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Abstract

We propose a voxel-wise general linear model with autoregressive noise and heteroscedastic noise innovations (GLMH)
for analyzing functional magnetic resonance imaging (fMRI) data. The model is analyzed from a Bayesian perspective
and has the benefit of automatically down-weighting time points close to motion spikes in a data-driven manner. We
develop a highly efficient Markov Chain Monte Carlo (MCMC) algorithm that allows for Bayesian variable selection
among the regressors to model both the mean (i.e., the design matrix) and variance. This makes it possible to include a
broad range of explanatory variables in both the mean and variance (e.g., time trends, activation stimuli, head motion
parameters and their temporal derivatives), and to compute the posterior probability of inclusion from the MCMC
output. Variable selection is also applied to the lags in the autoregressive noise process, making it possible to infer the
lag order from the data simultaneously with all other model parameters. We use both simulated data and real fMRI data
from OpenfMRI to illustrate the importance of proper modeling of heteroscedasticity in fMRI data analysis. Our results
show that the GLMH tends to detect more brain activity, compared to its homoscedastic counterpart, by allowing the
variance to change over time depending on the degree of head motion.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a
non-invasive technique that has become the de facto stan-
dard for imaging human brain function in both healthy and
diseased populations. The standard approach for analyz-
ing fMRI data is to use the general linear model (GLM),
proposed by Friston et al. [12]. The standard GLM has
been extremely successful in a large number of empirical
studies, but relies on a number of assumptions, including
linearity, independency, Gaussianity and homoscedasticity
(constant variance). Much work has been done to relax the
assumption of independent errors, and several alternative
noise models have been proposed [11, 41, 21, 19, 7]. In
addition, it has also been investigated whether results are
improved by using a Rician noise model [16, 1, 23, 35],
instead of a Gaussian. While heteroscedastic models exist
for group analyses [2, 39, 5], the homoscedasticity assump-
tion for single subject analysis has received little attention.
Luo and Nichols [22] used the Cook-Weisberg test for ho-
moscedasticity to detect problematic voxels, but did not
propose a heteroscedastic model to handle these. Diedrich-
sen and Shadmehr [6] claim that the homoscedasticity as-
sumption is often violated in practice due to head motion,
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and propose an algorithm that estimates the noise variance
separately at each time point. The estimated variances
are then used to perform weighted least squares regression.
The aim of this study is to further explore the appropriate-
ness of the homoscedasticity assumption for single subject
fMRI analysis, and evalute the effects of deviations from
it.

1.1. Is fMRI noise heteroscedastic?

Consider a simple simulation where actual head motion
is applied to a single volume from a real fMRI dataset,
to generate a new 4D fMRI dataset where all the signal
variation comes from simulated motion. For each time
point, the corresponding head motion parameters are used
to translate and rotate the first volume in the dataset (us-
ing interpolation), and the transformed volume is saved as
the volume for that specific time point. Even if motion cor-
rection is applied to the simulated dataset, the dataset will
still contain motion related signal variation [15], due to the
fact that the interpolation mixes voxels with low and high
signal intensity (especially at the edge of the brain, and at
the border between different tissue types). It is therefore
common to include the estimated head motion parameters
in the design matrix, to regress out any motion related
variance that remains after the motion correction, and to
also account for spin-history artifacts. It is also common
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Figure 1: A single time series from a simulated fMRI dataset, before
and after motion correction. All the signal variation comes from
simulated motion, and is due to interpolation artefacts. Note that
the motion corrected data still has a high signal variance, which is
correlated with the head motion.

to include the temporal derivative of the head motion pa-
rameters, to better model motion spikes. Figure 1 shows
a single time series from an fMRI dataset with simulated
motion, before and after motion correction, and one of
the head motion parameters. The selected voxel is at the
border between white and gray matter. Figure 2 shows
three residual time series calculated using three different
design matrices (and ordinary least squares regression),
the first containing only an intercept and time trends, the
second also containing motion covariates, and the third
also containing the temporal derivative of the head mo-
tion. It is clear that using the estimated head motion as
additional covariates removes most of the motion related
variance, but not all of it. The residual time series still
contain effects of a motion spike, which makes the noise
heteroscedastic.

It should also be stressed that real fMRI data are far
more complicated, for example due to the fact that each
fMRI volume is sampled one slice at a time. Another prob-
lem is so-called ’spin-history’ effects which alter the signal
intensity of volumes following the motion spike, because
the head motion changes the excitation state of the spins
of the protons (thereby interrupting the steady state equi-
librium). For this reason, a number of volumes after the
motion spike should also be downweighted, and not only
volumes during the motion spike.

1.2. Modeling the heteroscedasticity

We propose a Bayesian heteroscedastic extension of the
GLM, which uses covariates for both the mean and vari-
ance, and also incorporates an autoregressive noise model.
We develop highly efficient Markov Chain Monte Carlo
(MCMC) algorithms for simulating from the joint poste-
rior distribution of all model parameters. Allowing for

Figure 2: Residual time series obtained after fitting models with
three different design matrices. The first design matrix only contains
covariates for the intercept and time trends (4 covariates in total).
The second design matrix also contains head motion covariates (10
covariates in total), and the third design matrix also contains the
temporal derivative of the head motion (16 covariates in total). For
visualization purposes, a mean of 200 was added to the green resid-
ual, and a mean of 400 was added to the red residual. Note that
a motion spike is still present in the green and the blue residual,
making the noise heteroscedastic.

heteroscedasticity, where the noise variance is allowed to
change over time, has the effect of automatically discount-
ing scans with large uncertainty when inferring brain ac-
tivity or connectivity. One way of thinking of this effect
is in terms of weighted least squares estimation, where the
optimal weights are learned from the data.

1.3. Is fMRI noise heteroscedastic in all voxels?

Figure 3 shows three residual time series for a voxel
in gray matter (close to the voxel shown in Figure 2).
Clearly, this voxel has a very low correlation with the sim-
ulated motion, and the residuals are not heteroscedastic.
It is therefore not optimal to use the same weights in all
voxels. Compared to the work by Diedrichsen and Shad-
mehr [6], our Bayesian approach independently estimates
a heteroscedastic model for each voxel, instead of using
variance scaling parameters that are the same for all vox-
els. Furthermore, Diedrichsen and Shadmehr [6] used a fix
autoregressive (AR) model for the noise (AR(1) + white
noise with the AR parameter fixed to 0.2, as in the SPM
software package), while we estimate an AR(k) model in
each voxel. The fixed AR(1) model used by SPM has been
shown to perform poorly [7], especially for short repetition
times made possible with recently developed MR scanner
sequences.

