
Whole-brain connectivity dynamics reflect both task-specific 
and individual-specific modulation: A multitask study

Hua Xiea,d,*, Vince D. Calhounb,c, Javier Gonzalez-Castillod, Eswar Damarajub,c, Robyn 
Millerb, Peter A. Bandettinid,e, and Sunanda Mitraa

aDepartment of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA

bThe Mind Research Network, Albuquerque, NM, USA

cDepartment of Electrical and Computer Engineering, University of New Mexico, Albuquerque, 
NM, USA

dSection on Functional Imaging Methods, National Institute of Mental Health, National Institutes of 
Health, Bethesda, MD, USA

eFunctional MRI Facility, National Institute of Mental Health, National Institutes of Health, 
Bethesda, MD, USA

Abstract

Functional connectivity (FC) has been widely used to study the functional organization of 

temporally correlated and spatially distributed brain regions. Recent studies of FC dynamics, 

quantified by windowed correlations, provide new insights to analyze dynamic, context-dependent 

reconfiguration of brain networks. A set of reoccurring whole-brain connectivity patterns at rest, 

referred to as FC states, have been identified, hypothetically reflecting underlying cognitive 

processes or mental states. We posit that the mean FC information for a given subject represents a 

significant contribution to the group-level FC dynamics. We show that the subject-specific FC 

profile, termed as FC individuality, can be removed to increase sensitivity to cognitively relevant 

FC states. To assess the impact of the FC individuality and task-specific FC modulation on the 

group-level FC dynamics analysis, we generate and analyze group studies of four subjects 

engaging in four cognitive conditions (rest, simple math, two-back memory, and visual attention 

task). We also propose a model to quantitatively evaluate the effect of two factors, namely, subject-

specific and task-specific modulation on FC dynamics. We show that FC individuality is a 

predominant factor in group-level FC variability, and the embedded cognitively relevant FC states 

are clearly visible after removing the individual’s connectivity profile. Our results challenge the 

current understanding of FC states and emphasize the importance of individual heterogeneity in 

connectivity dynamics analysis.
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Introduction

Significant progress has been achieved in the assessment of functional connectivity (FC) 

(Horwitz, 2003) from functional magnetic resonance imaging (fMRI) time series, which is 

quantified as the inter-regional temporal correlation of blood oxygenation level-dependent 

(BOLD) signal. A wealth of findings has revealed a set of consistent (Damoiseaux et al., 

2006) and highly reproducible FC patterns (Chou et al., 2012), which deepens our 

knowledge of the global configuration of brain networks as well as functional connections of 

specific brain regions and local networks (Greicius et al., 2003; Lynall et al., 2010). Until 

recently, most FC studies focused on static FC patterns computed using the entire scan. 

Nevertheless, due to the dynamic nature of human brain, it has been proposed that 

quantifying FC fluctuations over time may facilitate our understanding of fundamental 

properties of brain networks (Hutchison et al., 2013). A pipeline was proposed by Allen et 

al. (2014) to analyze resting-state whole-brain FC dynamics, represented by dynamic 

functional network connectivity (dFNC) matrices, i.e. connectivity among windowed time 

courses of independent component networks (ICNs) extracted via group independent 

component analysis (GICA). Such analyses have shown great potential in probing 

individual’s underlying cognitive process to contrast different diagnostic groups (Damaraju 

et al., 2014; Rashid et al., 2016) and different levels of awareness (Barttfeld et al., 2015). In 

these studies, time-varying windowed correlation matrices, are analyzed via k-means 

clustering yielding a set of unanticipated connectivity patterns known as FC states. These FC 

states are found to diverge strongly from stationary connectivity patterns, and are 

hypothesized to reflect changes in ongoing cognitive processes during rest. However, the 

functional interpretation of the FC states is not well understood although there have been 

some links between the FC states and various aspects of drowsiness or light sleep as 

quantified via EEG (Allen et al., 2013).

In a recent study, we adopted a similar pipeline as proposed by Allen et al. (2014) on a 

multitask dataset (Gonzalez-Castillo et al., 2015). We noticed that although a high accuracy 

was achieved predicting ongoing tasks within individual subjects using dFNCs, the accuracy 

dropped significantly to near chance level when performing a preliminary group-level 

classification analysis. We also noted that despite being modulated to some extent by the 

task, dFNCs were highly predictive of an individual’s identity at the group level, which was 

consistent with the finding by Finn et al. (2015) that the individual’s connectivity profiles 

can be used as a ‘fingerprint’ to identify subjects from a large group. This evidence raises 

the following questions. What is the main contributor to FC variability for group-level 

studies? If the subject-specific FC profile, referred to as FC individuality, accounts for much 

more FC variability than task modulation in a group study, will we be able to observe FC 

states reflecting underlying cognitive processes as suggested by Allen et al. (2014)? If not, is 

it possible to remove FC individuality as a confounding factor to reveal cognitively relevant 

FC states at the group level?

