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Abstract

The assessment of the free water fraction in the brain provides important information about 

extracellular processes such as atrophy and neuroinflammation in various clinical conditions as 

well as in normal development and aging. Free water estimates from diffusion MRI are assumed to 

account for freely diffusing water molecules in the extracellular space, but may be biased by other 

pools of molecules in rapid random motion, such as the intravoxel incoherent motion (IVIM) of 

blood, where water molecules perfuse in the randomly oriented capillary network. The goal of this 

work was to separate the signal contribution of the perfusing blood from that of free-water and of 

other brain diffusivities. The influence of the vascular compartment on the estimation of the free 

water fraction and other diffusivities was investigated by simulating perfusion in diffusion MRI 

data. The perfusion effect in the simulations was significant, especially for the estimation of the 

free water fraction, and was maintained as long as low b-value data were included in the analysis. 

Two approaches to reduce the perfusion effect were explored in this study: (i) increasing the 

minimal b-value used in the fitting, and (ii) using a three-compartment model that explicitly 

accounts for water molecules in the capillary blood. Estimation of the model parameters while 

excluding low b-values reduced the perfusion effect but was highly sensitive to noise. The three-

compartment model fit was more stable and additionally, provided an estimation of the volume 

fraction of the capillary blood compartment. The three-compartment model thus disentangles the 

effects of free water diffusion and perfusion, which is of major clinical importance since changes 

in these components in the brain may indicate different pathologies, i.e., those originating from the 

extracellular space, such as neuroinflammation and atrophy, and those related to the vascular 
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space, such as vasodilation, vasoconstriction and capillary density. Diffusion MRI data acquired 

from a healthy volunteer, using multiple b-shells, demonstrated an expected non-zero contribution 

from the blood fraction, and indicated that not accounting for the perfusion effect may explain the 

overestimation of the free water fraction evinced in previous studies. Finally, the applicability of 

the method was demonstrated with a dataset acquired using a clinically feasible protocol with 

shorter acquisition time and fewer b-shells.
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1 Introduction

Diffusion MRI is a method that can provide insight into the microstructural environment of 

tissue, by sensitizing the signal to the displacement of water molecules (1). At the typical 

time scales of diffusion MRI experiments, the displacement is highly influenced by the 

surrounding cellular microstructural environment, which is characterized by the degree to 

which it hinders or restricts the displacement. Free water is defined as molecules that are 

neither hindered nor restricted in their movement. Therefore, free water in diffusion MRI 

exhibits isotropic diffusion with an apparent diffusion coefficient (ADC) of approximately 3 

μm2/ms at body temperature (2, 3). In a typical diffusion MRI acquisition the diffusion time 

is around 40-60 ms, which imposes that free water is found in large spaces of a few tens of 

microns, that could only be found in parts of the extracellular space (4). Accordingly, 

intracranial free water in the brain can be found as cerebrospinal fluid (CSF) in the 

ventricles and around the brain parenchyma. However, free water can also, to a smaller 

extent, be found as CSF and interstitial fluid in the extracellular space of gray and white 

matter (5).

When a voxel contains both brain tissue and free-water, the free water component increases 

the signal attenuation, causing so-called “CSF contamination” that biases the estimation of 

diffusivities (5, 6). Recent diffusion MRI methods, such as free water imaging (5), NODDI 

(7), AxCaliber (8) and diffusion basis spectrum imaging (9), have proposed compartmental 

models to eliminate CSF contamination by explicitly adding a compartment that accounts 

for the extracellular free water. These models estimate the free water signal fraction (fw), 

which is the relative signal contribution of free water in each voxel. The fw parameter 

provided meaningful clinical information, since it allows monitoring of extracellular 

changes, which could be related to neuroinflammation and/or atrophy in, for example, 

normal aging (6), schizophrenia (4, 10), mild cognitive impairment and Alzheimer's disease 

(11-13), Parkinson's disease (14), and traumatic brain injuries (15). Therefore, it is of 

interest to ensure that the fw parameter is correctly estimated.

One of the factors that may limit the specificity of fw to the diffusion of extracellular water 

molecules is blood perfusion, i.e., the fast displacement of water molecules that are flowing 

in the blood. While blood flow in large vessels dephases quickly, blood flow that occurs in 

randomly oriented capillary vessels appears as intra-voxel incoherent motion (IVIM), which 

Rydhög et al. Page 2

Neuroimage. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



includes both diffusion and perfusion (16, 17). In a diffusion MRI experiment, perfusion has 

the same effect as fast isotropic diffusion, often referred to as pseudo-diffusion, with an 

ADC much higher than that of free water. The corresponding fast attenuation of the 

perfusing blood affects the diffusion signal at low b-values. Accordingly, existing methods 

to estimate perfusion-related parameters typically acquire low b-value data (e.g., b<200 

s/mm2) to estimate the capillary blood fraction (fb), which provides a useful measure for 

brain studies (16, 18-21) that under certain assumptions can be a surrogate marker for 

cerebral blood volume (CBV) (18, 22). CBV is an important parameter for characterization 

cerebral hemodynamics, complementing measures of cerebral blood flow (CBF), which can 

be obtained by dynamic susceptibility contrast (DSC) MRI (23) or arterial spin labeling 

(ASL) (24, 25). CBV measures can also be obtained from dynamic susceptibility contrast 

MRI (DSC-MRI) (23), or from dynamic contrast-enhanced (DCE) MRI (26). However, 

DSC-MRI and DCE-MRI are invasive, since the injection of a contrast agent is required. In 

addition, these methods require a correctly measured arterial input function, which is 

difficult to achieve (19).