Our Bayesian approach also differs from recently devel-
oped methods used in the field, where scrubbing or censor-
ing is used to remove volumes with excessive head motion
[30, 28, 32]. Such approaches are ad hoc in the sense that
an arbitrary motion threshold first needs to be applied, to
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Figure 3: Residual time series obtained after fitting models with
three different design matrices. The first design matrix only con-
tains covariates for intercept and time trends (4 covariates in total).
The second design matrix also contains head motion covariates (10
covariates in total), and the third design matrix also contains the
temporal derivative of the head motion (16 covariates in total). For
visualization purposes, a mean of 200 was added to the green resid-
ual, and a mean of 400 was added to the red residual. Note that the
time series in this voxel has a very low correlation with the simulated
motion, and the residuals are therefore homoscedastic.

determine which volumes to remove or censor. Another
problem with these approaches is that they can signifi-
cantly alter the temporal structure of the data.

1.4. Variable selection

It can be difficult to determine which variables to in-
clude in the design matrix (i.e., the mean function) of the
GLM, including those that capture scanner drift, or resid-
ual head movement effects after motion correction. It can
be even more difficult to choose the appropriate explana-
tory variables to use in the variance function. For this
reason we introduce variable selection priors in both the
mean and variance function, which has the effect of au-
tomatically determining the set of explanatory variables;
more precisely, we obtain the posterior inclusion probabil-
ity for each of the candidate variables and the posterior
distribution of their effect sizes from a single MCMC run.
In addition, we have a third variable selection prior act-
ing on the lags of the AR noise process which allows us to
estimate the model order of the AR process directly from
the data. This aspect is particularly important for high
(sub-second) temporal resolution data. Our analysis here
is massively univariate without modeling spatial depen-
dencies, however we discuss possible extensions to spatial
models in the Discussion.

2. GLM with heteroscedastic autoregressive noise

We propose the following voxel-wise GLM with het-
eroscedastic noise innovations (GLMH) for blood oxygena-

tion level dependent (BOLD) time series:

yt = xTt β + ut

ut = ρ1ut−1 + ...+ ρkut−k + exp(zTt γ/2) · εt, t = 1, ..., T,
(1)

where yt is the observed fMRI signal at time t, xt is a
vector with p covariates for modeling the mean, εt is zero
mean Gaussian white noise with unit variance, and zt is
a vector of q covariates for modeling the variance of the
heteroscedastic noise innovations as lnσ2

t = zTt γ. The log-
arithm of the variance is modelled as a linear regression, to
enable unrestricted estimation of γ while still guaranteeing
a positive variance. Note that we are here using the loga-
rithmic link function for the variance, but our methodol-
ogy is applicable to any invertible and twice-differentiable
link function. The GLMH model introduces heteroscedas-
ticity through noise innovations with the effect that a large
variance at time t is likely to generate a large innovation
in the ut equation, which is propagated through the au-
toregressive structure. The effect is that the noise remains
large in subsequent scans, which is desireable as it has been
shown that motion related signal changes can persist more
than 10 seconds after motion ceases [28] (for example due
to spin-history effects, as mentioned in the Introduction).

Let y = (y1, ..., yT )T be a T -dimensional vector con-
sisting of observed fMRI signals at a specific voxel and
define u and ε analogously. Also, define X = (x1, ...,xT )T

and Z = (z1, ..., zT )T to be T × p and T × q matrices con-
sisting of covariates. Further, let ρ = (ρ1, ..., ρk)T . The
GLMH model can then be written as follows:

y = Xβ + u

u = Uρ+ Diag (exp (Zγ/2)) ε, (2)

where U is a T × k matrix consisting of lagged values of
u, assuming that k pre-sample observations are available.
Figure 4 shows an example of X and Z for a subject with
several motion spikes.

3. Bayesian inference

We begin by defining the binary indicators Iβ , Iγ , and
Iρ, which are used for variable selection purposes. Here
Iβ is a p × 1 vector whose jth element takes the value 1
if j is non-zero and 0 otherwise. The indicators Iγ and
Iρ are defined analogously. We take a Bayesian approach
with the aim of computing the joint posterior distribu-
tion p(β,γ,ρ, Iβ , Iγ , Iρ|y,X,Z). This distribution is in-
tractable and we use Metropolis-within-Gibbs sampling [4]
to generate draws from the joint posterior. The algorithm
iterates between the following three full conditional poste-
riors:

1. (β, Iβ)|y,X,Z, ·
2. (ρ, Iρ)|y,X,Z, ·
3. (γ, Iγ)|y,X,Z, ·

where · denotes all other model parameters.

3



Figure 4: An example of X (top) and Z (bottom) for a subject with
several motion spikes. The data consists of 160 time points, and 18
covariates are here used to model both the mean (X) and the variance
(Z). The first two covariates (from the left) represent two different
tasks, the following four covariates represent intercept, linear trend,
quadratic trend and cubic trend, the following six covariates repre-
sent the estimated head motion, and the last six covariates represent
the temporal derivative of the head motion. The only difference be-
tween X and Z is that the absolute value of the temporal derivative
is used for Z, as a motion spike should always lead to an increase of
the variance. All covariates (except the intercept) are standardized
to have zero mean and unit variance, which often leads to a better
convergence of the MCMC chain.

3.1. Prior distribution

We assume prior independence between β, γ and ρ,
and let

β ∼ N
(
µβ ,Ωβ

)
γ ∼ N

(
µγ ,Ωγ

)
ρ ∼ N

(
µρ,Ωρ

)
, (3)

where Ωβ = τ2βIp, Ωγ = τ2γ Iq, Ωρ = τ2ρDiag
(
1, 1

2ζ
, 1
3ζ
..., 1

kζ

)
and µρ = (r, 0, ..., 0)T . The prior mean µβ is set to 0 for all
parameters, except for the term corresponding to the inter-
cept which is set to 800. The prior mean µγ is set equal to
0 for all parameters. Note that the N(µρ,Ωρ) prior centers
the prior on the AR(1) process ut = r ·ut−1 + εt , with co-
efficients corresponding to longer lags more tightly shrunk
toward zero. We also restrict the prior on ρ to the sta-
tionarity region. The user is required to specify the prior
hyperparameters τβ , τγ , τρ, r and ζ. As default values we
use τβ = τγ = 10, τρ = 1, r = 0.5 and ζ = 1, providing a
rather uninformative prior. A more complex prior, which
for example allows for prior dependence between β and γ,
can easily be incorporated into our framework.