To address the above questions, we designed a simple scheme by randomly selecting four 

subjects engaged in four different cognitive conditions to analyze a small group study with 

multiple cognitive processes, including resting. Next, group ICA, dFNCs extraction, and k-

means clustering were applied to the data. We then compared the clustering results with task 
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modulation and subject identity (FC individuality) to investigate the contribution of the two 

factors in group-level FC dynamics. Moreover, we proposed a model to quantitatively 

evaluate the effect of the above-mentioned factors on FC dynamics. Our results confirmed 

that the FC individuality was the dominant factor in the group-level FC clustering analysis, 

challenging our current understanding of FC states, and emphasizing the significance of 

heterogeneity across individuals. Moreover, group-level cognitively relevant FC states could 

be extracted after removal of subject-specific FC profile, indicating that the cognition-

induced FC modulation was only shadowed by the difference in the FC individuality, and 

such cognitively relevant FC patterns were coherent across individuals. Hence, the model we 

proposed might help us differentiate FC variance related to subject-specific FC profile from 

FC variance modulated by cognition in a group study, and improve our ability to better 

interpret group-level FC patterns especially for regions with considerable inter-subject 

variability and measure inter-subject FC difference.

Materials and methods

Data acquisition & experimental design

The fMRI data of seventeen publicly available subjects from the original study by Gonzalez-

Castillo et al. (2015) were used in this study (https://central.xnat.org, project ID: 

FCStateClassif). One subject was excluded due to a different scanning protocol used and 

two more were not available due to sharing restrictions. Subjects were scanned for 

approximately 25 min as they engaged in four different mental tasks (math, memory, video 

and rest) using a Siemens 7 T MRI scanner. Each task (180 s) was repeated twice and 

instructions between two tasks lasted for 12 s. Imaging data were acquired with a 32-

element receive coil (Nova Medical) with gradient recalled, single shot, echo planar imaging 

(gre-EPI) sequence with TR = 1.5 s, TE = 25 ms; FA = 50°, 40 interleaved slices; FOV = 

192 mm; in-plane resolution, 2 × 2 mm; slice thickness, 2 mm ( Fig. 1).

Data preprocessing

Functional images were preprocessed using an analysis pipeline developed at the Mind 

Research Network (MRN), which included SPM (http://www.fil.ion.ucl.ac.uk/spm/

software/), and AFNI (https://afni.nimh.nih.gov/afni). The first four image volumes were 

discarded to avoid T1 equilibration effects and the remaining 1012 volumes underwent the 

following preprocessing steps: slice-time correction using middle slice as the reference slice; 

motion correction; despiking (3dDespike); detrending up to 8th order given the long scan 

time (3dDetrend); spatial normalization to Montreal Neurological Institute (MNI) space with 

voxel size of 3 mm × 3 mm × 3 mm; spatial smoothing with a Gaussian kernel (FWHM = 4 

mm); and finally intensity normalization to percentage signal change by dividing each 

voxel’s time series by its own mean intensity across time.

Data postprocessing, group ICA (GICA) & FNC estimation

The preprocessed data were further decomposed via group-level spatial ICA as streamlined 

in the GIFT toolbox (http://mialab.mrn.org/software/gift/), which is a data-driven method 

assuming a set of maximally spatially independent components and provides a more 

comprehensive functional parcellation of the brain imaging data (Calhoun and Adali, 2012). 
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We adopted a similar pipeline as proposed by Allen et al. (2014) with a relatively high 

model order (number of components) equal to 100. Subject-specific data reduction retained 

120 principal components and group data reduction kept 100 principal components using the 

expectation maximization (EM) algorithm. The Infomax ICA algorithm was repeated 20 

times using ICASSO (http://www.cis.hut.fi/projects/ica/icasso) with random initialization, 

and the most central run was selected to mitigate variability due to the stochastic ICA runs. 

Subject-specific spatial maps and time courses (TCs) were estimated using the GICA1 back 

reconstruction method based on PCA compression and projection (Erhardt et al., 2011). A 

subset of 61 independent component networks (ICNs) were manually identified in contrast 

to imaging artifacts and noise, based on the criteria that ICNs should show peak activations 

in grey matter, and should have TCs dominated by low-frequency or task-frequency 

fluctuations. The chosen TCs underwent motion-related variance regression (6 motion 

parameters and the first derivatives).

The whole TCs were then bandpass filtered with a 6th order Butterworth bandpass filter 

(0.01–0.18 Hz) consistent with the bandwidth used in the original study (Gonzalez-Castillo 

et al., 2015). The lower cut-off frequency was set to 0.01 Hz to remove trends associated 

with scanner drift. The upper cut-of frequency was chosen to be 0.18 Hz to avoid the 

confounds arising from task motor responses. These were the most frequent during the math 

task (one button press every five seconds, 0.2 Hz). Then the static functional network 

connectivity (sFNC) patterns were calculated as pairwise Pearson’s correlations between 

TCs from all chosen components, and resulted in a 61 × 61 matrix. The four task-specific 

sFNC patterns (rest, memory, math and video) were computed using time courses of two 

blocks of the same task (120 + 120 = 240 TRs). The whole-scan sFNC patterns were 

calculated using all 1012 time points as shown in Fig. 2.

Dynamic functional network connectivity (dFNC) patterns reflect windowed FNC snapshots 

at different time instances. The windowed TCs were estimated using a sliding temporal 

window (Tukey window) with a width of 30 TRs (45 s) sliding in steps of 1 TR shown in 

Fig. 2. The windowed TCs were then bandpass filtered based on window length to remove 

spurious fluctuations (0.0222–0.18 Hz) as suggested by Leonardi and Van De Ville (2015). 

The pairwise correlations between filtered TCs were computed, yielding 1012–30 = 982 

dFNCs, each of which was a 61 × 61 windowed correlation matrix. As a relatively short 

window length may not provide enough information to characterize the full correlation 

matrix, we adopted the graphical LASSO method by placing a penalty on the L1 norm of the 

precision matrix (inverse correlation matrix) to promote sparsity (Friedman et al., 2008). 