Typically, diffusion MRI sequences include b-values in the order of 1000 s/mm2 but not low 

b-values, leading to the misconception that the experiment is not affected by perfusion. 

However, quantitative diffusion experiments always require the acquisition of at least one 

more b-value, with the majority of experiments collecting a b=0 volume (or alternatively a 

very low-b volume) since it yields the largest contrast. The signal, S0, of this b=0 volume 

includes contributions from all water pools, regardless of how fast their random motions are. 

The inclusion of a b=0 volume is, therefore, the source of a potential perfusion effect on a 

diffusion MRI experiment (27).

In this study, the aim was to show the effects of perfusion on the estimation of the two-

compartment free water imaging model, using simulations and real data. We study the effect 

of perfusion on the estimation of fw and other diffusivities, with different acquisition 

schemes that either include or do not include low b-values. We test an approach to eliminate 

the effect of perfusion on the estimation of fw by increasing the minimal b-value, from the 

typical b=0, to a b-value for which the perfusion contribution is minimal. Finally, a three-

compartment model for both the perfusion effect and free water is considered. This three-

compartment model disentangles the effects of free water diffusion and perfusion, which is 

of major clinical importance since changes in these components in the brain may indicate 

different pathologies, i.e., those originating from the extracellular space, such as 

neuroinflammation and atrophy, and those related to the vascular space, for example, 

vasodilation, vasoconstriction and capillary density.

2 Material and Methods

2.1 Models for Diffusion and Perfusion

The effect of perfusion on the estimation of fw was evaluated using simulations and real 

data, considering models with one, two and three compartments. The single compartment 

diffusion tensor imaging (DTI) model describes the diffusion weighted signal with a 

monoexponential signal decay (28):
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(Eq. 1)

where S0 is the non-weighted signal, Dt is a diffusion tensor, and Si is the diffusion-weighted 

signal obtained with the ith applied gradient that has b-value bi and gradient direction gi.

The two-compartment free water model (5, 29, 30) describes the diffusion weighted signal 

as:

(Eq. 2)

This model extends the one compartment diffusion tensor imaging (DTI) model (28), by 

adding a second compartment that represents free water. The free water compartment 

assumes a fixed diffusivity, Dw=3 μm2/ms, and therefore this model adds only one new 

parameter to the DTI model, i.e., the fractional volume of the free water compartment, fw, 

with values in the interval [0, 1]. The other compartment accounts for brain tissue, where 

water molecules are either hindered or restricted, and is modeled using a diffusion tensor Dt 

(28, 31). The eigenvalues of Dt can be used to calculate fractional anisotropy (FA), radial 

diffusivity (RD), and axial diffusivity (AD), which are all corrected for free water contents.

Similar to the free water model, the IVIM model has two compartments, with one of the 

compartments modeling diffusivity in tissue (17). However, in the IVIM model the 

additional compartment reflects the signal from the vascular components. Specifically, it is 

assumed that water molecules flow in the blood in a randomly oriented sub-voxel network of 

capillaries, which is modeled as pseudo-diffusion with a diffusivity that is higher than that of 

water molecules in the parenchyma (17):

(Eq. 3)

Here, Dt is the mean diffusivity in tissue, originally assumed to be isotropic and hence 

described as a scalar. Db is the mean diffusivity in blood, and D* is the pseudo-diffusion 

coefficient, which represents the additive mobility of water molecules due to the perfusion in 

the randomly oriented capillaries. Since the water molecules in the capillary blood are 

considered to experience both diffusion and perfusion, the attenuation will depend on the 

combination of these: Df=(Db+D*) (17). The signal fraction of the capillary blood 

compartment is 0<fb<1. With data acquired at multiple b-values, the two-compartment IVIM 

model allows estimation of fb. In previous studies, estimates of the average fb in healthy 

white matter varied between 3.3% (32) to as high as 16% (at low SNR) (18), with a number 

of studies reporting average fb of around 5% (19, 20, 33). The rapidly attenuated signal 

component arising from perfusion is detectable only at low b-values, while the slower 

attenuation of water molecules in or around brain tissue is identified at higher b-values.

Rydhög et al. Page 4

Neuroimage. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To simultaneously account for free water and perfusion, as well as potential anisotropic 

diffusion within the tissue, we propose to combine the free water model and the IVIM model 

into a three-compartment model:

(Eq. 4)

In this extended model, the diffusion in brain tissue is represented by a diffusion tensor, Dt, 

rather than by a scalar (as in Eq. 3), in order to account for anisotropic diffusion, such as the 

diffusion profile expected in white matter. The diffusion coefficient of the free-water 

compartment is set to Dw=3μm2/ms. In our model we set the diffusion coefficient of the 

blood compartment to a fast diffusivity of Df=10 μm2/ms. This value was selected based on 

previous experimental diffusion MRI studies (19, 20), although faster diffusivities have also 

been reported (18, 34). Other three compartmental models to disentangle diffusivities have 

been proposed before (34, 35), but these were different in that the tissue compartment was 

assumed to be isotropic (34, 35) or that tissue was modeled as two isotropic compartments 

(fast and slow) without an explicit free-water compartment (34). Here our main goal is to 

evaluate how neglecting the perfusion compartment affects the estimation of free-water and 

other diffusivities in white and gray matter, which required an anisotropic model for tissue, 

and an explicit free-water compartment.

