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Abstract

We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance 

expressiveness, interpretability and scalability. The fwRF is organized around the notion of a 

feature map—a transformation of visual stimuli into visual features that preserves the topology of 

visual space (but not necessarily the native resolution of the stimulus). The key assumption of the 

fwRF model is that activity in each voxel encodes variation in a spatially localized region across 

multiple feature maps. This region is fixed for all feature maps; however, the contribution of each 

feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: 

“where” parameters that characterize the location and extent of pooling over visual features, and 

“what” parameters that characterize tuning to visual features. The “where” parameters are 

analogous to classical receptive fields, while “what” parameters are analogous to classical tuning 

functions. By treating these as separable parameters, the fwRF model complexity is independent 

of the resolution of the underlying feature maps. This makes it possible to estimate models with 

thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF 

model has been estimated from data, spatial pooling and feature tuning can be read-off directly 

with no (or very little) additional post-processing or in-silico experimentation.

We describe an optimization algorithm for estimating fwRF models from data acquired during 

standard visual neuroimaging experiments. We then demonstrate the model’s application to two 

distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural 

network. We show that when Gabor feature maps are used, the fwRF model recovers receptive 

fields and spatial frequency tuning functions consistent with known organizational principles of 

the visual cortex. We also show that a fwRF model can be used to regress entire deep 

convolutional networks against brain activity. The ability to use whole networks in a single 

encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of 

uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, 

to regressing the activities of whole deep neural networks onto measured brain activity.
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1. Introduction

This paper describes and demonstrates the feature-weighted receptive field (fwRF) model, a 

new approach to building encoding models for visual brain areas. We initially developed the 

fwRF as a method for linking the visual features learned by deep artificial neural networks 

(DNNs) to activity in the human brain (measured, in our case, with fMRI). In recent years 

DNNs have been trained to perform visual processing tasks (e.g., human-level object 

recognition, natural image captioning, etc.) that previously could only be performed by 

biological visual systems [1]. They have also been shown to provide excellent models of 

processing in visual cortex [2, 3, 4]. For this reason, the internal representations used by 

DNNs provide a natural and compelling set of hypotheses about the visual features encoded 

by activity in real brains.

In previous work [5], we have argued that an excellent method for testing if a set of visual 

features (such as those learned by DNNs) is encoded by activity in the brain is to embed 

those features in an encoding model. An encoding model specifies a mapping from a set of 

visual features to a prediction of brain activity. The visual features in the model can be 

regarded as hypotheses about the visual features that might be encoded in brain activity. In 

encoding models, distinct visual features are each assigned a weight that indicates the 

importance of the visual feature for explaining measured brain activity. Important features 

will typically have large weights while unimportant features will have small weights. The 

weights for visual features are learned from a set of training data using an appropriate 

optimization algorithm—typically some form of regularized regression. Once the model 

weights have been learned, the model can be validated and compared to other models by 

testing its ability to predict brain activity in response to stimuli or task conditions that were 

not part of the training set.

For example, in the population receptive field (pRF) model of Ref. [9], the visual feature is 

simply a binary map of the pixels occupied by a high-contrast stimulus (e.g., a wedge, ring, 

or bar). For every voxel, this visual feature map is then pooled within a spatially localized 

area, the pRF, that best represent the measured voxel activity. On the other extreme, the 

semantic model of Ref. [16] considers several object category features (e.g. the presence of 

an animal, or a car, etc.) encoded as a vector of binary variables. The model is then 

constructed by associating a tuning parameter to every object category for every voxel. One 

of the main advantages of DNNs is that they automatically generate a set of hypotheses that 

interpolate between low-level contrast value features and high-level semantic 

representations. Our fwRF model is able to make effective use of this by encoding neural 

responses based on arbitrary feature maps (like those of a DNN) within a spatially localized 

visual area and thus provides a single unified framework for all such models.

The typical DNN is a gargantuan construct consisting of hundreds of thousands of nodes. 

The scale of these networks makes it challenging to fit them into the encoding model frame-

work. In developing the fwRF we considered four specific challenges that together make up 

the performance goals of the fwRF model:

• Expressiveness: One way to fit DNNs into the encoding model framework is to 

regress each layer of a DNN onto brain activity independently. Although this 
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approach has proven highly effective [2, 4], this method for reducing model scale 

comes at a cost of model expressiveness. We expect the costs to be severe in 

densely connected networks that do not admit an obvious decomposition in 

relatively small stacks of feature maps. Thus, an explicit performance goal of the 

fwRF modeling approach is to be able to construct voxelwise encoding models 

that simultaneously regress all feature maps in a DNN onto brain activity.

• Interpretability: Models with many thousands (or millions) of feature weights 

pose an obvious interpretive challenge. One aspect of this challenge is to extract 

simple visual cortical functional descriptors such as receptive field sizes and 

centers and tuning functions for the visual features in the model. Thus we sought 

a modeling approach that would yield explicit receptive field-like locations and 

pooling size descriptors, as well as explicit feature tuning functions that could be 

easily read-off from model parameters.

• Scalability: The regularized regression techniques we have used in the past [6, 7, 

8] are likely to incur prohibitive memory or compute-time costs when scaled up 

to encoding models that use entire DNNs. Thus we sought to impose a set of 

reasonable constraints on our encoding model that would limit the growth of 

model parameters with model expressiveness without compromising the 

accuracy of model predictions.

• Compatibility: Any approach to building encoding models for visual areas 

should be able to use visual features from any source including, but not limited 

to, DNNs. Thus, while achieving the three goals mentioned above, we wanted a 

modeling approach that could also be used to construct encoding models that 

have already been proven to be effective, such as the Gabor wavelet pyramid 

model [6], the population receptive field model [9], the motion energy model [8], 

semantic models [16], and models that use abstract features derived from other 

machine learning approaches [10].

To meet these performance goals we based the fwRF modeling approach on three key design 

principles:

• Visual features of the model organized into feature maps: In a fwRF model, 

visual features must be configured as pixels in a stack of feature maps. A feature 

map is a transformation of visual stimuli into abstract visual features. Each visual 

feature is a pixel in an image that preserves the topology of visual space (but not 

necessarily the native resolution of the stimulus). Note that this is a very general 

requirement, since features that consist of a single value (e.g., the nodes in a fully 

connected layer of a DNN) can be treated as feature maps with a single pixel.

• Explicit receptive field-like model: Within visual areas, population activity at 

each point in the cortical sheet encodes visual features within a limited and 

contiguous region of the visual field. For this reason, the fwRF model contains 

an explicit receptive field-like model which we call the feature pooling field 
because it pools over pixels in feature maps (as opposed to pixels in the 

stimulus). The feature pooling field has an explicit center that indicates the 
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location of a feature map that makes the largest contribution to the activity 

measured in the voxel, and a feature pooling radius that measures how quickly 

the contribution decays with distance from the center.

• Space-feature separability: In a fwRF model the location and radius of the 

feature pooling field are independent of the content of feature maps. The model 

thus assumes that activity measured in a single voxel will not encode distinct 

features at distinct locations, but rather a weighted combination of features at a 

single location. This space-feature separability makes the fwRF model scalable 

by keeping the complexity of the model independent of the resolution of the 

feature maps.