3.2. Variable selection

Our MCMC algorithm presented in Section 3.4 per-
forms Bayesian variable selection among both sets of co-
variates, xt (mean) and zt (variance), using a spike and
slab prior [13, 18]. We also use Bayesian variable selection
in the AR noise process, thereby automatically learning
about the order k of the AR process. The first element of
β and γ (i.e., the intercepts in the mean and log variance,
respectively) are not subject to variable selection. To de-
scribe the variable selection prior, let us focus on β. Let
βIβ denote the subset of regression coefficients selected
by Iβ . To allow for variable selection we take the prior
for the unrestricted β ∼ N(µβ ,Ωβ) and condition on the
zeros dictated by Iβ . Since all our prior covariance matri-
ces are diagonal, the conditional distributions are simply

the marginal distributions, e.g. βIβ ∼ N
(
µβ,Iβ , τ

2
βIpIβ

)
,

where µβ,Iβ is the subset of elements of µ corresponding
to Iβ , and pIβ is the number of elements in βIβ . To com-
plete the variable selection prior we let the elements of
Iβ be apriori independent and Bernoulli distributed with
Pr (Iβ,j = 1) = πβ . The default values for πβ and πγ are

0.5. The default value for πρ is 0.5/
√
k for lag k, giving

0.5, 0.35, 0.29 and 0.25 for an AR(4) process. We also
experiment with a hierarchical prior where the π are as-
signed Beta priors, see below. The extension to a spatial
prior on the variable selection indicators is also discussed
below.

3.3. Variable selection in linear regression using MCMC

This section describes how to simulate from the joint
posterior of the regression coefficients, and their variable
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selection indicators in the Gaussian linear regression model
with unit noise variance

y = Xβ + ε,

where ε = (ε1, ..., εT )T and εi
iid∼ N(0, 1). This will be an

important building block in our Metropolis-within-Gibbs
algorithms described in Sections 2 and 3.4. Similar to
Smith and Kohn [34], we sample β jointly with its variable
selection indicators I (we drop the subscript β here) by
first generating from the marginal posterior p(I|y,X) fol-
lowed by a draw from p(β|I,y,X). A draw from p(β|I,y,X)
is easily obtained by sampling the non-zero elements of β
as

βI |I,y,X ∼ N
(
β̃I ,

(
X′IXI + Ω−1I

)−1)
, (4)

where XI is the T × pI matrix with covariates from the
subset I, ΩI is the prior covariance for βI |I and β̃I is
given in Appendix B. A closed form expression for p(I|y,X),
the marginal posterior of I, is given in Appendix B, from
which we can obtain p(Ij |y,X, I−j) ∝ p(I|y,X), where
I−j denotes I with the jth element excluded. Simulating
from the joint posterior of β and I is therefore acheived
by simulating from each p(Ij |y,X, I−j) in turn, followed
by sampling of βI from (4).

3.4. MCMC for the GLMH model

Updating (β, Iβ)

To sample from the full conditional posterior of (β, Iβ)
conditional on ρ and γ, let us re-formulate the model as

ỹt = x̃Tt β + εt, (5)

where ỹt = exp(−zTt γ/2)ρ(L)yt, x̃t = exp(−zTt γ/2)ρ(L)xt,
and ρ(L) = 1−ρ1L− ...−ρkLk is the usual lag polynomial
in the lag operator Lkyt = yt−k from time series analysis.
The Jacobian of the transformation y→ ỹ is J (y→ ỹ) =

exp
(
γT
∑T
t=1 zt/2

)
, which can be seen as follows. The in-

verse transformation is yt = ρ−1(L) exp(zTt γ/2)ỹt, where
ρ−1(L) = 1 + ψ1L + ψ2L

2 + ... is the inverse lag polyno-
mial for some coeffcients ψ1, ψ2, .... This system of equa-

tions is recursive so the Jacobian is
∣∣∣∏T

t=1
∂yt
∂ỹt

∣∣∣ and ∂yt
∂ỹt

=

exp(zTt γ/2) which proves the result. Note that J(y → ỹ)
does not depend on β and can therefore be ignored when
deriving the full conditional posterior of β. Now, β in
(5) are the coefficients in a linear regression with unit
noise variance and we can draw from the full conditional
p(β, Iβ |y,X,Z, ·) as described in Section 3.3 with y and

X replaced by ỹ and X̃, respectively.

Updating (ρ, Iρ)
The AR process can be rewritten as

ũt = Ũtρ+ εt,

where ũt = exp(−zTt γ/2)ut. The Jacobian of this trans-

formation is J (u→ ũ) = exp
(
γT
∑T
t=1 zt/2

)
which does

not depend on ρ and can therefore be ignored when up-
dating ρ. Now, ρ are the coefficients in a linear regression
with unit noise variance and we can draw from the full con-
ditional p(ρ, Iρ|y,X,Z, ·) as described in Section (3.3).

Updating (γ, Iρ)
The full conditional posterior of (γ, Iγ) is a compli-

cated distribution which we can not easily sample from.
However, it is clear from the model

ut = ρ1ut−1 + ...+ ρkut−k + exp(zTt γ/2) · εt,

that the conditional likelihood of γ is of the form de-
scribed in Villani et al. [38] where the observations (the
ut in this case) are conditionally independent and γ en-
ters each factor in the likelihood linearly (zTt γ) through
a scalar valued quantity ϕt = exp(zTt γ/2). The MCMC
update with a finite step Newton proposal with variable se-
lection described in [37, 38] can therefore be used. In fact,
Villani et al. [37] contains the details for the Gaussian het-
eroscedastic regression, which is exactly the model when
we condition on β (since u is then known). The algorithm
in [38] proposes γ and Iγ jointly by randomly changing a
subset of the indicators in Iγ followed by a proposal from
γ|Iγ using a multivariate-t distribution tailored to the full
conditional posterior. The tailoring is acheived by tak-
ing a small number of Newton steps toward the posterior
mode, and using the negative inverse Hessian at the ter-
minal point as the covariance matrix in the multivariate-t
proposal distribution. The update is fast, since the Jaco-
bian and Hessian can be computed in closed form using the
chain rule and compact matrix algebra. It is also possi-
ble to compute the expected Hessian (Fisher information)
in closed form. The expected Hessian tends to be more
stable numerically with only marginally worse tailoring to
the posterior. Note also that the Newton iterations always
start from the current value of γ, which is typically not far
from the mode, so even one or two Newton steps are usu-
ally sufficient. We refer to Villani et al. [38] for details of
the general algorithm, and to Villani et al. [37] for expres-
sions of the Jacobian, Hessian and expected Hessian for
γ.