Both dFNC and sFNC matrices were Fisher transformed, and then vectorized from a matrix 

to a feature vector with 61 × (61-1)/2 = 1830 features.

FC individuality vs cognitive modulation

To determine whether the FC states revealed by k-means clustering in resting-state studies 

are related to underlying cognitive process, and to compare the influence of FC individuality 

and cognitive modulation of the FC dynamics in a group study, we designed a simple 

scheme to construct a group study with known underlying cognitive modulation and subject 

identity. We randomly selected four subjects out of thirteen good performers according to 
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our preliminary results and the original study (Gonzalez-Castillo et al., 2015) to ensure 

windowed FNC snapshots (dFNCs) stemmed from task engagement, and were predictive of 

the ongoing task. Then we randomly sampled 200 purely task-related dFNCs (windows with 

no overlap with introduction periods between two tasks) from each subject equally divided 

in terms of task modulation, resulting in a series of 800 dFNCs equally divided in terms of 

subject identity and task modulation (200 per task/subject). Then k-means clustering was 

applied on the dFNCs with number of clusters set to four, maximum number of iteration to 

1000, number of replicates to 50, and Pearson’s correlation as the distance measure. We 

compared the k-means clustering results against the subject identity and task modulation in 

terms of classification accuracy to evaluate classification performance. If the resultant 

partition agrees much better with subject identity than task modulation, then the group-level 

FC dynamics and the FC states are dominated by the difference in subject-specific FC 

patterns. If the reverse is true, the difference in FC individuality is not a key factor in the 

group analysis and resultant FC states reflect the ongoing task. As the k-means clustering is 

an unsupervised technique, it could not be used to label resulting clusters (e.g. cluster one = 

math). All possible ways of correspondence between the clusters and the labels were sorted 

based on the number of matches, and the one yielding the most matches was used to 

calculate the classification accuracy. Since such estimation might be over-optimistic, we also 

adopted the adjusted rand index (ARI) (Steinley, 2004) as an external clustering validation 

technique for unlabeled clusters. The ARI ranges from 1 to below 0, with 1 indicating 

perfect recovery of the known clusters, 0 indicating chance level performance, and smaller 

than 0 indicating worse than chance. An ARI greater than 0.9 means excellent recovery; ARI 

between 0.8 and 0.9 means good recovery, ARI between 0.65 and 0.8 means moderate 

recovery; ARI smaller than 0.65 means poor recovery (Steinley, 2004).

We also proposed the following multiple regression model to quantitatively assess the effect 

of the two factors and better explain the outcome of the group studies:

dFNC(i, w) = ∑
i = 1

# sub
bindiv(i, w) × FNCindiv(i) + ∑

j = 1

# task
bcog( j, w) × FNCcog( j) + ε(i, w), (1)

where dFNC(i, w) is the windowed FNC snapshot of the wth window from subject i; 
FNCindiv (i) is the FC individuality of subject i, characterized by the individual’s whole-scan 

sFNC pattern; FNCcog (j) is the group-level task-induced FC modulation by task j, computed 

using all the time points from task j and averaged across subjects; ε(i, w) is the error term.

To explain the outcome of the group studies consisting of four tasks and four subjects, a 

paired t-test was used on the variance explained by the four FNCindiv regressors and four 

FNCcog regressors.

Removal of FC individuality

To determine whether the task-induced FC modulation was just obscured by the FC 

individuality, and could be revealed after the removal of FC individuality, the dFNCs of the 
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thirteen good performers were regressed on the FC individuality quantified with the whole-

scan sFNC pattern after vectorization of the sFNC and dFNC patterns.

dFNC(i, w) = bindiv(i, w) × FNCindiv(i) + dFNC_IR(i, w), (2)

where dFNC(i, w) is the windowed FNC snapshot of the wth window from subject i; 
FNCindiv(i) is the FC individuality of subject i, characterized by the individual’s whole-scan 

sFNC pattern; and the residual term dFNC _IR (i, w) is the individuality-removed dFNC.

In other words, by regressing out FC individuality (FNCindiv), we hoped to remove the FC 

pattern common to a given subject regardless of the condition, to boost contrast of task-

specific dFNC patterns at the group level. Next the residual data dFNC _IR (i, w), the 

individuality-removed dFNCs, were taken as the input for k-means clustering. The 

classification accuracy and ARI were computed the same way as in FC individuality vs 
cognitive modulation. We were interested to see if the FC states from k-means clustering 

reflected more on ongoing tasks after removing variance related to FC individuality.

Additionally, we wanted to investigate how to better characterize and remove the subject-

specific FC profile while retaining task-induced modulation on FC dynamics. We replaced 

the whole-scan sFNC pattern with various other sFNC patterns, such as the resting-state 

sFNC pattern and other task-specific sFNC patterns (math, video and memory), to 

investigate if any of those or combination of those could be more informative of the FC 

individuality. Since k-means classification accuracy or ARI is only an indirect measure of 

FC individuality, we also proposed a more direct measure called observability ratio (OR) to 

quantify our ability to remove FC individuality as well as highlight task-induced FC 

modulation defined as the following:

OR =
mean [Stask( j) − SGM]
mean [Sindiv(i) − SGM] , (3)

where Stask(j) is the within-task similarity reflecting the coherence of FC modulation of a 

given task j across subjects; and Sindiv(i) is within-subject FC similarity of subject i showing 

the influence of the FC individuality on the FC dynamics; SGM is the global mean of the 

similarity of all dFNCs across all subjects and tasks. Similarity was quantified by correlating 

two vectorized dFNCs using Pearson’s correlation. Higher OR indicates better observability 

of cognitively relevant FC states in a group study.

