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ABSTRACT

The functional architecture of spontaneous BOLD fluctuations has been characterized in detail by numerous
studies, demonstrating its potential relevance as a biomarker. However, the systematic investigation of its
consistency is still in its infancy. Here, we analyze within- and between-subject variability and test-retest
reliability of resting-state functional connectivity (FC) in a unique data set comprising multiple fMRI scans (42)
from 5 subjects, and 50 single scans from 50 subjects. We adopt a statistical framework that enables us to
identify different sources of variability in FC. We show that the low reliability of single links can be significantly
improved by using multiple scans per subject. Moreover, in contrast to earlier studies, we show that spatial
heterogeneity in FC reliability is not significant. Finally, we demonstrate that despite the low reliability of
individual links, the information carried by the whole-brain FC matrix is robust and can be used as a functional
fingerprint to identify individual subjects from the population.

Introduction

Neuroimaging techniques allow for the non-invasive investigation
of two main principles of brain functioning: segregation and integra-
tion. Relationships between segregate regions can be described at
different spatial and temporal scales and with different imaging
techniques, and they help us to understand their integrative roles.
While some techniques help to describe the physical wiring between
the brain regions (e.g., diffusion tensor imaging, tractography, etc),
others quantify the functional relationship between activity in different
regions (Friston, 2011). To date, one of the most widely adopted
techniques used to characterize the functional organization of the
resting brain has been functional magnetic resonance imaging.
Resting-state is commonly defined as a condition in which the
participant is not performing any overt task, but lies still in the scanner
(with eyes closed or fixating on a cross on a screen) while not focusing
on any particular thought or sensation (see e.g., Biswal et al. (1995) or
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the more recent report by Zuo and Xing (2014)). Functional MRI is
based on the quantification of local changes in blood oxygenation
through the use of the so-called blood-oxygen level-dependent (BOLD)
signals (Ogawa et al., 1990), that have been demonstrated to partially
reflect underlying neural activations (Logothetis et al., 2001;
Logothetis, 2008; Magri et al., 2012). Functional connectivity (FC)
between different brain regions is then quantified using measures of
statistical dependency (see e.g. Friston (2011)), most notably the
Pearson correlation coefficient.

Resting-state functional connectivity has been used to differentiate
between subjects (Finn et al., 2015) and groups, drawn either from
healthy or pathological populations (see for example Rosazza and
Minati (2011) for a review and references therein), or between different
brain states (see for example the case of learning in Guerra-Carrillo
et al. (2014) and references therein). The advantages of this technique
are its high spatial resolution and large coverage (Logothetis, 2008). In
fact, a resting-state fMRI scan of about 5 min allows for a character-
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ization of the functional relationships through the brain. These
advantages make this technique potentially very powerful, even con-
sidering that it measures neural activity only indirectly through BOLD
signal (Logothetis, 2008). The unrestricted nature of the resting-state
could in fact mirror a wide range of cognitive states and operations
(Christoff et al., 2009; Richiardi et al., 2011; Hurlburt et al., 2015).

Interestingly, functional connectome studies show a differential
pattern of findings: on the one hand they show a very stable
architecture of correlated spontaneous activity, on the other hand they
indicate a high variability in the functional structure, with temporal
dynamics, ranging from less than one second (Mitra et al., 2015), to
days (Anderson et al., 2011; Laumann et al., 2015). A crucial factor
influencing the stability of the resting-state FC is scan duration. The
most common acquisition time is 5-10 min, even though recent
evidence indicates the importance of using much longer scans to
obtain reliable FC estimates (Anderson et al., 2011; Birn et al., 2013;
Hacker et al., 2013; Laumann et al., 2015). A question that has both
theoretical and practical relevance is how much data one needs to
accurately and reliable estimate the FC of an individual subject (Birn
et al., 2013; Laumann et al., 2015; Finn et al., 2015).

The development of biomarkers derived from resting-state BOLD-
fMRI scans that are able to characterize the functional architecture of
individual brains is important for cognitive as well as for clinical
neuroscience. For a biomarker to be successful, it has to be reliable; as
such, two conditions must be met: on one hand, it should be stable for
the same subject (or condition) across different sessions. On the other
hand it should substantially vary over different subjects (or conditions).
The second requirement ensures that the biomarker is selective for the
variable of interest, and could thus be used to effectively discern
between different subjects or conditions. The principle behind the two
above mentioned criteria suggests a rather straightforward way to
quantify the reliability of a potential biomarker, namely by comparing
the within-subject (-condition) variability with the between-subject
(-condition) variability. An index commonly adopted to measure this
ratio is the intra-class correlation coefficient (ICC) a measure widely
used in the psychological sciences to assess test-retest reliability
(Shehzad et al., 2009; Zuo and Xing, 2014). We will use the ICC as
our main tool in assessing the reliability of resting-state FC.

Although numerous studies have been devoted to characterize the
functional architecture of spontaneous BOLD-fMRI fluctuations, the
test-retest reliability of functional indices has begun to be addressed
only recently (Anderson et al., 2011; Birn et al., 2013; Hacker et al.,
2013; Zuo and Xing, 2014). From the results reported in the literature,
one of the main findings is that test-retest reliability of functional
indices between regions of interest (ROIs), as quantified by the intra-
class correlation (ICC), seems to strongly vary over brain regions and
over pairs of brain regions (for link-based indices). What has not been
made explicit in previous studies, however, is an analysis of the
variability of the reliability measures themselves. Indeed, reported
variation of reliability has been interpreted to reflect differences in the
reliability of the functional indices, without taking into consideration
the statistical uncertainty due to finite sample in the estimates of the
ICC.

Within the context of resting-state BOLD-fMRI experiments, in
which the number of subjects and the number of scans by subject are
usually limited, the variance of ICC estimators can be considerable.
Assessment of the variance of ICC estimators is particularly relevant for
investigating its heterogeneity over regions, links, and networks as
done in Zuo and Xing (2014). In fact, a proper assessment of the ICC
variability was lacking in the above-cited studies, and as such, its
claimed heterogeneity has still to be demonstrated.

In the present study, we replicated most of the analyses presented
in the pioneering studies Shehzad et al. (2009); Birn et al. (2013); Zuo
and Xing (2014); Laumann et al. (2015). In particular, we investigate
test-retest reliability of resting-state FC, and its variability. To this aim,
we use fMRI to measure the resting-state activity in a group of 6
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participants, each scanned 50 times, which allows to assess interses-
sion reliability.

The paper is divided into three main sections. In the first section,
we briefly present the data. In the second section, we characterize FC
variability and reliability at the link-level and in particular, we analyze
how these depend on the number of samples. We repeat our analysis
using two different parcellations, as it has been shown before that
different parcellation can influence FC estimates (e.g., Fornito et al.,
2010): one based on anatomy, (AAL, Tzourio-Mazoyer et al. (2002)),
and one based on functional data (Shen et al., 2013). We focus on
characterizing and quantifying the nature of FC variability by decom-
posing it into the variability due to finite-sample statistical fluctuations
and variability that genuine dynamic FC. We conclude the second
section by systematically analyzing the behavior of these components
as functions of scan duration and number of sessions. In the third
section, we analyze the reliability of the whole FC matrix. For this
purpose, we compare FC matrices obtained in different sessions both
within- and between-subject.

Materials and methods

This method section is divided into seven sub-sections. The sub-
section Data acquisition and pre-processing refers to the presentation
of the data (in the Results, see Data description); the sub-sections
Functional connectivity analysis, Construction of surrogate data,
Test-retest reliability and Sources of variability refer to the second
part of the Results (see Data description); the sub-sections Definition
and estimation of functional similarity and Statistical model for
multivariate Gaussian biomarkers refer to the analysis of the relia-
bility of the whole FC.