2.2 Simulations

To demonstrate the perfusion effect on the estimation of diffusivities, a multi-compartment 

signal was simulated following Eq. 4, consisting of a white matter compartment modeled by 

a diffusion tensor, Dt, that had eigenvalues 1.5, 0.4 and 0.4 μm2/ms (36), a free water 

compartment modeled by a diffusion coefficient, Dw=3 μm2/ms , and a vascular 

compartment simulating capillary blood flow and modeled by a diffusion coefficient, Df=10 

μm2/ms, following a previous study using a fix Df (37). To evaluate the effect of fixing Df, 

we also generated simulated signals with Df=25, 50 and 100 μm2/ms, while maintaining a 

fixed Df=10 μm2/ms in the fitting procedure. The simulation was repeated for a gray matter 

compartment using an isotropic Dt with mean diffusivity equal to 0.77 μm2/ms. The values 

for fb and fw varied for each simulation, as described below. The simulated signal included a 

multi-shell scheme with 44 b-values between 0 and 800 s/mm2, and 6 gradient directions per 

shell. The number of directions per shell was chosen since six directions (in addition to a 

baseline) is the minimal angular resolution required to estimate a diffusion tensor. 

Minimizing the angular resolution allowed collecting an identical protocol in vivo (see 

section “2.3 In Vivo Human Data” below) within a feasible scan time. In addition, we also 

evaluated the effect of the number of directions per shell by simulating schemes with higher 

angular resolution, i.e., with 12 and 30 directions per shell.

2.2.1 Analysis of Simulated data—The three-compartment model (Eq. 4) and the two-

compartment model (Eq. 2) were fitted to the simulated signal data by a non-linear least 

squares algorithm implemented in Matlab (MATLAB version 8.3.0.532; R2014a, The 

MathWorks Inc.). The fit was restricted to tensors with cylindrical symmetry (38-40) 
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parameterized using two Euler angles and two scalars representing the axial and radial 

diffusivities (AD and RD). Positive definite tensors were assured by restricting AD and RD 

to positive values. In addition, the fit estimated the S0 as well as the volume fractions of each 

model, which were restricted to having positive values and a sum of 1. To summarize, the 

free parameters estimated by the model fit were S0, the volume fractions (fw in the two-

compartment model, fw and fb in the three-compartment model), RD, AD, and two Euler 

angles. The same fitting procedures with the same number of free-parameters were applied 

to the in-vivo data.

The deviation of an estimated parameter, E[X ̂], from its true value, x, was obtained from the 

estimated normalized bias, calculated as 100. (E[X̂])–x)/ x. Here, the parameters of interest 

were fw, AD, and RD.

To study the effect of perfusion on the estimation of fw, RD, and AD in a white/gray matter 

voxel, the signal was simulated by setting the tissue fraction (1-fb-fw) to 85% and varying fb 

between 0 and 10%. In a second experiment, the tissue fraction was set to 50% to mimic a 

scenario of pronounced partial volume with CSF (e.g., voxels bordering the ventricles). 

Most current DTI and multi-shell sequences do not include low b-values. To study the effect 

of perfusion using a protocol that does not include low b-values, we repeated the simulation 

(tissue fraction set to 85%) with a gradient scheme consisting of the b=0 volume and 43 b-

values in the range of 800>b>500 s/mm2. Therefore, the total number of b-shells was 

maintained compared to the previous simulations.

To evaluate the effect of noise on the model fitting, Rice distributed noise was added as 

rectified white noise to the simulated signal. The experiment was repeated 500 times, for 

SNR (on the S0) in the interval of 5 to 80

To investigate whether varying the minimal b-value, bmin, would improve the two-

compartment fit, the simulation and fitting were repeated by varying bmin from 0 to 600 

s/mm2, without decreasing the number of b-values, and with 500 repetitions of signal-to-

noise ratio (SNR) 30, matching the SNR of the comprehensive in vivo data below 

Subsequently, the mean and standard deviations of the fw were calculated and plotted as a 

function of bmin. For this simulation, fw=10% and fb=5% (37) were set.

2.3 In Vivo Human Data

The local ethics committees approved the study, and all subjects supplied written informed 

consent.

2.3.1 MRI Acquisition—In vivo data of a healthy volunteer (male, age=30) were acquired 

using a 3T whole-body MRI scanner (MAGNETOM Prisma, Siemens Healthcare GmbH, 

Erlangen, Germany) with a 20-channel head coil. A spin-echo EPI sequence with a 

comprehensive gradient scheme including 44 b-values ranging between 0 and 800 s/mm2 

was used. Imaging parameters for full brain coverage were TR=4500 ms, TE=67 ms, 

FOV=250×250 mm2, matrix size 192×192, slice thickness 4 mm, 32 slices, and scan time of 

approximately 20 minutes. The resulting resolution of 1.3×1.3×4 mm was chosen to provide 
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a high in-plane resolution, which would simplify the differentiation between anatomical 

locations.