All 716 × 13 = 9308 (#window × #good performer) purely task-related dFNCs were 

concatenated and similarities were calculated, resulting in a 9308 × 9308 similarity matrix. 

Stask was calculated by averaging over all dFNC similarity pairs from the same task and 

Sindiv was calculated by averaging over all pairs from the same subject as an example can be 

found in Fig. 3.
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Results

Windowed FNC snapshots are highly predictive of subject identity

To evaluate how well windowed dFNCs can predict subject identity, we compared all 

windowed dFNC snapshots of all subjects against the FC individuality (as computed using 

the whole scan) of each of our 17 participants. The subject whose FC individuality was the 

most similar to the dFNC under study was marked as the predicted identity for that 

particular window of time of that particular scan. In this context, similarity was computed as 

the Pearson’s correlation coefficient between vectorized dFNC and sFNC matrices. Since 

there were 982 windowed FNC snapshots per subject, the prediction accuracy was calculated 

as the number of correct identifications divided by the total number of windows. An average 

of 98.49% prediction accuracy was achieved for all 17 subjects. Subject-specific prediction 

accuracy is shown in Fig. 4. For many subjects, this method yielded 100% accuracy in 

subject identification. The lowest accuracy occurred for Subject 10 (95.11%). This suggests 

that FC dynamics computed on the scale of tens of seconds can be used to predict 

individual’s identity with almost perfect accuracy, despite the task modulation. In other 

words, subject-specific FC profiles are embedded in the transient FC dynamics.

FC individuality dominates clustering results

To evaluate to what degree the FC states in resting-state are related to the underlying 

cognitive modulation, we constructed a group study with four subjects randomly chosen 

from thirteen good performers and the total 800 dFNCs were equally split in terms of task 

modulation and subject identity (200 dFNCs per task/subject). K-means clustering results of 

100 repetitions suggest that the FC individuality, quantified by an individual’s whole-scan 

sFNC pattern, is almost solely responsible for the resultant FC states, as suggested by the 

histogram of classification accuracies of all repetitions shown in Fig. 5.

To quantitatively analyze the group-level FC dynamics and the outcomes of k-means 

clustering, we implemented the multiple regression model as described in Eq. (1). Four 

subjects were randomly chosen from all 17 subjects and 200 purely task-related dFNCs were 

randomly sampled from each subject. Four task-specific sFNC patterns and four subject-

specific sFNC profiles (whole-scan sFNC pattern) were used as regressors to fit 800 dFNCs. 

The above steps were repeated 500 times, and a paired t-test on variance explained by 

subject identity and task modulation confirmed the FC individuality accounted for 

significantly more variability than task modulation in group-level FC dynamics (p = 2.39 × 

10−15).

Investigation of FC individuality removal

One of our goals was to determine whether the task-induced FC modulation could be 

separated from FC individuality in order to better reveal task effects. Hence, we regressed 

out FC individuality from the dFNC time series and applied k-means clustering on the 

regressed dFNCs. After regressing out the FC individuality from dFNCs, the FC states were 

found to be much more relevant to the task modulation. To demonstrate this, 32 dFNC 

snapshots randomly selected from the first four subjects (8 dFNCs per subject/task) were 

projected to a 2-D space using a high-dimensional data visualization tool t-SNE (Van Der 
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Maaten and Hinton, 2008) (https://lvdmaaten.github.io/tsne/). As shown in Fig. 6(a), the raw 

dFNCs were clustered based on the subject identity and the regressed (individuality-

removed) dFNCs were clustered according to task modulation as illustrated in Fig. 6(d), 

suggesting originally obscured task-induced FC patterns appear to be better captured after 

removal of FC individuality.

Moreover, the k-means clustering results over 100 repetitions are compared against subject 

identity and task modulation, and the histogram of classification accuracies is shown in Fig. 

7. After the removal of FC individuality, the agreement between FC states and the task 

modulation increased significantly from 29.88% to 90.43% in terms of the average 

classification accuracy. On the contrary, the average classification accuracy based on subject 

identity notably dropped from almost perfect (93.67%) to almost chance level (30.05%).

The ARI was also computed as an external clustering validation technique for unlabeled 

clusters. The ARIs of the 100 repetitions summarized in Table 1 showed how ARI changed 

before and after removal of FC individuality. The frequency of excellent/good/moderate 

recovery of task modulation increased remarkably after the FC individuality removal, which 

was consistent with our observation in terms of classification accuracy that the FC states 

were highly predictive to ongoing tasks after regressing out the subject-specific FC pattern.

Furthermore, we explored various ways to characterize FC individuality to investigate if any 

task-specific FC pattern or combination of some (e.g. rest + math sFNC pattern) could be 

more informative about individual’s FC profile. We calculated the OR of the regressed 

dFNCs to quantitatively analyze how distinctive and consistent cognitive modulation was 

across subjects after regressing on different representation of FC individuality. The one with 

highest OR would yield best classification performance and could be used to unravel the 

cognitively relevant FC patterns shadowed by FC individuality. We calculated all 15 possible 

combinations of sFNC patterns by using time points from those mental states and 

summarized the ORs in the Table 2.