Updating πβ and πγ
The inclusion probabilities πβ and πγ for the variable

selection can also be updated in every MCMC iteration[18]
(updating πρ is in principle straightforward, but there is
very little information about πρ, due to the low num-
ber of AR parameters). Let the prior for πβ and πγ be
Beta(a, b). The conditional posterior for πβ is then given
by Beta(a+

∑p
j=1 Iβ,j , b+ p−

∑p
j=1 Iβ,j), where p is the

number of covariates and Iβ,j is the binary indicator vari-
ble for covariate j. The posterior for πγ is defined analo-
gously. We use a = b = 3 which gives a prior with a mean
of 0.5. The complete algorithm becomes

1. (β, Iβ)|y,X,Z, ·
2. (πβ)|y,X,Z, ·
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3. (ρ, Iρ)|y,X,Z, ·
4. (γ, Iγ)|y,X,Z, ·
5. (πγ)|y,X,Z, ·

where · denotes all other model parameters.

Spatial variable selection prior

Since β and ρ both appear as coefficients in linear
regressions (conditional on the other parameters), it is
straightforward to extend our variable selection for Iβ and
Iρ to have a spatial binary Markov random field prior fol-
lowing Smith and Fahrmeir [33], but would naturally add
to the processing time. A spatial prior on Iγ is more dif-
ficult since γ does not appear linearly in the model, even
conditional on the other parameters, and can therefore not
be integrated out analytically as in Smith and Fahrmeir
[33]. We leave such an extension to future work.

4. Implementation

A drawback of using MCMC is that processing of a
single fMRI dataset can take several hours [40, 31]. Our
implementation of the heteroscedastic GLM is therefore
written in C++, using the Eigen library [17] for all ma-
trix operations. The random number generators available
in the C++ standard library (available from C++ 2011)
were used, together with the Eigen library, to make ran-
dom draws from multivariate distributions. The OpenMP
(Open Multi Processing) library was used to take advan-
tage of all the CPU cores, by analyzing several voxels in
parallel. For all analyses the number of Newton steps is
set to 2. To lower the processing time, the variable selec-
tion indicators for the variance covariates are only updated
in 60% of the draws. See Appendix A for more informa-
tion about the implementation. The code is available at
https://github.com/wanderine/HeteroscedasticfMRI

5. Results

5.1. Simulated data

5.1.1. GLMH vs Bayesian GLM with homoscedastic noise

To verify that the heteroscedastic model works as ex-
pected, and to compare it to a homoscedastic model for
data with a known activity pattern, the algorithms were
applied to simulated data with homoscedastic and het-
eroscedastic noise. The simulated data were created using
(posterior mean) beta estimates from spatially smoothed
real fMRI data (with several motion spikes), together with
the applied design matrix, to create a timeseries in each
voxel. The design matrix consisted of an intercept, time
trends for modeling drift (linear, quadratic and cubic), ac-
tivity covariates, estimated head motion parameters and
their temporal derivative (in total 16 covariates in addition
to the activity covariates, see Figure 4 for an example).
The simulated data thereby contain spatial correlation as
well as correlation between the covariates. Beta values for

Figure 5: Left: A mask for gray matter voxels. Middle: Voxels
with simulated activity. Right: Voxels with heteroscedastic noise.
The simulated data consists of four regions; active voxels with ho-
moscedastic or heteroscedastic noise, and non-active voxels with ho-
moscedastic or heteroscedastic noise.

active voxels were generated from a abs(N(0, 9)) + 3 dis-
tribution, and for non-active voxels from a N(0, 0.06) dis-
tribution. The simulated activity is thereby very easy to
detect, and the difficult part is to model the heteroscedas-
tic noise.

For approximately half of the active voxels, heteroscedas-
tic noise was added according to Equation 1. For one
covariate at a time (either an activation or head motion
covariate), the corresponding γ parameter was set to 1, 2,
or 3. For one covariate representing the (absolute value of
the) temporal derivative of the head motion, the γ param-
eter was instead set to 1, 1.25 or 1.5 (as motion spikes can
be rather large, and thereby make the simulation unreal-
istic). To simulate simultaneous heteroscedasticity from
several covariates, the γ parameters for the activity and
the head motion covariates were simultaneously set to 1,
2, or 3, while the γ parameter for the derivated head mo-
tion covariate was set to 1.25 for all cases. The γ pa-
rameter for the intercept covariate was always set to 1,
and all other γ parameters were set to 0. For all other
voxels, homoscedastic noise was added (γ = 1 for the in-
tercept only). The four autocorrelation parameters were
set to 0.4, 0.2, 0.1 and 0.05, respectively. The simulated
data thereby consists of four regions; active voxels with ho-
moscedastic or heteroscedastic noise, and non-active vox-
els with homoscedastic or heteroscedastic noise. To lower
the processing time, only a single slice of data was simu-
lated. See Figure 5 for the gray matter mask, the mask for
active voxels and the mask for voxels with heteroscedas-
tic noise. Figure 6 shows one simulated time series with
homoscedastic noise, and two simulated time series with
heteroscedastic noise.

For each simulated dataset, the analysis was performed
(i) including only an intercept for the variance (i.e., a ho-
moscedastic model) and (ii) including all covariates for
the variance (i.e., a heteroscedastic model). In both cases
all covariates (except the intercept) were standardized, to
have zero mean and variance 1. For the mean covariates,
the original temporal derivative of the head motion pa-
rameters was used. For the variance covariates, the abso-
lute value was used instead, as the variance should always
increase at a motion spike regardless of the direction (pos-
itive or negative), see Figure 4 for an example of the co-
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Figure 6: Top: A simulated time series with homoscedastic noise.
Middle: A simulated time series with heteroscedastic noise, where
the variance is modelled as a function of an activity covariate (the
variance is higher for the first part of the dataset, which corresponds
to the first activity covariate). Bottom: A simulated time series with
heteroscedastic noise, where the variance is modelled as a function
of a covariate representing the temporal derivative of the head mo-
tion. In all cases the simulated brain activity is rather strong, but
the heteroscedastic noise makes it difficult to detect activity using
homoscedastic methods.

variates for the mean and the variance. For both models,
a fourth order AR model was used in each voxel. Variable
selection was performed on all covariates (mean and vari-
ance), except for the intercept, as well as for the four AR
parameters. Stationarity was enforced for the AR param-
eters, by discarding draws where the absolute value of any
eigenvalue of the companion matrix is larger than or equal
to 1. For each voxel, a total of 1,000 draws were used for
MCMC burn-in and another 1,000 draws were saved for
inference.