Here we show that the fwRF model can recover the location and radius of feature pooling 

fields and feature tuning functions that are consistent with known principles of cortical 

organization with minimal post-training analysis (interpretability), using either a small set of 

Gabor maps (compatibility) or a massive set of feature maps from a deep neural network 

(expressiveness), while achieving state-of-the art prediction accuracy within a reasonable 

(i.e., a few hours) training time (scalability).

2. Methods and materials

2.1. Data

The data used in this study are described in detail in Ref. [6]. Briefly, functional BOLD 

activity was measured in the occipital lobe with 4T INOVA MR scanner (Varian, Inc.) at a 

spatial resolution of 2mm × 2mm × 2.5mm and a temporal resolution of 1 Hz. During the 

acquisition, subjects viewed sequences of 20° × 20° greyscale natural photographs while 

fixating on a central white square. Photographs were presented for 1s with a delay of 3s 

between successive photographs. The data, available online at https://crcns.org/data-sets/vc/

vim-1, is partitioned into distinct training and validation sets. The training set consists of 

estimated voxel activation in response to 1,750 photographs while the validation set consists 

of estimated voxel activation in response to 120 photographs. Figures in this study refer to 

data from subject 1 of the vim-1 dataset1.

2.2. Feature-weighted receptive field model

In this section we describe the general form of the feature-weighted receptive field (fwRF) 

model, the algorithm for optimizing the model to predict activity in individual voxels, two 

specific variants of the fwRF model and an alternative to the fwRF model.

2.2.1. General form and motivation of the model—The fwRF model for a single 

voxel has three main components: a stack of feature maps, a vector of feature weights, and a 

feature pooling field. Feature maps are maps of visual features over visual space (see Fig. 

1A and B for examples). A feature map can be thought of as an image in which the pixels do 

not necessarily indicate the amount of light or color at a particular location, but may instead 

1Consistent results were obtained for subject 2, as shown in Appendix A.5. However, subject 2 proved much more resilient to 
modelling for all models discussed here.
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indicate the degree to which a potentially abstract visual feature is present or absent. A 

visual feature can be any sort of visual description of an image. Gabor wavelets are 

examples of visual features. Convolving an image with a vertically oriented Gabor filter, for 

example, produces a map of vertically oriented edge features. Objects can also be considered 

visual features. For example, we could obtain a “car” feature map by simply setting to 1 the 

value of image pixels occupied by a car and setting to 0 the value of all other pixels. 

Features can be much simpler than edges and/or objects. In the case of the population 

receptive field (pRF) model [9], the feature map is simply a binary map of the pixels 

occupied by a high-contrast stimulus (e.g., a wedge, ring, or bar). Formally, a feature map is 

a matrix function. Given an image St, the feature map Φk(St) outputs a matrix where 

elements ϕij
k (St) are feature map pixels. A fwRF model may include multiple (typically 

between 1 and 104) feature maps, so we index each feature map by k, and let Φ = {Φk(S)} 

denote the full set of K feature maps in a fwRF model.

Why should a fwRF model include more than one feature map? In many cases, we will not 

know what features will best explain activity in the brain regions of interest (ROIs). Thus, Φ 
will ideally include enough feature maps to capture the breadth of reasonable hypotheses 

about what is encoded in the activity of ROIs. We then use training samples (activity/image 

pairs) to infer which of the features are most important for explaining the activity of each 

voxel. We do this by assigning to each feature map in a fwRF model an associated feature 

weight, wk, that indicates how important the kth feature map is for predicting how activity 

will vary across images. These feature weights are the “what” parameters of the model since 

they indicate the visual features that are important for explaining activity in the voxel. Note 

that when constructing multiple voxelwise encoding models, the feature maps Φ are the 

same for each voxel, but the feature weights vary across voxels.

A final and critical assumption of the fwRF model is that activity measured in individual 

voxels is driven most strongly by feature map pixels that are close to the center of the 

voxel’s feature pooling field. The farther the feature map pixels are from this center, the 

weaker the contribution they will make to measured brain activity. We assume that both the 

center and radius (in units of deg.) of the feature pooling field is the same across all feature 

maps. The feature pooling field can thus be thought of as a window on the feature maps that 

does not change from one map to the next. This is a reasonable assumption when the number 

of pixels in a feature map times the pooling size of the individual pixels is roughly constant 

across all feature maps. In such a case, the feature pooling field covers less and less pixels in 

a feature map as the resolution decreases, but each feature unit in turns inherently pools over 

a larger visual area.

In this treatment, we model the feature pooling field as an isotropic 2D Gaussian blob 

(although they could be more complicated functions)

g(x, y; μx, μy, σg) = 1
2πσg

exp  −
(x − μx)

2 + (y − μy)
2

2σg
2 , (1)

St-Yves and Naselaris Page 5

Neuroimage. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the mean parameter μ = (μx, μy) is the feature pooling field center and the variance 

parameter σg is the feature pooling field radius. To predict the response of the neuron or 

voxel to an image St, the feature maps for that image are formed, the feature pooling field is 

applied to each feature map, and the feature weights are applied to these outputs. Formally:

r t = ∑
k

K
wk

−D/2

D/2

−D/2

D/2
g(x, y; μx, μy, σg)ϕi(x) j(y)

k (St)dxdy (2)

where r̂t is the predicted activity in response to image St and D is the total visual angle 

sustained by the image St. The discretization depends on the resolution of the feature map 

under consideration such that i(x) = ⌊(2x + D)/2Δ⌋ (likewise for j(y)) where Δ = D/nk is the 

visual angle sustained by one pixel of a feature map with resolution nk × nk. This definition 

reduces to a discrete weighted sum when the resolution of a feature map is very high relative 

to the size of the feature pooling field (i.e. when Δ ≪ σg) and reduces to a single feature map 

spatial unit being exclusively selected when the size of the feature pooling field is smaller 

the resolution of the feature map. In practice, there is often an additional voxel-wise bias 

parameter b, which we omit for simplicity since it does not play a role in the validation 

accuracy.

When optimizing the model for a particular voxel, the goal is to infer values for the feature 

pooling field parameters σg and μ, and feature weights w = (w1, …, wK) that result in 

accurate predictions of the unit’s response to any image.

2.2.2. Optimization algorithm for the fwRF model—The optimal fwRF model 

parameters were estimated by minimizing a least-squares cost for each voxel. Let us write 

the parameters concisely as Θ = (w, μ, σg), then the cost for a single voxel is

L(Θ) = ∑
t

(rt − r t(Θ))2, (3)

where rt is measured activity in response to image St, and r̂t(Θ) is the prediction of the fwRF 

model (as defined above) expressed as an explicit function of the model parameters Θ.

For fixed feature pooling field parameters, the fwRF model is linear in the feature weights w 
and one can optimize the feature weights via regularized regression. However, the model has 

a nonlinear dependence on the feature pooling field parameters μ and σg. Therefore, we 

construct a grid of candidate feature pooling field locations and sizes. For each of these G 
candidate feature pooling fields, we perform stochastic gradient descent (with early 

stopping) on the feature weights. Our choice of early stopping as a regularizer is motivated 

by its low computational cost and by other demand of the implementation. Under this 

procedure, for each candidate feature pooling field, the gradient of L (Θ) with respect to w is 

computed using 80% of the data samples in the training set. Gradient descent is performed 

for all candidate feature pooling fields for a fixed number of iterations, resulting in G 
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candidate models for the voxel. The model that minimizes cost on the remaining 20% of the 

training data is considered the optimal model for the voxel and retained for further analysis.