Data acquisition and pre-processing

Fifty eight participants were recruited. Eight of the participants
volunteered to be included in the longitudinal part of the study in
which they were scanned 40—50 times over the course of 6 months (2
male, mean age 29, SD= 2.6, range: 24-32). Two of the participants
(one male, one female) did not find the time to continue with the study
and had to be excluded from further analysis (the dataset is freely
available for scientific usage under request to the author S.K.;
corresponding author of Filevich et al. (2017)). We had to exclude
even the last male participant, who, in contrast to the instruction
received, tried to apply relaxation exercise during the scan which
largely influenced the measure (see Fig. S3 in the Supplementary
Material). For the analysis we used 42 sessions, for homogeneity
between all the subjects. The other fifty participants (all female, mean
age 24, SD=3.1, range: 18—32) were part of another study that was
conducted during the same period of time and underwent scanning
with the same MRI sequences only once. The participants to the
longitudinal study were free of psychiatric disorder and had never
previously suffered from a mental disease. The other participants
reported no history of psychiatric disease over a recruitment phone
interview. Other medical and neurological disorders were also reasons
for exclusion. No participant showed abnormalities in the MRI. The
study was approved by the local ethics committee (Charité University
Clinic, Berlin). After complete description of the study, we obtained
informed written consent from all participants.

Images were collected on a 3 T Magnetom Trio MRI scanner system
(Siemens Medical Systems, Erlangen, Germany) using a 12-channel
radiofrequency head coil. Structural images were obtained using a
three-dimensional T1-weighted magnetization-prepared gradient-echo
sequence (MPRAGE) based on the ADNI protocol (www.adni-info.org)
(repetition time (TR) = 2500 ms; echo time (TE) = 4.77 ms; TI =
1100 ms, acquisition matrix = 256 x 256x192 mm?, flip angle = 7 deg;
bandwidth=140 Hz/pixel, 1 x 1x1 mm? voxel size). Functional images
were collected using a T2*-weighted echo planar imaging (EPI)
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sequence sensitive to blood oxygen level dependent (BOLD) contrast
(TR = 2000 ms, TE = 30 ms, image matrix = 64 x 64, FOV = 216 x
216x129 mm?, flip angle = 80 deg, bandwidth=2042 Hz/pixel, voxel
size 3 x 3x3 mm?®, 36 axial slices using GRAPPA acceleration factor,
5:08 min duration).

The first 10 volumes were discarded to allow the magnetization to
approach a dynamic equilibrium, and for the participants to get used to
the scanner noise. Part of the data pre-processing, including slice
timing, head motion correction (a least squares approach and a 6-
parameter spatial transformation) and spatial normalization to the
Montreal Neurological Institute (MNI) template (resampling voxel size
of 3 mm x 3 mm x 3 mm), were conducted using the SPM5 and Data
Processing Assistant for resting-state fMRI (DPARSF, Chao-Gan and
Yu-Feng (2010)). A spatial filter of 4 mm FWHM (full-width at half
maximum) was used. Participants showing head motion above 3.0 mm
of maximal translation (in any direction of x, y or z) and 1.0 deg of
maximal rotation throughout the course of scanning would have been
excluded. This was not necessary as no participant reached these
criteria. We further analyzed head motion by correlating the frame-
displacement measure (FD) with the estimated FC (see text). FD is
reduced to a scalar value per each volume using the formula indicated
in Power et al. (2012), and then averaged over volumes.

After pre-processing, linear trends were removed. Then the fMRI
data were temporally band-pass filtered (0.01-0.25 Hz); but we
repeated our analysis even with temporally band-pass filter (0.01-
0.08 Hz), commonly adopted to reduce the very low-frequency drift
and high-frequency respiratory and cardiac noise (Biswal et al., 1995;
Lowe et al., 1998). The spatially normalized data were parcellated using
two atlases: the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) and a recently proposed functional atlas (Shen
et al., 2013). Results for functional parcellations and for the narrow
temporal filter are qualitative very similar to the ones presented in the
main text, and are only reported in the Supplementary Material (see
Figs. S1 and S2).

We decided to instruct participants to close their eyes during the
resting state data acquisition despite the fact that resting state
acquisitions with eyes open have been shown to result in slightly
higher reliability of BOLD functional connectivity (Zou et al., 2015),
since the resting state data acquisition, in the longitudinal study, was
part of a 30 min scanning protocol that the participants completed
periodically over the course of half a year. Due to this fact the likelihood
of falling asleep during scanning seemed particularly high to the
authors and therefore the decision was taken to record all resting
states with eyes closed and ask the participants after each scan session
to report whether they slept during the resting state scan or not. We
tested whether being asleep or not affect the distribution, but we can
exclude this possibility (see Fig. S4 in the Supplementary Material).
Although recently it has been recommended to acquire 10-20 min of
resting state (Birn et al., 2013; Laumann et al., 2015), we had to
constrain data acquisition to 5 min per scan as the resting state
sequence was only one of several sequences acquired in the long-
itudinal scan sessions. Moreover these 5 mins are representative of
usual scanning times in many clinical studies.

Functional connectivity analysis

Spontaneous fMRI fluctuations were characterized by their popula-
tion variance ¢°. For the fMRI time-series X = (Xi,..., Xy) of a given
ROI, 0 was estimated by the sample variance, which is defined as

6.2

N
1 —
X0 == > (X = X7,
i=1
where X denotes the sample mean of X. Functional connectivity was

characterized by the population Pearson correlation coefficient p. For
random variables X and Y, p is defined as
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Cov(X,7Y)
cX)o(¥)

For a pair of BOLD-fMRI time-series X = (X,..., Xn) and Y = (Y 4,
...Y N), p was estimated by the sample Pearson correlation coefficient
pe

i
H(X, ¥) = —
pX.Y) N—l,g‘

pX,Y)=

X -X)%-Y)
5(X)6(Y)

For a given subject and link, we obtained a series of sample
correlation coefficients p 1,..., p g, where K denotes the number of
scan sessions. To test for non-zero inter-scan mean and variance of the
corresponding population correlation coefficients p;,...,0x we used the
sample mean and variance, respectively, of the series of sample
correlation coefficients as test statistics. p-values were obtained by
approximating the respective null-distributions using appropriate
surrogate data (see Construction of surrogate data) and corrected
for multiple comparisons across links using the Benjamini-Hockberg
method with a false-discovery-rate (FDR) of 5%.

Construction of surrogate data

We constructed surrogate data under the null-hypotheses of zero
inter-scan FC mean and variance, based on a constrained randomiza-
tion procedure first proposed in Prichard and Theiler (1994). We first
describe the construction for data from a single scan session and
subsequently, describe how to use it to test for zero inter-scan FC mean
and variance.

Let X = (Xy,..., Xn) and Y = (Y3,...,Yn) denote BOLD-fMRI time-
series from two different ROI's, where N denotes the length of the scan.
To construct a surrogate copy of the pair of time-series (X, Y), the
discrete Fourier transforms X = (X 4,.., X xy)of Xand ¥ = (Y4,..., Y)
of Y are calculated and, subsequently, the Fourier coefficients are
multiplied by random (complex-valued) phases:

surr

X, = X, et
for n = 1,.., N and similarly for Y. The phases ¢, .., ¢X are
independently drawn from the uniform distribution on the interval
[0,27]. Surrogate copies X*" and Y " of X and Y, respectively, are
then obtained by applying the inverse discrete Fourier transform to X
surr and j;surr.

There are two cases to consider. In the first case, the phases ¢,~ are
drawn independently from the phases ¢,’, and therefore the surrogate
time-series X**"" and Y *" have the same sample autocovariance
functions as X and Y, respectively, but are uncorrelated. This data can
hence be used to test for non-zero FC. In the second case, ¢nX = (pnY, SO
that X*"" and Y *"" have the same sample autocovariance functions as
X and Y, respectively, but also the same sample cross-covariance
function. This means that the sample correlation between X and Y is
preserved and this surrogate data can hence be used to test for dynamic
FC (Hindriks et al., 2015). We refer to these two types of surrogate data
as incoherent and coherent, respectively.