Figures 7 - 10 show receiver operating characteristic
(ROC) curves for the two models, for different types (ac-
tivity, motion, motion derivative, all) and levels (γ = 1, 2
or 3) of heteroscedasticity. The ROC curves were gener-
ated by varying the threshold for the posterior probability
maps (PPMs) from 0.01 to 1.00. It is clear that both
models detect virtually all the active voxels for low lev-
els of heteroscedasticity, while the homoscedastic model
fails to detect a large portion of the active voxels with
heteroscedastic noise for higher levels of heteroscedastic-
ity. The posterior inclusion probabilities for the variance
parameters (γ) indicate that the heteroscedastic model in
virtually all voxels only includes the covariates that were
used to generate the heteroscedastic noise (not shown).

5.1.2. GLMH vs weighted least squares

To compare the heteroscedastic model to the weighted
least squares (WLS) approach proposed by Diedrichsen
and Shadmehr [6], where a single weight is estimated for
each volume, two additional datasets were simulated (us-
ing the same activity mask as above). For the first dataset,
the same heteroscedastic noise was added to all voxels.
For the second dataset, heteroscedastic noise was added
to only 30% of the voxels (using the same hetero mask as
above). The simulation was performed to generate differ-
ent types (motion, motion derivative) and levels (γ = 1,
2 or 3) of heteroscedasticity. As the two approaches use
different models for the temporal autocorrelation, the four
AR parameters were set to 0, to focus solely on the het-
eroscedasticity. To mimic the analysis by Diedrichsen and
Shadmehr [6], no motion regressors were used in the design
matrix for the WLS approach. Bayesian t-scores (poste-
rior mean / posterior standard deviation) were calculated
for the heteroscedastic model, and compared to regular t-
scores from the WLS approach. Figures 11 - 14 show ROC
curves for the two approaches. Both approaches work well
when the same heteroscedastic noise is present in all vox-
els, but the WLS approach fails to detect a large portion of
the activity when the heteroscedastic noise is only present
in 30% of the voxels.
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Figure 7: ROC curves for simulated data with heteroscedastic noise
from one motion covariate, and different levels of heteroscedasticity.
Both models perform well for low levels of heteroscedasticity, but the
homoscedastic model performs worse for high levels of heteroscedas-
ticity.

Figure 8: ROC curves for simulated data with heteroscedastic noise
from the temporal derivative of one motion covariate, and different
levels of heteroscedasticity. The homoscedastic model has a lower
performance, and fails to detect a large portion of the active voxels.

Figure 9: ROC curves for simulated data with heteroscedastic noise
from one activity covariate, and different levels of heteroscedastic-
ity. The homoscedastic model has a lower performance, and fails to
detect a large portion of the active voxels.

Figure 10: ROC curves for simulated data with heteroscedastic noise
from three simultaneous sources (motion, motion derivative, activ-
ity), and different levels of heteroscedasticity. The homoscedastic
model has a much lower performance, and fails to detect a large
portion of the active voxels.
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Figure 11: ROC curves for simulated data with heteroscedastic noise
in all voxels, generated by one motion covariate. Both approaches
perform well for all levels of heteroscedasticity.

Figure 12: ROC curves for simulated data with heteroscedastic noise
in all voxels, generated by the temporal derivative of one motion
covariate. Both approaches perform well, but the hetero approach
works better for higher levels of heteroscedasticity.

Figure 13: ROC curves for simulated data with heteroscedastic noise
in 30% of the voxels, generated by one motion covariate. Compared
to heteroscedastic noise in all voxels, the WLS approach has a slightly
lower performance.

Figure 14: ROC curves for simulated data with heteroscedastic noise
in 30% of the voxels, generated by the temporal derivative of one
motion covariate. Compared to heteroscedastic noise in all voxels,
the WLS approach fails to detect a large portion of the active voxels.
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5.2. Application to real data

Three datasets from the OpenfMRI project[26, 27] were
analyzed using both the homoscedastic and heteroscedas-
tic noise models. The datasets include experiments on
rhyme judgment1, living-nonliving judgment2 and mixed
gambles3[36].

In the rhyme judgment task, stimuli were presented in
pairs (consisting of either words or pseudo-words) and the
subject was asked whether the pair of stimuli rhymed with
one another. The dataset consists of 13 subjects and two
different conditions: words and pseudo-words.

In the living/nonliving judgment task, subjects were
presented with words in either plain or mirror-reversed
format, and asked whether the stimulus referred to a liv-
ing or nonliving object. The data set consists of 14 sub-
jects and 4 different conditions: mirror-reversed trials pre-
ceded by a plain text trial, mirror-reversed trials preceded
by a mirror-reversed trial, plain-text trials preceded by a
mirror-reversed trial, and plain-text trials preceded by a
plain-text trial. A fifth covariate is used to represent failed
(junk) trials.

Finally, in the mixed gambles task, subjects were pre-
sented with gambles in which they have a 50% chance of
gaining and a 50% chance of losing money, where the po-
tential gain and loss varied across trials. The subject then
decided whether or not to accept the gamble. The data
set consists of 16 subjects and 4 different conditions: task,
parametric gain, parametric loss, and distance from indif-
ference point. For more details on the 3 datasets we refer
to the OpenfMRI website (https://openfmri.org).

5.2.1. Single subject analysis

Prior to statistical analysis, the BROCCOLI software [9]
was used to perform motion correction and 6 mm FWHM
smoothing. For each subject, the analysis was performed
as described for the simulated data (16 covariates + ac-
tivity covariates, for both mean and variance). For each
dataset, the analysis was performed (i) including only an
intercept for the variance (i.e., a homoscedastic model)
and (ii) including all covariates for the variance (i.e., a
heteroscedastic model). Only gray matter voxels were an-
alyzed to lower processing time. All results were finally
transformed to MNI space, by combining T1-MNI and
fMRI-T1 transforms.
Figure 15 shows PPMs for one subject from the rhyme
judgment dataset and one subject from the mixed gam-
bles dataset; the heteroscedastic model tends to detect
more brain activity compared to the homoscedastic model.
Figures 18 - 20 summarize the number of voxels where
the difference between the heteroscedastic PPM and the
homoscedastic PPM is larger than 0.5, for the three dif-
ferent datasets. The largest PPM differences are found in

1https://openfmri.org/dataset/ds000003/
2https://openfmri.org/dataset/ds000006/
3https://openfmri.org/dataset/ds000005/

the rhyme judgment dataset, which contains the highest
number of motion spikes. Figure 24 shows a comparison
between the estimated homoscedastic and heteroscedas-
tic standard deviation for a single time series; the het-
eroscedastic standard deviation is much higher for time
points close to motion spikes, but lower for time points
with little head motion. The homoscedastic model strug-
gles to find a single variance to fit both time points with
and without motion, thereby ending up inflating the vari-
ance at times with little or no motion. The heteroscedas-
tic model can have a lower variance at timeperiods with
little motion, and is therefore able to detect more brain
activity. Figures 21 - 23 show the number of voxels, for
each dataset, where the posterior inclusion probability is
larger than 90% for the variance covariates. The temporal
derivative of the head motion parameters are clearly the
most important covariates for modeling the variance.

