

differences in passive listening and auditory discrimination tasks which may be influenced by 

basal ganglia deficits.
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1. Introduction

Developmental stuttering is associated with widespread neural compromises in networks 

involved in timing (Alm, 2004;Howell, 2007;Chang and Zhu, 2013;Etchell et al., 2014) and 

sensorimotor integration (Max et al., 2004a;Loucks and De Nil, 2006;Loucks et al., 2007). 

Sensorimotor contributions to online speech monitoring and error detection are subserved by 
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internal modeling mechanisms. While speaking, premotor regions generate forward models 

via efference copy that contain predictions about the sensory consequences of forthcoming 

motor commands. These predictions are compared to speech targets and available 

reafference in sensory regions. Following comparison, sensory feedback is provided to the 

premotor regions that can be used to update motor commands and forward models 

(Shadmehr et al., 2010;Houde and Nagarajan, 2011;Keough and Jones, 2011;Houde and 

Chang, 2015). Within this mechanism, stuttering has been associated with weak forward 

models (Max et al., 2004a;Brown et al., 2005; Daliri and Max, 2015b;a) that may lead to a 

noisy comparison between prediction and reafference (Hickok et al., 2011;Tian and Poeppel, 

2012), and a deficient feedback system (Neilson and Neilson, 1987;Corbera et al., 

2005;Loucks and De Nil, 2006;Cai et al., 2012;Daliri and Max, 2015b). However, these 

hypotheses require further testing.

Support for sensorimotor deficits related to internal modeling can be found in structural and 

functional differences between people who stutter (PWS) and normally fluent counterparts. 

PWS exhibit reduced grey matter volume (Beal et al., 2007;Chang et al., 2008;Beal et al., 

2013) and white matter connectivity in these regions (Sommer et al., 2002;Watkins et al., 

2008;Chang and Zhu, 2013;Chang, 2014;Connally et al., 2014;Cieslak et al., 2015). 

However, discrepancies exist regarding how sensorimotor deficits manifest functionally. For 

example, though a meta-analysis showed stuttering to be associated with hyper-activation in 

left premotor regions (Brown et al., 2005), others have reported hypoactivation (Watkins et 

al., 2008;Chang et al., 2009;Kell et al., 2009;Loucks et al., 2011;Toyomura et al., 2011). 

Further, there is evidence from event-related potential studies of reduced speech induced 

suppression via internal modeling while producing speech in PWS relative to controls 

(Daliri and Max, 2015b;a). However, other studies have failed to show these differences 

(Beal et al., 2010). In many functional speech production studies, it is difficult to separate 

neural processes related to internal modeling from those directly involved in the execution of 

motor commands. Additionally, interpretation of neural speech production data in PWS is 

complicated by high variability in research designs and methods, the confounding influence 

of scanner noise in functional magnetic resonance imaging (fMRI) studies, speech rate, 

difficulties separating state from trait-based neural activity when speech is stuttered, and 

poor temporal resolution using fMRI measures (Wymbs et al., 2013;Belyk et al., 2015).

One means of overcoming some of these limitations is to examine internal modeling in 

speech perception. Categorical speech discrimination tasks, requiring attention and working 

memory, are known to recruit similar anterior dorsal sensorimotor networks (e.g., premotor 

and motor regions) necessary for speech production (Osnes et al., 2011;Grabski et al., 

2013;Alho et al., 2014). In these tasks, cognitive load often is associated with dorsal stream 

activity, such that discrimination in noisy conditions typically elicits greater sensorimotor 

activity than in quiet conditions (Binder et al., 2004;Callan et al., 2010;Alho et al., 

2012;Bowers et al., 2013). Internal modeling mechanisms may play dynamic roles across 

the time course of accurate discrimination. Prior to stimulus presentation, forward models 

can provide predictions about forthcoming stimuli that help constrain the auditory analysis 

as the stimuli are perceived (Callan et al., 2010;Arnal, 2012;Arnal and Giraud, 

2012;Pecenka et al., 2013;Callan et al., 2014;Mathias et al., 2015). Following stimulus 

offset, stimuli are preserved in working memory (Hickok et al., 2003;Burton, 2009;Sato et 
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al., 2009;Baddeley, 2010), which may be aided by updating internal models following 

auditory stimulation (Jenson et al., 2014).

Ample evidence also exists for recruitment of anterior dorsal regions during non-speech 

discrimination (Joanisse and Gati, 2003;Zaehle et al., 2008;Scott et al., 2009). Tone stimuli 

typically are associated with stronger right hemisphere activity (Pugh et al., 1996;Celsis et 

al., 1999;Zatorre et al., 1999;Liebenthal et al., 2013). However, there is evidence that in 

more complex discrimination tasks, speech and tone stimuli recruit similar sensorimotor 

networks (Fiez et al., 1996;Poldrack et al., 2001;Joanisse and Gati, 2003;LoCasto et al., 

2004;Burton and Small, 2006), a finding that has been attributed to attempts to internally 

simulate tone stimuli (Hickok and Poeppel, 2004;Burton, 2009). Thus, examining 

sensorimotor activity across the time course of auditory discrimination likely will reveal 

important information about the changing dynamics of dorsal stream activity in both normal 

and stuttering populations during the processing of speech and non-speech stimuli.

Auditory perception studies in PWS have produced important findings. These include 

evidence that PWS rely more heavily on the right hemisphere for speech processing (Weber-

Fox et al., 2004;Liotti et al., 2010; Robb et al., 2013;Halag-Milo et al., 2016) and exhibit 

differences in left hemisphere activity patterns for complex speech processing but not for 

simple tone processing (Biermann-Ruben et al., 2005;Corbera et al., 2005). ERP responses 

to speech stimuli in adults (Beal et al., 2010) and children (Beal et al., 2011;Jansson-

Verkasalo et al., 2014) who stutter also suggest evidence of auditory-motor integration 

deficits. There is also behavioral evidence to suggest that PWS perform more poorly than 

controls in speech (Neef et al., 2012;Lu et al., 2016) and non-speech (Hampton and Weber-

Fox, 2008) perception tasks and perceptual difficulties might be related to functional 

connectivity across speech motor regions (Lu et al., 2016) and auditory processing 

(Hampton and Weber-Fox, 2008). However, it is still not known how sensorimotor 

contributions for speech and tone discrimination differ between PWS and controls over the 

time course of events.