To construct surrogate data under the null-hypothesis of zero inter-
scan FC variance, we concatenated, for a given subject, the fMRI data
from all scan sessions, generated 1000 coherent surrogate copies, and
subsequently calculated the test-statistic values to approximate their
null-distribution and to calculate p-values. Concatenating data from
different sessions can lead to jumps in the time-series, and therefore to
a possible bias in the statistical hypothesis testing. To exclude any bias,
we assessed the performance of the testing procedure by generating
1000 synthetic data-sets with the same dimensions and a similar auto-
correlation structure as the fMRI data, applied the procedure to test for
non-zero inter-scan FC variance using a = 0.05, and calculated the
percentage of false positives, which yielded 5.6%. When the scan
sessions were shortened, the percentage of false positives remained
between 5% and 6%, only increasing to 8% in the extreme case of 15
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samples per scan session. This shows that the testing procedure does
not lead to excessive false positives.

Test-retest reliability

Test-retest reliability of the functional indices was quantified by the
intraclass correlation coefficient (ICC), which, for a given functional
index v, in defined in terms of a random effects model (Shrout and
Fleiss, 1979). Let v;; be the measured index values of subject 7 and scan
session j, where i = 1,...,n and j = 1,...,k. Thus, the index is assumed
to have the following form: v; = u + bi+wy, for where i = 1,...,n and
Jj =1,...,k, and where u denotes the expectation value of v;;, b; denotes
the random effect of the subjects, and w; denotes all residual noise (due
to dynamics, measurement error or conditions/sessions). The random
variables b, and w; are assumed to be independent and normally
distributed with zero mean and variance ;> and o,,°, respectively. The
ICC of v is now defined as

%

61,2 + 6\3’

The ICC ranges between 0 and 1 and quantifies the test-retest
reliability of the index v. Note that for an index to be reliable, it must
vary between subjects (high between-subject variance ¢,2) and it must
be stable across scan sessions (low within-subject variance o,,). The
most straightforward and commonly used estimator of r, which is
sometimes referred to as the analytical estimator, is defined as

BMS — WMS
BMS + (k—=1)WMS’

F=

where BMS and WMS denote the mean between- and within-subjects
sum of squares, respectively Atenafu et al. (2012). Although there are
other estimators for r, most notably, the maximum likelihood (ML) and
restricted maximum likelihood (ReML) estimators, we found them to
have similar variances and only slightly different biases. The only
advantage of these other estimators is the absence of negative
estimates. Due to its simplicity and widespread use, we preferred to
use the analytical estimator. Statistical hypothesis testing was done
using an F-test. Specifically, since BMS and WMS are sample estima-
tors of ko?+c2 and o2, respectively, the random variable

__BMS ,WMS
koj + oy oy

7

is F-distributed with parameters n — 1 and n(k — 1). Under Hy, f takes
. . p_ BMS 1-ro

the following form: f = WIS T3 G=Dro?

which can be used to obtain the null-distribution of 7.

Sources of variability

The issue of finite-sample variance of the sample Pearson correla-
tion coefficient can be assessed by the phase-randomized surrogate
data (see Construction of surrogate data). We model the Fisher-
transformed sample Pearson correlation coefficient of participant i and
scan, j, denoted by j ; with a normally distributed variable of the
following form:

/30. = p_+0hb,-+0'ww,-j+0'ff,-j,

where b, w, and f are independent, and standard-normally distributed
random variables. The random variable w models the true variability in
FC (within-subject), the random variable b models the between-subject
FC variability, and the variable f models the finite-sample error.
Assuming o, to be independent of i (subject) means that the true
between-scan variability of FC as measured by o,,, is the same for all
subjects.

The three sources of variability can then be separated and the
corresponding variances, o7 , ., and o7, can be calculated from the
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surrogate analysis:

of = (BMS—WMS)/k,
62 = WMS—WMS,,
o7 = WMS,,

where WMS and BMS denote the within- and between-subject mean
square errors, WMS, denotes the mean square error within subjects for
the surrogate case, and k denotes the number of sessions. These
equalities allow the ICC to be written as follows:

2
IcC = %

0',,2 + o"% + af.

Since the surrogate data is constructed under the null-hypothesis of
zero inter-scan FC variability (that is, o,, = 0), the ICC constructed from
the surrogate data is given by

Op

T 5
6;)2 + 6%

ICCy =

and therefore, ICCy > ICC, so that the surrogate data can be used to
estimate the uncertainty in the ICC that is due to the finite-sample size.

Definition and estimation of functional similarity

Central to the analysis in Finn et al. (2015) (but see also Mueller
et al. (2013)) are the within- and between-subject similarity indices,
here denoted by R , and R ,, respectively. R,, [add hat] can be
calculated for every subject i and for every pair of scan sessions (j, j")
and is defined as the sample Pearson correlation coefficient between
the respective vectorized (and z-scored) FC matrices X;; and Xj- with
VRN
_ <Xij - /Tz'jem’ Xij - ﬁz:j/em>

I = Byen P1IXy, — 7 em P

R,

where p;; is the average Xj; over links, e,, €R"*! denotes the vector
containing all ones, and where we have suppressed the dependence of
R , on (i, /), and j' from the notation. Similarly, R , can be calculated
for every two subjects i and i’ (i # i":) and every pair of scan sessions:

3 <Xij - ﬁ,‘jems X[rj - ﬁi,jem>
b= 5
JIXs = e P1IXi; — 1, jemlP

Note that R,, and R, [add hats] can be used to assess the similarity
not only for the vectorized FC matrix, but for any multivariate
biomarker. Below, therefore, we let X;; denote an arbitrary m-dimen-
sional biomarker for subject 7 and scan session j.

To assess the properties of R ,, and R ;, we need to consider the
respective population quantities, denoted by R,, and Rj, respectively.
Below, we write Xj; for the estimated value of the biomarker and x;; for
the corresponding population value. The definitions of R,, and R, are
obtained by replacing the sample Pearson correlation coefficients in the
equations for R ,, and R , by the population Pearson correlation
coefficients and replacing Xj; by x;;:

lE[<Xl:f - ﬁijema Xi" - ﬁij’em>]

w = s
VEUIX; = myen PYELXG = By enlP]

for j #j' and
|E[<Xij - ﬁl'jema Xi/j - ﬁi,jem>
JENX; — ;e PTELIX; ;= 7, jem|P]

for i #i. To assess the properties (bias and uncertainty) of the
estimators R ,, and R j, we also need a statistical model for the
population biomarker x;;. This will be described in the next section.
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Fig. 1. Variability of FC. Panel A: Average FC over links, < FC >, of the 5 subjects for all 42 sessions (blue dots), and for the 50 subjects (gray line). Panel B: distribution of <FC > of
the 5 subjects (blue lines) and the distribution of < FC > for the 50 subjects (gray bar). Panel C: the distributions of the FC values (blue lines for the five subjects, and gray bar for the 50
subjects). Panel D: the FC values of a participant (FC;) against FC values of another participant (FC;, blue circles), and against the FC values of the average of the 50 subjects (FCss, gray
asterisks). In the same panel, we report the correlation between two participants’ FC (corr(FC;,FC;) =0.8), and the correlation between a subject's FC and FCs, (corr(FC;,FC;) =0.87).
Panel E: distributions of the standard deviation over sessions of the FC (SDgc). Same color conventions as panel C. Panel F: one participant's SDyc against the SDyc of another
participant (blue circles), and against the SDzc of the 50 subjects (gray asterisks). In this panel, we report the correlation between two participants’ SDyc (averaged over 42 sessions), and

the SDyc of one subject against the standard deviation of the 50 subjects.
Statistical model for multivariate Gaussian biomarkers

Let x; €R™! denote an arbitrary m-dimensional (population)
biomarker of subject i (i = 1,...,n) on scan session j (j = 1,...,k). In
analogy to the univariate linear model used to assess link-wise test-
retest reliability, we model x; by the following multivariate linear
model:

Xj =+ 1+ &,

where u € R™! denotes the group-wise expectation of x;;, and where 7);
€R"™! and &; eR™! denote within- and between-subject fluctuations,
respectively. The random vectors 7; and &; are assumed to be
independent and have expectation zero (that is, the m-dimensional
zero-vector) and covariance matrices ¥, and X, respectively. Note,
that ¥, and ¥, are the generalizations to the multivariate case of the
within- and between-subject variances o,,> and 032, respectively.