2.2.3. Software implementation—The fwRF models described here were implemented 

using Theano, a Python toolkit for machine learning [11]. A more detailed description of the 

main procedures is given in the appendix (Algorithm A.1) as well as an estimate of the 

model scaling under various conditions (Figure A.1). Furthermore, executable IPython 

notebooks that illustrate the construction and training of the fwRF models described here are 

available online at https://github.com/styvesg/fwrf.

2.3. Details of the models

In the following, we will consider three different models: A fwRF model based on Gabor 

wavelets (Fig 1B), a fwRF model based on feature maps from a DNN (Fig 1C), and a 

layerwise ridge regression based on the same DNN (Fig 2).

2.3.1. fwRF model with Gabor wavelet feature maps (Gabor-fwRF)—For the 

Gabor-fwRF model, each of the K feature maps is associated with a single 2D complex-

valued Gabor wavelet. We’ll denote the gabor wavelet h (ωk, θk), where ωk and θk are the 

spatial frequency (cycles/degree) and orientation (radians) of the wavelet, respectively. Then 

for the Gabor-fwRF, Φk(S) = log  1 + |S ∗ h(ωk, θk)| . In this study, we used K = 96 gabors at 

12 log-spaced spatial frequencies between 0.25 cyc./deg. and 6.0 cyc./deg. For each 

frequency we sampled 8 evenly-spaced orientations between 0 and 7π/8. The grid of 

candidate feature pooling fields included 16 log-spaced radii between σg = 0.25 and σg = 8. 

Candidate feature pooling field centers were spaced 0.625 degrees apart (regardless of 

radius) for a total of G = 16, 384 candidate feature pooling fields. The model for each voxel 

was run for 20 epochs of stochastic gradient descent with batch size of 200 and step size of 

10−3 starting from an initial state of w = 0. Increasing the maximum number of epochs 

seemed to confer no further improvement.

2.3.2. fwRF model with Deep Convolutional Neural Network feature maps 
(Deepnet-fwRF)—Each of the K feature maps in the Deepnet-fwRF model is associated 

with a feature map in one layer of a deep convolutional neural network. The network 

contains one input layer, 5 convolutional layers (interleaved with max-pool layers) and 3 

fully-connected layers. The depth (number of feature maps) and resolution (square root of 

the number of pixels in each feature map) for each convolutional layer was (96, 55), (256, 

27), (384, 13), (384, 13), (256, 13) respectively. The fully-connected layers contained 4, 096, 

4, 096 and 1, 000 units respectively. The network was trained to classify images in the 

ImageNet database (http://image-net.org) according to 1, 000 distinct class labels. For a 

complete description of the network architecture and training, see [12]. The exact structure 

and trained network weights can be downloaded as part of the Caffe package [13] and is 

referred therein as the bvlc_reference_caffenet network (details can be found at http://

caffe.berkeleyvision.org/model_zoo.html).

All feature maps from all convolutional layers, as well as up to 1024 units from the fully-

connected layers (when the number of feature maps in a layer exceeded this amount, we 
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used the first 1024 feature maps which exhibited the most variance to the training set), were 

used for the Deepnet-fwRF model resulting in a model with 4, 424 feature weights. The grid 

of candidate receptive fields included 10 log-spaced receptive field sizes between σg = 0.7 

and σg = 8.0. Candidate feature pooling field centers were spaced 1.33 degrees apart 

(regardless of size) for a total of G = 2250 candidate feature pooling fields. The model for 

each voxel was run for 20 epochs of stochastic gradient descent with batch size of 200 and 

step size of 10−4 starting from an initial state of w = 0.

2.3.3. Layerwise Deepnet regression model (Deepnet-lReg)—In addition to the 

fwRF models described above we constructed a layerwise deepnet regression model for each 

voxel, as shown in Figure 2, following the work of Ref. [2]. For each voxel, 9 independent 

models (corresponding to the 5 convolutional layers, three fully-connected, and the final 

label probability layer of the DNN, respectively) were estimated and evaluated on a held-out 

subset (a randomly selected 10% of the samples) of the training data. Suppose that the 

model based upon layer l has the lowest loss on the held-out subset of the training data. If 

we denote pixel (i, j) of the kth feature map of layer l as ϕij
lk, then the Deepnet-lReg model is 

specified as follows:

r t = ∑
i, j, k

ϕij
lk(St)wij

lk (4)

Note that this layerwise regression model assigns an independent weight to each pixel in 

each feature map, resulting in a total of Kl × Nl parameters, where Kl and Nl are the depth 

and number of units, respectively, of layer l. Weight optimization was performed via ridge-

regression. The ridge hyperparameter was estimated using a brute force search over 14 log-

spaced values between 10−6 and 108. The layer/hyperparameter pair that minimized cost on 

the held-out subset was considered optimal and retained for further analysis (Fig. 2).

2.4. Intepretation of the feature pooling field radius

The feature pooling field specifies the center and radius (i.e., standard deviation) of a 2D 

isotropic Gaussian function, g, that is applied to each feature map in the encoding model. It 

is important to emphasize that the pooling radius σg models pooling over feature map pixels, 

not pixels in the stimulus. The pixels in any feature map will have their own intrinsic pooling 

radius, σf, that specifies the region of the visual stimulus over which pixels are pooled to 

compute the feature transform (Fig 3). For some models, the pooling radius of the feature 

map pixels is known explicitly. For example, in the population receptive field (pRF) model 

of Ref. [9], the pooling radius of each feature map pixel is determined solely by the 

downsampling applied (if any) to the visual stimulus as a pre-processing stage before model 

fitting. In the case of the Gabor-fwRF, the pooling radius of the feature map pixels is 

determined by the Gaussian envelope of the Gabor wavelet, which is known explicitly. 

Under the assumptions that the feature map responses are equivariant with the stimuli and 

that the feature map pixel intrinsic pooling is near Gaussian, we can make use of the 

following approximation:
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σpRF
2 = σg

2 + σf
2, (5)

where σf is the pooling radius of the feature map that makes the largest contribution to the 

voxel prediction accuracy and σpRF is the standard deviation of the Gaussian pooling 

function used in a pRF analysis. For the Gabor-fwRF model (where σf is known), these 

assumptions are well respected and we applied this relation to report the estimated pRF 

radius σpRF.

The situation is far more complicated for the Deepnet-fwRF model. Not only do the feature 

maps of Deepnet-fwRF model span multiple scales, but the exact pooling radius of the pixel 

in any feature map is only implicitly specified by the convolutional filters learned when the 

DNN was trained to label objects. Furthermore, the DNN node responses in one feature map 

are generally not equivariant with the stimulus due to the progressive necessary build-up of 

invariant responses. Thus, although it is safe to assume that feature map pixels in the top 

layers of the DNN have a larger pooling radii than pixels in lower layers, the exact radii (or 

its deviation from the gaussian approximation) can be difficult to estimate. Thus, Eq. 5 

breaks down for the Deepnet-fwRF model and we will report only the feature pooling field 

radius σg. Given these considerations, the feature pooling field radius in most fwRF models 

must be treated as a lower bound on the pRF radius that would be obtained from a dedicated 

retinotopic mapping experiment.