Examination of mu (μ) rhythms (Pineda, 2005;Hari, 2006) offers a novel means of 

investigating sensorimotor differences associated with stuttering. Using independent 

component analysis (ICA), μ rhythms easily can be identified based on their two peaks; one 

within alpha (α; 8–14 Hz) and one within beta (β; 15–25 Hz) frequencies (Niedermeyer and 

da Silva, 2005;Pineda, 2005;Hari, 2006). Though they can be observed in various regions of 

the cortex (Schnitzler et al., 2000;Hauswald et al., 2013;Kodama et al., 2016), the primary 

sources of μ rhythms lie within anterior regions of the dorsal stream (e.g., premotor and 

primary motor cortices). Within sensorimotor μ rhythms, activity in the β band is thought to 

encode motor information (Pfurtscheller, 1981;Toro et al., 1994;Seeber et al., 2014), and 

activity within the α band is thought to encode somatosensory and auditory feedback 

(Cheyne et al., 2003;Gaetz and Cheyne, 2006;Tamura et al., 2012;Sebastiani et al., 

2014;Peled-Avron et al., 2016). Thus, if stuttering is associated with reduced capacity for 

generating forward models in motor regions, μ spectral differences, particularly in β 
frequencies, might be expected when comparing PWS to non-stuttering groups.
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Suppression of μ rhythm power has been used to index sensorimotor activity associated with 

many visual (Urgen et al., 2013;Frenkel-Toledo et al., 2014;Ruther et al., 2014) and auditory 

(Pineda et al., 2013;Tsuchida et al., 2015) perception tasks, including speech (Crawcour et 

al., 2009;Cuellar et al., 2012;Pineda et al., 2013). In these studies, only α frequencies were 

considered, possibly because activity in α and β bands often is correlated highly (Carlqvist 

et al., 2005;de Lange et al., 2008). However, there is evidence to suggest that α and β 
oscillatory activity provide distinct, though cooperating, contributions to sensorimotor 

control and processing (Brinkman et al., 2014). In addition to indexing motor activity, β 
fluctuations index general attention (Engel and Fries, 2010), top-down predictive coding in 

perceptual decision-making (Donner et al., 2009;Arnal and Giraud, 2012;Cheyne, 2013), 

and maintenance of a stimulus in working memory (Lewis et al., 2016). α waves are 

ubiquitous across the brain and suppression of their power is implicated in many cognitive 

and working memory tasks (Klimesch, 2012;Gao et al., 2015;Pandey et al., 2016). 

Conversely, α power enhancement is considered a marker of inhibitory activity associated 

with disregarding irrelevant stimuli or redistributing neural activity to another cortical region 

(Jensen and Mazaheri, 2010); processes which also may be disrupted in PWS (Civier et al., 

2010;Kikuchi et al., 2011;Chang and Zhu, 2013;Civier et al., 2013). Thus, within unified μ 
rhythms, examining activity in α and β channels simultaneously across time should provide 

important indices of sensorimotor contributions to various tasks.

Time-frequency analysis exploits the temporal resolution of EEG, measuring fluctuations in 

oscillatory power across specific events, to reveal changes in cortical processing across time. 

Oscillatory fluctuations typically are measured as event-related synchronization (ERS), 

suggesting neural inhibition and event-related desynchronization (ERD), suggesting neural 

activation. Two recent studies (Bowers et al., 2013;Jenson et al., 2014) applied ICA to 

identify μ components in accurate auditory (syllable and tone sweep) discriminations and 

then, applied time-frequency analyses to map the temporal dynamics of sensorimotor 

activity over time via fluctuation in α and β channels. The patterns of changing oscillatory 

activity, beginning before stimulus onset, were interpreted in light of the dynamic roles 

dorsal stream processing may play in auditory discrimination. Both studies revealed μ-β 
ERD prior to stimulus onset, suggestive of a top-down predictive role. Further, the Jenson et 

al. (2014) study found significant μ-α ERS prior to and during stimulus onset, which was 

stronger when stimuli were discriminated in noisy backgrounds, suggesting that inhibitory 

processes also may facilitate sensory predictions in these tasks. Following stimulus offset, μ-
α and μ-β ERD were observed. This pattern also is found in speech production and suggests 

stimuli are held in working memory and possibly covertly replayed prior to a response 

(Jenson et al., 2014;Jenson et al., 2015).

Thus, after identifying left and right μ components in PWS and matched non-stuttering 

controls in classic speech and tone discrimination tasks (similar to those used in Bowers et 

al., 2013 and Jenson et al., 2014; 2015), the aims of the current study are twofold. The first 

is to compare the spectral power of μ rhythms between the groups. It is hypothesized that 

stuttering will be characterized by weaker μ rhythms, especially in the β band, which is 

associated with motor function and forward modeling. The second aim is to make 

comparisons of α and β oscillatory activity across the time course of each condition and 

between the two groups. Event-related differences in μ-α and μ-β oscillatory activity across 
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time are likely to reveal sensorimotor differences related to speech and tone processing in 

quiet and noisy conditions for stuttering and non-stuttering populations. Together, the 

findings will test hypotheses about the nature of forward modeling and sensory feedback 

deficits in stuttering.

2. Materials and Methods

2.1. Subjects

People Who Stutter: Twenty-seven native English speakers with developmental stuttering 

were initially recruited. Subjects (8 females, 19 males) had a mean age of 26.9 years (range 

17–52) and no history of other cognitive, communicative, or attentional disorders. Three of 

the 27 PWS were left-handed. Table 1 provides a summary of the PWS participants’ age, 

sex, handedness using the Edinburgh Handedness Inventory (Oldfield, 1971), and stuttering 

severity according to the Stuttering Severity Instrument (SSI-4) (Riley, 2009). The table also 

shows which participants yielded usable left or right μ components.

Control subjects who are native English speakers, do not stutter and had no history of other 

cognitive, communicative, or attentional disorders were recruited such that they were age 

(within 3 years), gender, and handedness matched to PWS who yielded left or right μ 
components. It was necessary to recruit a total of twenty-seven controls (8 females, 19 males 

with an average age of 27.5 years) to provide matches for all PWS who contributed usable 

left or right μ components.

The Institutional Review Board (IRB) for the University of Tennessee approved this work as 

a study with minimal risks to human subjects (IRB# 09-00464-XP), and all subjects 

provided informed consent prior to participation. Syllable stimuli (/ba/ and /da/) were 

generated with AT&T naturally speaking text-to-speech software, using synthetic analogs of 

a male speaker (Bowers et al., 2013;Bowers et al., 2014;Jenson et al., 2014;Jenson et al., 

2015). Stimuli then were low pass filtered at 5 kHz and normalized for RMS (root-mean-

square) amplitude. Syllable pairs were created such that half of the stimuli pairs were 

identical (e.g./ba/-/ba/) and half were different (e.g./da/-/ba/). Each syllable was 200 ms in 

duration and paired syllables were separated by 200 ms (inter-stimulus interval). Thus, the 

total duration of stimuli presentation was 600 ms from onset of the first syllable to offset of 

the second syllable.

To control for task difficulty and stimulus length, tone sweeps were constructed to match the 

structure of the syllables, similar to Bowers et al. (2013). Tone-sweep stimuli were generated 

with an 80 ms modulated tone onset and a 120 ms steady state 1000 Hz sine wave. Like the 

speech stimuli, tone sweeps were low-pass filtered at 5 kHz and normalized for RMS 

amplitude. Tone pairs differed only in whether the pitch onset was lower (750 Hz) or higher 

(1250 Hz) than the 1000-Hz steady state tone. Thus, the duration and structure of the tone 

stimuli were constructed to mimic the rising (/ba/) and falling (/da/) F2 transitions in the 

syllables (Joanisse and Gati, 2003). Tone pairs were created such that half of the stimuli 

pairs were identical and half were different. Similar to the speech stimuli, each tone sweep 

was 200 ms in duration and paired tones were separated by 200 ms (interstimulus interval). 
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Thus, the total duration of stimuli presentation was 600 ms from onset of the first tone 

sweep to offset of the second.