5.2.2. Sensitivity analysis

To investigate the importance of the prior settings, the
analysis of the rhyme judgment dataset was repeated for
the following prior settings.
Default: τβ = τγ = 10, τρ = 1, r = 0.5, ζ = 1,
Analysis 2: τβ = τγ = 10, τρ = 0.5, r = 0.5, ζ = 1,
Analysis 3: τβ = τγ = 10, τρ = 1, r = 0.5, ζ = 0.5,
Analysis 4: τβ = τγ = 10, τρ = 0.5, r = 0.5, ζ = 0.5,
Analysis 5: τβ = τγ = 5, τρ = 1, r = 0.5, ζ = 1,
Figure 16 shows the resulting homoscedastic and heteroscedas-
tic PPMs for subject 4, which had the largest number of
motion spikes. Lowering the prior variances τβ and τγ
leads to a clear decrease in detected brain activity, while
the parameters for the noise process (τρ, r, and ζ) have a
small effect on the detected brain activity.

5.2.3. Effect of updating πβ and πγ
To investigate the effect of updating πβ and πγ in ev-
ery MCMC iteration, compared to using fix values, the
analysis of the rhyme judgment dataset was repeated with
and without updating the inclusion parameters. Figure 17
shows the resulting homoscedastic and heteroscedastic PPMs
for subject 4. Updating the inclusion parameters leads
to lower posterior probabilities for the activity covariates,
but the difference between the heteroscedastic and ho-
moscedastic models is still rather large.

5.2.4. Convergence & efficiency of MCMC

The MCMC convergence is in general excellent; the accep-
tance probabilities for the variance covariates are 85.4% ±
5.1% for the rhyme judgment dataset, 89% ± 1.9% for the
living nonliving dataset and 87% ± 7.1% for the mixed
gambles dataset (standard deviation calculated over sub-
jects). Trace plots are normally used to demonstrate con-
vergence of MCMC chains, but the large number of vox-
els and covariates make such visual investigations difficult.
For a single subject with 10,000 voxels in gray matter, the
total number of trace plots would be 440,000 (representing
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Hetero Homo Hetero - Homo

Figure 15: Single subject posterior probability maps (PPMs) for the rhyme judgment and mixed gambles datasets. From left to right: PPM
for the heteroscedastic model, PPM for the homoscedastic model, PPM hetero - PPM homo. The hetero and the homo PPMs are thresholded
at Pr = 0.95, while the difference is thresholded at 0.5. First row: Rhyme judgment dataset (subject 4, pseudo words contrast), Second row:
Mixed gambles dataset (subject 3, parametric loss contrast). For subjects with one or several motion spikes, the heteroscedastic and the
homoscedastic PPMs differ for a number of voxels. The reason for this is that the homoscedastic model overestimates the constant variance
term, due to time points corresponding to motion spikes. The heteroscedastic model instead incorporates the head motion parameters, or the
temporal derivative of them, to model these variance increases, and can thereby detect more brain activity.
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Hetero Homo Hetero - Homo

Figure 16: Single subject posterior probability maps (PPMs) for the rhyme judgment dataset (subject 4, pseudo words contrast). From left
to right: PPM for the heteroscedastic model, PPM for the homoscedastic model, PPM hetero - PPM homo. The hetero and the homo PPMs
are thresholded at Pr = 0.95, while the difference is thresholded at 0.5. First row: default prior parameters, τβ = τγ = 10, τρ = 1, r = 0.5,
ζ = 1, Second row: τβ = τγ = 10, τρ = 0.5, r = 0.5, ζ = 1, Third row: τβ = τγ = 10, τρ = 1, r = 0.5, ζ = 0.5, Fourth row: τβ = τγ = 10,
τρ = 0.5, r = 0.5, ζ = 0.5, Fifth row: τβ = τγ = 5, τρ = 1, r = 0.5, ζ = 1.
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Hetero Homo Hetero - Homo

Figure 17: Single subject posterior probability maps (PPMs) for the rhyme judgment dataset (subject 4, pseudo words contrast). From left
to right: PPM for the heteroscedastic model, PPM for the homoscedastic model, PPM hetero - PPM homo. The hetero and the homo PPMs
are thresholded at Pr = 0.95, while the difference is thresholded at 0.5. First row: the inclusion parameters πβ and πγ are fixated at 0.5,
Second row: the inclusion parameters πβ and πγ are updated in every MCMC iteration.

20 covariates for mean and variance and four AR param-
eters). The efficiency of the MCMC chain in each voxel
was therefore instead investigated by calculating the ineffi-
ciency factor (also known as the integrated autocorrelation
time [20] defined as 1 + 2

∑∞
i=1 ri, where ri is the ith au-

tocorrelation of the MCMC draws for a given parameter)
for each covariate for the mean and the variance, as well
as for the four AR parameters. Since it is hard to estimate
the inefficiency factor for variables with a low posterior in-
clusion probability (IPr), the inefficiency factor was only
estimated if the IPr was larger than 0.3. To carefully in-
vestigate the MCMC efficiency in every voxel is difficult,
due to the large number of voxels and covariates. An in-
efficiency factor of 1 is ideal, but very seldom achieved in
practice. Inefficiency factors less than 10 - 20 are normally
considered as acceptable. Tables 1, 2 and 3 therefore state
the proportion of included voxels (IPr > 0.3) where the in-
efficiency factor is larger than 10, for the mean covariates
(β), the variance covariates (γ), and the auto regressive
parameters (ρ), respectively. The efficiency is in general
high for both the mean and the variance covariates; only
a few voxels have inefficiency factors larger than 10. The
efficiency is in general lower for the auto regressive param-
eters, which has two explanations. First, the stationar-
ity restriction enforces the parameters to a certain region,
and if a parameter is repeatedly close to the boundary the
sampling efficiency will be low. Second, in some voxels the
algorithm finds a new mode after a subset of all the draws,
which indicates that the chain has not converged. Consid-

ering the fact that 1,000 draws are already used for burnin,
and that the processing time is 10 - 40 hours per subject,
increasing the number of burnin draws even further is not
a realistic option.