Assuming in first approximation that ¥, and X, are diagonal
matrices, the expectations of the similarity indices R,, and R}, can be
expressed in terms of the model parameters as

llu — mem|? + 1r (Zp)

E[R,] = — .
llu — memll® + tr (Zp + Zy)
and
- 2
A — Hem
E[R,] = ll — mem|l

llu — mem|P + tr(Zy + X,)°

where tr denotes matrix trace and /7 denotes the average value of u. As
a special case, suppose that 3, and %, are identity matrices multiplied

by a factor, that is ¥, = 671, and £,, = ¢21,, for certain o, and o,,. Then
the expressions for [E[R,] and [E[R,] reduce to

2, 2
R 62 + o
ElR) = .
o, + o, + o,

. o
ElRy] = ——— -
[ + o, + oy,
where we have defined o = ||u—fFeml|/m.
One can derive the following approximate formulas for the ex-
pectation of the similarity indices, for the more general case:

llu — gem|P + 1r (%) — ey, Zvem

E[R,] = —— ; :
”/4 - ,uemH + (X, + Zw)_em(zb + Zw)em
and
= 2
A — pHem
E[R,] = e — mem|

= memlP + tr(Zy + Zu)—e (S + Zen

where the variances of the similarity indices have been approximated
by using Equation 3.1 in Dutilleul et al. (1993):

Var[Ry] = trace (BZ,,,BZ,,,)
trace (BZ,,p)?

and

Var[R,] = trace (BZWBZ;W) 7
trace (BX,,)

where X, = £,,+%, B = (Im—Jm/m) /m, and Im and Jm denote m-by-m
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Fig. 2. Between- and within-subject FC variability. Panels A-B show the heat-maps of the average FC for 50 subjects and a single subject, respectively. Panels C-D show the FC
standard deviation (SD) for 50 subjects and for a single subject, respectively. The average FC is Fisher-transformed (inverse hyperbolic tangent), and the SD is calculated from these
transformed values. Color convention is cyan and blue indicate 50 subjects and single subject, respectively; black and gray dots indicate surrogate data for the 50 subjects and the single
subject, respectively. Panel E shows the scatter-plot of the average FC against the FC standard deviation. Panels F and G plot the distributions for average FC and SD with the same color
conventions. All the plots of this figure refer to one exemplary participant. The figures for the other four participants are qualitatively similar, but not reported.

identity matrix and the matrix of ones, respectively. We assessed the
accuracy of these approximations using simulated data and found that
they provide upper bounds for the respective indices. In the simula-
tions, we generated synthetic connectivity matrices FCj; (i subjects, j
sessions), with a multivariate general linear model, and replacing =5
and X5)” by their estimates. To simulate different conditions as the ones
analyzed in the fMRI data, we fixed X, for several simulations and used
different matrices X,, = s,, 27, where s,, denotes a multiplicative factor.

Results

We present a systematic analysis of the variability and reliability of
resting-state FC, both at the level of individual links and at the level of
the entire brain. We used 42 scan sessions of resting-state fMRI of
5 min data from five participants (see Materials and Methods for
detailed information on participants and pre-processing). ROI-level
analyses were conducted using an anatomical parcellation (AAL,
Tzourio-Mazoyer et al. (2002)) and the main results were replicated
using a functional parcellation (Shen et al. (2013), see Supplementary
Information).

Data description

Before moving into the details of the analysis, we give a descriptive
overview of the data-set to provide the reader with an intuition for how
variable and reliable FC is. As a first step, we consider the inter-session
variability of the average link-wise FC, denoted by < FC > (see panel A
of Fig. 1). For the five subjects that were scanned multiple times, the
average time between the first and the last session was approximately
six months. Note that the average for the five subjects scanned multiple
times (blue dots) resembles that computed from the 50 subjects, each
of which scanned just once (gray continuous line). The same effect can
be observed in panel B, in which we can compare the distribution of <
FC > for the five subjects (blue lines) and the distribution of < FC > for
the 50 subjects (gray bar).

Panel C of Fig. 1 shows that the FC distributions of the five subjects
scanned multiple times (FC; blue lines), and of the FC of the 50
subjects (FCsgs, gray bar) are very similar and have similar average
values. The distributions of all FC values for the five subjects and that
of the 50 subjects are in general very similar, even though the latter is
narrower with a standard deviation (SD) of 0.35 compared to the
former, whose SD is 0.45. Another way of measuring the similarity
between FCsos and FC; is through the Pearson correlation coefficient
between the vectorized matrices. In our data-set, the average correla-
tion between any couple of FC; equals 0.8 (SD = 0.02), and the
correlation between an FC; and FCs is slightly higher; 0.87 (SD =
0.02, see the scatter-plot of panel D). Therefore, the average FCs for
the 50 subjects scanned just once can be considered as representative
of the FC obtained from single individuals.

To complete this preliminary description, we look at the inter-
session FC variability of the five subjects and subject-by-subject
variability of the FCsy (panel E and F). We note the high similarity
between the distributions of the standard-deviation over sessions of FC;
(SDg¢;) and of FCsps (SDpcsos). However, we observe rather low
correlation values between the SDgc; of any two of the five subjects
(0.53, SD=0.02), indicating high variability between subjects of spatial
distribution of FC variability.

Link-wise analysis

Within-subject variability

We now present the link-wise analysis of reliability and variability.
Within-subject mean and variability of a given link's FC were quanti-
fied, respectively, by the sample mean and standard deviation of the
corresponding time-series of correlation coefficients. By repeating the
calculations for each link, two matrices for each subject and for the 50
subjects were obtained, corresponding to the within-subject average FC
and variability. In Fig. 2 we show these matrices as heat-maps for the
50 subjects (panels A—C, blue) and for one of the subjects (panels B-D,
cyan). To obtain a more robust measure, we averaged the links over
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Fig. 3. Reliability of the correlation strength. Panel A shows the scatter-plot for the correlation strength against ICC value, panel B shows the histogram for the distribution of the
ICC values, and panel C is the heat-map of the average ICC values for the different macro-regions. For the panels on the left and in the middle, the colors light blue, dark blue and gray
refer to the theoretical, simulated and observed values, respectively (see main text). Panel D shows the distribution of the three variances (af2, 0,2, and 0,,%). Panel E shows the scatter
plot of the three variances against the ICC, with the values of the correlations between the three variances and the ICC; the colors follow the same convention of panel D.

macro-regions (see labels in the panels). The ROIs for this figure were
defined by using the AAL parcellation (see Supplementary Material for
the corresponding plots with Shen's parcellation, with very similar
results). They show that both the average FC and standard deviation
vary considerably over links. Note also the existence of relatively high
standard deviations for some links. This suggests that the FC strength
between corresponding ROI's varies considerably from scan to scan.

Panels E-G display the same average FC and its standard deviation
using scatter-plot and histograms. Average and standard deviation
were calculated over scans (this means over sessions for the single
subject and over subjects for the 50 subjects). For both single subjects
with multiple scans (cyan) and 50 subjects (blue), the standard
deviation ranges between 0.1 and 0.3, with an average value of about
0.2 and a standard deviation of about 0.038 (for the single subject with
multiple scans the standard deviation is slightly lower and equals
0.035). We note that the values of standard deviation of FC reported in
Fig. 2E is consistent with the results reported in Laumann et al. (2015)
(see Fig. S5), both for magnitude and for spatial distribution.