All stimuli were presented at 70 dB SPL. Two of the active discrimination conditions 

required subjects to discriminate tone pairs or syllable pairs embedded in white noise with a 

signal-to-noise ratio (SNR) of +4 dB. These conditions were included, as previous studies 

have reported that this SNR produces increased dorsal stream activity while allowing 

participants to accurately discriminate between the syllables (Binder et al., 2004;Osnes et 

al., 2011;Bowers et al., 2013;Bowers et al., 2014).

2.3. Design

The experiment consisted of a 5 condition × 2 group mixed design. The five conditions 

were:

1. Passive listening to white noise (PN)

2. Discrimination of tone pairs in quiet (TQ)

3. Discrimination of tone pairs in noise (TN)

4. Discrimination of syllable pairs in quiet (SQ)

5. Discrimination of syllable pairs in noise (SN)

Condition 1 was a passive listening task and conditions 2 – 5 were active discrimination 

tasks, each requiring categorical same-different judgments of the stimulus pairs within the 

condition. In order to control for a discrimination response bias (Venezia et al., 2012), an 

equal number of different and identical syllable pairs were used in each discrimination 

condition. The PN condition required no discrimination, but was used as a reference task for 

the four other conditions. A button press response also was used in the PN condition for two 

reasons: (1) to control for anticipatory β suppression which has been previously reported in 

tasks requiring a button press response (Makeig et al., 2004;Graimann and Pfurtscheller, 

2006;Hari, 2006) and (2) requiring a button press response in a condition with no active 

discrimination ensured that the subjects were attending to and engaged in the task. To help 

ensure that anticipatory β suppression related to the button press had minimal influence on 

neural activity, the button press was required 3000 ms following stimulus onset and was not 

included in the epoch that ended 2000 ms following onset (Alegre et al., 2003). In addition, 

a sufficiently long inter-trial interval was used to ensure that beta rebound, which can occur 

up 1250 ms post button press (Jurkiewicz et al., 2006), did not contaminate baselines of 

subsequent trials. Figure 1 depicts the time-line for trials in all conditions, showing the 

control (PN) and discrimination (TQ, TN, SQ, SN) conditions. Included is the 3500 ms 

inter-trial intervals, from which 1000 ms baselines for each trial were selected at the end of 

the interval.

2.4. Procedure

Procedures were adapted from previous studies (Bowers et al., 2014;Jenson et al., 

2014;Jenson et al., 2015). The experiment was conducted in an electrically and magnetically 

shielded, double-walled, sound treated booth. Participants were seated in a comfortable chair 
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with their heads and necks supported. Stimuli were presented and button press responses 

were recorded by a PC computer running Compumedics NeuroScan Stim 2, version 4.3.3. 

The response cue for all perception conditions was a 100 ms, 1000 Hz tone presented 

following the end of the trial epoch (i.e., 3000 ms post stimulus onset, see figure 1). In the 

PN condition, subjects were instructed to sit quietly, listen to the stimulus (i.e., white noise), 

and press the button when they heard the response cue. In the quiet and noisy discrimination 

conditions, subjects were instructed to press one of two buttons after hearing the response 

cue depending on whether the tone pairs or syllable pairs were judged to be the same or 

different. Handedness of button press response was counterbalanced across all subjects and 

conditions. Discrimination accuracy was determined as percentage of trials correctly 

discriminated, and subjects who did not discriminate at a level significantly above chance 

were excluded from the analysis. Each of the five conditions were comprised of 2 blocks of 

40 trials, yielding 10 blocks total (5 conditions × 2 blocks). Order of presentation of blocks 

was randomized for each subject.

2.5. EEG Acquisition

Whole head EEG data were acquired from 68 channels. These channels included two 

electromyography electrodes that were placed at midline on the upper and lower lips and 

two electrocardiogram electrodes placed on the neck over the left and right common carotid 

arteries. Data were recorded with an unlinked, sintered NeuroScan Quik Cap, based on the 

extended international standard 10–20 system (Jasper, 1958;Towle et al., 1993). All 

recording channels were referenced to the linked mastoid channels (M1, M2) and the ground 

was placed between Fz and Fpz. The electro-oculogram was recorded by means of two 

electrode pairs placed above and below the orbit of the left eye (VEOL, VEOU) and on the 

medial and lateral canthi of the left eye (HEOL, HEOR) to monitor vertical and horizontal 

eye movement.

EEG data were recorded using Compumedics NeuroScan Scan 4.3.3 software in tandem 

with the Synamps 2 system. EEG data were band pass filtered (0.15 – 100 Hz) and digitized 

with a 24-bit analog to digital converter with a sampling rate of 500 Hz. Data collection was 

time locked to stimulus onset. Thus, time zero was defined as stimulus onset in all 

discrimination conditions.

2.6. EEG Data Processing

Data processing and analysis were performed with EEGLAB 13 (Brunner et al., 2013), an 

open source MATLAB toolbox. Processing occurred at the individual level and data were 

analyzed at both the individual and group level. The following steps were performed at each 

stage:

1. Individual processing/analysis:

a. Preprocessing of 10 raw EEG files for each participant (5 conditions × 

2 blocks).

b. Independent Component Analysis (ICA) of preprocessed files across 

conditions for each participant.
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c. Localization of dipoles for each independent component.

2. Group analysis:

a. The STUDY module within EEGLAB 13 was used to perform analysis 

on neural components.

b. Components common across participants were clustered by means of 

Principal Component Analysis (PCA).

c. Left and right μ clusters were identified and components were checked 

to ensure that they met inclusion criteria.

d. Mean left and right μ cluster sources were localized by equivalent 

current dipole (ECD) and verified by current source density (CSD) 

methods.

e. Changes in spectral power over time in μ clusters were identified by 

measuring event related spectral perturbations (ERSP).

2.7. Data preprocessing

Raw EEG data files from both blocks of each condition were appended to create one dataset 

per condition per participant consisting of 80 trials, and then resampled to 256 Hz to reduce 

the computational requirements of further processing steps. Trial epochs of 5000 ms 

(ranging from −3000 to +2000 ms around time zero, which corresponded with stimulus 

onset) were extracted from the continuous EEG data. The data then were filtered from 3 – 34 

Hz, which allowed for clear visualization of α and β bands while filtering muscle artifact 

from surrounding frequency bands. All EEG channels were referenced to the mastoids (M1, 

M2) to remove common mode noise. Trials were visually inspected and all epochs 

containing gross artifact (in excess of 200 μV) were removed. To help control for attention, 

trials were rejected and excluded from further analysis if the participant performed the 

discrimination incorrectly or if the response latency exceeded 2000 ms, which would be 

considered an unusually late response. A minimum of 40 usable trials per condition per 

participant was required in order to ensure a successful ICA decomposition.