2.5. Model evaluation comparison

For each voxel, the prediction accuracy of each of the three models was evaluated and 

compared. Model evaluation was performed by correlating a model’s predicted responses r̂ 
with measured responses r across all 120 samples in the validation set. This resulted in a 

measure of prediction accuracy ρ ∈ [−1, 1] for each voxel. To compare models, we 

constructed accuracy/advantage plots (Fig. 7). To construct these plots, we first created a 

scatter plot in which each dot corresponds to a single voxel. The position of each dot along 

the vertical axis indicates the average prediction accuracy of the two models being 

compared, while the offset to the left or right of the vertical line at 0 indicates the difference 

in prediction accuracy between the two models. Thus, position along the horizontal axis 

indicates the advantage in prediction accuracy of one model relative to the other. Second, the 

individual voxels were binned to create an estimate of voxel density in the accuracy/

advantage plane.

2.6. Feature map contribution to the prediction accuracy

For both the Gabor-fwRF and the Deepnet-fwRF, the feature maps all contribute linearly to 

the final prediction according to Eq. 2. While it may be common to look at the weights of 

this linear combination to determine the relative importance of each contribution, the value 

of the weights themselves are dependent upon the typical values of each feature map, such 

that it makes any comparison across feature maps difficult. For this reason, and due to the 

linearity of the model, we chose to look instead at ρl = cov(r l, r)
t
/ var(r )tvar(r)t where r̂l is 
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the same as Eq. 2 but where the index k over feature maps only runs over k ∈ Kl, a subset of 

feature maps sharing certain properties. For a list of disjoint subset Kl that cover all K 
feature maps, it follows that Σlρl = ρ where ρ is the Pearson correlation coefficient between 

the actual and predicted activity for that voxel. We therefore call these ρl’s the contributions 

to the total prediction accuracy.

2.7. Statistical significance

In any voxel dataset, there is a large fraction of voxels that are unmodelable. It is important 

to remove these voxels from any further analysis of the various tuning properties of voxels. 

We evaluated the significance threshold based on a permutation test of the voxel prediction 

and found that all voxels whose prediction accuracies were above ρth = 0.27 had p < 0.001 

relative to the null hypothesis distribution of voxel prediction accuracy. We found roughly 

between one and two thousands such voxels regardless of the model fit.

3. Results

We fit and then evaluated fwRF models using a previously published and publicly available 

dataset [6, 7]. The dataset contains estimates of functional BOLD activity in response to 

greyscale natural photographs from voxels in visual brain areas V1, V2, V3, V4, V3A, V3B, 

and LO. Voxels in visually responsive cortex anterior to LO, labeled “anterior occipital 

cortex” in a previous publication [7] are also included.

3.1. fwRF models recover feature pooling fields and tuning functions for both simple and 
complex features

An established encoding model for early visual areas is the Gabor Wavelet Pyramid (GWP) 

model [6, 7]. To ensure that the fwRF modeling approach is compatible with this established 

model we first designed a fwRF version of the GWP, referred to here as the Gabor-fwRF 

model. To construct feature maps for the Gabor-fwRF model each photograph in the 

experimental stimulus set was convolved with each of 96 complex Gabor wavelets (12 

spatial frequencies, 8 orientations) and then passed through an elementwise nonlinearity (see 

Methods for complete details). This procedure produced 96 distinct feature maps that were 

used for the Gabor-fwRF model. For each voxel in the dataset we estimated the optimal 

feature weights and feature pooling field by performing gradient descent on the feature 

weights and brute-force grid search on the feature pooling field radii and centers. The 

Gabor-fwRF feature pooling fields conformed to well-known patterns of visual receptive 

field organization (Fig. 4A–C). In lower visual areas, feature pooling fields are relatively 

small and uniformly tile the visual field (e.g., Fig. 4A, V1 panel) while in higher visual 

areas, receptive fields are relatively large and concentrated at the fovea (e.g., Fig. 4A, LO 

panel). In all areas, the Gabor-fwRF uncovers a positive linear relationship between pooling 

size and eccentricity (Fig. 4B). The slope of the lines relating the feature pooling field 

eccentricity to the estimated pRF radii σpRF in each ROI are comparable to those presented 

in previous studies [9]. As expected, feature pooling field radii (σg) bound the pRF radii 

from below (Fig. 4C), and, like the pRF, exhibit an attenuated size/eccentricity relationship 

in early visual areas.
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The spatial frequency tuning functions of the Gabor-fwRF model (Fig. 4D) also conform to 

well-known properties of visual cortical organization. Voxels with feature pooling field 

centers that are relatively close to the fovea prefer (on average) relatively high spatial 

frequencies. Lower visual areas prefer larger spatial frequencies more than higher visual 

areas. Voxels with receptive fields relatively far from the fovea prefer relatively small spatial 

frequencies, with lower visual areas again having a higher spatial frequency preference than 

higher visual areas.

A known failing of encoding models that rely on Gabor-like visual features is that their 

prediction accuracy becomes increasingly poor when applied to intermediate and higher 

cortical visual areas. However, recent work [2, 4] has shown that feature maps sourced by 

DNNs that have been trained to classify objects can be used to significantly improve the 

prediction of encoding models for intermediate and high-level visual areas. We therefore 

used the fwRF modeling approach to design a Deepnet-fwRF in which the feature maps are 

taken from the internal representations of a deep convolutional neural network. The 

Deepnet-fwRF model included all feature maps from 5 distinct convolutional layers, as well 

as up to 1, 024 feature maps per layer from 3 fully-connected layers. This resulted in a fwRF 

model with 4, 424 feature weights.

The Deepnet-fwRF model reveals retinotopic organization consistent with that revealed by 

the Gabor-fwRF model. The feature pooling field radius recovered from the models exhibit a 

positive linear dependence upon eccentricity, and increase monotonically across the 

hierarchy of visual ROIs. Voxelwise estimates of feature pooling field center were consistent 

with estimates obtained from the Gabor-fwRF model (Figure 5C). The distance between 

centers provided by the two models decreased with the quality of their predictions (up to a 

limit due to the finite grid of feature pooling field centers used by the optimization 

algorithm). These results suggests that the ability of the fwRF modeling approach to uncover 

the retinotopic organization of visual areas is relatively insensitive to the feature maps used 

in the encoding model, so long as those feature maps confer accurate model prediction 

accuracy.

As expected, the Deepnet-fwRF also uncovered feature tuning functions that align the 

increasing complexity of the network’s feature maps with the increasing complexity of 

visual representations in the brain (Fig. 5D). The average contribution of feature maps in 

each layer of the network to each ROI depended on the position of the ROI within the visual 

hierarchy. Deepnet-fwRF models for V1 and V2 assigned little contribution to network 

layers 5 and higher while the contributions assigned to layers 5 and higher increased 

dramatically for later visual areas V3, V4, and LO. However, note that even ROIs that 

received a relatively strong contribution from a single layer (e.g., V1 and DNN layer 

“conv1”) nevertheless received a non-negligible contribution from other DNN layers as well 

(Fig. 6). This is especially true for voxels with peripheral feature pooling field centers Fig. 