We can see that the value of the average FC influences the
variability of the FC itself: the correlation between average FC and its
standard deviation is about 0.4 for the single subject. However, this
result is not robust to a global signal regression (GSR): the correlation
between average FC and its standard deviation after GSR is about 0.1.
Does the observed variability of the FC reflect genuine variability of
spontaneous inter-areal co-activations, or does it arise from mere
statistical uncertainty of the estimates? Recall that the Pearson
correlation coefficients are estimates of the population values and as
such, finite-sample variability should not be confused with the varia-
bility due to genuine underlying dynamics of the FC (see for example
Lindquist et al. (2014); Hindriks et al. (2015)). With this in mind, we
tested the null-hypothesis that the observed fluctuations in FC can be
fully explained by statistical uncertainty of the correlation estimates: to
this aim, we first constructed appropriately randomized data Prichard

and Theiler (1994). This randomization method yields surrogate data
with the same statistical structure and the same mean FC as the
empirical data, but contains no FC dynamics (see Materials and
Methods for more details). In panels E-G of Fig. 2, one realization of
the surrogates is plotted (black and gray lines and circles). From panel
G it is evident that the distributions of the standard deviations of the
surrogate correlations (black and gray) are qualitatively different from
the observed data (blue and cyan). By construction, the distributions of
the mean correlation of the surrogates (blue) and of observed data
(black) are identical (panel D). By repeatedly randomizing the data we
can approximate the distribution of the variability for each functional
connection under the null-hypothesis of constant FC variability, and
hence p-values can be calculated. Applying the Benjamini-Hochberg
method for multiple comparisons with a false-discovery rate (FDR) of
5% we found that the approximate number of functional links whose
variability can be explained by the null-hypothesis of no genuine
variability is around 1%. This means that practically every functional
connection is dynamic for each of the five participants.

Test-retest reliability

The test-retest reliability of a measure indicates its consistency
under similar conditions in contrast to dissimilar conditions: therefore,
a measure is highly reliable and amenable to be a good biomarker if it
yields similar results under consistent conditions, but not under
dissimilar conditions. How reliable are the pairwise functional indices
obtained in typical resting-state studies? To address this question, we
measured the stability of the FC estimates over different scan sessions
(within-subject variability) and compared them to those obtained from
different participants (between-subject variability). For the functional
connectivity estimates to be considered reliable, they should therefore
exhibit small within-subject variability while at the same time large
between-subject variability.

Following previous studies (Shehzad et al., 2009; Zuo and Xing,
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2014), test-retest reliability of the functional indices was quantified by
the intraclass correlation coefficient (ICC) (see Materials and
Methods). Estimated ICC's for all links are plotted in panel A of
Fig. 3 against the subject-averaged FC (gray asterisks), while panel B
shows the histogram of the estimated ICC values. In the legend we
indicated the gray histogram as ‘observed’ in contrast to the values
obtained with the simulation and the theoretical analysis (see below).
The heat-map in panel C shows ICC values averaged over the regions
indicated in the labels.

Note that the estimated ICC values vary from link to link, ranging
from approximately O to about 0.7. With the estimator we used (the
analytic estimator), negative values of ICC can be obtained. Although
maximum likelihood ICC estimates are guaranteed to be non-negative,
they yielded similar results and we therefore used the analytic
estimates. The average value of the ICC equals 0.22 + 0.16, which is
commonly considered rather low and indicates that link-wise FC for
5 min scan performs poorly as a biomarker for individual subjects
Nunnally (1994). Despite the lack of consensus about what should be
considered an acceptable level of reliability (Nunnally, 1994; Lance
et al.,, 2006), ICC values of about 0.2 are generally considered as
unacceptable. To observe such a low value, the within-subject variance
has to be twice as large as the between-subject variance.

Earlier studies have reported similar values for the ICC Shehzad
et al. (2009); Zuo and Xing (2014), but with substantial differences in
their interpretation (see below). Similar results have also been reported
by Birn et al. (2013), even though these data are more problematic as
they were obtained by combining different sessions under different
conditions (eyes-open, eyes-closed and fixation).

The link-wise variability of ICC estimates is also in line with
previous reports that used similar scan durations Shehzad et al.
(2009); Zuo and Xing (2014). In these studies, variation was inter-
preted as evidence for spatial heterogeneity of test-retest link-wise FC
reliability (among other biomarkers), but statistical tests were not
carried out. It thus remains possible that the observed ICC variability
reflects statistical uncertainty, rather than true heterogeneity. Indeed,
even with 42 scan sessions and 5 subjects, the variance of the ICC
estimates is considerable. We therefore tested the null-hypothesis of all
links having the same population ICC. The population ICC,, under the
null-hypothesis was thus estimated by the link-wise average ICC.

We first calculated the probability of each link to have such a value
of ICC or higher, given the assumption of being an estimate of ICC,,,.
This probability corresponds to a p-value. We subsequently calculated
how many links had an ICC that was statistically different from ICC,,
after false discovery rate correction (using Benjamini-Hochberg meth-
od with FDR = 5%).

Panel B of Fig. 3 shows the distribution of observed ICC (gray bars)
and the theoretical distribution of ICC (light blue line) as estimated
from a general linear model with a constant theoretical ICC (see Test-
retest reliability for details). As mentioned above, the average theore-
tical ICC value chosen was ICC,,,. Note that the three distributions are
practically identical, which shows that there is no evidence of links that
have ICC's different from ICC,,. The data therefore is consistent with
spatially homogeneity of the link-wise FC test-retest reliability.

To further test this hypothesis, we simulated the links’ correlation
variability by using Gaussian variables having two sources of varia-
bility, ‘within-subject’ and ‘between-subject’. Each simulated correla-
tion has on average a value equal to the observed mean correlation of
one real link: FCy;,, = FC + 62&,+0}&,, where the variances, 2 and o7,
were kept constant. The ratio between the two variances was chosen
equal to the average ICC,,, and for simplicity we set 62 = 1 (the actual
value does not influence the results of the simulation). We extracted
these variables once for each simulated subject, and 50 times for each
simulated scan session. Finally, we calculated the ICC values for each
simulated correlation, FCg;,. The results of these simulations are
displayed in panel A of Fig. 3 as blue circles, and their distribution in
panel B as a dark blue line. Note that the simulated distributions
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approximate the empirical distributions quite well.

We note that this result is not sensible to GSR. After GSR the
distribution of ICC is practically identical to the corresponding
distribution without GSR (the average value is slightly lower).

A possible explanation for the lack of heterogeneity in the ICC
values of the links might be the lack of statistical power: only few
subjects, limited number of scan sessions, and correction for multiple
comparisons. To circumvent the issue of having to perform a too
restrictive multiple-comparison correction, we took the average ICC's
of different macro-regions (the names of these regions are indicated in
the labels). We use the term macro-region to indicate a brain region
composed of several ROIs. The idea is based on the hypothesis that
different macro-regions might have different reliabilities. This ap-
proach closely follows that taken in Zuo and Xing (2014) in which
systematic differences in ICC's were reported for averaged resting-state
networks, for several functional biomarkers, including (intrinsic) FC.

The heat-map in panel C of Fig. 3 shows the average correlation
between pairs of macro-regions. The differences are small: the average
ICCs vary between 0.1 and 0.3. We compared the ICC distribution
between pairs of macro-regions with a non-parametric test (see
Methods for details), and we did find most of them to be statistically
different. We can therefore sort the macro-regions according to average
ICC value and identify the least reliable region (parietal region, whose
average ICC = 0.15) and the most reliable region (cerebellum, whose
average ICC = 0.24). The least reliable macro-region for links connect-
ing it to other macro-regions is the pre-frontal region (whose average
ICC = 0.18) and the most reliable macro-region is the cerebellum
(whose average ICC = 0.27).