2.8. Independent Component Analysis (ICA)

Following data preprocessing and prior to ICA decomposition, data files for each participant 

were concatenated to yield a single set of ICA weights common to all conditions. This 

allowed for comparison of activity across conditions within spatially fixed components. The 

data matrix was decorrelated through the use of an extended Infomax algorithm (Lee et al., 

1999). Subsequent ICA training was accomplished with the “extended runica” algorithm in 

EEGLAB 13 with an initial learning rate of 0.001 and the stopping weight set to 10−7. ICA 

decomposition yielded 66 ICs for each participant, corresponding to the number of recording 

electrodes (68 data channels with 2 reference channels; M1, M2). These included 

components from both neural and non-neural (e.g., muscular, artifactual) sources, 

demonstrating how ICA is an excellent tool for unmixing volume conducted EEG signals 

(Bell and Sejnowski, 1995;Makeig et al., 1996;Makeig et al., 1997). Scalp maps for each 
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component were generated by projecting the inverse weight matrix (W-1) back onto the 

original spatial channel configuration.

After ICA decomposition, an equivalent current dipole model (ECD) was computed for each 

IC by using the Brain Electrical Source Analysis (BESA) spherical model in the DIPFIT 

toolbox, an open source MATLAB plugin available at sccn.ucsd.edu/eeglab/dipfit.html 

(Oostenveld and Oostendorp, 2002). Electrode coordinates conforming to the standard 10–

20 configuration were warped to the head model. Automated coarse-fitting to the BESA 

head model revealed a single dipole for every IC generated by all paticipants. Hence, all 

cortical and non-cortical sources of EEG activity could be identified. Dipole source 

localization involved a back projection of the signal to a potential source that could have 

generated the signal, followed by computing the best forward model from that hypothesized 

source that accounts for the highest proportion of the scalp recorded signal (Delorme et al., 

2012). The residual variance (RV) is the mismatch between the original scalp recorded 

signal and this forward projection of the ECD model. The RV can be interpreted as a 

goodness of fit measure for the ECD model.

2.9. STUDY (Group level) analyses

Group level analyses were performed in the EEGLAB STUDY module using only neural 

components from the original ICA analyses. The STUDY module allows for the comparison 

of ICA data across participants and conditions. Principal component analysis (PCA) initially 

was used to cluster the pool of 2942 neural components with less than 20% RV from all 

participants. PCA clustering was conducted based on similarities in scalp maps, spectra, and 

dipole locations across components. A total of 40 clusters of neural activity from 

contributing participants were identified, including clusters composed mainly of left and 

right μ components. All components within identified μ clusters were checked against the a 

priori inclusion criteria of being localized to premotor (BA 6), primary motor (BA 4) or 

primary somatosensory (BA 1,2,3) regions, having a characteristic spectral shape including 

α and β peaks, and a RV threshold of <20%, similar to Jenson et al. (2014) and Bowers et al. 

(2013). Those that did not meet the criteria were removed from the cluster and not 

considered in the analysis. Neighboring clusters also were checked for components with μ 
characteristics to ensure that PCA had not misplaced any components. Left or right μ 
components meeting inclusion criteria that PCA had misplaced were reassigned to the 

appropriate μ cluster. Because of the manner in which ICA decomposes EEG data, it was 

possible that some participants did not contribute components that met inclusion criteria for 

the μ clusters. In addition, due to the fact that 64 neural recording channels produced the 

same number of ICs (Makeig et al., 2004), it was possible for participants to contribute 

multiple components to each cluster. Once μ clusters had been established, all components 

within the clusters were checked by a second rater to ensure agreement on cluster 

membership.

2.10. Source localization

Source localization for ECD clusters identified in the STUDY module is the mean of the 

Talairach coordinates (x, y, z) for each of the contributing dipole models (identified by the 

DIPFIT module). Verification of ECD localization was conducted using another method of 
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source localization known as standardized low-resolution brain electromagnetic tomography 

(sLORETA). sLORETA addresses the inverse problem by using current source density 

(CSD) from scalp recorded electrical signals to estimate source location (Pascual-Marqui, 

2002). Solutions are based on the Talairach cortical probability brain atlas, digitized at the 

Montreal Neurological Institute (MNI). Electrode locations are co-registered between both 

spherical models (BESA) and realistic head geometry (Towle et al., 1993). The 3-D brain 

space was divided into 6,239 voxels, yielding a spatial resolution of 5 mm. The inverse 

weight projections from the original EEG channels for each component contributing to the μ 
clusters were exported to sLORETA. Cross-spectra were computed and mapped to the 

Talairach atlas and cross-registered with MNI coordinates, resulting in CSD estimates for 

each contributing component. The analysis of statistical significance of CSD estimates 

across participants was performed in the sLORETA software package. The analysis was 

non-parametric, based on the estimation (via randomization) of the probability distribution 

of the t-statistic expected under the null hypothesis (Pascual-Marqui, 2002). This method 

corrects for multiple comparisons across all voxels and frequencies (3–34 Hz). Voxels that 

were significant at p < 0.001 were considered active across participants. Group level source 

localizations are based on the CSD source estimates computed via sLORETA. ECD 

localizations also are reported, as they serve to demonstrate the inter-subject variability 

present in the data.

2.11. Time-frequency analyses

Event-related spectral perturbation (ERSP) analyses were used to measure fluctuations in 

spectral power (in normalized decibel units) across time in the frequency bands of interest (3 

– 34 Hz). Time-frequency transformations were computed using a Morlet wavelet rising 

linearly from 3 cycles at 3 Hz to 25.6 cycles at 34 Hz. Trials were referenced to a pre-

stimulus baseline selected from the last second of the 3500 ms inter-trial interval. A 

surrogate distribution was generated from 200 randomly sampled latency windows from this 

silent baseline (Makeig et al., 2004). Individual ERSP changes across time were calculated 

with a bootstrap resampling method (p < 0.05 uncorrected). Single trial data for all 

experimental conditions for frequencies between 4 and 30 Hz and ranging from −500 to 

1500 ms were entered into the time-frequency analysis. This frequency window adequately 

captured α and β oscillatory activity, while the time window captured activity before, 

during, and after stimulus presentation.

2.12. Statistical analyses

For both spectral and time-frequency data, pairwise permutation statistics (2000 

permutations) were used for comparisons across the 5 conditions (PN, TQ, TN, SQ, SN), in 

addition to quiet (TQ and SQ) versus noisy (TN and SN) discrimination contrasts and tone 

(TQ and TN) versus speech (SQ and SN) discriminations contrasts. Unpaired permutation 

statistics were used to compare between the two groups. Type 1 error was controlled by a 

cluster-based nonparametric statistical correction for multiple comparisons (Maris and 

Oostenveld, 2007). To examine a possible relationship between stuttering severity and β 
power, a Pearson correlation analysis was performed between power at the μ-β peak maxima 

(extracted from spectra) in the PN condition and total raw SSI scores in PWS for both left 

and right μ components. Spectra were undifferentiated by condition. However, spectra from 
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the PN task were selected for the correlation analysis, as it was the condition with fewest 

time frequency changes across the trial epoch. Total raw SSI scores were selected, as they 

are robust measures of severity that are influenced by stuttering frequency, duration, and 

ancillary behaviors. For participants who contributed more than one component to a cluster, 

the average power for β peak maxima was used in the correlation.