5D, right panel). For these voxels the Deepnet-fwRF model distributes contributions across 

DNN layers much more uniformly. This suggests that the Deepnet-fwRF’s ability to linearly 

combine feature maps across layers is a potentially important attribute of the model.
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3.2. The Deepnet-fwRF model predicts activity more accurately than less expressive 
models

Our analysis of the Deepnet-fwRF feature weights demonstrate that feature maps from 

across the DNN hierarchy contribute to prediction accuracy in all brain ROIs (Figure 6). The 

capacity for cross-layer blending of feature maps makes the Deepnet-fwRF model highly 

expressive, which may in turn allow it to make more accurate predictions than models that 

are less expressive. To test this hypothesis, we compared the prediction accuracy of the 

Deepnet-fwRF to the Gabor-fwRF model and to an encoding model that runs a layerwise 

regression of DNN feature maps (Deepnet-lReg). Under the Deepnet-lReg model, weights 

are assigned to every pixel in every feature map of a single DNN layer that is selected via a 

brute-force optimization procedure. Thus the Deepnet-lReg model effectively imposes a 

hard layerwise sparseness constraint. This can be contrasted to fwRF models, which impose 

a hard spatial constraint in the form of space-feature separability, but do not impose any 

constraint on the combination of DNN layers that contribute to each model.

We found that, for the current dataset, the Deepnet-fwRF model has a significant advantage 

in prediction accuracy over both the Gabor-fwRF and Deepnet-lReg models (Fig. 7). For 

visual areas V1, V2, and V3 the advantage over the Gabor-fwRF model is subtle in general 

and is in fact non-existent for voxels with feature pooling field centers near the fovea (Fig. 

8). As shown on Figure 4D, foveal voxels are dominantly tuned to high spatial frequencies 

which are not sufficiently captured by the network used here. This suggest an area of 

improvement for this particular DNN model. The advantage of the Deepnet-fwRF model 

over the Deepnet-lReg model in early visual areas is more pronounced. The Deepnet-fwRF 

model more accurately predicts activity for 90% of these voxels, including voxels for which 

the Deepnet-lReg model fails completely. For visual areas V4, V3A/B, and AOC the 

Deepnet-fwRF model also enjoys an advantage in prediction accuracy, out-predicting the 

Gabor-fwRF and Deepnet-lReg models for an average of 80% of the voxels. Under the 

assumption that any two of these models are statistically identical, we found that a model 

advantage greater than 6% over another have at least p < 0.05 in the worst case.

4. Discussion

We have introduced the feature-weighted receptive field (fwRF), a new approach to building 

voxelwise encoding models for visual brain areas. The results of this study suggest that the 

fwRF modeling approach can be used to achieve the performance goals of expressiveness, 

scalability, interpretability and compatibility laid out above. The key design principle of the 

fwRF modeling approach is space-feature separability, which endows the model with an 

explicit receptive field-like component that facilitates interpretation, and makes it possible to 

scale the number of feature maps in the model without incurring a per-pixel increase in 

model parameters. We find that when this approach is applied to a deep neural network with 

thousands of feature maps, the resulting encoding model achieves better prediction accuracy 

than comparable encoding models for most voxels in the visual system.
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4.1. Relationship to previous work

Several important voxelwise modeling approaches have preceded the fwRF modeling 

approach. One very popular and important class of models are those designed specifically 

for retinotopic modeling. This includes the inverse retinotopy method [14] and the 

population receptive field method [9]. These methods permit estimation and detailed 

analysis of the locations and sizes of voxelwise receptive fields. However, they do not 

include an explicit feature map. As a consequence, they do not reveal any information about 

tuning to visual features (e.g., spatial frequency, orientation) and must be estimated with 

dedicated retinotopic mapping experiments that utilize stimuli optimized for the purpose.

The fwRF model is a special case of the linearized, regularized regression approach 

described in [15]. This more general approach also depends upon the construction of a set of 

nonlinear features. Unlike the fwRF, these nonlinear features are not required to be arranged 

in a feature map. Like the fwRF, they represent hypotheses about the visual features encoded 

in brain activity. The fwRF model overcomes two limitations of this more general approach. 

First, in the more general approach the number of model parameters scales with the number 

of feature map pixels. This pixelwise scaling necessarily imposes a trade-off between the 

resolution and the number of feature maps used in the model. Second, under the general 

regression approach deriving an explicit receptive field and feature tuning function from 

models weights often requires in-silico experiments on the models. This can in fact be a very 

powerful tool for model interpretation, but ideally it should not be necessary for recovering 

basic receptive fields and feature tuning properties.

4.2. Using the fwRF to measure receptive field size

The fwRF model yields a receptive field-like size measure that we have referred to as the 

“feature pooling field radius”. We took pains to emphasize that this measure, σg, is 

importantly different from the more familiar population receptive field (pRF) size, σpRF, 

which is in turn importantly different from the classical receptive field sizes of single 

neurons [9]. The differences between these measures underscore the fact that receptive field 

size depends entirely upon the features being pooled over. Thus whenever possible pooling 

sizes should be interpreted in light of the pooling required to compute the features being 

represented. This “feature pooling”, as w e have called it, is not always easy to estimate. 

However, we have shown that even when these estimates are not available, the feature 

pooling field radius σg can provide a lower bound on pRF size that exhibits the positive 

relationship between size and eccentricity that is a hallmark of visual cortical organization.

4.3. Using the Deepnet-fwRF to map changes in representational complexity across visual 
areas

Our Deepnet-fwRF model results are qualitatively consistent with those reported in Ref. [2], 

which show that changes in representational complexity across visual brain areas and layers 

of the DNN are well-aligned. However, a quantitative comparison of the tuning properties 

between models proved difficult because it can easily be shown that a Deepnet-fwRF model 

applied to each DNN layer independently and then selected for accuracy on an holdout set 

gives a different picture where certain layers dominate much more over layers that offered 

only small contributions in the full model. Nevertheless, the qualitative gradient of 
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complexity remains the robust hallmark of these models, regardless of the measure used to 

express tuning.

Furthermore, analysis of the Deepnet-fwRF model weights (Figures 5D and 6) shows that 

the contributions to the predictions for any ROI are widely distributed across DNN layers, 

particularly for voxels with peripheral feature pooling field centers. This may reflect the fact 

that activation in different DNN layers can make redundant contributions to the Deepnet-

fwRF model predictions. For example, “conv1” alone may be able to explain 90% of the 

explainable variance of a voxel in V1 while, at the same time, “conv2” alone would be able 

to explain 85% of it, with a large overlap between the two predictions. As a result, the 

variance explained by the Deepnet-fwRF model is distributed across layers when several 

layers are used in conjunction. However, some explained variance remains unique to specific 

layers which account for the clear gradient of complexity observed.

Our analysis also shows that idiosyncrasies of the underlying DNN can violate the regularity 

of the alignment of ROIs and DNN layers, with some layers contributing only very little in 

all ROIs. For example, the highest convolutional layer “conv5” made the smallest 

contribution to all ROIs, which occurs near the inflection point in the layer tuning functions 

for all brain areas (Fig. 5D). This could be related to the fact that “conv5” is itself a special 

point in the network architecture where the network switches from a convolutional to a fully-

connected architecture after “conv5”.

4.4. Prediction accuracy advantage of the Deepnet-fwRF

The general advantage in prediction accuracy of the Deepnet-fwRF model over the Gabor-

fwRF and Deepnet-lReg models is a strong endorsement for the fwRF modeling approach. 