Sources of variability

We now analyze the different sources of variability of the FC, and
how they relate to ICC reliability. Specifically, we disentangle the
contribution of three different sources of variability: 1. Genuine
variability of FC in each subject (within-subject variability); 2.
Variability of FC for different subjects (between-subject variability);
3. Variability of FC due to the statistical uncertainty associated with
computing the correlation from a finite number of samples (finite-
sample variability). The three sources of variability have already been
partially accounted for in the literature (Shehzad et al., 2009; Van Dijk
et al., 2010; Birn et al., 2013; Zuo and Xing, 2014; Laumann et al.,
2015; Shah et al., 2016). We point out, however, that our description in
terms of these variability sources is slightly different from that used in
other studies (e.g., Zuo and Xing (2014); Laumann et al. (2015);
Mueller et al. (2013)). As we model the correlations by random
variables, each source of variability is associated with a corresponding
variance: between-subject variance o7, finite-sample variance a_?, and
within-subject variance ¢2. For the sake of clarity, we note that the
between-subject variance, o7, is not obtained by calculating the
variances between the sessions of different subjects, that would
approximated by the sum of the three variances oj+o.+07; similarly
the within-subject variance, 62, is not obtained by calculating the
variances between the sessions of the same subject, that would
approximately equal to the sum of oj+07.

For each subject, the inter-session variability of the correlations can be
divided into within-subject variability and finite-sample variability. To
calculate the contribution of the finite-sample variability, we used the
surrogate data described before, as they possess finite-sample variability,
but (by construction) no within-subject variability (see Materials and
Methods). Therefore, to obtain a}, for each link, we subtracted the value of
the inter-session variability obtained from the observed data from the one
obtained from the surrogate data. For the observed data, both the finite-
sample variability and the between-subject variability were on average
approximately half of the within-subject variability; see the complete
distribution of the three variances in panel D of Fig. 3. This large
difference between o7 and 62 is the main cause of the low link-wise FC
reliability described in the previous section.
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The values of the three variances averaged over regions are reported
in Fig. S5 of the Supplementary Material. Although the variances
present homogeneous values for all the regions and there is no clear
pattern, we note that both the ICC and the three variances form a
characteristic structure, with some macro-regions exhibiting different
patterns of behavior compared to the others (see e.g., the occipital).

We also analyzed how the three variances correlate with ICC (see
panel E of Fig. 3: the correlation of ICC with 03,2 is rather high (0.86)),
while the correlations with the other two variances are almost zero, o,
(-0.07, p-value >0.05) and Uf2 (~0.05, p-value <107°). These results
have a straightforward interpretation: the between-subject variability
represents a structure similar to the one of the ICC, while the
differences between the regions in the within-subject variability are
not strongly related to regional differences in the ICC.

Recently, different studies have warned of the influence of head-
motion and micro-movements (i.e. head displacements <1 mm) on FC
variability and reliability (Power et al., 2012; Laumann et al., 2016).
Taking into account this possibility is indeed very relevant for our
analyses, as it indicates one of the different plausible causes behind
within-subject variability or (given the reliability of head motion) of the
between-subjects variability. To assess this possibility, we calculated
the correlation between the inter-session variability of the average
frame-displacement (FD) and that of each links’ correlation (see
Methods for the calculus of FD). We found that head-motion explains
part of the variance of the correlation (= 5%), even though the effect is
not homogeneous (see panel A of Fig. S5 of the Supplementary
Material). Moreover, the FD-effect correlates positively with within-
subject variability (= 0.35), but not with between-subject variability.

Relevance of sample points: scan duration and multiple scans

Different studies have analyzed the effect of scan duration on FC
reproducibility (Anderson et al., 2011; Birn et al., 2013; Hacker et al.,
2013; Laumann et al., 2015; Finn et al., 2015), and reliability (Shehzad
et al., 2009; Birn et al., 2013) demonstrating that long scan sessions
increased both reliability and reproducibility. We note that the former
is not an obvious consequence of the latter, in that having highly
reproducible FC within-subject could also mean highly reproducible FC
between-subject and therefore low reliability. For example, Birn and
colleagues demonstrated that reliability slowly increased with scan
duration: on average, the maximal ICC value for very long scans
(30 min) is rather low, ICC = 0.4 (Birn et al., 2013).

We therefore systematically studied the influence of scan duration
on the reliability of FC indices. Moreover, we analyzed the behavior of
the ICC as a function of the different sources of variability (within-
subject, between-subject, and finite-sample). Panel A of Fig. 4 shows
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the behavior of the three variances and that of the ICC for different
scan durations. For very short durations (below 1 min), finite-sample,
o/ (green line) is the most relevant source of variability even though its
contribution rapidly decreases with increasing scan duration. We
observed that the behavior of the finite-sample variability can be
approximated by a power law of 1/N%, where N is the number of time
points, and a is about 1.3 (x> = 0.98). This is not surprising, as the
finite-sample variance of the correlation between any two time-series
having zero auto-correlation equals one. Within-subject variability
(blue line) also tends to decrease with increasing scan duration, even
though at a much slower rate, whereas between-subject variability
(black line) remains approximately constant.

We observe here (panel A), just like in panel D of Fig. 3, that the
relevance of the finite-sample is decreasing toward zero. This is
dependent on the number of samples (obviously), and already for 60
samples (~two minutes) the average of is inferior to average oZ.
Further studies will be needed to understand the discrepancy between
these results and the results reported in Laumann et al., (2015, 2016),
where it is claimed that the day-to-day variability “is almost entirely ( >
98%) attributable to sampling error” (it is plausible that within
“sampling error” Laumann and colleagues included both finite-sample
variance and within-subject variance).

Having acquired multiple scans from the same subject enabled us to
measure the three variances and the ICC obtained using the average FC
over several sessions (details can be found in the Materials and
Methods). Results from this analysis are depicted in panel B of
Fig. 4, in order to directly compare them to the evolution of the
variances for different scan durations. We note that the between-
subject variability ;> again tends to remain constant, whereas the
finite-sample variability af2 continues to decrease with no evident
changes in slope. On the other hand, within-subject variability o,,?
seems to exhibit discontinuous changes that are mirrored by abrupt
changes in the slope of ICC. These abrupt changes are expected, given
the previous results reported in literature (Shehzad et al., 2009; Birn
et al, 2013) on the difference between the reliability within-scan
session (less than one hour) and between-scan sessions (more than
one month), with higher values of reliability for the case within-scan
session. This indicates that to obtain a higher reliability, the FC needs
to be averaged over multiple sessions. Indeed, according to Birn et al.
(2013), there seems to be a plateau for the ICC between-scan sessions
above 18 min (see Fig. 3a of Birn et al. (2013)). Evidence for this slope
change can be found in the high ICC value (0.7) obtained for FCs
extracted from an average of six sessions (summing up to approxi-
mately 30 mins).

We underline the relevance of this analysis: First, we can describe
how reliability of the FC changes as a function of scan duration or using
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Fig. 4. Effect of scan duration on the FC reliability. The graph shows the behavior of the average reliability, ICC, and the behavior of the three variances related to the three
sources of variability of FC for different scan duration (panel A) and using multiple scan sessions (panel B). The empty circles refer to the three sources of variability: within-subject (0,,%,
blue), finite-sample (ofz, green) and between-subject (0,2, black). The red asterisks refer to ICC. To plot ICC we used a second y-axis (in red, on the right). In gray, the SD of each measure

is reported. The points are slightly misaligned to improve the plot's readability.
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several scan sessions for the three different types of variance. Second,
we conclude that the use of multiple sessions seems to be a potential
way to overcome the low reliability upper-limit indicated by Birn et al.
(2013). The relevance of the finite-sample variability is conspicuous,
but it decreases with increasing scan duration. The influence of scan
duration on the sources of variability is analyzed in the next section.