Another dataset (male, age=33) was acquired using a more clinically feasible protocol with 

fewer b-shells. This dataset was acquired using a clinical diffusion sequence on a 1.5T 

Siemens Avanto with the multi-shell acquisition that was previously recommended for the 

estimation of fw (29): 1 volume with b-value of 0, 3 volumes with 50 s/mm2, 6 volumes with 

200 s/mm2, 10 volumes with 500 s/mm2, 30volumes with 900 s/mm2, and 16 volumes with 

1400 s/mm2. The gradient orientations were designed as nested platonic solids, which means 

that each shell is rotationally invariant, and the shells complement each other to a 

rotationally invariant scheme (41) with 46 (30+10+6) unique gradient orientations. The 

b=900 s/mm2 shell with 30 directions was included in order to generalize common single-

shell DTI sequences that typically have at least 30 directions with a b-value close to 1000 

s/mm2. Other imaging parameters were TR=8500 ms, TE=85 ms, FOV=320×320 mm2, 

matrix size 128×128, slice thickness of 2.5 mm (i.e. resolution of 2.5×2.5×2.5 mm), 56 

slices, and scan time of approximately 10 minutes.

This acquisition provides both multiple directions and multiple shells in a resolution that is 

feasible for clinical studies.

2.3.2 Analysis of the In Vivo Data—In addition to the two- and three-compartment 

models, a one-compartment DTI model was evaluated on the in-vivo data, providing 

parameter estimations where neither the free water nor the blood was taken into account.

Data was masked and motion and artefact corrected using ElastiX (42) prior to model fitting. 

Tensor decomposition in FSL (FMRIB Software Library, Oxford, UK) yielded FA and mean 

diffusivity (MD) whole-brain maps from the one-compartment, two-compartment and three-

compartment analyses. The one-compartment FA maps were registered to the template MNI 

FA map, and all other maps (including fw and fb) were co-registered to this space as well. 

Registration to MNI space was done using FSL's FNIRT using a built-in configuration file 

that is optimized for FA data. The JHU DTI-based atlas (43) was then used to average over 

the regions of interest (ROIs) of the atlas. Following the registration, visual quality control 

was performed, recognizing a small number of ROIs that were registered onto voxels outside 

of the brain mask. These ROIs were eliminated from further analysis. The effect of perfusion 

was evaluated on FA and MD maps, which are more often used in human studies. To match 

the simulated data, the perfusion effect was also evaluated on RD and AD maps.

3 Results

3.1 Simulations

Figure 1a shows the fitting of perfusion and free-water contaminated signals with the two-

compartment free-water model, where the tissue fraction is set to 85%, simulating partial 

volume with free-water and perfusing blood. The plots demonstrate the perfusion effect on 

the estimation of fw, AD, and RD as a function of the fraction of the blood compartment, fb, 

in a noise-free simulation including the entire range of b-values. The figure demonstrates 

that increased perfusion contribution (fb) results in increased overestimation of fw (red 
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circles). In addition, RD is underestimated (blue circles), although the bias is markedly 

smaller than that of fw. AD is slightly underestimated (black circles). The differences in the 

bias between the isotropic and the anisotropic cases (full versus empty circles) were minor. 

Reproducing this figure with a varying number of diffusion gradients per shell (6, 12, and 30 

directions) as well as with varying the simulated Df (10, 25, 50, and 100 μm2/ms) did not 

change the bias in the fw and diffusivity measures (Supplementary Figure 1).

Figure 1b shows the estimation of the two-compartment model parameters when the tissue 

fraction is set to 50%. Similar to Figure 1a, fw is over-estimated, and AD, and RD are 

underestimated. However, now the bias level of the fw parameter is lower and comparable to 

that of RD, and the bias in AD and RD is higher.

The simulation is repeated again in Figure 1c, for a tissue fraction of 85% and b-values that 

include b=0 and b>500 while excluding all other low b-values. We see that despite not 

including the lower b-values, except for b=0, the overestimation in fw is still very large, 

although not as large as when the lower b-values are included (compare with Figure. 1a).

The estimation bias in the diffusivities using the proposed three-compartment model is 

presented in Figure 1d. As would be expected for this noise-free simulation, the bias in all 

measures is negligible and is independent of fb.

Figure 2 shows the effect of perfusion on the estimation of free-water in the experiment that 

varied the minimal b-value. In this figure, the mean (Figure. 2a) and standard deviation 

(Figure. 2b) of the estimated fw are plotted as a function of the minimal b-value (bmin). As 

bmin increases, the mean estimated fw from the two-compartment model decreases towards 

the ground truth, reaching a minima around b=350 s/mm2. As bmin further increases, the 

mean estimated fw increases away from the ground truth. The standard deviation steadily 

increases as bmin increases. The figure also plots the mean estimated fw using the three-

compartment model, showing that as bmin increases, the fit becomes less stable, i.e., the 

standard deviation steadily increases and the mean is shifted from the ground truth.

The robustness of the three-compartment and two-compartment model fit is evaluated in 

Figure 3a for different noise levels. In these experiments, the ground truth signal fractions 

were set to: fb=5%, fw=10%, and tissue fraction=85%. The variability in the three-

compartment fit (red) was larger than the variability of the two-compartment fit (black) for 

all SNR levels. However, the mean fw estimated with the three-compartment fit was much 

closer to the ground truth than the mean fw estimated with the two-compartment fit.