Our results suggest that the Deepnet-fwRF out-predicts the Gabor-fwRF model because the 

Deepnet-fwRF contains feature maps that are more appropriate for explaining intermediate 

visual areas. While effective models for early visual areas based on Gabor-like features, and 

higher visual areas based on semantic features [7, 10, 16], have been available for some 

time, intermediate visual areas have been most resistant to modeling. The delivery of an 

encoding model that makes predictions for intermediate areas that are as accurate as those of 

the aforementioned models for early and object-specific visual cortex would seem to be one 

of the most salient findings. Exactly what contribution the intermediate visual areas make to 

visual processing is still unknown, since the function of the DNN layers that most strongly 

contribute to these areas in the Deepnet-fwRF model is unknown. However, these prediction 

results effectively quarantine the problem, replacing the challenge of interrogating the brain 

in vivo with the challenge of interrogating a DNN network in silico.

There are three possible reasons for why the Deepnet-fwRF model out-predicts the Deepnet-

lReg model, none of which are exclusive. One possible reason is the increased 

expressiveness of Deepnet-fwRF model. Analysis of Deepnet-fwRF model weights suggest 

that the model takes advantage of this expressiveness by distributing weights across layers. 

A second, related possibility is that the space-feature separability imposed by the Deepnet-

fwRF model is a more appropriate form of regularization than the layerwise sparseness (and 

within-layer smoothness) imposed by the Deepnet-lReg model. Supporting this possibility is 

the fact that the Deepnet-fwRF model seems to be able to accurately predict activity in 
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voxels that are predicted very poorly by the Deepnet-lReg model, suggesting that the 

Deepnet-fwRF model more effectively rescues voxels with poor signal-to-noise 

characteristics. Finally, it is well-known that a model’s prediction accuracy depends heavily 

upon an accumulation of many idiosyncratic choices. An alternate set of equally reasonable 

choices might have produced a less stark contrast between the prediction accuracy of the 

Deepnet-fwRF and Deepnet-lReg models. We therefore interpret these results as a 

suggestion that the increased expressiveness made possible by the Deepnet-fwRF model is a 

worthwhile attribute that merits future application and further experimentation.

4.5. Dynamic fwRF models

The fwRF models in this study are static in the sense that predictions of activity at time t 
depend only on concurrently presented stimuli, and not on the past history of stimulus 

presentation. This choice was appropriate because the temporal dynamics of the voxel 

activities had already been modeled out of the data (see Ref. [6]). However, the fwRF 

approach can easily accommodate dynamic datasets by including time-shifted copies of each 

feature map, such that

r t = ∑
k

K
∑

τ

T
wτk

−D/2

D/2

−D/2

D/2
g(x, y; μx, μy, σ)ϕi(x) j(y)

k (St − τ)dxdy (6)

where τ ∈ [0, T] indexes time shifts. Under this approach, each feature map would have an 

associated temporal kernel wk = (w0k, …, wTk) instead of a single static weight wk. These 

temporal kernels would be estimated via gradient descent.

Alternatively, we might enforce space-time-feature separability by including an explicit 

temporal kernel function

r t = ∑
k

K
wk∑

τ

T
h(τ)

−D/2

D/2

−D/2

D/2
g(x, y; μx, μy, σ)ϕi(x) j(y)

k (St − τ)dxdy (7)

where h(·) is the explicit temporal kernel function. Ideally, this function would have a small 

number of shape parameters that would be estimated–like the receptive field parameters–via 

brute-force search.

4.6. The Gaussian pooling field

The fwRF models presented here used a 2D Gaussian feature pooling field whose radius was 

fixed for all feature maps. While keeping the radius constant has the advantage of reducing 

the number of parameters of the model, it also reduces its expressiveness. Allowing the 

feature pooling field radii to vary across the feature map would allow the model to capture, 

among other things, receptive fields with a “Mexican hat” profile that enforce a suppressive 

band around an excitatory center. Furthermore, any receptive field function with a small 

number of shape parameters could be trained using the gradient-descent with grid-search 
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optimization algorithm presented here. There may very well be a more optimal choice of 

feature pooling field structure, but we will need future studies to confirm this.

5. Conclusions

We have introduced the feature-weighted receptive field (fwRF), a new approach to building 

voxelwise encoding models for visual brain areas. The results of this study suggest that the 

fwRF modeling approach has satisfied its four stated performance goals of expressiveness, 

scalability, interpretability and compatibility. The key design principle of the fwRF 

modeling approach is space-feature separability which makes it possible to consider large 

number of feature maps without incurring a per-pixel increase in model parameters. Finally, 

when applied to a deep neural network with thousands of feature maps, the resulting 

encoding model achieved state-of-the-art prediction accuracy for voxels in the visual system.
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Appendix A

A.1. Hardware

All instances of the fwRF model presented in this paper and the model throughput 

benchmark have been run on a system equipped with a Intel 6 cores i7-5930K processor, 128 

Gb of RAM, and a dedicated NVIDIA Titan X (Maxwell) video card (12 Gb of VRAM).

A.2. Description of the fwRF algorithm

The fwRF algorithm is divided into two main procedures: First, we calculate a model-space 
tensor, which reduces compute time by a large amount at the cost of requiring a large 

investment in memory by storing this precomputed value for all combination of samples and 

f.p.f. candidates once and for all before optimization. Note that the evaluation of this model-

space tensor is a practical requirement of the implementation which has no counterpart in 

the theory presented earlier in the paper. Second, we learn the model weights through 

(stochastic) gradient descent and infer the best parameters for the pooling function through 

brute-force search. The main stokes of the algorithm are described in Algorithm A.1.

A.3. Scaling of the current fwRF implementation

A short inspection of Algorithm A.1 would convince someone that the current fwRF 

implementation scales linearly in the number of voxels, number of candidate pooling 

function model and number of samples in the time series. The scaling with respect to the 

feature map size and the dependence on the number of feature maps is more difficult to 

assert. Since the feature map size only appears within the model space tensor evaluation due 

to our assumption of space-feature separability, and that this operation was usually much 

faster than the model weight estimation (it remained on the order of a few minutes even with 

feature maps sizes of a few hundred pixels), the only factor relevant to the model 

performance is the number of feature maps. Figure A.1 shows the typical model throughput 

as a function of the number of feature maps (assuming adequate choices of batch size across 

voxel, candidate models and samples). The batch sizes were selected to reach optimal 

utilization of the GPU resources.

A.4. Choice of grid-search hyperparameters

The grid size of the brute-force search for the feature pooling field parameters is pre-

dominantly influenced by the number of feature maps included in the model. As Figure A.1 

demonstrates, a model with fewer feature maps (like the Gabor-fwRF) can process more 

candidate feature pooling fields in the amount of time it would take for a model with more 
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feature maps (like the Deepnet-fwRF). However, beyond the mere practicality of compute 

time, we can also show that the choice of grid size is already close to optimal (in the sense 

that there is little to be gained with a finer grid), even for the coarser grid used for the 

Deepnet-fwRF. Figure A.2 shows the model advantage of the Deepnet-fwRF over the 

Gabor-fwRF (which uses a much finer feature pooling field grid, as described in the paper) 

for low and high visual area as a function of the number of spatial grid point (nx = ny) in the 

Deepnet-fwRF. Expectedly, the higher visual area predictions are much less affected by the 

density of feature pooling field candidates than the lower visual area where positional 

information is predominantly encoded. Even so, very little overall improvement can be 

observed in the lower area between nx = 10 and nx = 15 and we expect this trend to continue.