3. Results

3.1. Discrimination accuracy

Figure 2 shows discrimination accuracy by group. A mixed ANOVA performed on root-

arcsine transformed proportions examined the effects of stimulus type (speech versus tone), 

background (quiet versus noisy) and group (controls versus PWS) on accuracy level. 

Significant effects were observed for stimulus type [F(1,44)= 47.10, p< 0.001], group 

[F(1,44)=10.36, p= 0.002], and the stimulus type × group interaction [F(1,44)= 7.68, p= 

0.008], demonstrating that tone conditions were discriminated less accurately in PWS only. 

Bonferroni corrected post hoc unpaired t-tests showed that PWS were significantly less 

accurate than controls in the TQ condition only [t (44) =3.65, p= 0.001]. No significant 

effects or interactions for background were found. The high accuracy levels overall suggest 

participants attended to the tasks and produced sufficient accurate trials from each condition 

for EEG analysis.

3.2. μ cluster characteristics

For the PWS that contributed to μ clusters (below), the average number of usable (i.e., 

accurate and clean) trials for each condition was: PN = 67.0 (SD = 10.3); TQ = 57.0 (SD = 

9.8); TN = 58.5 (SD = 10.4); SQ = 63.3 (SD = 10.1); SN = 59.1 (SD = 12.6). For the control 

participants that contributed to μ clusters (below), the average number of usable (i.e., 

accurate and clean) trials for each condition was: PN = 64.8 (SD = 10.0); TQ = 62.6 (SD = 

10.5); TN = 62.3 (SD = 10.0); SQ = 63.1 (SD = 10.4); SN = 61.6 (SD = 9.1).

Figure 3 shows the similar distribution of components that were included based on the a 

priori criteria in left and right μ clusters for the PWS and control groups. Of the 27 PWS, 23 

contributed to left and/or right μ clusters. Specifically, 18 contributed to both clusters while 

2 contributed only to the left and 3 only to the right (see Table 1). Of the 27 matched 

controls, 24 contributed to left and/or right μ clusters. Specifically, 18 contributed to both 

clusters while 3 contributed only to the left and 3 only to the right.

20/27 PWS contributed to the left μ cluster. Data from the same number of age, gender, and 

handedness-matched controls were used in group comparisons. The average ages of control 

and PWS contributors was 28.9 and 27.4 years respectively, which were not significantly 

different [t (38)= 0.47, p= 0.64]. The total number of left μ components contributed was 30 

for the PWS and 27 for the controls. 21/27 PWS contributed to the right μ cluster. Data from 

the same number of age, gender, and handedness-matched controls were used in group 

comparisons. The average ages of control and PWS contributors were 27.52 and 26.38 years 

respectively, which were not significantly different [t (40)=0.39, p=0.71]. The total number 

of right μ components contributed was 30 for the PWS group and 29 for the controls. Table 2 
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shows average ECD sources and RVs for left and right μ clusters separated by group. As the 

average ECD sources for the two groups were separated by less than 1 cm, for the purposes 

of conversion to sLORETA maximum current source densities (CSD), source data from both 

groups were combined (also shown in Table 2).

3.3. Spectral analyses of μ clusters

Figure 4 shows between-group comparisons of left and right μ spectra across all five 

conditions. For the left μ, the PWS group displayed reduced spectral power in β frequencies 

in all discrimination conditions compared to the control group (p < 0.05, cluster corrected). 

For the right μ, the PWS displayed reduced spectral power in β frequencies in all conditions 

(control and discrimination) compared to the control group (p < 0.05, cluster corrected). No 

spectral differences across conditions were observed for either group. For both left and right 

μ clusters, the correlations between raw SSI scores and the maximum μ- β spectral power 

were weak and non-significant (r= −0.03 on the left and r= −0.07 on the right).

3.4. Time-frequency analyses of μ oscillatory activity

Group differences: Figures 5 and 6 show Van Essen maps (generated using sLORETA) of 

significant voxels contributing to the left and right μ clusters, respectively. In each figure, 

these are followed by time-frequency (ERSP) analyses for each condition in both groups 

across a 7–25 Hz bandwidth, which reflect oscillatory changes in μ frequencies of interest 

from the prestimulus baseline across trials (before, during and following stimuli). Significant 

(p < 0.05, cluster corrected) between-group differences are also displayed. In the left 

hemisphere (figure 5) PWS demonstrated increased μ-β ERD in the PN condition. In 

addition, in the TN and SN conditions, PWS display increased μ-β ERD and reduced μ-α 
ERS before and during stimulus onset. In the right hemisphere (figure 6), PWS again 

demonstrated increased μ-β ERD in the PN condition, extending across the entire trial. In 

the TN condition, PWS exhibit increased μ-β ERD and reduced μ-α ERS before and during 

stimulus onset. In contrast to the findings in the left μ cluster (above), no group differences 

were observed in the SN condition.

Within-subject differences: For both groups, all discrimination conditions resulted in 

widespread time-frequency differences compared to the PN condition. However, since PWS 

exhibited μ-β ERD in the PN condition, it could not be considered a true control condition. 

Therefore, PN was considered separately from the discrimination conditions. Post hoc 

comparisons of the effects of speech versus tone discriminations showed no significant 

differences for either group. Post hoc comparisons showing the effects of quiet versus noisy 

discrimination conditions are shown in Figure 7. Controls demonstrated reduced μ-β ERD 

and greater μ-α ERS in noisy trials before and during stimulus onset in the right hemisphere 

only. PWS showed bilateral increases μ-α and μ-β ERD in noisy conditions following 

stimulus offset.

4. Discussion

In this study, ICA on whole-head EEG data from passive listening and auditory 

discrimination tasks identified left and right sensorimotor μ components from cohorts of 
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stuttering adults (PWS) and matched controls. In accord with previous studies that used 

similar inclusion criteria for μ cluster membership (Bowers et al., 2013;Jenson et al., 2014), 

~88% of PWS and controls contributed to either left or right μ clusters, while 67% 

contributed to both. As shown in Figure 3, the distribution of μ dipoles was similar in the left 

and right hemispheres and between the two groups. Though the average source coordinates 

identified by the two localization methods (ECD and CSD) varied slightly (by 1.34 cm in the 

left hemisphere and 0.7 cm on the right), both techniques placed the sources within 

premotor-motor regions that are accepted generators of μ rhythms (Schnitzler et al., 

2000;Pineda, 2005;Hari, 2006;Jenson et al., 2014). The bilateral sensorimotor findings 

herein are consistent with recent findings in tasks eliciting sensorimotor activity (Yue et al., 

2013;Alho et al., 2014;Callan et al., 2014;Cogan et al., 2014). Given the similar numbers of 

components yielded by each group to left and right μ clusters and their similar localizations, 

it was possible to test the hypotheses addressing stuttering-related μ spectral and oscillatory 

differences.