In Figure 3b further evaluations of the robustness of the two- and three-compartment fit, 

using the same b-shells and gradient scheme as in the clinical acquisition, are summarized. 

As expected, the variability in the estimation of fw increases compared to the multiple b-

value acquisition simulated in Figure 3a. However, the mean fw estimated with the three-

compartment model remained close to the true value. Note that the three-compartment fw 

estimate for the clinical data was closer to the ground truth than the two-compartment 

model.
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3.2 In Vivo Human Data

Figure 4 shows the fb maps for the two acquisitions. The maps show that non-zero fb values 

are expected throughout the brain, with most values in the range between 0 and 20%. The 

histograms of the two acquisitions show a similar distribution of low fb values (fb<4%) with 

55% of the voxels in the comprehensive acquisition and 53% of the voxels in the clinical 

acquisition falling in this range. The distribution for the comprehensive acquisition showed a 

higher percentage of intermediate values (4%<fb<10%), i.e., 30% of the voxels compared to 

21% of the voxels in the clinical acquisition, and lower percentage of high fb values 

(fb>10%) with 15% of the voxels compared to 26% of the voxels in the clinical acquisition. 

The spatial distribution shows that in the comprehensive protocol high fb values were mainly 

at the border of the ventricles and around the brain parenchyma. In the clinical protocol, the 

lower resolution resulted in high fb values in the entire ventricles and with more 

hyperintense fb clusters in brain areas, probably due to noise effects and since the brain 

folding is no longer distinguishable at this resolution.

Figure 5 demonstrates the differences between the two- and three-compartment fitted fw and 

diffusivities. Estimating fw using the two-compartment model yielded higher values than the 

three-compartment model, with both models providing high fw values in the CSF filled 

ventricles and CSF around the brain parenchyma. The difference between the fw maps 

(Figure 5c) shows that the three-compartment model had the most effect in these CSF filled 

voxels.

Similar to the fb map, it was harder to distinguish the brain/CSF interface in the clinical 

protocol with lower resolution. Figures 5d-e show very similar color by orientation FA maps 

between the two models.

Table 1 further characterizes the distribution of the fb and fw values in white matter. For the 

comprehensive protocol, the fb values in the white matter ROIs were in the range of 1.1% to 

22.8%. However, values higher than 10% were found only in 3 of the regions (Fornix, and 

right and left superior cerebellar peduncle). The average fb across all white matter ROIs was 

2.3%. For the clinical dataset, the fb values were in the range of 2.1% to 22.3%, with 6 ROIs 

that had values higher than 10% (Fornix, right and left superior cerebellar peduncle, right 

and left inferior cerebellar peduncle, and corticospinal tract on the right). These regions were 

bordering the ventricles. Fitting the three-compartment model instead of the two-

compartment model decreased the mean fw over all white matter labels from 12.8% to 6.8% 

(46.9% decrease) in the comprehensive protocol, and from 16.8% to 11.3% (32.6% 

decrease) in the clinical protocol. In this table, the free water fraction, fw, is color-coded 

from bright to dark according to these ranges: 0-10% (yellow), 10-20% (orange), >20% 

(red). The percent change between the models is color coded from light blue (0-10%) to 

darker blue (10-20%), and the darkest blue (>20%).

Additional characterization of differences in diffusivity measures (FA, MD, AD and RD) is 

provided in Supplementary Tables 1-2. Comparing the FA in the white matter ROIs of both 

acquisitions indicate that differences in FA were most prominent between the one- and two-

compartment models (on average a 20.7% decrease in FA), and less prominent when 

comparing the two- and three-compartment models (on average a 2.2% increase in FA). 
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Similar to FA, changes in MD, AD and RD were most pronounced between the one- and 

two-compartment models, and less so between the two- and three-compartment models (see 

Supplementary Tables 1-2). The largest difference between the two- and three-compartment 

models was the overestimation of fw.

Figure 6 shows bias ((2comp-3comp)/3comp) as a function of the fb, for FA (left) and fw 

(right) in all white matter regions for both acquisition types, revealing an order of magnitude 

higher bias in fw compared to the bias in FA.

4 Discussion

The present study demonstrates that blood flow in the capillary bed may have a dramatic 

effect on the estimation of the free water fraction from a two-compartment model that does 

not explicitly account for perfusion effects. The results indicate that a three-compartment 

model is a feasible approach for correcting for the perfusion effect, as well as for quantifying 

the signal fraction of the blood compartment, which is indicative of capillary blood volume. 

A small, yet consistent contribution from the capillary blood compartment was observed in 

in vivo human brain scans. If the capillary blood compartment is not included in the model, 

the fw parameter is considerably overestimated, even for small perfusion contributions. The 

perfusion effect was less pronounced in the estimations of tensor diffusivities, suggesting 

that the fast IVIM contribution of perfusion is mainly captured by the free water 

compartment. Importantly, our results show that the perfusion effects remain even when low 

b-values are removed and only a single b=0 is included in the fit.

The fact that perfusion affects the estimation of diffusivities is well established (27). 