Algorithm A.1

Feature weighted receptive field method. In the following, tensors are boldfaced and the 

dimensions of a tensor are always displayed in square bracket after its name. A change in the 

order of the dimension implies a transpose of the tensor and an arrow in the dimensions 

indicates broadcasting to a certain size.

  1: procedure Generate modelspace tensor(ℱ, ): # Evaluate the spatial integrals of Eq 2 for all feature maps (ℱ) and 
pooling field ( ) candidates and resolutions.

  2:    for (Fl, gl) ∈ (ℱ, ) do

  3:      Ml ← TensorDot(Fl[n, Kl, xl, yl], gl[G, xl, yl], axis = [[2, 3], [1, 2]])

  4:    M ← Concatenate((Ml[n, Kl, G], ∀l ∈ L), axis = 1)

  5:    M ← Z-Score(M, axis = 0)

  6:    return M[n, K, G]

  7:

  8: procedure Generate voxel predictions(M, w):

  9:    R̂ ← Batched-TensorDot(M[G, n, K], w[G, V, K], axis = [[2], [2]])

10:    return R̂[n, V, G]

11:

12: procedure Loss(M, R, w):

13:    R̂ ← Generate voxel predictions(M, w)

14:    return L2-norm(R̂[n, V, G] − R[n, V, 1 → G])[V, G]

15:

16: procedure Optimize FWRF model parameters(M, R, winit): # M is the precalculated model-space tensor and R is 
the target voxel activity.

17:    mbest ← zeros[V] # best models initialization

18:    wbest ← zeros[V, K] # best weights initialization

19:    sbest ← inf[V] # best scores initialization

20:    for Vb ∈ Batch(V) do # take a batch of voxels

21:      for Gb ∈ Batch(G) do # take a batch of candidates f.p.f.

22:        wb ← winit[1 → Gb, Vb, K]

23:        for e ∈ 1‥epochs do

24:          sb ← zeros[Vb, Gb] # scores for this batch

25:          for nb ∈ Batch(ntrain) do # take a batch from the training samples
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26:             wb wb − λdLoss
dw (M[nb, K, Gb], R[nb, Vb], wb[Gb, Vb, K])

27:          for nb ∈ Batch(nholdout) do # take a batch from the holdout samples

28:            sb ← sb + Loss(M[nb, K, Gb], R[nb, Vb], wb[Gb, Vb, K])

29:          for υ ∈ Element(Vb) do # for all voxels

30:            g ← argmin(sb[υ, Gb]) # get the best model for this batch

31:            if sb[υ, g] < sbest[υ] then

32:              mbest[υ] ← g

33:              wbest[υ, K] ← wb[g, υ, K]

34:              sbest[υ] ← sb[υ, g]

35:    return mbest, wbest, sbest

A.5. Results for subject 2 of vim-1

The main presentation of this paper focused on subject 1 of the vim-1 dataset. Subject 2 

yielded qualitatively comparable results for all previous analyses, albeit suffering from 

markedly poorer predictions from all models, with almost half as many voxel with ρ > 0.27 

compared to subject 1. Figure A.3 shows our comparison of the model advantage for subject 

2. We observed that the Deepnet-fwRF outpredicted the Gabor-fwRF model in merely 41% 

of voxels in the early visual area V1-V2-V3 and in 67% for visual areas V4, V3A/B, and 

AOC. The Deepnet-fwRF model strongly outperformed the Deepnet-lReg in all visual area. 

Overall, this suggests that the lower signal-to-noise ratio in S2 requires better regularization, 

which the feature pooling field provides for the Deepnet-fwRF over the Deepnet-lReg, and 

which the smaller and more informed set of hypothesis targeted at predictions in V1-V2-V3 

provides for the Gabor-fwRFover the Deepnet-fwRF.
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Figure A.1. 
Scaling of the fwRF throughput. The throughput is expressed in voxel-model-epoch (vme) 

per seconds. The main factor determining the throughput is the number of feature maps, as 

shown here, which has almost optimal inverse scaling in a regime of full utilization. The 

batch size across voxels, model candidates and samples also affect the throughput, and the 

values displayed are for a fixed voxel batch size of 300 and a candidate batch size of 225. 

Overall computation time scales linearly with the sample size, number of voxels and number 

of candidates. For example, a case with 22K voxels and 20K candidate models optimized 

over 20 epochs results in 8.8 × 109 vme. For 96 feature maps at throughput of roughly 5 × 

105 vme/s results in an estimated computation time of 4.9 hours. This does not account for 

the time required to prepare the model-space tensor, which is however usually much shorter 

than that.

St-Yves and Naselaris Page 20

Neuroimage. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure A.2. 
Deepnet-fwRF model advantage over the Gabor-fwRF as a function of the grid-search 

spatial density hyperparameter nx = ny. We separated the model advantage between low and 

high visual area to show the weaker dependence on the spatial tuning of the feature pooling 

field at high levels. This indicates that the model predictions is mostly driven by feature 

tuning in these area. The dashed line highlights the point of no-advantage between the 

models. An advantage over 0.5 means that the Deepnet-fwRF (with these hyperparameters) 

outperforms the full Gabor-fwRF for this fraction of the total number of validated voxels (ρ 
> 0.27).
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Figure A.3. 
Comparison of the Gabor-fwRF, Deepnet-fwRF, and layerwise deepnet regression models 

for subject 2 of the vim-1 dataset. Refer to Figure 7 for a detailed description of the plot 

elements.
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Figure 1. 
The fwRF model. (A) A schematic illustration of a fwRF for a single voxel (grey box on 

brain, top right). The fwRF predicts the brain activity measured in the voxel, r, in response 

to any visual stimulus, S (bottom left). The stimulus is transformed into one or more feature 

maps (three feature maps, Φk, Φl, and Φm, are shown in blue with pink borders). The choice 

of feature maps is entirely up to the user, and reflects her hypotheses about the visual 

features that are relevant to brain regions of interest. The resolution of the feature maps (Δ, 

indicated by pink grids) can vary, although each feature map spans the same degree of visual 

angle as the stimulus S. Each feature map is filtered by a 2D Gaussian feature pooling field, 

g, that is sampled from a grid of candidate feature pooling fields (grey box at top left; 

candidate feature pooling field centers (μx, μy) are illustrated by the grid of black points, 

while candidate feature pooling field radii (σg) are illustrated by dashed circles). The feature 

pooling field radius and location are the same for each feature map. The output of the feature 

pooling field filtering operation (illustrated as black dots in the center of the dashed feature 

pooling fields on each feature map) for each feature map is then weighted by a feature 

weight (black curves labeled wk, wl, wm). These weighted outputs are summed to produce a 

prediction of the activity r. In the text we describe an algorithm for selecting the optimal 

feature pooling field and feature weights for each voxel. (B) Gabor wavelet feature maps are 

constructed by convolving the input images with complex Gabor wavelets followed by a 

compressive nonlinearity (see text for details). (C) Deepnet feature maps were extracted 
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from the layers (labeled Ki) of a deep convolutional network pre-trained to label images 