We also conducted experiments to compare the performance of removing FC individuality 

using three-task sFNC patterns and the four-task sFNC pattern. The ARI after regression 

was shown in Fig. 8 and the four-task sFNC pattern yielded significantly higher ARI than 

three-task sFNC combinations (p < 0.01, Bonferroni adjusted) except for the three-task 

sFNC pattern without rest (p = 0.253, Bonferroni adjusted). The ARI was consistent with the 

ORs in Table 2, indicating that averaging over multiple tasks (four-task sFNC pattern) 

provided better characterization of FC individuality leading to more cognitively relevant 

partitions.

Fig. 9 shows the group averaged whole-scan sFNC pattern. ICNs were grouped into eight 

brain networks: sensorimotor (SM), visual (VIS), subcortical (SC), auditory (AUD), 

cognitive control (CC; referring loosely to the planning, monitoring, and adapting one’s 

behavior), default-mode (DM), salience network (SN) and attentional network (ATTN). This 

was done based on the parcellation scheme in Allen et al. (2014) and Vergara et al. (2016). 

Qualitatively, it can be observed that group averaged sFNC pattern is not that different from 

static FC patterns during rest. Stronger connectivity was found for within-network 
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connections than for between-network connections, while no obvious anticorrelation pattern 

between DM and other networks as during rest is present.

Effect of individuality removal on FC dynamics

To further investigate how FC individuality removal helped reduce the inter-subject 

connectivity variability besides k-means clustering and OR, we analyzed the group-level FC 

variance of the dFNCs time series of thirteen good performers before and after FC 

individuality removal.

The dFNCs were first grouped based on task; and then group-level dFNC variance was 

calculated within each task before and after FC individuality removal. Finally, the 

percentage change of such variance was averaged across tasks. Our result indicates there was 

a significant decrease in variance of group-level FC dynamics across the whole brain (on 

average accounting for 13.32% reduction in variance). Fig. 10 shows the decrease in 

variance for a selective group of ICNs that have the highest decrease in FC variability within 

each functional network. Highest decreases were observed in the ICNs covering the ventral 

frontal cortices, including the right middle frontal cortex (R MiFG, ICN 57) and the right 

inferior frontal gyrus (R IFG, ICN 58). Additional ICNs with highest decreases on variance 

include those on dorsal frontoparietal cortex such as superior parietal lobule (SPL, ICN 60). 

Moreover, the most significantly changed connection was that between R MiFG and R IFG; 

whose group-level FC dynamics variance decreased by 45.84%. The least changed ICNs 

were found to lie primarily within primary visual and unimodal somatosensory association 

areas, e.g. postcentral gyrus (PoCG), supramarginal gyrus (SMG), left middle occipital 

gyrus (L MOG) and right superior occipital gyrus (R SOG).

Network-level changes in variance of FC dynamics following individuality removal are 

reported in Table 3. Sensorimotor, visual, auditory and default-mode networks are among 

those with the least decrease in variance. Moreover, subcortical and cognitive control 

network showed a moderate level of decrease in variability. The salience network and 

attentional network showed the highest decrease among all (i.e., contained the most traces of 

individuality).

To make sure that task-specific FC dynamics, i.e. FC fluctuations across time within a given 

individual, were not removed during the FC individuality regression, we computed the task-

related FC dynamics in terms of the variance of each FC edge strength across time within 

each individual. We found task-related FC dynamics were largely unaffected as an average 

of 97.01% task-related FC variance was preserved after the regression, and task-related FC 

dynamics patterns before and after regression were highly similar with an average of 0.955 

in terms of Pearson’s correlation. Taken together, those observations explain the higher OR 
and the higher clustering accuracy achieved after regression due to the preserved contrast 

across conditions and removal FC dynamics associated with inter-subject FC individuality 

difference.
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Discussion

Every human being is one of a kind. Despite long recognized high individual variability 

within healthy individuals in terms of activation patterns during tasks (Grabner et al., 2007) 

and functional connectivity at rest (Mueller et al., 2013); the considerable heterogeneity 

present across subjects is usually overlooked in group studies in order to draw population-

level inference. It was demonstrated by Finn et al. (2015) that an individual’s whole-brain 

FC pattern, which was calculated using a number of volumes ranging from 100 to 1100, 

could be used as a ‘fingerprint’ to identify individuals regardless of condition (task or rest). 

Based on that result, it was argued by the authors that a substantial portion of the brain 

connectivity pattern was unique to each individual. We found that such identification ability 

persisted even on the scale of tens of seconds by comparing the windowed FC patterns 

across four cognitive conditions with all individuals’ FC profiles. The windowed FC patterns 

computed using only 30 time points were highly predictive of subject identity instead of task 

modulation, highlighting the considerable difference between the FC individuality, i.e. 

subject-specific FC profile.

Hence, to investigate how important a role the FC individuality plays in a group-level 

analysis, we constructed a series of group studies with known subject identity and cognitive 

modulation and proposed a model to decompose the group-level FC dynamics into two 

terms: subject-specific FC profile and task-specific FC modulation. By assessing the effect 

of FC individuality and cognitive modulation using a multitask dataset, we demonstrated 

that the variability of group-level FC dynamics was largely driven by FC individuality 

instead of task modulation. Our results reaffirm the existence of an “intrinsic” standard 

architecture of functional brain organization during rest and task (Cole et al., 2014). Our 

conclusion is also supported by the finding by Calhoun et al. (2008) where two sets of 

networks were identified as associated with rest and auditory oddball task for both patients 

and healthy controls, and their spatial patterns were only slightly different between the two 

conditions. However, by highlighting the inter-subject difference and connectivity dynamics, 

we further showed that despite FC dynamics being largely determined by FC individuality, 

the hidden task-induced FC modulation could still be revealed after the removal of subject-

specific FC pattern to predict ongoing cognitive process in a group study. Hence our 

proposed model of separating the group-level FC dynamics into two components as in Eq. 