5.2.5. Group analysis

Group analyses were performed using the full posterior of
the task-related covariates from each subject (1,000 draws).
To keep things simple, we perform each group analysis by
computing the posterior for the sample mean: βgroup =

N−1
∑N
r=1 β

(r), where β(r) is the scalar activity coefficient
for the rth subject in the sample, and N is the number
of subjects. For each draw, the mean brain activity over
subjects was calculated, to form the posterior of the mean
group activity, βgroup. In a second group analysis, each
subject was weighted with the inverse posterior standard
deviation, i.e. βgroup = N−1

∑N
r=1 β

(r)/std(β(r)). Fig-
ure 25 shows hetero and homo group mean PPMs (un-
weighted and weighted) for the rhyme judgment dataset,
minimal differences were found for the other two datasets.
The difference between the two models is slightly larger
for the weighted group analysis, which is natural as the
GLMH approach mainly affects the variance of the pos-
terior. The effect of using a heteroscedastic model would
clearly be stronger at the group level if many subjects (e.g.
children) in the group exhibit motion spikes.
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Figure 18: Number of gray matter voxels where the difference be-
tween the heteroscedastic PPM and homoscedastic PPM is larger
than 0.5, for the rhyme judgment dataset.The bars represent the
average over all activity covariates.

Figure 19: Number of gray matter voxels where the difference be-
tween the heteroscedastic PPM and homoscedastic PPM is larger
than 0.5, for the living nonliving dataset. The bars represent the
average over all activity covariates.

Figure 20: Number of gray matter voxels where the difference be-
tween the heteroscedastic PPM and homoscedastic PPM is larger
than 0.5, for the mixed gambles dataset. The bars represent the
average over all activity covariates.
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Figure 21: The use of variance covariates for the rhyme judgment
dataset. Each bar represents the mean number of gray matter voxels,
for each type of covariate (activity, trends, motion, motion deriva-
tive), for which the covariate is included to model the variance (poste-
rior inclusion probability larger than 0.9). For subjects with motion
spikes, one or several motion derivative covariates are used to model
the heteroscedastic variance for a large number of voxels. The mean
number of gray matter voxels is 15,600.

Figure 22: The use of variance covariates for the living nonliving
dataset. Each bar represents the mean number of gray matter voxels,
for each type of covariate (activity, trends, motion, motion deriva-
tive), for which the covariate is included to model the variance (pos-
terior inclusion probability larger than 0.9). This dataset contains
very few motion spikes, which explains why so few covariates are
included in the variance. The mean number of gray matter voxels is
13,000.

Figure 23: The use of variance covariates for the mixed gambles
dataset. Each bar represents the mean number of gray matter voxels,
for each type of covariate (activity, trends, motion, motion deriva-
tive), for which the covariate is included to model the variance (poste-
rior inclusion probability larger than 0.9). For subjects with motion
spikes, one or several motion derivative covariates are used to model
the heteroscedastic variance for a large number of voxels. The mean
number of gray matter voxels is 15,500.
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Figure 24: A comparison between the estimated homoscedastic and heteroscedastic standard deviation for one time series. The heteroscedastic
standard deviation is much higher for the motion spikes, while it is lower for time points with little head motion. For this reason, the
heteroscedastic model can automatically downweight time points close to motion spikes, and detect more brain activity by not over estimating
the standard deviation for time points with little head motion..

Table 1: Proportion of voxels with an inefficiency factor larger than 10 for the mean covariates (β), for the different datasets. The covariates
in the design matrix have been grouped together to different types, and the numbers in the table represent the average over covariates (of
each type) and subjects. The standard deviation was calculated over subjects.

Dataset / Covariate type Activity Time trends Motion parameters (MP) Derivative of MP
Rhyme judgment 3.7% ± 1.9% 1.8% ± 1.0% 1.9% ± 0.9% 2.0% ± 1.1%

Living nonliving decision 2.0% ± 1.1% 1.7% ± 1.2% 1.5% ± 0.9% 2.2% ± 1.3%

Mixed gambles task 3.0% ± 1.8% 3.0% ± 1.9% 2.9% ± 1.7% 3.4% ± 2.1%

Table 2: Proportion of voxels with an inefficiency factor larger than 10 for the variance covariates (γ), for the different datasets. The covariates
in the design matrix have been grouped together to different types, and the numbers in the table represent the average over covariates (of
each type) and subjects. The standard deviation was calculated over subjects.

Dataset / Covariate type Activity Time trends Motion parameters (MP) Derivative of MP
Rhyme judgment 1.3% ± 0.8% 1.0% ± 0.4% 1.0% ± 0.3% 0.8% ± 0.2%

Living nonliving decision 1.2% ± 0.5% 1.3% ± 0.5% 1.9% ± 0.5% 1.4% ± 0.3%

Mixed gambles task 1.8% ± 0.6% 1.8% ± 0.7% 2.1% ± 0.7% 1.7% ± 0.5%

Table 3: Proportion of voxels with an inefficiency factor larger than 10 for the auto correlation parameters (ρ), for the different datasets. The
standard deviation was calculated over subjects.

Dataset / AR parameter AR 1 AR 2 AR 3 AR 4
Rhyme judgment 20.7% ± 3.0% 10.7% ± 2.4% 0.8% ± 0.7% 0.2% ± 0.3%

Living nonliving decision 12.2% ± 3.5% 10.3% ± 2.9% 1.2% ± 0.9% 0.1% ± 0.2%

Mixed gambles task 11.1% ± 3.5% 10.6% ± 2.7% 2.3% ± 1.8% 0.4% ± 0.6%
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Hetero Homo Hetero - Homo

Figure 25: Group level posterior probability maps (PPMs) for the rhyme judgment dataset (contrast pseudo words). From left to right: PPM
for the heteroscedastic model, PPM for the homoscedastic model, PPM hetero - PPM homo. The hetero and the homo PPMs are thresholded
at Pr = 0.95, while the difference is thresholded at 0.5. Top row: group activity calculated without any subject specific weights. Bottom row:
group activity calculated by weighting each subject with the inverse standard deviation.
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6. Discussion

We have presented a Bayesian heteroscedastic GLM for
single subject fMRI analysis. The heteroscedastic GLM
takes into consideration the fact that the variance is in-
flated for time points with a high degree of head mo-
tion, and thus provides more sensitive results, compared
to its homoscedastic counterpart. Instead of discarding
data with too much head motion, or applying different
scrubbing or censoring techniques [30, 28, 32], our het-
eroscedastic GLM automatically downweights the affected
time points, and propagates the uncertainty to the group
analysis by saving the full posterior. For the rhyme judg-
ment dataset and the mixed gambles dataset, the tempo-
ral derivative of the head motion parameters are included
as variance covariates for a large number of voxels. For
heteroscedastic voxels in active brain areas, the difference
between the homoscedastic PPM and the heteroscedastic
PPM can be substantial. There will only be a sizeable
PPM difference if the voxel belongs to an active brain area,
and contains noise where the degree of heteroscedasticity
is sufficiently high (see Figures 7 - 10). The difference
between the two models is small for the living/nonliving
dataset, mainly because that dataset contains very few
motion spikes. This illustrates that our algorithm can be
applied to any dataset, as using the heteroscedastic ap-
proach does not lead to a lower sensitivity when there are
no motion spikes present.