However, the present study challenges the common misconception that perfusion does not 

affect DTI-like acquisitions when low b-value shells are not collected. The results in Figure 

1c confirm that the exclusion of low b-values reduces the perfusion effect. However, they 

also demonstrate that the effect is maintained as long as a b=0 volume (or another low b-

value volume) is included in the analysis (27). Most acqusition protocols include at least one 

low b-value volume, usually as a baseline reference, which means that the perfusion effects 

we report here are relevant to most protocols that are used.

In a DTI model, perfusion appears as fast pseudo diffusion, increasing the estimates of the 

diffusivities. However, the results suggest that when another fast diffusing compartment is 

included in the model, i.e., a free-water compartment, this fast diffusing compartment will 

absorb most of the perfusion effects (see, e.g., Figure 1), resulting in an overestimation of 

the fw parameter. The other diffusivity parameters are then less affected by the pefusion 

(slight underestimation). This finding supports recent studies proposing that free-water 

corrected diffusivities are capable of correcting for most extracellular effects, including 

those of perfusion, and are therefore more specific to tissue than non-corrected DTI 

parameters (4, 44). On the other hand, the observed overestimation of the fw parameter 

suggests that changes in the arrangment of the capillaries or the properties of the perfused 

blood may have contributed to some of the previous observations attributed to increased fw 

in the literature (4, 13, 14). Some two-compartment free-water imaging studies are focused 

on the tissue fraction (11, 12), which is mathematically equal to 1-fw. Therefore, whenever 
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fw is overestimated, the tissue fraction will be underestimated, although usually not to the 

same extent as the bias in the fw parameter. For example, consider a case where the true free-

water fraction is 10%, the true blood fraction is 5%, and the true tissue fraction is 85%. Our 

simulations show that the two-compartment model will overestimate the fw parameter by 

about 200%, yielding fw of about 20%. The tissue fraction would then be 80% which is 

about 6% under-estimation from the true 85% fraction. Such vascular effects could 

potentially be identified and separated from extracellular diffusion effects using the 

proposed three-compartment model.

Two approaches to reduce the perfusion effect were explored in this study: (i) increasing the 

minimal b-value used in the fitting, and (ii) using a three-compartment model that explicitly 

accounts for a blood compartment. By increasing the minimal b-value used in the fitting, the 

contribution of perfusion was decreased and thus the bias was reduced as well (see Figure 

2). However, eliminating the bias requires relatively high minimal b-value. The contrast 

between the high and low b-values is then decimated, which increases the standard deviation 

of the fit, i.e., reduces the stability of the fit. We find that a minimal b-value in the range of 

200-350 s/mm2 effectively eliminates the perfusion effect, with the cost of higher standard 

deviation. As the minimal b-value increases further, the model fit becomes less stable with 

increased standard deviation and reduced accuracy, likely since in the higher b-values the 

signal from the free-water compartment is attenuated as well, making it impossible to 

estimate.

As could be expected, our simulations demonstrated that the quality of the three-

compartment fit improves when low b-values are included. This is because the low b-value 

volumes include perfusion signal that is no longer there in the higher b-values. The standard 

deviation of the estimates obtained by the three-compartment model (see Figure 3) was 

larger than that of the two-compartment fit, suggesting that the additional parameter makes 

the fit less stable. At the same time, the three-compartment model resulted in a more correct 

mean fw, suggesting that noise removal approaches, or more robust fitting approaches, are 

more likely to result in both a stable and non-biased estimation of fw. Even though the 

analyses in this study were performed using the two-compartment free-water model, a very 

similar bias in the estimation of fw is to be expected in any other model that includes a free-

water compartment in addition to other compartments that model the slower diffusing 

components.

The extent of the perfusion effects was demonstrated by the in vivo human data, for which 

the observed levels of fb with the comprehensive acquisition were between 1% and 3% in 

most (30 of 43) white matter ROIs, which is in accordance with previous studies (32, 45). 

However, as predicted by the simulations, even though fb had low values, the effect on the 

estimation of fw was considerable. Here, we only evaluated white matter regions, however, 

in future studies gray matter regions can also be considered, in which case special care has 

to be taken with regards to ROI placement in the diffusion space, in order to avoid 

registration errors and partial volume with CSF. Higher fb values were found mainly in the 

ventricles and around the brain parenchyma, suggesting that our model may not provide 

optimal fits in pure CSF voxels (see e.g., Figure 5c). Nevertheless, the simulations predict 
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that the perfusion effects are less pronounced in voxels with a significant partial volume of 

CSF (see Figure 1b).

Accounting for perfusion with the three-compartment model reduced fw to values below 

10% in many regions, which is in better agreement with the expected extracellular volume 

(46). This reduction in fw was especially prominent in the fornix, which is known to show 

overestimated fw values (and underestimated FA) with the two-compartment model (47). Of 

note, the fornix provided higher than expected fb values, which might be explained by 

subject motion, pulsation, poor registration or flow artifacts in the vicinity of the ventricles, 

captured by fb. However, the increased fb could also reflect partial volume with blood within 

the capillaries of the choroid plexus and the capillaries that line the ventricles (48), which 

would have higher volume than capillaries in white matter. These effects may explain the fb 

values in CSF that appear to be higher than in tissue. While more studies are required to 

understand fb values in CSF, applications that are more interested in brain tissue may choose 

to discard voxels with apparent diffusivity that is faster than free-water from the model fit. 

Better validation methods, for example, animal models where capillary blood volume can be 

manipulated, are required to understand the contribution of fb in different parts of the brain. 