(1) better captures cognitively relevant FC states in a group-level analysis within the limited 

scope of our study. Moreover, our findings challenge the current understanding of FC states 

during rest (Allen et al., 2014) by raising a potential concern regarding how well FC states 

during rest reflect underlying cognitive processes without taking FC individuality into 

consideration; and emphasize the importance of individual heterogeneity in connectivity 

analysis, which needs to be more systematically and quantitatively analyzed.

FC individuality characterization

FC individuality is defined as the FC pattern specific to a subject regardless of task 

engagement, which is a similar concept as the intrinsic FC structure shared by both rest and 

task (Cole et al., 2014). FC individuality may be important for further understanding 

individual differences such as fluid intelligence (Finn et al., 2015), but may not be as 
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informative with respect to engagement in a given mental process. We observed improved 

group-level clustering accuracy after removing FC individuality when decoding the brain 

state using group-level FC dynamics. A similar argument was made by Poldrack (2006) to 

predict mental processes using activation patterns. In that work, it was argued that if a given 

region is activated for many different mental processes, then activation in that region would 

not be very informative to predict the engagement of a specific mental process.

To better remove the variance related to the subject-specific FC profile from group-level FC 

dynamics, we explored different characterizations of FC individuality by using a 

combination of the static task-specific FC patterns instead of the whole-scan sFNCs. Among 

all possible combinations, we found that removing FC individuality characterized by whole-

scan sFNCs led to the highest accuracy of task prediction as well as the observability ratio 

(OR) which quantifies the visibility of task modulation on FC patterns. This is consistent 

with a previous finding by Finn et al. (2015), where a task or rest dataset by itself yielded 

lower accuracy identifying subjects than combining the two together; suggesting the 

individual’s FC ‘fingerprint’ might be better captured by including multiple conditions. 

Although resting-state FC pattern presumably characterizes the intrinsic functional network 

configuration occurring across many (or all) brain states (Fox and Raichle, 2007), our results 

suggested that resting-state FC patterns might not fully reflect the subject-specific FC profile 

given its worst k-means clustering performance and OR among all representations of FC 

individuality. It should be also noted that the 3-task sFNC pattern without rest (Memory + 

Video + Math) was only slightly (but not statistically significantly) worse than whole-scan 

sFNC pattern but much better than the other 3-task sFNC patterns (p < 0.01, Bonferroni 

adjusted), all of which included rest. Furthermore, resting-state connectivity patterns were 

shown to be negatively correlated with task performance in our recent work (Xie et al., 

2017). We argue that “rest” can still be considered an unconstrained task (Buckner et al., 

2013) or an opposite of a task (so-called task-negative) (Weissman et al., 2006), but not 

necessarily a consistent reference (subject-specific and task-neutral) to enhance contrast 

against various task conditions at the group level or to compare the subject-specific FC 

profile. Hence, the static resting-state FC pattern might not necessarily better capture the 

intrinsic generic functional organization of an individual’s brain ‘fingerprint’ than a static 

task-specific FC pattern. A similar argument has been made by Finn et al. (2017) that the 

resting state may not be the optimal brain state for measuring individual FC variability. 

Intuitively, this is understandable given the resting state is largely unconstrained/ambiguous 

and the possibility of existence of multiple sub mental states during rest (Calhoun and Adali, 

2016), which may not be reflected by the static resting-state FC pattern. All these pieces of 

evidence raise our concern regarding whether the static resting-state FC pattern is the best 

characterization for FC individuality, since the considerable inter-subject resting-state FC 

variability has been shown to be non-uniformly distributed across brain networks (Mueller et 

al., 2013) and only partially reflects anatomical networks (Goñi et al., 2014). It might be 

worth investigating if the time-averaged FC pattern from relatively long multitasks scans 

better captures the brain’s generic configuration, as longer scans improve the stability of 

connectivity pattern (Gonzalez-Castillo et al., 2014). One additional component that may 

contribute to subject specific variance is the residual physiological noise not fully accounted 

for by our current pre-processing pipeline. Additional pre-processing steps targeting 
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physiological noise, such as RETROICOR (Glover et al., 2000) and CompCorr (Behzadi et 

al., 2007), may help reduce the contribution of physiological noise to subject individuality, 

and should be the focus of additional research. It is also noteworthy that we are limited to a 

small set of tasks when characterizing FC individuality, thus the FC individuality in our 

study only captured FC modulation across a few task domains. Hence, it would be 

interesting to investigate whether it is possible to develop a standardized set of naturalistic 

tasks covering a wider cognitive scope to better characterize FC individuality and better 

understand inter-subject FC differences, and whether it might resemble more of individual’s 

anatomical connectivity pattern.

FC individuality removal in cognitive studies

FC individuality may be very helpful for clinical studies contrasting different diagnostic 

populations, where group-averaged FC pattern is altered significantly for patients with 

neuropsychiatric disorders (Damaraju et al., 2014; Garrity et al., 2007; Rashid et al., 2016; 

Zhang and Raichle, 2010). However, it is not clear how FC individuality would affect the 

interpretation of group-level FC patterns and outcome of other connectivity-based 

approaches in cognitive studies, where the cognitively relevant FC modulation might be 

subtle compared to the variability associated with FC individuality. In this scenario, the 

difference between subject-specific connectivity patterns might prevent us from drawing 

consistent group-level inferences on the task-induced FC modulation pattern, especially in 

highly variable regions. For example, it is more likely to get a significant result in areas with 

low inter-subject variability such as primary sensory or motor cortex and less likely to get a 

significant result in areas with high inter-subject variability (Mueller et al., 2013). In that 

study, it has been also shown that the regions predicting individual differences in cognitive 

and behavioral are predominantly located in regions with high inter-subject FC variability. 