Global FC analysis

After having analyzed reliability from a local, link-wise perspective
(Link-wise analysis), we focused on studying the inter-scan variability
of the whole-brain, global FC structure. This means that instead of
considering the variability of the different pair-wise FC's, we consid-
ered the within- and between-subject variability of the vectorized FC
matrices in their entirety. As in the local analysis (see Link-wise
analysis), and following earlier studies Mueller et al. (2013); Laumann
et al. (2015); Finn et al. (2015), functional connectivity was quantified
using the Pearson correlation coefficient. The richness of information
contained in the multivariate structure of whole-brain resting-state FC
matrices has recently been demonstrated Finn et al. (2015). In that
study, it was shown that the FC matrix can be used as a “functional
fingerprint” in that it allows identification of individual subjects from a
30-min resting-state scan. The findings in Finn et al. (2015) appeared
to be in stark contrast with the low test-retest reliability of local FC
indices. For example, Birn et al. (2013) reported low ICC's (< 0.4) for
pair-wise Pearson correlations even for long scan sessions (30 min) and
we reported similar values (see Link-wise analysis). In this section we
reproduce the findings in Finn et al. (2015) (Subject identification from
resting-state FC) and provide a statistical framework that can be used
to assess the factors influencing functional fingerprinting (Quality of
functional fingerprints). Taken together, our results confirm the
strength of whole-brain FC analysis over local measures.

Subject identification from resting-state FC

In this section, we reproduce the observations of Finn et al. (2015)
and again assess the effect of scan duration. The analysis carried out in
Finn et al. (2015) is based on the sample Pearson correlation
coefficients between different pairs of vectorized FC matrices, to which
they referred to as similarity indices. These similarity indices can be
calculated between (vectorized) FC matrices of different scans of the
same subject (within-subject) or between FC matrices obtained from
different subjects (between-subject). The within- and between-subject
similarity indices are here denoted by R,, and R}, respectively. Details
are provided in Section 2.7. Finn and colleagues demonstrated that for
30-min resting-state scans, R,, > Rj, for practically all values of R,,
and Ry, (calculated from all possible scan-pairs), which implies that R,,
and R, can be used as “functional fingerprints” to identify individual
subjects. We repeated the analysis by calculating the distribution of R,,
and Ry, collapsing over different sessions. In Fig. 5, panel A,C-E show
the observed distributions of (Fisher transformed) R, (gray) and R,
(black) for a different numbers of samples (number of sessions). Note
that the separation between the distributions of the two similarity
indices, R, and R, increases rapidly with increasing number of
sessions: from panel A (1 session) to panel E (6 sessions). This
separation is almost complete (zero overlap between the distributions)
for four sessions. This is noteworthy as with four sessions, the average
ICC of single links is still around 0.5 (similar value is reported by Birn
et al. (2013)). On the whole-brain level, in contrast, they allow to
identify individual subjects (Finn et al., 2015).

To explain why functional fingerprinting is possible and how its
quality depends on different factors, we constructed a statistical model
for the vectorized (and z-transformed) FC matrices. Specifically, the
vectorized FC matrix of subject i at scan j, denoted by x;; is modeled as a
normally distributed random vector having the following structure:

Xj = p+ 1+ Gy (20
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where y € R™! denotes the group-wise expectation of x;;, and where 7);
€R™! and &; €R™! denote within- and between-subject fluctuations,
respectively. The random vectors 7; and &; are assumed to be
independent and have expectation zero and covariance matrices %,
and X, respectively (see Statistical model for multivariate Gaussian
biomarkers for more details). As we will see below, we can express all
properties of the similarity indices R,, and R, and their estimators R ,,
and R ; in terms of the model parameters y, 3, and 5.

Instead of considering R,, and R, it will be convenient to consider
their Fisher-transformations, denoted by z,, and z,, respectively, and
similarly for their estimators. We first consider the special case in
which ¥, and %, are diagonal matrices (but see panel B of Fig. 5 to see
the observed values of 3, and 3,,), that is 3, = 03,°I,,, and %, = 6,,2I,, for
certain gy, and g,,,. In Definition and estimation of functional similarity
it is shown that in this case, the similarity indices can be expressed in
terms of the model parameters as follows:

2 2
ot
w2 2 2’
[ + o, + oy, 21D
and
2
Ry= b
b 62 + of + 62 ’
i b oy, (22)

where we have defined ou2 = ||u—pem||/m. Note that 0,12 is the variance
of FC over links that is common to all subjects. These formulas allow
interpreting the similarity indices and relating them to the link-wise
ICCs, or more exactly to the parameters determining it.

Quality of functional fingerprints

Fig. 4 shows that g,® and 05 do not depend on the duration of the
scan and that o/ and 0,,> decrease with increasing scanning duration.
This implies that, for increasing scan duration, z, = arctanh(R;) is
bounded from above while, z,, = arctanh(R,,) increases without bound.
Furthermore, the variances of z, and z,, are bounded from above (by
one over the number of links). The consequence of these two findings
(infinite separation between the average values and lower bound of the
distribution variability) is that the distributions of z, and z, are
asymptotically separated. This result follows from the fact that for
every brain region i, there exists a constant FCi, while the true
variability, 0,2, decreases rapidly for increasing scan duration. Thus,
the global FC model qualitatively agrees with our experimental
observations. It also has the advantage of being simple in that a few
parameters and assumptions determine it completely. To conclude, the
distributions of (Fisher transformed) R,, and R; are Gaussian with
approximately constant variances and with expectation values that
diverge with a speed approximately equal to the number of samples.

To conclude, the model proposed to describe the whole FC is
qualitatively in agreement with the experimental results, and it has the
advantage of being simple: Few parameters and marginal assumptions
determine it completely. In a nutshell: the distributions of (Fisher
transformed) R,, and R, are two Gaussian distributions, whose
variances are approximately constant and whose expected values are
moving away from one another tending toward infinite values, and with
a speed that follows approximately the number of samples.

Discussion

In this study, we assessed the variability and test-retest reliability of
the human functional connectome. To this aim we used a unique data-
set comprising multiple (42) fMRI scans of five minutes each for five
subjects obtained during a classical resting-state paradigm, together
with another sets of single-scans obtained from 50 different subjects.
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Fig. 5. Analysis of FC at global level. The two panels on the left refer to the analysis done using a single session. Panel B shows the distributions of the estimated parameters’ values
with the general linear model. Panels A, C-E plot the distribution of z,, (gray) and z, (black) for FC averaged over 1, 2, 4, and 6 sessions, respectively. The observed data are represented
with dots, and the theoretical approximated values with continuous lines. The separation between the distributions of z,, and z, increases rapidly when increasing the number of

sessions.
Single link reliability

We first analyzed the reliability of single functional links between
ROlIs, as quantified by the ICC. In order to avoid potential biases due to
the parcellation, ROIs were obtained both using an anatomical (AAL)
as well as a functional parcellation recently proposed by Shen et al.
(2013). From our results we conclude that the average reliability of
single-link FC is quite low (=0.2) which is in agreement with the
literature (Shehzad et al., 2009; Birn et al., 2013). These results, as well
as all other results reported in the present work, are qualitatively equal
for the two parcellations. Interestingly, we found that the correlation
values of all links have an ICC drawn from the same distribution. In
other words, our data support the hypothesis of an overall homogeneity
in the reliability of functional links, in contrast to what has been
suggested in previous literature (Shehzad et al., 2009; Zuo and Xing,
2014).