4.1. μ rhythm spectral differences

Supporting the first hypothesis, across all conditions, PWS produced μ spectra with reduced 

μ-β spectral amplitude (figure 4). Group differences were significant in all 5 conditions for 

right μ clusters and in all but the PN condition for left μ clusters (figure 4). Overall spectral 

amplitudes are influenced by oscillatory changes across time. In the current study, this time 

window included the baseline and the event-related changes in each testing condition. Joos 

et al. (2014) reported similar group differences in β power averaged across all electrodes for 

resting state conditions. Taken together, these findings suggest that reduced β spectral 

amplitude, especially when arising from sensorimotor regions, might be a stable marker of 

stuttering. Reduced β amplitudes are consistent with a reduced sensorimotor capacity for the 

generation of forward models (Max et al., 2004a;Daliri and Max, 2015a). As the differences 

have been observed at resting state (Joos et al., 2014) and now in passive listening and 

auditory discrimination conditions, data align with a more general sensorimotor deficit, 

rather than one restricted to speech production (Max et al., 2003;Max and Yudman, 

2003;Chang et al., 2009;Daliri et al., 2014).

The possibility of a spectral biomarker for stuttering is not unprecedented. EEG spectral 

differences have been used to differentiate matched controls from those with pathological 

conditions like dyslexia (Galin et al., 1992;Papagiannopoulou and Lagopoulos, 2016), 

insomnia (Buysse et al., 2008), fibromyalgia (Gonzalez-Roldan et al., 2016), epilepsy 

(Adebimpe et al., 2015), adolescents with sports related concussions (Balkan et al., 2015), 

and Parkinson’s disease (Caviness et al., 2016). In the current study, μ-β amplitudes did not 

correlate with a behavioral measure of stuttering severity making it unclear how well μ-β 
amplitude defines the disorder. Replication and extension to populations of children who 

stutter is necessary before the presence of a spectral biomarker is confirmed. However, the 

differences in spectral amplitude do predict that in time-frequency analyses, PWS will 

exhibit greater μ-β ERD (i.e., more desynchronization) than controls across events.
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4.2. Between-group time-frequency differences in PN condition

Supporting the prediction above, PWS exhibited significant bilateral μ-β ERD across PN 

trials (figures 5 and 6). Alternatively, their matched controls demonstrated expectedly low 

levels of oscillatory activity, similar to control data from previous studies. PN serves as an 

effective control condition due to its relatively low attentional and motor demands. 

Therefore, it is interesting to consider how the demands of this task (listening to noise then 

pressing a button) influences PWS but not their matched controls to induce μ-β ERD.

In regards to the button press, preparatory β ERD typically precedes movements such as a 

button press by ~1000 ms (Alegre et al., 2003). Therefore, placing a button-press response 

1000 ms after the termination of an epoch typically minimizes the effect of pre-movement μ-
β ERD within the epoch. Though there is evidence that PWS have general motor planning 

deficits (Lu et al., 2010a;Daliri et al., 2014;Neef et al., 2015) that may influence motor 

preparation, it is doubtful that it would influence μ-β ERD up to 5000 ms prior to a simple 

button press. Alternatively, μ-β ERD (from baseline) began with presentation of noise. 

Evidence from fMRI suggests that scanner noise (i.e., in excess of 100 dB) can induce motor 

activity in non stuttering individuals (Cho et al., 1998;Elliott et al., 1999). It seems possible 

that even lower noise levels might be sufficient to induce motor activity in PWS, especially 

in light of observed differences in auditory processing that may alter auditory-motor 

interactions (Hampton and Weber-Fox, 2008;Kikuchi et al., 2011;Mock et al., 2015;Kikuchi 

et al., 2017). Referencing other developmentally disordered populations (e.g., autism and 

dyslexia), Halag-Milo et al (2016) address this possibility in a cautionary note following a 

recent fMRI speech perception study in PWS. Clues to how motor systems in PWS might be 

impacted by white noise come from studies demonstrating enhancement of fluency under 

masking (Andrews et al., 1983;Martin et al., 1985;Bloodstein and Ratner, 1995). These 

effects have been attributed to reducing error detection and repair in auditory regions (Civier 

et al 2010). A logical consequence also might be heightened motor reactivity to the noise, 

which appears to be the best explanation for the μ-β ERD observed in PWS in the PN 

condition and may have influenced discrimination conditions.

4.3. μ-α and μ- β time-frequency differences in discrimination conditions

Speech and tone discrimination conditions were characterized bilaterally by oscillatory 

changes from baseline in μ-α and μ-β across the time course of events. μ-β oscillatory 

fluctuations are interpreted to reflect changes in contributions of motor activity across the 

time course of the discrimination task while μ-α oscillations characterize alterations in 

sensory feedback from auditory regions. Significant oscillatory differences between- and 

within-groups were found in the presence of background noise.

4.3.1. Early oscillatory activity—Prior to and during stimulus presentation (segments A 

and B in figures 4–6), PWS displayed μ-β ERD, which was similar across all conditions 

(quiet and noise) and predicted by the spectra. μ-β ERD in anticipation of stimuli often is 

attributed to top-down forward modeling contributing to predictive coding by constraining 

analysis of forthcoming auditory stimuli (Arnal and Giraud, 2012;Sohoglu et al., 2012). In 

PWS, the early μ-β ERD observed in the quiet conditions perhaps provides evidence of 

forward modeling. However, the same pattern was found in the presence of noise and in the 
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PN condition, making it difficult to ascertain that forward modeling was the only contributor 

to early μ-β ERD in PWS during discrimination. In contrast, for the control group, noisy 

discrimination was characterized bilaterally by increased neural synchronization. That is, 

relative to quiet conditions, controls exhibited reduced μ-β ERD and increased μ-α ERS, 

consistent with previous work using the same design. However, in the current study, 

differences only reached significance in the right hemisphere1. As α ERS is considered an 

index of sensory gating, the data suggest that controls exhibited a shift in predictive 

strategies from forward modeling in quiet conditions to sensory gating of the irrelevant 

stimuli (i.e., noise) in the noisy conditions.

Group differences may be explained best by the idea that controls dynamically adapt their 

sensorimotor strategies for discrimination in noise, while strategies of PWS remain 

relatively static across conditions. The finding of reduced sensory gating (reduced α ERS) in 

PWS is consistent with MEG findings of reduced P50m suppression responses to tone bursts 

in the left hemisphere only (Kikuchi et al., 2011). These appear to be the first data to 

demonstrate functionally that PWS show reduced sensory gating of noise in auditory 

discrimination. It is noteworthy that in the right hemisphere group differences did not reach 

significance in the SN condition due to weaker spectral power, perhaps reflecting a reduced 

role of the right hemisphere in speech processing.