Validation can also be achieved by comparing fb with CBV measures obtained, for example, 

by DSC- or DCE-MRI. Interestingly, the largest changes in FA and other tensor based 

measures occurred when shifting from the one-compartment to the two-compartment model. 

Between the two-compartment and the three-compartment model the change was limited, 

suggesting that tensor based measures are contaminated by a fast component of random 

motion, which the two-compartment model, as stated above, is capable of resolving 

reasonably well.

A number of limitations of the three-compartment model should also be noted. The 

fractional signals should not be considered as physical quantities, but rather as a comparative 

quantity. In our model, the diffusivity of the blood compartment was set to an approximate 

value, unlike the diffusivity of free-water, which is well defined (depending on temperature 

and viscosity). The effective diffusivity of the blood compartment, Df, may change in time 

and space (18, 20). Changes in the Df will, in turn, affect the estimation of fb, which means 

that care should be taken with the interpretation of fb as an unbiased physical measure. 

Simulations, however, demonstrated that the choice of Df had little effect on the estimation 

of fw and diffusivities (see Supplementary Figure 1). This suggests that as long as a faster 

compartment is included, the slower compartments will be accurately estimated. It also 

suggests that any signal that may appear as fast diffusing, e.g., subject motion, Gibbs 

artifacts, mis-registration etc., is more likely to be modeled by the fast diffusing 

compartment, affecting the estimation of fb. Therefore data preprocessing is essential, 

especially for the estimation of fb. In future models, one might consider adding Df as a free 

parameter as well, which may further disentangle different sources of changes in the blood 

compartment. While we focused on the effects of perfusion on the estimation of free-water 

and other diffusivities in this work, the fact that free-water is a fast diffusing compartment 

suggests that not including a free-water compartment, as in the original IVIM model (Eq. 3) 

for example, will bias the fb estimation. A three-compartment model may thus provide more 

reliable fb estimations than a two-compartment IVIM model, although this hypothesis is not 

directly tested here.
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The models studied in this paper are compartmental models, with the inherent limitation of 

including a finite number of compartments. Previous studies have suggested that biological 

tissue might be composed of a large number of apparent diffusion compartments that do not 

necessarily represent biological compartments (49). It has been argued that biological 

compartments may be better described by variability or heterogeneity measures (49-51), as 

well as by time dependent diffusion (49, 52). In our model, the tensor representing the tissue 

compartment is further simplified by assuming cylindrical symmetry, which may be a good 

approximation for single white matter bundles, but might not be accurate for certain 

configurations of complex fiber architecture, where single tensors may not be a good 

approximation anyways. The cylindrical symmetry approximation reduced the number of 

parameters, and provided a simple approach for preventing negative eigenvalues. Alternative 

ways to represent the tissue may be considered in future work. We note that unlike the tissue 

compartment, the free-water compartment is appropriately modeled by an isotropic diffusion 

tensor, and therefore accurate approximation of this compartment and elimination of its 

signal could be a useful initial step towards more complicated diffusion models. The blood 

compartment in our model is limited to a single isotropic compartment, while it could be the 

case that the contribution of capillary blood is orientation dependent, as was identified in 

myocardial tissue (53, 54), in muscles (55, 56), and suggested for the brain (56). Future 

studies may consider a more elaborate representation of Df, which may account for 

perfusion anisotropy.

Comparing the comprehensive data acquisition with the more clinically feasible acquisition 

shows that as the number of low b-values is decreased, there is higher risk of over-estimating 

fb, which is in agreement with previous studies showing that lower SNR results in 

overestimation of fb from the IVIM mode (57). Moreover, the fractional volume parameters 

are weighted by the T1 and T2 relaxation times, which are not accounted for in the current 

model. Previous studies have shown that relaxation compensation could be included in the 

IVIM model (32, 58, 59) to get a better estimation of the fractional volumes and to separate 

the different components. However, this will significantly increase the acquisition time, as 

well as the number of model parameters. Nevertheless, as long as the acquisition parameters 

are identical across a cohort of subjects, the signal fractions can be considered for direct 

comparison between groups.

Further numerical simulations and test-retest analyses are required to define an optimal 

acquisition for the three-compartment model. As is the case for all imaging sequences, the 

selection of an optimal acquisition will be a trade-off between acquisition time, SNR, and 

the effect size expected (60). A clinical protocol also has to take into account whether 

additional diffusion MRI information is desired. For example, to disentangle complex fiber 

architecture a larger number of gradient orientations may be preferred, as well as possibly 

additional higher b-values. In more typical clinical acquisitions that do not include low b-

shells, multiple acquisitions of a b=0 image would further increase the precision of the 

model fit (61). However, as long as one or more b=0 are included, perfusion will still bias 

any estimated diffusivities (see Figure 1c). The clinical sequence that we proposed here 

could be further improved if running on a 3T or 7T magnet by opting for higher resolution, 

preferably with isotropic voxels, since in our experiments resolution appears to affect the fb 

and fw estimates. Higher resolution could likely also improve the quality of the registration. 
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Additional improvements, such as multi-band acquisition may be considered to significantly 

shorten the scan time of a clinical protocol, or alternatively could allow the addition of more 

b-value shells.