A small ICC variance is crucial to distinguish between reliable and
unreliable links. To obtain a small ICC variance, a very large number of
both subjects and scan sessions is needed. To date, analyses of resting-
state fMRI test-retest reliability typically used a large number of
subjects with two or three scans per subject. We adopted the opposite
strategy, but still did not reach a lower ICC variance: we used 42 scans
for five subjects, and still the standard deviation of the estimated ICC
was approximately 0.2, which is similar to the values obtained from a
data-set containing 75 subjects and 3 scans Zuo and Xing (2014).
Therefore, to substantially decrease ICC variance in successive studies,
it is necessary to use either a larger number of subjects or scans. For
example, a fifth of the ICC standard deviation can be achieved with 100
participants instead of six, and 42 scans. These numbers point out the
difficulty of determining FC test-retest reliability empirically. However,
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we recall that 42 scans and five subjects (or 75 subjects and 3 scans) are
more than sufficient to obtain a good estimate of the average ICC (as it
can easily be tested numerically).

Sources of variability

In this study we characterized and quantified different sources of
variability in the correlation between different brain regions. Thanks to
the use of surrogate data, we could effectively distinguish between three
distinct sources: 1. the statistical uncertainty due to calculating
correlations from a finite number of samples (finite-sample variability);
2. Genuine session-dependent variation in functional correlations
between different brain regions within-subjects variability; 3.
Between-subject variability.

Separating these different sources of FC variability allows us to
quantify dynamic FC as well as link-to-link differences in reliability
itself. For example, between-subject variability shows time-consis-
tency, in contrast to the behavior of the finite-sample and within-
subject variances, as both decrease for increasing number of sample
points. While the decrease of the finite-sample variance with the
number of samples is trivial, neither the between- nor the within-
subject variances’ behavior can be predicted from previous analyses.

Moreover, from this result, and the results of Birn et al. (2013), we
can predict that within-subject variance of FC reaches a plateau, at
~0.012. Indeed, Birn and colleagues showed that the link reliability
reaches a maximum value (0.4) for scan duration of approximately
20 min. Such a low ICC value limits the use of single link FC as a
potential biomarker. Here, we showed that a possible solution is to join
multiple sessions to obtain an intermediate to high ICC. Here, 6—8
sessions of 5 min each are required per subject. This being said, it is
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clearly more convenient to use longer scan sessions to diminish the
minimal number of required scan sessions.

We showed that FC variability is in part due to the use of a finite
number of samples. Thanks to our surrogate-based analysis, we could
quantify the relative contributions of the finite- sample and genuine
variability. We found that this genuine (within-subject) variability is,
for 5min scan session, approximately equal to the finite-sample
variability. The sum of these two sources of variabilities are quantita-
tively in agreement with what reported in Laumann et al. (2015, 2016),
and more in general our results on the ICC seem in quantitative
agreement with what has been reported in other reliability studies
(Shehzad et al., 2009; Birn et al., 2013).

Despite all macro-regions having approximately the same (low)
ICC, there is some region-to-region variability. These differences could,
in principle, be caused by any of the three variances; however, we
showed that in fact it is mainly the between-subject variability that is
responsible for the slight differences in ICC between different regions.
For example, we found higher values of ICC in cerebellum and lower
values of ICC in pre-frontal cortex. Similar analysis were carried out in
Laumann et al. (2015); Mueller et al. (2013), however, in those studies
the three sources of variability were not separated, which makes the
results more difficult to interpret.

From link-wise unreliability to whole brain stability

We analyzed the similarity of the whole-brain spontaneous correla-
tion structure of the same subjects across different sessions, as well as
that between different subjects within a general linear model frame-
work (for similar approaches see Mueller et al. (2013); Finn et al.
(2015)). This model provides theoretical ground to understand and
solve an apparent paradox: how is it possible that low link-wise
reliability (Birn et al., 2013) goes together with high stability at the
global level (whole FC), as has recently been shown (Finn et al., 2015)?

To this aim, we studied the distribution of two similarity indices, R,,
and Ry, that measure the similarity (in terms of Pearson correlation
coefficients) between FC matrices of two sessions of the same subject
and of two subjects, respectively. Taking advantage of the multiple
sessions of our data set, we calculated the distribution of these indices
for an increasing number of concatenated sessions. In addition, we
obtained an approximate expression for the average and the variance of
the estimators of the distributions of R,, and R, (see Egs. 18 and 19).
These estimators are simple functions of the between- and within-
subject variances. It is straightforward to show that for an increasing
number of sessions, the average Z,, (the Fisher transform of R,)
converges to infinity, while the average Z,,, (the Fisher transform of Rp)
remains finite and that their variances are limited. Therefore, if the two
distributions do not overlap, the identification is perfect.

Finn et al. (2015) assessed the identification issue without directly
adopting these similarity indices. Moreover, they used an increasing
number of data-points within the same scan session instead of multiple
sessions. The latter is a considerable difference, and as we mentioned
before, based on the analysis of Birn and colleagues, we predict a lower
asymptotic value for the within-subject variance for scan sessions
longer than 20 min. This implies, following our analysis, that R,, has an
asymptotic limit (upper bound) for scan duration greater than 20 min.
This prediction is confirmed by the results shown in Fig. 3B in Finn
et al. (2015).

The relevance of this analysis goes beyond this result: indeed, we
hope that this statistical framework can be used as an general tool for
analyzing FC and to connect single-link analysis with the analysis of
macro-regions and the whole-brain FC.

Limitations

The resting-state literature has proposed several measures to
characterize spontaneous fMRI fluctuations (see for example the review
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by Zuo and Xing (2014). These measures can be related to single voxels
Zuo and Xing (2014)), to larger functional networks (based, for
example, on independent component analysis), or to the statistical
interdependencies between the time-courses of different voxels or
regions.

In this study we focused on only one measure, namely the Pearson
correlation coefficient obtained from the BOLD signals of different
pairs of ROIs. We considered this measure as a starting point, and
indeed all analyses performed here can be applied to alternative
measures as well. This choice is motivated by two factors: its simplicity,
a linear measure of the relationships between activities, and its
widespread use in the field of resting-state fMRI. However, in the
recent past, different measures of BOLD activities have been presented
(see the ones analyzed in Zuo and Xing (2014)) increasing the potential
of fMRI studies.

In our study, we investigated linkwise and whole-brain FC variability
using two parcellations: one based on anatomy, the AAL, and one based
on the functional parcellation (Shen et al., 2013). We did not find strong
quantitative differences in the results of the two parcellations. However,
different studies (e.g., the graph study Fornito et al. (2010)), illustrated
the relevance of the parcellation. Moreover, a recent study showed
possible pitfalls of these two parcellations (see e.g., Gordon et al., 2016)
due to their inexact registration of functional areas. Therefore future
analyses with the parcellations presented there is desirable, hopefully
with a comparative analysis between the available parcellations.

We assessed FC variability without directly analyzing its origin
(apart from head-motion). Other studies already started to focus on
this important aspect, that can have a very broad application, going
from physiological (body heat, cardiac and respiration artifacts, head
motion) to technical (machine noise, scanner type, experimental
instructions, data standardization, data pre-/post-processing strate-
gies) to brain status (e.g., Rack-Gomer, Liau et al. (2009); Birn (2012);
Shannon, Dosenbach et al. (2013); Yan et al. (2013); Hurlburt et al.
(2015); Yan et al. (2013); Power et al. (2012); Tagliazucchi and Laufs
(2014); Laumann et al. (2016)). It will be useful to capitalize on the
description developed in this work, and to use these insights when
planning future studies. This will likely improve our understanding of
the sources of variability in the human functional connectome.

The potential of resting-state functional connectivity is well illu-
strated by its ability to characterize both healthy and abnormal
cognitive processes and to predict perception and performance.
Further drawing from its potential, however, requires a systematic
assessment of its variability and test-retest reliability. Our study has
demonstrated how such an assessment, together with the application of
appropriate statistical concepts, helps to explain the apparent contra-
diction between local unreliability and global stability of resting-state
fluctuations in the human brain.

The dataset is freely available for usage in scientific research. To
prevent its circulation unrelated to research usage, we ask that
scientists interested in obtaining the dataset email S.K., corresponding
author of Filevich et al. (2017).
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