4.3.2. Late oscillatory activity—Following stimulus offset (segment C in figures 4–6), 

the strongest patterns of μ-α and μ-β ERD were observed bilaterally for both groups in all 

discrimination conditions. The strong activity suggests that in both groups auditory 

stimulation updated internal models that were then held in working memory. It also supports 

notions regarding strong contributions of working memory (possibly via covert replay) to 

anterior dorsal stream activity observed in auditory discrimination tasks (Burton et al., 

2000;Burton et al., 2005). Interestingly, within PWS, post stimulus μ ERD was stronger in 

noisy conditions (figure 7). The findings suggest that while both groups used updated 

internal modeling to help keep the stimuli in working memory prior to responding, PWS 

employed this strategy largely in noisy conditions, possibly to help compensate for 

sensorimotor deficits early in the trial.

4.5. Speech versus tone discrimination

It is worth noting that oscillatory differences were not observed between speech and tone 

conditions in either group. Thus, both PWS and controls employed sensorimotor strategies 

similarly for speech and tone discrimination. This finding is not unusual considering reports 

of strong overlap between regions involved in speech and non-speech sensorimotor 

processing when non-speech stimuli are more complex in nature. This suggests that 

sensorimotor processing helps encode rapid temporal characteristics of acoustic stimuli 

(Fiez et al., 1996;Zatorre et al., 1999;Poldrack et al., 2001;Joanisse and Gati, 2003;LoCasto 

et al., 2004;Zaehle et al., 2008;Burton, 2009).

1Jenson et al., (2014) tested predominantly females, whereas due to the epidemiology of stuttering, controls in the current study were 
predominantly male. The larger noise-related differences observed in females may be indicative of sex-related sensorimotor processing 
differences (Thornton et al., in prep).
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4.6. Basal ganglia contributions to μ rhythm oscillations

Though μ rhythms typically emanate from sensorimotor sources, there is substantial 

evidence to indicate that their oscillatory activity can be influenced by contributions from 

the basal ganglia. First, motor regions are sites of integration for two main basal ganglia 

based loops in motor control (Band and van Boxtel, 1999;Dillon and Pizzagalli, 2007). 

Second, reduced β power has been found in response to changes in auditory beats (Fujioka 

et al., 2010;Fujioka et al., 2015). The findings were thought to reflect the transfer of timing 

to sensorimotor information through fluctuations in corticobasal-ganglia and thalamocortical 

circuits, demonstrating how basal ganglia circuits can contribute to forward models by 

coding changes in predictive timing of auditory information (Arnal 2012; Arnal & Giraud 

2012). Stuttering-related differences in β oscillations recently have been found in children 

(Etchell et al., 2016) and adults (Mersov et al., 2016). Third, selection and inhibition 

processes modulate and stabilize sensory experience and fluid movements operate through 

basal ganglia circuits (Buzsaki, 2006;Klimesch et al., 2007;Okun and Lampl, 2008;Jensen 

and Mazaheri, 2010) and can be measured by changes in α fluctuations across motor regions 

(Bonstrup et al., 2015). In stuttering, compromises to this mechanism have been implicated 

in disrupting the inhibition of unwanted syllables during speech production (Civier et al., 

2010;Chang and Zhu, 2013;Civier et al., 2013).

4.7. General Discussion

Analyses of μ rhythm spectra followed by task-specific time-frequency decompositions are 

sensitive to capturing functional neurophysiological differences associated with stuttering. 

Resting state (Joos et al, 2014) and the current task-related effects converge to suggest that 

stuttering generally is associated with reduced β spectral amplitudes. Spectral differences are 

likely to manifest across tasks and be evident in time-frequency analyses. However time-

frequency fluctuations represent changes from pre-stimulus baseline, and therefore do not 

account for any differences in the baseline that are also present in the spectra.

This makes findings from the PN conditions particularly interesting, as they are consistent 

with time-frequency activity that would be predicted by the spectra and represent noise-

induced oscillatory changes from pre-stimulus baseline. If pre-stimulus baseline in the 

current study is analogous to resting state, the changes in oscillatory activity of PWS during 

the PN condition (where discrimination is not required) suggest the presence of noise is 

sufficient to induce motor activity. Thus, scanner noise might have influenced fMRI-based 

reports of heightened resting state activity across speech motor circuits in PWS (e.g., Xuan 

2012). In contrast, using EEG presumably in the absence of background noise, Joos et al 

(2014) did not identify resting state activity differences between PWS and controls, though 

they acknowledged their study may have been underpowered for these purposes. Thus, 

future μ rhythm studies using quiet conditions, devoid of attentional and motor demands, 

may further understanding of resting state differences versus motor reactivity in PWS. In 

discrimination conditions, similar patterns of early μ-β ERD observed across conditions was 

similar to that observed in the PN conditions, made it difficult to determine the contributions 

of early forward modeling. Taken together spectral differences, along with time-frequency 

differences in the PN and discrimination conditions, suggest that reduced forward modeling 

capacities might be related to generally heightened motor reactivity.
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Another major finding was that PWS showed significantly reduced sensory gating compared 

to controls when discriminating in noise. This difference was not observed in the PN 

condition, during which neither group demonstrated μ-α ERS. This finding provides further 

evidence of μ-α ERS marking the suppression of irrelevant stimuli for active sensing 

(Klimesch et al., 2007;Schroeder et al., 2010). As spectral power differences were not 

observed for μ-α, it is unclear if reduced inhibitory gating in PWS is task specific or a 

‘signature of stuttering’ as suggested by Kikuchi et al. (2011). What does seem apparent is 

that heightened motor reactivity in combination with reduced inhibitory gating implicate 

deficiencies in both sensorimotor and basal ganglia function; both of which are thought to 

contribute to neural dysfunction in stuttering. Because participants were adults, it currently 

is not possible to distinguish whether the observed differences underlie stuttering or are a 

consequence of life-long stuttering. Further testing in children is necessary for elaboration.

Discrimination accuracies were generally high and similar between groups. However, PWS 

displayed poorer discrimination accuracy in tone conditions, though only accuracy in the TQ 

condition was significantly lower. Analogous findings by Hampton and Weber-Fox (2008) 

reported differences in discrimination accuracy for non-speech stimuli in children who 

stutter versus their matched controls. As accuracy levels were similar and only accurate 

discriminations were considered in the current study, the EEG data are not interpreted in 

light of the behavioral differences. It is still interesting to note that despite apparent 

impairments in forward modeling and inhibitory gating, PWS achieved accuracy levels that 

for the most part, were similar to those of controls. The question of how sensorimotor 

contributions functionally aid auditory discrimination continue to be debated (Scott et al., 

2009;Callan et al., 2010;Hickok et al., 2011;Alho et al., 2014;Carbonell and Lotto, 

2014;Skipper, 2014;Skipper et al., 2017). The current findings suggest that, at least in PWS, 

accurate discrimination was largely accomplished by auditory analysis rather than dorsal 

stream sensorimotor processing. However, this interpretation is highly speculative without 

supporting information pertaining to oscillatory activity from auditory regions. A logical 

next step in this research is to identify and compare activity from auditory components 

typically characterized by α spectra (Weisz et al., 2011;Weisz and Obleser, 2014; Jenson et 

al, 2015) in PWS and controls. With this information, it will also be possible to compute 

effective connectivity, providing temporally precise information regarding the flow of 

oscillatory information between sensorimotor and auditory regions (Lu et al., 2010b;Friston, 

2011)

This study used passive listening and discrimination conditions, with the intention of 

describing sensorimotor differences associated with stuttering. With the additional 

consideration that basal ganglia functions also are implicated in the group differences, it is 

interesting to note some parallels to speech production. First, the relatively static pattern of μ 
oscillatory activity observed in PWS relative to controls across discrimination events 

suggests reduced sensorimotor adaptation. In a number of speech production studies, 

reduced sensorimotor adaptation has been reported in PWS in response to auditory 

perturbations (Cai et al., 2012;Loucks et al., 2012;Cai et al., 2014;Sengupta et al., 2016). 