In our experiments the protocols were tested on two different subjects, and it is very likely 

that the model parameters vary between subjects, especially with age (6). Better 

characterization of the model parameters is needed in a larger cohort of subjects, to study 

age and gender effects, as well as other possible contributors.

Future studies should also consider comparing the proposed method with modified sequence 

approaches for improved estimation or elimination of perfusion effects in IVIM imaging. 

For example, magnetization preparation such as inversion (62) or T2-preparation (63) could 

be used to better separate the different compartments. Furthermore, by using double 

diffusion encodings, the IVIM estimation can be improved by varying the flow 

compensation and comparing anti-parallel acquisitions (45). Finally, efficient gradient 

waveforms for isotropic weighting (64) can be used to remove the effects of diffusion 

anisotropy (65, 66). Since in our model the perfusion and the free-water are both isotropic, 

acquisitions that rely on isotropic weighting may prove to be more appropriate for the model 

estimation.

5 Conclusions

The results indicate that a three-compartment model that includes an additional compartment 

to model perfusion improves the estimation of the free water fraction. Such a model 

disentangles the perfusion effect from that of free water, and with adequate acquisition, as 

well as model fitting approaches, it could distinguish between changes that originate from 

capillary blood perfusion versus those that originate from diffusion in the extracellular 

space. Separating these effects in future clinical studies would allow for a more specific 

characterization of heterogeneous tissues, which is especially important in disorders 

involving a combination of vascular, edematous, and tissue changes such as Alzheimer's 

disease, vascular dementia, and brain injuries. Interpretation of results from two-

compartment analysis should be taken with care since fw estimates may be affected by both 

water and blood.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

Perfusing capillary blood affects the estimation of diffusivities.

• Other fast diffusing components such as the free water fraction are 

overestimated.

• A three-compartment model including tissue, free water and blood is 

proposed.

• Separating perfusing blood signal from water diffusion improves freewater 

estimation.

• Clinical feasibility is demonstrated with simulations and real data.
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Figure 1. 
(a) Bias in the free water fraction (fw) and diffusion coefficients (AD and RD) as a function 

of the simulated blood fraction (fb) for the two-compartment model with the tissue fraction 

set to 85%. The bias in fw was much larger than the bias for AD and RD and increased as a 

function of fb. (b) Same simulation as in (a) with the tissue fraction set to 50% to represent a 

voxel with large CSF partial volume, showing that the bias in this case is reduced. (c) The 

same simulation as in (a) excluding low b-values, except for the b=0. While the bias is 

reduced it is still substantial for the estimation of fw, suggesting that the effects of perfusion 

are introduced by the b=0 image. (d) Same simulation as in (a) fitted using the three-

compartment model. As expected, the bias in all model parameters was negligible.
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Figure 2. 
The two- and three-compartment fit estimations of the free water fraction as a function of 

the minimal b-value used. Plotted are the mean values of fw (a), and the standard deviation 

(b) for both models. Minimal b-value between b=200 and 350 s/mm2 reduces the perfusion 

effects, placing the estimated fw value between the 10% fw ground truth (green line) and the 

15% border for non-tissue fraction (fw+fb; yellow line). At the same time the standard 

deviation is increased as bmin increases. Increasing the minimal b-value for the three-

compartment model reduces the stability and accuracy of the model fit.
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Figure 3. 
The effect of acquisition noise on the model fit. Estimated fw for different SNR levels, using 

both two- and three-compartment models are presented for (a) the comprehensive dataset 

protocol (44 b-values) and (b) the clinical protocol (b=0, 50, 200, 500, 900 and 1400 s/

mm2). The error bars represent one standard deviation. The standard deviation for the 

clinical acquisition was higher than that of the comprehensive protocol. For both protocols, 

the two-compartment fit overestimated fw. However, in the clinical protocol, which included 

fewer low b-values, the bias was lower than that for the comprehensive protocol.

Rydhög et al. Page 22

Neuroimage. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Histogram of the fb distribution over the whole brain and maps of a representative slice. The 

right column shows an example slice, which allows evaluating the spatial distribution. The 

left column shows a histogram of fb values across the whole brain (background excluded), 

which allows evaluating the accumulated fb distribution. The values from a comprehensive 

acquisition (upper row) and a clinical feasible acquisition (lower row) with fewer b-values 

are compared. A non-zero contribution of the blood component is seen across the brain, 

including both white and gray matter regions. A high signal fraction of blood was found in 

the ventricles and around the brain parenchyma.
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Figure 5. 
Free-water fraction (fw) maps obtained with both a two-compartment model (a) and a three-

compartment model (b), and the corresponding difference map (c), showing overestimation 

of fw for the two-compartment model, when the blood compartment is ignored. Direction 

encoded color maps weighted by FA obtained with both the two-compartment model (d) and 

the three-compartment model (e) display comparable FA and directionality between the 

models. The bottom row shows the corresponding maps obtained with the clinically feasible 

protocol.
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Figure 6. 
Bias in the two-compartment parameter fit (compared with the three-compartment values) of 

(a) FA and (b) fw, as a function of fb, in all white matter regions for the comprehensive 

acquisition. There was higher bias in fw compared to the bias in FA. Notice that the scale for 

the fw bias is 20 times larger than that of the FA bias. Figures (c) and (d) show a similar 

pattern for the bias in fw and fb, respectively, in the dataset acquired with the clinical 

protocol.
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