6.1. MCMC vs Variational Bayes

A drawback of using MCMC is the computational com-
plexity; it takes 10 - 40 hours (depending on the number
of covariates) to analyze a single subject using the het-
eroscedastic model, with a single Intel Core i7 4790K CPU
with 4 physical cores (8 cores due to hyper threading) and
32 GB of RAM. One alternative is to use variational Bayes
(VB), where a few iterations is normally sufficient to ob-
tain a point estimate of the posterior [24]. It is, however,
much harder to perform variable selection within VB, and
variable selection is necessary in our case since 18 - 21 co-
variates are used for the mean as well as for the variance.
Without variable selection the model would contain too
many parameters, compared to the number of time points
in a typical fMRI dataset, which would result in poor es-
timates. Another problem with VB is that the posterior
standard deviation is often underestimated.
In theory, the proposed algorithm can run on a graph-
ics processing unit (GPU), which can analyze some 30,000
voxels in parallel [8, 9]. The pre-whitening step in each
MCMC iteration is problematic from a GPU perspective,
as a pre-whitened design matrix needs to be stored in
each voxel / GPU thread. For 20 covariates and 200 time
points, the design matrix requires 4,000 floats for storage.
Modern Nvidia GPUs can, however, only store 255 floats
per thread.

6.2. GLMH vs weighted least squares

To make a fair comparison between our heteroscedastic
model and the WLS approach proposed by Diedrichsen
and Shadmehr [6] is difficult, as we use Bayesian inference.
Nevertheless, the WLS approach seems to work well as
long as the same heteroscedastic noise is present in all
voxels, but fails to detect activity when the heteroscedastic
noise is only present in 30% of the voxels. Diedrichsen and
Shadmehr [6] argue that the same weight should be used
for all voxels, our results for real fMRI data (Figures 21
- 23) instead suggest that only a fraction of voxels have
heteroscedastic noise. For some 13,000 - 15,600 voxels in
gray matter, the derivative of the head motion parameters
are included as covariates for the variance for 300 - 2,000
voxels (for subjects with motion spikes). Note that these
numbers represent the average over each covariate type,
meaning that if one of the six motion covariates is included
for 12,000 voxels, the average over all six covariates will be
2,000 voxels.
The main drawback of the WLS approach is that it re-
quires estimation of T weights from T time points, which
results in extremely variable estimates unless the weights
are averaged over many voxels. Our heteroscedastic GLM
instead models the variance using a regression approach.
Through the use of variable selection, a heteroscedastic
model can be estimated independently in each voxel, even
if the number of covariates is large.

6.3. Multiple comparisons

In contrast to frequentistic statistics, there is no consensus
in the fMRI field regarding if and how to correct for mul-
tiple comparisons for PPMs. In this paper we have mainly
focused on looking at differences between the heteroscedas-
tic and the homoscedastic models, for voxel inference. It is
not obvious how to use Bayesian techniques for cluster in-
ference [10], which for frequentistic statistics has a higher
statistical power. One possible approach is to use theory
on excursion sets [3], to work with the joint PPM instead
of marginal PPMs. Such an approach, however, requires a
spatially dependent posterior, while we independently es-
timate one posterior for each voxel. One ad-hoc approach
is to calculate a Bayesian t- or z-score for each voxel, and
then apply existing frequentistic approaches for multiple
comparison correction (e.g. Gaussian random field the-
ory). This approach is for example used in the FSL soft-
ware [39].

6.4. Future work

We have here only demonstrated the use of the heteroscedas-
tic GLM for brain activity estimation, but it can also be
used for estimating functional connectivity; for example
by using a seed time series as a covariate in the design
matrix. Although not investigated in this work, it is also
possible to include additional covariates that may affect
the variance, such as the global mean [29] or recordings of
breathing and pulse [14]. Future work will also focus on
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adding a spatial model [25, 31], instead of analyzing each
voxel independently.
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7. Appendix A - Implementation

Our heteroscedastic GLM can be launched from a Linux
terminal as

HeteroGLM fmri.nii.gz -designfiles activitycovariates.txt
-gammacovariates gammacovariates.txt
-ontrialbeta trialbeta.txt -ontrialgamma trialgamma.txt
-ontrialrho trialrho.txt -mask mask.nii.gz
-regressmotion motion.txt
-regressmotionderiv motionderiv.txt
-draws 1000 -burnin 1000 -savefullposterior
-updateinclusionprob

where “activitycovariates.txt” states the activity covari-
ates for the design matrix (normally only used for the
mean), “gammacovariates.txt” states the covariates being
used to model the variance, “ontrialbeta.txt” states covari-
ates for which variable selection is performed for the mean,
“ontrialgamma.txt” states covariates for which variable se-
lection is performed for the variance and “ontrialrho.txt”
states variable selection parameters for the autocorrela-
tion. The option “updateinclusionprob” turns on updat-
ing the inclusion probabilities πβ and πγ in every MCMC
iteration. Covariates for intercept and time trends are au-
tomatically added internally. A homoscedastic GLM can
easily be obtained as a special case, using only a single co-
variate (the intercept) for the variance. The following nifti
files are created; posterior mean of beta and Ibeta (for each
covariate), posterior mean of gamma and Igamma (for each
covariate), posterior mean of rho and Irho (for each AR pa-
rameter), and PPMs for each activity covariate. The full
posterior of all beta, gamma and rho parameters can also
be saved as nifti files.

8. Appendix B - MCMC Details

Variable selection by MCMC in the linear regression model

Let us assume a general multivariate prior βI |I ∼ N (µ,ΩI).
Now,

p(β, I|y,X,Z, ·) ∝ p(y|β, I,X,Z)p(β|I)p(I)
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where XI is the matrix formed by selecting the columns
of X corresponding to I. The conditional likelihood
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Multiplying the conditional likelihood by the prior and
completing the square 4 gives
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Integrating with respect to βI gives

p(I|y,X,Z, ·) ∝
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4(x−a)′A(x−a)+(x−b)′B(x−b) = (x−d)′D(x−d)+(d−a)′A(d−
a) + (d− b)′B(d− b), where D = A+B and d = D−1(Aa+Bb).
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