Second, differences were only observed early in the event, before all necessary auditory 

information had been received to make the discrimination. After hearing the auditory 

stimuli, both groups responded with similarly strong patterns of μ-α and μ-β ERD, 

Saltuklaroglu et al. Page 17

Neuroimage. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggesting that auditory perception had updated models (regardless of their initial integrity) 

that could be adequately stored in working memory by both groups. In speech production, 

most stuttering occurs during speech initiation (Brown, 1938;1945;Bloodstein and 

Grossman, 1981), which has been explained by weak forward models generating weak 

predictions that result in increased error detection. Similar to what was observed in 

discrimination tasks in the current study, once auditory feedback is received and internal 

models are updated, stimulation by auditory targets appears to help normalize sensorimotor 

processing (Max et al., 2004a;Max et al., 2004b;Civier et al., 2010).

4.7. Caveats

Though all participants produced ‘μ -like’ components, some (both PWS and controls) did 

not contribute to μ clusters (Nystrom, 2008;Bowers et al., 2013;Jenson et al., 2014;Cuellar et 

al., 2016). This is common in oscillatory studies due to inherent inter-individual variability 

when mapping cognitive functions to cortical topography (Biermann-Ruben et al., 

2005;Basile, 2007). The main causes for failure to meet inclusion criteria were 1) the spectra 

were noisy and did not demonstrate clear α and β peaks, 2) ICA failed to assign what 

appeared to be a μ component to one of the cortical regions known to generate sensorimotor 

μ rhythms, or 3) ICA failed to fit a μ component dipole in the sensorimotor region with less 

than 20% RV. The latter two problems likely stem from the use of standard BESA head 

models, which reduces source localization accuracy. This continues to highlight the general 

need for improved spatial resolution in EEG techniques. Of further note, it is unclear how 

the influence of inaccurate discriminations (though considerably fewer) may affect the 

neural data.

5. Conclusions

With an eye towards examining oscillatory activity in other components and effective 

connectivity between components, the current findings demonstrate that μ rhythms provide a 

rich source of sensorimotor information during auditory perception tasks. When the 

‘complete’ μ rhythm (μ-α and μ-β) is identified and decomposed, cooperation of motor-to-

sensory (μ-β) and sensory-to-motor (μ-α) processes are observed across the time course of 

events. In addition to suggesting heightened motor reactivity in PWS, the current findings 

indicate that discrimination tasks, especially in noise, are sensitive to forward modeling and 

auditory-motor feedback compromises that characterize stuttering. Continuing this line of 

research in both child and adult stuttering populations may lead to clear sensorimotor 

biomarkers of stuttering that help predict spontaneous recovery, indices of therapy-related 

cortical changes in those whose stuttering persists, and better separation of causal versus 

compensatory sensorimotor strategies.
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Highlights

• Mu (μ) rhythms identified in stuttering and matched control groups in 

auditory discrimination

• Mu (μ) rhythm spectra show reduced forward modeling capacity in stuttering 

group

• Time-frequency analyses show group differences in predictive coding 

strategies
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Figure 1. 
Epoch Timeline. 5000 ms epoch time lines for all conditions. In discrimination conditions, 

stimuli onset is at t=0.
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Figure 2. 
Behavioral Data. Discrimination accuracy for Controls and PWS who contributed to either 

left or right μ cluster.
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Figure 3. 
Equivalent Current Dipole Distributions. A) Transverse and coronal views of all left and 

right μ dipole sources from both groups. B) Transverse and coronal views of average left and 

right μ dipoles sources. Green dipoles are from PWS and blue dipoles are from controls.
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Figure 4. 
μ Spectral Comparisons. A) left and B) right average μ spectra from all conditions. Light 

traces are from PWS and dark traces are from controls. Shaded areas indicate frequencies 

where significantly different (p < 0.05) spectral amplitudes were found (after cluster-based 

corrections for multiple comparisons).
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Figure 5. 
Left μ Time-Frequency Analyses. sLORETA source solution for combined cluster of all left 

μ components followed by time-frequency analyses of left μ oscillatory activity from all 

conditions from PWS and control subjects. Stimulus onset is at t=0. Warmer colors indicate 

event-related synchronization and cooler colors indicate event-related desynchronization. 

The lower panels indicate the time-frequency voxels that were significantly different (p < 

0.05) between the groups (after cluster-based corrections for multiple comparisons).
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Figure 6. 
Right μ Time-Frequency Analyses. sLORETA source solution for combined cluster of all 

right μ components followed by time-frequency analyses of right μ oscillatory activity from 

all conditions from PWS and control subjects. Stimulus onset is at t=0. Warmer colors 

indicate event-related synchronization and cooler colors indicate event-related 

desynchronization. The lower panels indicate the time-frequency voxels that were 

significantly different (p < 0.05) between the groups (after cluster-based corrections for 

multiple comparisons).
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Figure 7. 
Within-subject Time-Frequency Contrasts. Differences in quiet versus noisy conditions in A) 

left μ and B) right μ clusters. Stimulus onset is at t=0. Warmer colors indicate event-related 

synchronization and cooler colors indicate event-related desynchronization. Panels on the 

right indicate the time-frequency voxels that were significantly different (p < 0.05) between 

stimulus types for each group (after cluster-based corrections for multiple comparisons).
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Table 2

Source information for left and right μ clusters.

Source Information Left μ Right μ

Separated by group

 Controls: Mean ECD source −35, −12, 43 (BA 6) 39, −6, 43 (BA 6)

  Mean Residual variance (RV) 8.16% 6.64%

 PWS: Mean ECD source −37, −4, 45 (BA 6) 38, −7, 45 (BA 6)

   Mean Residual variance (RV) 9.64% 8.27%

 Distance between sources 0.84 cm 0.25 cm

Control and PWS groups combined

 Mean ECD source 37, −8, 44 (BA 6) 38, −7,44 (BA 6)

 Maximum CSD source 40, −15, 55 (BA 4) 40, −10, 50 (BA 6)

 Distance between sources 1.34 cm 0.70 cm
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