according to object category.
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Figure 2. 
Deepnet layerwise ridge regression method. In the layerwise model feature maps (bottom) 

are supplied by the same DNN used in the Deepnet-fwRF model. In contrast to the fwRF 

method, the layerwise ridge regression has one feature weight (curved black lines labeled 

wij
k) per feature map pixel (illustrated by pink grid overlaid onto feature maps). Feature 

weights are fit independently for each layer, resulting in L (where L is the number of layers 

in the DNN) distinct encoding models for each voxel. For each voxel (small box labeled r in 

the brain diagrams), the model with the best prediction accuracy (ρ) on a held-out model 

selection set is selected and retained for further analysis. In this illustration the model 

associated with the second layer of the DNN is selected (green box and checkmark) while 

the models for the first and third layers are discarded (red X’s).
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Figure 3. 
Interpretation of the feature pooling field radius. The feature pooling field in the fwRF 

model specifies the pooling radius (σg) over feature map pixels (feature map illustrated as 

blue plane; pixels indicated by pink grid; feature pooling field illustrated as black dashed 

circle). The pixels in a feature map (two pixels are labeled by black dots) have their own 

intrinsic scale that is specified by a pooling radius (σf, solid gray circles in white plane) over 

pixels in the stimulus (white plane). Assuming that both the feature pooling field and the 

pooling field of the feature map pixels are Gaussian, an estimate of the square of the 

population receptive field radius (σpRF, large solid black circle in the white plane) can be 
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obtained by summing the square of the feature pooling field radius with the square of the 

pooling radius of the feature map pixels.
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Figure 4. 
Feature pooling fields and spatial frequency tuning for the Gabor-fwRF model. (A) Panels 

show data from distinct ROIs (labeled in upper left corner). Each circle shows the feature 

pooling field of a single voxel (only voxels with ρ > 0.27 are included in these plots). The 

radius of each circle is the pRF radius (σpRF) estimated from the feature pooling field radius 

(σf) using the relation of Eq. 5. Circles are color-coded according to radius for ease of 

interpretation. In early visual areas, receptive fields estimated by the Gabor-fwRF tend to be 

relatively small and scattered across the visual field; in higher visual areas, they are 

relatively large and concentrated at the fovea. (B) The average estimated pRF radius (σpRF) 

is plotted against the pRF eccentricity (which is equivalent to the feature pooling field 

eccentricity). Color indicates brain ROI. Lines show the best linear fits. Radius increases 

linearly with eccentricity in all ROIs. (C) The feature pooling field radii also exhibit linear 

scaling with eccentricity, although they underestimate the pRF radii in all ROIs. (D) Spatial 

frequency tuning. Curves show the average contribution to the total prediction accuracy of 

each spatial frequency. As expected, the average preferred spatial frequency shifts downward 

from perifoveal (left) to peripheral eccentricities (right), and from lower to higher visual 

brain areas.
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Figure 5. 
Feature receptive field and layer tuning for the Deepnet-fwRF. (A) Panels show data from 

distinct ROIs (labeled in upper left corner). Each circle shows the feature pooling field of a 

single voxel (only voxels with ρ > 0.27 are shown here). The radius of each circle is the 

feature pooling field radius (σg). As in the Gabor-fwRF model, the feature pooling fields are 

relatively small and scattered for early visual areas, and relatively large and foveated for 

higher visual areas. (B) The Deepnet-fwRF uncovers a positive linear relationship between 

feature pooling field radius and center eccentricity. (C) Cumulative distribution of the 

distance between feature pooling field centers under the Deepnet-fwRF and Gabor-fwRF 

models. Each colored curve shows the cumulative distribution conditioned upon the 

prediction accuracy threshold given in the legend. Agreement between the models is 

generally high and increases with increasing predication accuracy threshold. (D) The 

average contribution to the total prediction accuracy of models in each brain area are plotted 

for each layer of the DNN for voxels with peri-foveal (left panel) and peripheral (right 

panel) feature pooling field centers. Models in all brain areas receive significant 

contributions from multiple DNN layers. The contribution of the early DNN layers is 

attenuated for higher visual cortical areas, while the reverse trend occurs for deep layers of 

the DNN hierarchy.
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Figure 6. 
Contributions of the DNN layers to dorsal and ventral stream predictions. Each column 

shows the distribution of the DNN layer contributions to the prediction accuracy for a single 

ROI. Colored bars within each column indicate the contribution to the prediction accuracy 

averaged over all voxels in that ROI. The contribution of the lowest (conv1) and highest 

(fc8) layers exhibit a clear counter-gradient organization. Contributions of intermediate 

DNN layers are also graded, but are much more uniformly distributed across ROIs.
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Figure 7. 
Comparison of the Gabor-fwRF, Deepnet-fwRF, and layerwise deepnet regression models. 

Each of the four accuracy/advantage plots displays a comparison of prediction accuracies for 

two models. The position along the vertical axis indicates the average prediction accuracy 

for the models under comparison; shifts to the right or left along the horizontal axis 

indicated a relative improvement in prediction accuracy for one of the models (model 1 is 

presented to the left of model 2). The color of each hexagonal bin indicates the number of 

voxels in a local region of the plot (log scaled). The histogram at the top of each plot 

represent the distribution of relative improvements for all voxels whose prediction accuracy 
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is above 0.2 for at least one of the two models, which correspond graphically to all voxels 

above the red dashed line. The number on each side represents the fraction of voxels that are 

improved under that model. In the plots on the left, a shift in the data towards the left 

indicates an advantage for Gabor-fwRF model. In plots on the right, a shift of the data 

towards the right indicates an advantage for the Deepnet-lReg model. In all plots, a shift of 

the data toward the midline indicates an advantage for the Deepnet-fwRF. The upper plots 

display data for voxels in intermediate and higher visual areas (V4, V3A, V3B, LO, and 

“other”); the lower plots display data for voxels in the early visual cortex (V1, V2, V3). For 

intermediate brain areas, the Deepnet-fwRF outperforms both the layerwise regression and 

Gabor-fwRF models. For early visual areas, the Deepnet-fwRF strongly outperforms the 

layerwise regression model, but only weakly outperforms the Gabor-fwRF. The Deepnet-

fwRF thus seems to have the strongest overall advantage for brain areas that require complex 

feature spaces. The “banana” shape of the distribution in the lower right suggests that the 

fwRF model provides strong and appropriate regularization, since voxels with low prediction 

accuracy under the more complex layerwise regression model are effectively “rescued” by 

the Deepnet-fwRF.
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Figure 8. 
Model advantage as a function of eccentricity. The blue curves indicate the fraction of 

voxels (left vertical axis) for which the Gabor-fwRF model has higher prediction accuracy 

than the Deepnet-fwRF model as a function of eccentricity (average feature pooling field 

center eccentricity from Gabor-fwRF and Deepnet-fwRF models; horizontal axis). The 

green curves indicate the number of voxels (right vertical axis) available for analysis at each 

eccentricity, with a bin width of 1 degree. The Gabor-fwRF model performs better than the 

Deepnet-fwRF model for foveal voxels that prefer high spatial frequency. The advantage of 

the Gabor-fwRF for very foveal voxels disappears when the analysis is restricted to voxels 

with low spatial frequency preference (ω < 2 cycles/deg.; dashed curves).
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