We argue that a large portion of inter-subject FC variability within the same task may be 

caused by the difference in the FC individuality, and FC individuality removal might help us 

capture task-induced FC modulation more faithfully, which may be very critical to build FC-

based dictionaries proposed by Gonzalez-Castillo et al. (2015).

In this study, we found the ICNs with most overall change in group-level FC dynamics after 

removing FC individuality belong to ventral frontal cortices (e.g. R MiFG and R IFG) and 

dorsal frontoparietal cortex (e.g. SPL) indicating greater inter-subject connectivity 

variability within those regions, while the least changed ICNs were identified as primary 

visual and unimodal somatosensory association areas such as SMG, PoCG, L MOG, and R 

SOG, suggesting relatively less inter-subject connectivity variability. Our findings agree with 

the previous literatures, as FC variability during rest was reported to be highest in frontal, 

temporal, and parietal association cortex areas while lowest in unimodal sensory and motor 

cortices (Mueller et al., 2013); and the medial frontal and frontoparietal networks were 

found to yield highest individual identification power suggesting the greatest inter-subject 

FC difference in those networks (Finn et al., 2015).

It is worth noting that the regions showing greatest decrease in group-level FC dynamics 

have shown to be related to attention, such as R MiFG (Japee et al., 2015), R IFG 

(Hampshire et al., 2010) and SPL (Wang et al., 2015). It has been proposed that the right 
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hemisphere dominant ventral frontal cortex, including the MiFG, IFG, together with frontal 

operculum and anterior insula, is part of Ventral Attention Network (VAN) and they play 

important roles in the sensory-driven exogenous bottom-up attention (Corbetta et al., 2008). 

On the other hand, as a part of the dorsal attention network (DAN), SPL is responsible for 

the top-down control of visual attention driven by endogenous stimuli. Moreover, the dorsal 

and ventral attention networks are believed to converge at right MiFG, as it interrupts 

endogenous attentional processes and reorient attention to the exogenous stimulus (Japee et 

al., 2015), which is supported by our finding that R MiFG being the most variable ICN 

allowing for flexible control of both endogenous and exogenous stimuli. Taken together, the 

fact that the FC individuality is so much shaped by above-mentioned key hubs associated 

with attention is worth further investigation, which may deepen our understanding of 

individual’s behavior and trait and functional organization within the DAN and VAN (Vossel 

et al., 2014).

On the sliding window correlation approach

The accuracy of the sliding window correlation (SWC) approach to measure FC dynamics 

has been discussed widely in recent literatures (Hindriks et al., 2016; Kudela et al., 2017; 

Leonardi and Van De Ville, 2015; Shakil et al., 2016; Thompson and Fransson, 2016). For 

example, to minimize spurious fluctuations in FC dynamics, it has been suggested to use as 

1/WL (WL = 30TRs = 45 s) as the low-cutoff frequency for filtering prior to estimating 

dFNCs (Leonardi and Van De Ville, 2015). It is claimed by Shakil et al. (2016) that due to 

lack of the ground truth in the resting-state fMRI data, the actual FC dynamics, number of 

states, and state transitions are all unknown, and therefore results difficult to validate. 

However, the use of a continuous multitask experimental design, such as the one presented 

here and by Gonzalez-Castillo et al. (2015), provides the experimenter with initial ground 

truth for most of these variables by trying to enforce mental states via tasks. Within such 

framework, it is possible to test that to which degree FC states reflect ongoing cognition at 

short temporal scales (under the assumption of subject’s compliance). It is also shown that 

the SWC approach can perform well when the underlying network is changing very slowly 

(Shakil et al., 2016), which is the case for our experimental setup as each task lasts for 

120TRs = 180 s.

Statistical tests were developed by to detect FC dynamics using the SWC approach during 

rest and are validated using simulation and real data from macaque and human (Hindriks et 

al., 2016). In that study, it is recommended that the optimal window length should be around 

τ/3, where τ is the characteristic timescale of FC fluctuations, or 50 s without the knowledge 

about the true correlation timescale. Albeit the task-related dFNC patterns were quite 

distinct in our study, we tested the standard deviation of real dFNC time series against a null 

distribution obtained via phase randomization which scrambled dynamic interrelationships 

while preserving the static correlation structure of real data (Hindriks et al., 2016). As 

anticipated, the standard deviation of all connectivities were significantly greater than the 

95th percentile of the null distribution. Despite the uncertainty associated with the dynamics 

estimation via SWC approach (Hindriks et al., 2016; Kudela et al., 2017), dFNCs of 

different tasks still obviously distinguished from each other and were predictive to task 

engagement after FC individuality removal. In the future, we will further investigate the 
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possibility of improving the stability of FC dynamics estimation by adding an additional 

Box–Cox transformation after Fisher transformation (Thompson and Fransson, 2016).

Conclusion

In this study, we evaluated the subject-specific and task-specific modulation on FC dynamics 

with a continuous multitask dataset (rest, simple math, two-back memory, and visual 

attention task) and proposed a model to decompose the group-level FC dynamics in terms of 

subject-specific FC profile (FC individuality) and cognitive modulation. We found that the 

FC individuality primarily contributes to the group-level FC dynamics across all four 

cognitive conditions. Regressing out the FC individuality characterized as the whole-scan 

sFNC pattern better removed subject-specific FC structure shared across different tasks. 

Regressing out the FC individuality also preserved the contrast of task-specific FC patterns, 

enabling the identification of the ongoing cognitive processes using FC dynamics at the 

group level. Our work challenges the current understanding of FC states during rest and 

suggests that FC states are comprised of multiple separable components. This study also 

highlights the importance of addressing the FC individuality difference in exploring the task-

related or resting-state FC characteristics.
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Fig. 1. 
The experimental paradigm taken from Gonzalez-Castillo et al. (2015).
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Fig. 2. 
Generation of whole-scan, task-specific sFNC and dFNC patterns. Each block consists of 

120 time points of 61 ICNs, and sFNC pattern is computed as the temporal correlation 

between those components and vectorized to a feature vector.
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Fig. 3. 
Illustration of a similarity matrix and calculation of Stask and Sindiv. Each block represents a 

dFNC similarity pair by correlating two dFNC snapshots. Stask (t) is the average value of all 

blocks of a given task, T1 (task 1), T2 (task2), etc. Sindiv (i) is the average similarity of each 

4 × 4 block color-coded based on subject identity.
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Fig. 4. 
Prediction accuracy of subject identity using dFNC snapshots (WL = 30TRs) with the same 

subject indexes as in the original study (Gonzalez-Castillo et al., 2015).
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Fig. 5. 
Histogram of k-means classification accuracies over 100 repetitions by comparing k-means 

results with task modulation (red) and subject identity (blue). The average classification 

accuracy was 29.88% based on task modulation and 93.67% based on subject identity, 

showing that the resulting partition was dominated by the subject identity (FC individuality) 

rather than task modulation.
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Fig. 6. 
t-SNE projection of dFNCs before and after removal of FC individuality. (a) Raw dFNCs 

colored coded based on subject identity. (b) The same projection as shown in (a), while 

colored coded based on task modulation. (c) Regressed dFNCs colored coded based on 

subject identity. (d) The same projection as shown in (c), but colored coded based on task 

modulation. Note that (a) and (d) are much more structured than (b) and (c).
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Fig. 7. 
Histogram of k-means classification accuracies over 100 repetitions by comparing k-means 

results with task modulation (red) and subject identity (blue) after the removal of FC 

individuality. The average classification accuracy was 90.43% based on task modulation and 

30.05% based on subject identity, showing that the resulting partition was dominated by task 

modulation.
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Fig. 8. 
Boxplot of ARIs over 50 repetitions based on task modulation after regressing out three-task 

sFNC patterns and four-task sFNC pattern. The 95% confidence interval is shown in red and 

mean ± one SD is shown in blue. R: rest; Me: memory; V: video; Ma: math. Mean ARIs and 

ORs are highly correlated (p = 0.02). Paired t-test showed significant group difference 

between the groups denoted (p < 0.01, Bonferroni adjusted).
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Fig. 9. 
Mean of the whole-scan sFNC pattern of thirteen good performers. Coarse anatomic labels 

for each ICN are shown along the x- and y-axes. SM: sensorimotor; VIS: Visual; SC: 

subcortical; AUD: auditory; CC: cognitive control; DM: default-mode; SN: salience 

network; ATTN: attentional network.
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Fig. 10. 
Average percentage change of group-level variance of FC dynamics after removing FC 

individuality. Only the most variable ICNs across subjects (n = 21) are shown with the ICN 

indexes.

Xie et al. Page 26

Neuroimage. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xie et al. Page 27

Table 1

Frequency of occurrence of ARIs over 100 repetitions before and after removal of FC individuality. It is 

observed that before the removal of FC individuality, the recovery of task modulation is either poor or around 

or below chance-level while the recovery of subject identity is rather good. Such effect is reversed after FC 

individuality removal.

ARI Frequency before removal (%) Frequency after removal (%)

Task modulation Subject identity Task modulation Subject identity

Excellent (0.9 < ARI ≤ 1) 0 65 32 0

Good (0.8 < ARI ≤ 0.9) 0 15 21 0

Moderate (0.65 < ARI ≤ 0.8) 0 6 28 0

Poor (0.1 < ARI ≤ 0.65) 13 14 19 1

Chance-level (ARI ≤ 0.1) 87 0 0 99
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Table 2

ORs using different combinations of sFNC patterns. R: rest; Me: memory; V: video; Ma: math. Higher OR 
represents better revelation of task-induced FC pattern against subject-specific FC profile.

Four-task sFNC Pattern R + Me + V + Ma 1.834

Three-task sFNC Pattern Me + V + Ma 1.578

R + V + Ma 1.392

R + Me + Ma 1.352

R + Me + V 1.267

Two-task sFNC Pattern R + Me 0.857

R + V 0.906

R + Ma 1.052

Me + V 1.001

Me + Ma 1.145

V + Ma 1.104

One-task sFNC Pattern R 0.566

Me 0.665

V 0.628

Ma 0.698
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Table 3

Percentage decrease of network-level connectivity variance after FC individuality removal.

Functional network Decrease of network-level connectivity variance

Salience network 16.51%

Attentional network 15.63%

Subcortical network 14.06%

Cognitive control network 13.42%

Auditory network 12.97%

Default-mode network 12.68%

Sensorimotor network 12.29%

Visual network 12.22%
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